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Abstract

We investigate numerically the aerobreakup of liquid droplets with a focus on the bag breakup
regime. We solve the two-phase incompressible Navier-Stokes equation using the adaptive mesh
refinement (AMR) technique with volume-of-fluid (VOF) interface reconstruction. To minimise the
influence of mesh-induced breakup on fragment statistics which has prevented previous studies from
reaching grid convergence, we utilise a recently developed numerical algorithm which artificially
perforates thin fluid structures once their thickness decreases to a critical value independent of the
grid size. We first show good agreement with theoretical predictions and clarify the influence of the
surrounding airflow on the drop deformation. Next, we show grid convergence for fragment statistics
and identify the physical mechanisms governing bag breakup.

1 Introduction

Liquid atomisation refers to the process where a bulk volume of liquid deforms and disintegrates
into sprays, typically featuring various shapes and spanning large ranges of size and velocity [1]. Liq-
uid atomisation is involved in a wide range of physical processes, including ocean-atmosphere interac-
tions [2], precipitation and rain-drop dynamics [2, 3], pharmaceutical spray generation and pathogen
transmission [4], etc.; and it has recently been shown that the fragmentation of bag-shaped surface
ripples dominates sea spume generation under extreme wind conditions, producing large droplets with
typical sizes of 102 ∼ 103 µm [5] where the currently-available sea-spray generation functions (SS-
GFs) show large range of scatter [2]. However, since the physics governing the fragmentation of bag
films have not yet been firmly established, their influence on SSGFs have been difficult to quantify.
Improving this understanding is the primary motivation of the present work.

As one of the simplest examples of liquid atomisation, the aerobreakup of liquid drops is typically
modelled by placing a droplet with density ρl , viscosity µl , diameter d0 and surface tension σ in
an ambient gas flow with density ρa, viscosity µa and uniform incoming velocity U0. Four non-
dimensional controlling parameters can be proposed [3]:

We ≡
ρaU2

0 d0

σ
, Oh ≡ µl√

ρld0σ
, ρ

∗ ≡ ρl

ρa
, µ∗ ≡ µl

µa
. (1)

Among these, the Weber (We) and Ohnesorge number (Oh) respectively quantify the ratios of inertial
to capillary forces, and viscous to capillary forces; and ρ∗ and µ∗ are respectively the density and
viscosity ratios of the liquid and gas phase. For sufficiently small We, the droplet oscillates without
breakup, up to a critical value Wec = 11±2 [6] which marks the transition to the bag breakup regime,
and is independent of viscous effects for Oh ≤ 0.1.

In the bag-breakup regime, the droplet first flattens and evolves into an oblate disc. Afterwards, a
bag is blown out from the centre, thinning and approaching breakup, while the disc periphery forms
a toroidal rim. There are several models describing the early deformation of the droplet [1, 6], but
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the internal flow mechanism first proposed by Villermaux and Bossa [3] and significantly developed
by Jackiw and Ashgriz [7, 8] among others has been very promising. In this model, the droplet is
assumed to maintain a spheroidal shape governed by axisymmetric and inviscid internal flow, with a
well-defined air-phase stagnation point [1, 3, 7]. Recently, Jackiw and Ashgriz [7] used a simple semi-
analytical argument to propose a constant growth rate of the drop spanwise diamater Rm, which has
shown good agreement with experimental results [7]. However, this approach is somewhat empirical
and cannot account for the complex interaction between wake vortices and drop surface [9]. The
late-stage breakup behaviour, on the other hand, is delineated into a bag-film rupturing event, and
the fragmentation of the remnant rim at a later time. The bag film rupture occurs more rapidly and
produces much smaller fragments compared with the remnant rim breakup, and is thus more difficult
to capture experimentally [1]; and it has only recently been clarified [8] that the major pathways
leading to bag fragmentation are the destabilisation and collision of hole rims as they recede over
the curved bag and experiences centripetal acceleration. The size and velocity distribution data of
aerobreakup fragments are still scarce [10], and it remains unclear how each breakup mechanism
contributes to the fragment statistics given the large span in time and length scales.

While most of the early aerobreakup studies are experimental, recent development of computa-
tional power has enabled numerical investigations of aerobreakup; however, they are highly challeng-
ing due to the multiscale nature of the problem. In particular, as the Navier-Stokes equations do not
describe the physical mechanisms that control topological changes at phase boundaries, thin films are
subject to uncontrolled numerical perforation when their thickness approaches the minimum grid size
[11]. As a result, numerical convergence with respect to bag fragment statistics has not previously
been obtained to our knowledge. Using a controlled and well-defined perforation scheme to obtain
numerical convergence is therefore one of the major goals of this study.

In this work, we investigate both the early-time deformation and the late time fragmentation pro-
cess of a droplet in bag breakup. We first introduce in §2 the problem configuration and the numerical
method. We then compare our axisymmetric simulation results with previous theoretical predictions
in §3 for the early-time deformation period, and discuss in §4 the 3D grid convergence study of
fragment statistics and the physical mechanisms governing bag breakup.

2 Formulation and Methodology
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Figure 1. Sketch showing the initial configuration of axisymmetric (a) and three-dimensional (b) droplet
aerobreakup simulations. For the axisymmetric simulations, the axis of symmetry is located at the bottom.

We consider both axisymmetric and three-dimensional (3D) problem geometries, and the corre-
sponding flow configurations are shown in Figs. 1a and 1b, respectively. To eliminate the influence
of finite domain size on aerobreakup behaviour, the domain width D is set as 15d0. A zero-gradient
velocity boundary condition and a uniform incoming velocity U0 are imposed respectively on the right
and left boundaries, while reflecting conditions are applied at the other boundaries. This initialisation
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results in an impulsive droplet acceleration at the first time step, and induces a flow field satisfying
both the incompressibility constraint and the conservation of linear momentum [9]. We fix ρ∗ and µ∗

as 833 and 55 which are typical of air-water systems. We and Oh are varied within 12 ≤We ≤ 20 and
0.001 ≤ Oh ≤ 0.01, respectively, which covers the bag and bag-stamen breakup regimes.

We use the open-source software Basilisk [12] to solve the following Navier-Stokes equations for
two-phase incompressible, immiscible and isothermal flows,

∇ ·uuu = 0, (2)

ρ

(
∂uuu
∂t

+uuu ·∇uuu
)
=−∇p+∇ ·

[
µ(∇uuu+∇uuuT )

]
+σκδsnnn. (3)

Equations (2) and (3) are respectively the continuity and momentum equation, where p is the fluid
pressure. σκδsnnn incorporates surface tension effects, where κ and nnn are respectively the local in-
terfacial curvature and normal vector, and the Dirac delta δs is non-zero only on the interface [13].
Compressible and mixed compressible-incompressible problems can also be considered using the
appropriate Basilisk solver [14], but this is out of the scope of the present work.

The geometric volume-of-fluid (VOF) interface reconstruction method is applied, which solves the
following advective equation,

∂ f
∂t

+uuu ·∇ f = 0, (4)

where the VOF function f equals 1 and 0 in the liquid and gas phase, respectively. δsnnn in Eq. (3) is
approximated as ∇ f [15, 16], and κ is calculated using the appropriate numerical derivatives of the
interface geometry, which is reconstructed through the use of height functions [16]. The quad/octree
adaptive mesh refining (AMR) scheme is adopted to reduce the computational cost at high resolution
levels L [17], which is defined using the minimum grid size ∆ = D/2L. Our axisymmetric simulations
are conducted on L = 14, while the 3D simulations are conducted on L = 13 and 14.

To achieve grid convergence of fragment statistics, we adopt and parallelise the manifold death
(MD) algorithm of Chirco et al. [11], which randomly perforates thin films once their thickness
decreases to a prescribed value independent of ∆. This is realised by periodically computing quadratic
moments of f indicating the local interfacial topology at a given signature level Lsig ≤ L. When
the detected local thickness reduces to hc = 3D/2Lsig = 3∆ · 2L−Lsig , the algorithm randomly creates
cavities on the film by modifying f with a prescribed probability pperf. While this approach changes
the total fluid mass, the MD algorithm minimises this side effect by creating cavities with minimum
sizes that allow for expansion, and limiting the maximum number of holes nH perforated within a
calling interval ∆tc.

Finally, the droplet radius R0, incoming flow velocity U0, dynamic flow pressure p0 ≡ ρlU2
0 and

the characteristic deformation time τ≡
√

ρl/ρad0/U0 [18] provide the natural reference scales for the
length, mass and time quantities that appear in Eqs. (2) and (3), and will be used to non-dimensionalise
results in the remainder of this study unless otherwise specified.

3 Early-time deformation

To provide an overview of the early-time droplet deformation process, we first present in Fig. 2a
the development of droplet contours for We = 15, Oh = 0.001. It is found that the windward surface
of the droplet continues moving downstream and pushing the liquid to the drop periphery, leading to
gradual spanwise flattening; in the meantime a dimple develops on the windward surface that moves
radially inwards and eventually evolves into a crater on the axis of symmetry. The leeward side of the
droplet remains relatively stationary for a long time after an initial recession to the upstream.
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(a) (b)

Figure 2. (a): Early-time development of droplet contours for axisymmetric simulation case with We =
15, Oh = 0.001; (b): Gas-phase pressure profiles around the droplet from axisymmetric and 3D cases with
We = 15, Oh = 0.025. Dashed arrows indicate the profile evolution as time elapses.

Figure 2b shows the gas-phase pressure as a function of the arc length l along the drop surface,
where We = 15 and Oh = 0.025, which matches the rigid sphere case in [19] with a Reynolds number
of 300. At very early time the pressure profile agrees in trend with the steady-state result of [19],
especially in the wake region; and the axisymmetric and 3D results match very well over the entire
deformation period. As the droplet flattens over time, the pressure profiles deviate from the rigid-
sphere case, which is most apparent at the windward face of the drop.

Recently, Jackiw et al. [7] found experimentally a period of constant droplet spanwise growth rate
Ṙ, and derived the following model assuming axisymmetric and inviscid flow,

Ṙ =
R0Tbal

4τ2

(
a2 − 128

We

)
, (5)

where the axial stretching rate a is approximated as 6, following the potential flow solution for a
sphere; and Tbal is the time when a constant streamwise deformation rate is reached, taken as 0.125τ

according to the experimental results of [7].

(a) (b)

Figure 3. Development of instantaneous spanwise growth rate Ṙ at various We with Oh = 0.001 (a), and at
various Oh with We = 15 (b). Numerical results are scaled using Eq. (5).

Figures 3a and 3b show the influence of We and Oh on Ṙ, respectively. For Oh = 0.001, Figure 3a
shows that Ṙ reaches a plateau around t = 0.3τ, where Eq. (5) matches qualitatively with the measured
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Ṙ values. For Oh = 0.001, this period of constant Ṙ ends around t = 0.55τ, after which Ṙ reaches a
peak around t = 0.6τ, indicating a deviation from Eq. (5) which becomes more conspicuous as We
increases. On the other hand, Figure 3b suggests that as Oh increases, the peaking of Ṙ attenuates,
while the match with Jackiw et al.’s model (5) is improved, which is particularly interesting as Eq. (5)
is based on inviscid flow assumptions. The experimental data in [7] are obtained for Oh = 0.0027
where the peaking behaviour is not apparent, which partially explains why it is not noted therein.

Figure 4 further shows that the gas flow separates from the droplet surface at the upper-left tip,
creating a recirculating region with low pressure [9]. The streamlines within the droplet shows the
liquid being pushed from the windward surface to the periphery driven by the air-phase pressure
difference; and when the peak in Ṙ is reached for We = 20,Oh = 0.001, a liquid bulge appears around
x = 0.5 in the recirculating region and causes a location shift where the maximum spanwise radius
R is reached, which could also be seen in Fig. 2a at t ≥ 0.6τ for We = 15. Surface tension then
induces a pressure increase in the bulge and decelerates the incoming liquid flow, thus causing the
later decrease in Ṙ. Notably, the droplet at Oh = 0.01 shows no bulging behaviour and much weaker
gas-phase recirculation near the drop periphery in Fig. 4c, which suggests that the bulge formation
and deviation from (5) is closely associated with the interactions between the drop surface and the
wake vortices, which is in turn determined by liquid and gas viscosity.

(a) (b) (c)

Figure 4. Flow fields near the droplet before (a) and after (b) the peaks in Ṙ are reached for We = 20, Oh =
0.001, and at the peak in Ṙ for We = 15, Oh = 0.01 (c). Streamlines are shown in black with superimposed
arrows indicating flow direction, while the background colour shows the flow pressure magnitude.

4 Breakup of Bag Films

While there is still debate on the physical mechanism responsible for the onset of liquid film
breakup, for bag films under normal acceleration, it has been argued that RT modulations arise across
the film, causing perforation when the perturbation amplitude becomes comparable to the film thick-
ness h [3, 7]. In our simulations the bag film is perforated artificially to minimise the influence of
numerical breakup, as discussed in §2; and here we will focus on bag dynamics after its nucleation.

We first show grid convergence for ensemble-averaged fragment statistics in Fig. 5 when apply-
ing the MD algorithm, where we set the perforation probability, calling interval and signature level
as pperf = 1/17500, ∆tc = 0.25d0/U0 and Lsig = 12 (see §2 for their definition). The film rupture
behaviour is qualitatively different with and without application of the MD algorithm. Figure 5a is
a snapshot for a simulation case run without using the MD algorithm, featuring spurious numerical
breakup characterised by small-scale irregular corrugations and ligament breaking on the bag. Fig-
ures. 5b and 5c show that the MD algorithm is able to create large expanding holes, and reduce the
influence of numerical breakup on fragment statistics. More specifically, Fig. 5b still shows some
VOF breakup behaviour which is absent in Fig. 5c. This is because larger L means smaller grid size
∆ at which VOF breakup occurs, which postpones its onset and allows more time for the expansion
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Figure 5. Grid convergence study at grid level L = 12 and 13 for We = 15, Oh = 0.001. (a)-(c): Simulation
snapshots showing fragmenting bag films at t/τ = 1.909 without (a) and with artificial perforation (b,c). The
grid resolution level is L = 12 for (a,b) and 13 for (c), while the MD signature level for (b,c) is Lsig = 12.
(d): Evolution of the instantaneous fragment size distribution; (e): ensemble- and time-averaged fragment size
distribution for 1.906 ≤ t/τ ≤ 2.183.

of holes created by the MD algorithm with Lsig unchanged.
Figure 5d shows the evolution of the fragment size distribution for one ensemble realisation at grid

level L = 12 and 13, respectively; where each horizontal ’line’ corresponds with a fragment with a
given size, formed at the time when the line first appears; variations in the radii of fragments corre-
spond roughly with their breakup or coalescence, although there is some numerical noise particularly
at small sizes. Initially only a few small fragments with radii close to the grid size ∆ are produced,
followed by well-resolved larger fragments with radii r ≥ 4∆ where grid convergence is reached [20].
The small fragments close to grid size are mostly formed due to the breakup of stretched liquid lamella
bordering colliding holes [21], while larger fragments with r ≥ 4∆ are formed as ‘nodes’ adjacent to
three or more expanding holes detach from the bag [22], as shown in Figs 5b and 5c. Figure 5e
shows the ensemble- and time-averaged fragment size distribution function for L = 12 and 13, where
the statistics are approximately grid-converged for the tail with r ≥ 4∆12 when the MD algorithm
is used. In contrast, fewer fragments with r ≥ 4∆12 are generated without using the MD algorithm,
which is most likely because of the predominance of irregular tiny fragments characteristic of un-
controlled VOF breakup, as shown in Fig. 5a. It is noted that the difference between the L = 12 and
L = 13 data is most apparent for r ≤ 4∆13, where the L = 13 distribution extends further into the range
of r ≤ ∆13. This is probably because the smallest fragments near the grid size are produced from cap-
illary breakup of slender ligaments, which are controlled by the grid resolution rather than the MD
algorithm. Lastly, the loss of liquid mass incurred by the MD algorithm does not exceed 0.023% for
t/τ ≤ 2.18 at both L = 12 and 13, showing minimal influence of MD on mass conservation.

Finally, we briefly discuss the types of fragmentation arising during the bag breakup. In Fig. 5,
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(a) (b) (c)

Figure 6. Snapshots showing destabilisation of the rim during hole expansion on the bag with We = 15, Oh =
0.001 (a-c). The direction of mean background airflow is from right to left.

most fragments are formed by collision between receding rims, as in [21, 23], but other mechanisms
might also play a role. Figure 6 shows hole rim destabilisation for We = 15, Oh = 0.001, which to
our knowledge has not been shown in previous numerical studies. The simulation is run at L = Lsig =
14. It could be seen that the rim bordering the major hole protrudes out from the bag surface as it
collects up liquid mass during receding, and regularly-spaced digitations develop on the upper half
of the rim as time elapses. Jackiw and Ashgriz [8] suggests that rims receding at the Taylor-Culick
velocity vTC ≡

√
2σ/ρlh over a bag with radius of curvature R are subject to the centrifugal inertial

force arr = v2
TC/R, which regulates the rim thickness b via the universal Bond-number principle [24]

Borim ≡ ρlb2a/σ = 1. The experimental results in [8] further suggest that the Rayleigh-Plateau (RP)
instability governs rim digitation, while Lhuissier and Villermaux [25] proposes an RT instability
mechanism for bursting surface bubbles, which we aim to further investigate in our future work.

5 Conclusions

This study carries out axisymmetric and 3D numerical simulations of droplet aerobreakup, and
utilises a new film perforation algorithm to minimise pollution of fragment statistics by spurious
numerical breakup. Our results are validated by good agreement with [19]. We reproduce the con-
stant spanwise growth rate predicted in [7], and explain deviation from this model by the interaction
between the drop surface and the wake vortices. Grid convergence for fragment statistics and prelim-
inary results showing the destabilisation of receding rims are presented.

Acknowledgements

The authors would like to thank EPSRC for the computational time made available on the UK
supercomputing facility ARCHER2 via the UK Turbulence Consortium (EP/R029326/1). Use of the
University of Oxford Advanced Research Computing (ARC) facility is also acknowledged. K. Tang
is supported by a Research Studentship at the University of Oxford.

References
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