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Simple Summary: Most malignant tumours are highly heterogeneous at molecular and phenotypic
levels. Tumour variability poses challenges for the management of patients, as it arises between
patients and even evolves in space and time within a single patient. Currently, treatment-decision
making usually relies on the molecular characteristics of a limited tumour tissue sample at the time
of diagnosis or disease progression but does not take into account the complexity of the bulk tumours
and their constant evolution over time. In this review, we explore the extent of tumour heterogeneity
and report the mechanisms that promote and sustain this diversity in cancers. We summarise
the clinical strikes of tumour diversity in the management of patients with cancer. Finally, we
discuss the current material and technological approaches that are relevant to adequately appreciate
tumour heterogeneity.

Abstract: Human solid malignancies harbour a heterogeneous set of cells with distinct genotypes
and phenotypes. This heterogeneity is installed at multiple levels. A biological diversity is commonly
observed between tumours from different patients (inter-tumour heterogeneity) and cannot be fully
captured by the current consensus molecular classifications for specific cancers. To extend the
complexity in cancer, there are substantial differences from cell to cell within an individual tumour
(intra-tumour heterogeneity, ITH) and the features of cancer cells evolve in space and time. Currently,
treatment-decision making usually relies on the molecular characteristics of a limited tumour tissue
sample at the time of diagnosis or disease progression but does not take into account the complexity
of the bulk tumours and their constant evolution over time. In this review, we explore the extent of
tumour heterogeneity with an emphasis on ITH and report the mechanisms that promote and sustain
this diversity in cancers. We summarise the clinical strikes of ITH in the management of patients
with cancer. Finally, we discuss the current material and technological approaches that are relevant to
adequately appreciate ITH.

Keywords: tumour heterogeneity; circulating tumour DNA; liquid biopsy; treatment resistance;
next-generation sequencing; multi-region sampling; single-cell approaches

1. Tumour Heterogeneity: From Historical Perspectives to Novel Insights
1.1. Varying Degrees of Tumour Heterogeneity

Tumour heterogeneity harbours multiple layers of complexity in human malignancies.
It has long been known that tumours of the same histopathological subtype commonly
differ from one patient to another (inter-tumour heterogeneity) (Figure 1). Exacerbating the
complexity even further, sizable variations have been reported within a single tumour (intra-
tumour heterogeneity, ITH). ITH can be detected between the different geographic regions
of the same primary tumour or even between the primary tumour and the metastastic
lesions (spatial intra-tumour heterogeneity). Moreover, the analysis of serial tumour
samples demonstrated that the cell features may evolve during the course of the disease
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progression (temporal heterogeneity) under environmental or therapeutic stress [1,2]. ITH
has been observed in most (nearly all) types of cancers, including both haematological
malignancies (chronic lymphoblastic leukemia and acute lymphoblastic leukemia), and
solid tumours (lung, breast, ovarian, pancreatic, kidney, colorectal, brain and prostate
cancers) [3].
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Figure 1. A multifaceted heterogeneity in cancers. (A) Inter-tumour heterogeneity refers to the
variability observed in tumours of the same histological subtypes between different patients.
(B) Intra-tumour heterogeneity (ITH) is observed across different regions of the primary tumour site
and/or metastatic sites (spatial ITH) and can evolve over time (temporal ITH). Colours represent the
different characteristics between tumours or tumour cells.

1.1.1. Phenotypic Heterogeneity

The first demonstration of tumour heterogeneity has been made by histopathologists
who are familiar with morphological divergence (differentiation status, necrosis, fibrosis,
etc.) across the tumours or between the different areas of the tumour (Figure 2) [1,4–8]. This
notion has led to the very basis of tumour classification systems based on histopathological
features [9]. Tumour grading systems notably include the pathological examination of
multiple microscopy fields in order to avoid tumour misclassification due to ITH [10].
Increasing evidence indicates that tumour foci are heterogeneous at other phenotypic
levels than merely morphologic, including differential capabilities in terms of proliferation,
metabolism, motility, migration, invasiveness, metastasis and stemness, as well as varied
sensitivity to therapies [11–13]. The morphological and other phenotypic cell features
co-vary in the different tumour regions, notably between the core and the external borders
of the tumour.
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Figure 2. Sources of intra-tumour heterogeneity (ITH). Genetic, epigenetic, microenvironmental, tran-
scriptomic and proteomic heterogeneities coexist in tumours and are linked with phenotypic diversity.
Abbreviations: CAF: Cancer-associated fibroblasts; ECM: extracellular matrix; EMT: epithelial-to-
mesenchymal transition; indels: small insertions and deletions; LOH: loss of heterozygoty; MET:
mesenchymal-to-epithelial transition; SCNA: somatic copy number alterations; SNV: single nucleotide
variants; SV: structural variants.

1.1.2. Molecular Heterogeneity

Advances in next-generation sequencing (NGS) revealed the extent and prevalence
of molecular diversity in tumours [14,15]. The sequencing of multiple regions in space
and time demonstrated the various repertoires of genetic events that can occur in can-
cers, including single nucleotide variants (SNVs), small insertions and deletions (indels),
structural variants and somatic copy number alterations (SCNA) [15]. Large-scale studies
indicated that genetic ITH occurs in almost all cancer types, albeit at varying degrees [16,17].
Melanoma and lung adenocarcinomas notably account for cancers with high mutational tu-
mour burden and the establishment of specific mutational signatures as a result of exposure
to exogenous mutagens (UV radiation and tobacco smoke) [18]. Dietz et al. demonstrated
that the frequencies of driver gene mutations in regionally distinct areas of lung adenocar-
cinomas were correlated with the spatial distribution of histological patterns, highlighting
an interplay between histologic and genetic features in a tumour [19,20].

However, the genetic perspective is insufficient to fully explain the range of phenotypic
diversity in solid malignancies, given the fact that cell populations with identical genetic
background can lead to distinct morphological patterns and differential responses to
treatment or environmental stimuli [10,21]. Emerging evidence demonstrated that ITH also
take place at other levels, such as epigenetics, transcriptomics and proteomics [22].

The epigenome is defined as a connection between the genome and the environment.
Alterations of the epigenetic machinery has been recognised as a hallmark of cancer [23]
and may appear early during carcinogenesis [24]. Epigenetic marks induce heritable
changes in gene expression without any modification in the underlying DNA sequence that
allows cells to adapt to microenvironment stimuli (oxygen, nutrient deprivation, acidity,
etc.) and develop resistance mechanisms against anticancer therapies [25]. Bidirectional
communications between genetics and epigenetics have been reported in cancers, with the
detection of somatic mutations in genes encoding epigenome regulators (such as DNMT3A,
IDH1, H3F3A) and inversely the identification of DNA hypomethylation or epigenetic
silencing of DNA repair genes (such as MLH1 or BRCA1) that can cause genomic instability
in cancer cells [24]. Studies assessing histone modifications, chromatin accessibility and
DNA methylation profiles demonstrated a high epigenetic variability in cancers [21,26,27].
Considering the major implications of epigenetics in the development of cancers and their
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response to anticancer treatments, a better understanding of epigenetic heterogeneity could
help to identify novel epigenetic therapies and consider them for a combination with other
anticancer treatments (genotoxic/cytotoxic agents, hormone therapy, immunotherapy,
targeted therapy) to improve their efficacy or reverse drug resistance [25].

Transcriptome refers to all RNA species that can be found in cells; however, mRNAs
are frequently the most studied. Their composition varies between cell types and tumour
types and continuously evolves depending on the local conditions that are applied to
cells over time. They can be explored through targeted (RT-PCR) or high throughput
approaches (gene expression arrays, RNA sequencing (RNASeq)). A plethora of gene
expression signatures have been developed in oncology for tumour classification [28],
prognosis establishment [29–32], therapeutic and surveillance decision making [33] but
only a few are already implemented for routine practice [34].

Because proteins directly reveal the functional mechanisms that occur in cancers and
account for most of the therapeutic targets, it appears important to assess tumour hetero-
geneity at the protein level, which has shown growing interest. Proteomic approaches
have long lagged behind those for transcriptome and genome due to technical limita-
tions, high amounts of proteins generated from a single gene (with different isoforms
and modification states) and a complex regulation of protein expression at both transla-
tional and post-translational levels [35]. Immunohistochemistry appears as one of the
most standard approaches to assess protein abundance changes; however, it provides only
semi-quantitative information, interrogates a limited number of proteins and is limited
by the availability of appropriate antibodies. The development of reverse-phase protein
array (RPPA) and mass spectrometry (MS)-based methods enabled the assessment of the
proteomic landscape on a larger scale [35]. Transcriptomic approaches cannot substitute
proteomic investigations, as the analysis of datasets from The Cancer Proteome Atlas
(TCPA) found a poor correlation between protein and gene expression in cancer tissues,
with Spearman correlation oscillating from 0.1 to 0.3, depending on the cancer type [36].

Recognition of all these cancer-specific molecular processes as major elements in the
evolution of cancers and their considerable diversity has led to the launch of cancer ge-
nomics programs by international consortia, such as The Cancer Genome Atlas consortium
(TCGA) and the International Cancer Genome Consortium (ICGC). All aim to integrate the
analysis of multi-omics datasets (genetic, epigenetic, transcriptomic and proteomic data) to
provide a comprehensive overview of the tumour landscape [16,37–45].

1.1.3. Tumour Micro-Environment (TME) Heterogeneity

The influence of the complex ecosystem in which cancer cells evolve has long been
overlooked. In the last decade, cancer biology progressively shifted from a cancer cell-
centric model to a more ample view, where cancer cells and their near environment are
highly interrelated. The tumour microenvironment (TME) is made up of non-transformed
cells (endothelial cells, fibroblasts, pericytes, adipocytes, immune cells, etc.) and non-
cellular constituents (such as the extracellular matrix) which are shaped by cancer cells
through the modification of local environmental conditions and the secretion of oncogenic
signals [46,47]. As a consequence, the phenotypic traits and behaviours of TME compo-
nents are highly heterogeneous, depending on the tumour context (Table 1) [46,48]. In
return, TME can assist in the development of the tumour niche by contributing to can-
cer progression, metastasis and drug resistance [48–50]. In this way, TME represents an
emerging target for treatments (such as immune checkpoint inhibitors or antiangiogenic
therapies) and should be taken into consideration for clinical decisions. Recently, Garat-
tini et al. demonstrated that heterogeneity also extends to the drug distribution in tumours,
which depends on many aspects of the patient, the tumour and its microenvironment and
influences tumour response [51].
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Table 1. Examples of tumour microenvironment (TME) heterogeneity and their consequences on
cancer development.

TME Cell Types TME Heterogeneity Consequences on Tumour
Development

References

Cancer-associated
fibroblasts (CAFs)

CAFs differ by their origins
(cellular precursors and
cellular locations) and their
marker expression profiles.
CAFs subgroups are
differentially expressed
depending on the cancer types.

CAF subsets display opposite
functions in cancers: some
favour cancer development
through the promotion of
angiogenesis, metastasis and
drug resistance, while others
exhibit tumour-suppressor
properties by contributing to
growth inhibition, immune
surveillance of the tumour and
drug sensitivity.

[52]

Immune cells
(macrophages, dendritic
cells, mast cells, natural
killer cells, B and T
lymphocytes)

Variable levels of immune
infiltration are observed in
tumours depending on cancer
types and subtypes. The
immune cell composition
(innate/adaptive immune cells,
immune cell types) also differs
between tumours.

Numerous studies report the
interest of tumour-infiltrating
lymphocytes (TILs) as a major
prognostic marker in diverse
cancers. High density of CD8+ T
cells in tumours is strongly
correlated with good prognosis,
while high regulatory T-cell
(Tregs) infiltration was
associated with early recurrence
and poor outcomes. In the same
way, high density of NK cells in
tumours was shown to predict
good patient survival.
Tumour-associated macrophages
and neutrophils promote tumour
cell plasticity and cancer stem
cell phenotype, notably though
the secretion of specific
cytokines.

[53–55]

Tumour endothelial cells
(TECs)

TECs show differences in
terms of origins, morphology,
structure, functions and
marker expression. TECs
derived from highly metastatic
tumours harbour more
cytogenic abnormalities and
proangiogenic properties than
those from tumours with low
metastasis. TECs from
tumours with high metastatic
potential display a stem
cell-like phenotype with the
remarkable capacity to form
spheres.

The overexpression of adhesion
molecules in TECs allows cancer
cell extravasation and metastasis
spreading.
TECs can secrete angiocrine
factors at various levels that
contribute to cancer cell
proliferation, migration, invasion
and angiogenesis.
TECs also contribute to the
emergence of drug resistance by
increasing the expression of
ATP-binding cassette
transporters or helping tumour
cells to switch to resistant
phenotypes.
TECs also modulate cancer
immune surveillance by
secreting growth factors that
inhibit immune cells homing and
induce the apoptosis of activated
CD8+ T cells. TECs expressing
PD-L1 marker hamper T cell
activation.

[56–58]
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Table 1. Cont.

TME Cell Types TME Heterogeneity Consequences on Tumour
Development

References

Extracellular matrix
(ECM): collagens,
proteoglycans,
fibronectin, elastins,
laminins, hyaluronans

Proportion of ECM in tumours,
ECM composition, architecture
and posttranslational
modifications are highly
variable from a tumour to
another.

Increased amounts of collagens
in ECM of pancreatic cancers is
associated with poor prognosis
and chemoresistance.
The expression levels of certain
collagen isoforms (notably
increased Col I levels and
decreased Col IV levels) are
correlated with stage of cancers
and poor prognosis.
Enhanced laminin expression
and its anarchic distribution as
well as high hyaluronic acid
levels are correlated with poor
clinical outcomes.
Abundant and rigid ECM in
tumours can act as a barrier and
protect tumour cells from
therapeutic agents.
The stiffness of ECM and its
enrichment in hyaluronic acid
and Col I isoform drive
epithelial-to-mesenchymal
transition and promote
metastasis and drug resistance.

[59]

Cancer-associated
adipocytes (CAAs)

Less is known about the
heterogeneity in the adipocyte
part of the ECM. CAAs are
characterised by irregular
morphologies with decreased
lipid content and reduced
differentiation marker
expression compared to
normal mature adipocytes.

Growing evidence highlight the
role of CAAs in the development
of certain tumour types. CAAs
interact with cancers cells and
induce the reprogramming of
their energy metabolism, the
development of chemoresistance
and the secretion of adipokines
that modify the behaviour of
tumour cells.

[60]

1.2. Unravelling Evolutionary Processes behind Tumour Heterogeneity

Two major and paradoxical theories have been developed to explain the installation
of high degree of diversity in tumours. In 1976, Peter Nowell first described the cancer
development as a continuous evolutionary process originating from a single renagade
mutant cell and driven by the accumulation of stepwise somatic mutations during pro-
liferation processes that give rise to various clones and subclones [61]. The development
of multiple cell groups with distinct genomic profiles is amplified by genomic instability
that arises in most solid tumours and haematopoietic malignancies as a result from both
exposure to exogenous mutagens and defects in DNA repair pathways [62]. A subclone
is characterised as a set of cells that diverge from the cell ancestor lineage (clone) by the
presence of additional genetic alterations. Equivalent to Darwinian natural selection, most
stochastic events that appears during the evolution process probably do not confer any
selective benefit to the cancer cells (passenger mutations) [63]. In contrast, certain mutations
can provide a fitness advantage over adjacent cells (driver mutations) and enables them to
become predominant and outcompete other ones [64]. Most driver mutations are clonal.
They appear early during cancer progression under a given microenvironmental context
and foster cancer progression but they seem not essential for cancer maintenance once
installed [63]. The clonal genomic architecture is distinct from a tumour to another consid-
ering that the emergence of subclones strongly depends on specific environmental stresses
(local hypoxia or inflammation, treatment exposure, etc.) applied in each tumour over time.
More recently, epigenetics and genetics were shown to follow convergent evolutionary
trajectories in the development of cancers, highlighting the potential interest of combining
epigenetic agents with other anticancer therapies [65–67].
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In contrast to the Darwinian clonal evolution theory, where all subclones possess
tumorigenic potential, a second model proposed that only a small subgroup of cancer cells
(named cancer stem cells (CSC) or tumour-initiating cells) has the capacity to generate new
tumours [68,69]. In this model, tumours are structured in a unidirectional hierarchy fashion,
whereby CSC can either indefinitely self-renew (symmetric division) or differentiate into
multiple cancer cell types (asymmetric division). CSC with stem cell-like characteristics
have been observed in several cancers, including leukemia, breast, colon, head and neck
and oesophageal cancers [64]. CSC are thought to be more drug-resistant than non-CSC
and in such ways, they may be responsible for recurrence and therapeutic evasion [68].
Increasing evidence, however, indicated that non-CSC can readily convert to a CSC state
through cell plasticity programmes, such as epithelial-to-mesenchymal transition (EMT),
indicating that the hierarchy seems less rigid than previously thought [70]. In the same
manner, different subsets of CSC with variable EMT phenotypes can coexist in tumours
and can switch from one to another [70]. Stemness and CSC plasticity may be modulated
by internal (genetic and epigenetic) and external (TME) factors that can work apart or
simultaneously [71]. Van Niekerk and colleagues show that certain stem cell features can be
acquired by cancer cells through clonal selection, highlighting the fact that clonal evolution
and the CSC theories are not necessarily mutually exclusive and can intertwine [72].

In these first models of tumour evolution, ITH was thought to gain gradually over
time as the tumour grew (Figure 3). Although this concept of continuous clonal evolution
is still applicable to describe most cancer evolutionary processes, increasing evidence sup-
ported the idea that this model cannot explain the full spectrum of observed evolutionary
behaviours [73]. Notably, single catastrophic events, such as whole-genome doubling,
chromosomal chromoplexy and chromothripsis, can arise suddenly as single macroevolu-
tionary jumps over long periods of relative stasis. In some extreme cases of punctuated
tumour evolution, the development of colorectal cancers and other tumour types has been
modelled as “Big-bang” dynamics, whereby a single or few mutational bursts occur early
during carcinogenesis and result in a large number of intermixed subclones that are not
subjected to selective pressure and coexist during growth (neutral evolution) [74–76].

Branched evolutionary trajectories have been extensively described in a wide range of
tumour types, such as childhood acute lymphoblastic leukaemia, clear cell renal carcinomas,
pancreatic, colorectal, breast and prostate cancers [77]. Evolutionary pathways can then
be represented as a phylogenetic tree, where truncal mutations (clonal) represent the
alterations occurring early in cancer development progenitors, while nontruncal mutations
(subclonal) emerge during cancer progression and are shared by only a small group but not
all cancer cells. In a branched evolution pattern, several distinct subclones co-exist and can
be either intermingled in the same area or regionally separated, depending on the presence
of physical barriers, such as blood vessels or microenvironment specificities [62].

ITH has also been described in cancer cases with linear evolutionary trajectories
whereby a predominant subclone outgrows at the expense of its predecessor(s) followed by
incomplete selective sweeps [62,77]. Although most studies described a single model of
evolution in cancers, emerging data suggest that tumours may follow different models of
evolution (linear, branched, punctuated or neutral) sequentially or simultaneously during
the course of the disease [78]. The full context of tumour evolution is still to be explored in
detail in order to better define effective therapeutic strategies.
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Figure 3. Models of tumour evolution described by Muller plots, which represent the tumour clonal
dynamics over time. Colours indicate the different genotypes of the tumour cell clones.
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2. Clinical Consequences of Tumour Heterogeneity
2.1. Impact on Diagnosis, Prognosis and Therapeutic Predictions

In the last decades, the management of patients with cancer has been revolutionised by
better knowledge on the molecular background in cancer development. The understanding
of molecular inter-tumour heterogeneity has formed the basis of personalised medicine
in diagnosis, prognosis and treatment of cancers. Notably, it has set the limits of using
universal anticancer drugs and has been a major driver for the emergence of novel therapies
targeting specific molecular characteristics [79]. For most cancers, molecular diagnosis has
entered in clinical practice as a prerequisite for tumour subtyping, prognosis refinement
and treatment-decision making. Molecular testing is routinely performed on a limited
tumour tissue area selected by the pathologist to be the most representative of the tumour.
However, such methodology induces inherent under-sampling bias due to spatial and
temporal ITH.

2.1.1. Tumour Sampling Bias Due to Spatial ITH

Most of the histopathological and molecular features are not expressed homogeneously
in tumour subpopulations, highlighting the fact that the analysis of a single sample may
lead to diagnostic and prognostic errors and provide an incomplete view of potential vul-
nerabilities to treatment [80]. The identification of an actionable mutation in a predominant
subline might not necessarily predict the response of the bulk tumour [79]. If the targeted
mutation is shared by only a subset of cancer cells in the tumour (nontruncal mutation),
the response to the targeted therapy is often of limited duration due to the outgrowth
of resistant pre-existing subclones and/or the development of new drug-tolerant clones
under therapeutic selection pressure [81]. In patients with metastatic disease, it is of clinical
importance to portray ITH, given the fact that a genetic shift is infrequently observed
between a metastase and the primary tumour site or even between two spatially distinct
metastases [2].

2.1.2. Tumour Sampling Bias Due to Temporal ITH

Archival tissue specimens commonly serve as starting material for testing if any recent
sample is available. These samples can be collected many months or years previously, at the
time of diagnosis or when a new lesion appears at distance. However, they cannot reliably
reflect the tumour landscape over the time, considering that the tumour constantly evolves
under specific microenvironmental conditions (such as acidosis, hypoxia or reactive oxygen
species) [82] or exposure to therapeutic lines (DNA damaging agents or radiotherapy,
targeted therapy and immunotherapy) [83]. In this context, treatment failure may happen
when therapy is directed against a specific molecular characteristic [10].

2.1.3. Determining ITH to Decipher the Identity of the Tumour or of Specific Regions of
the Tumour

Analysing the characteristics of a tumour or of different tumour regions allows us to
define the tissue of origin but also provide insights into the molecular events that occurred
sequentially or in parallel throughout the development of the tumour. In this context,
evaluating ITH gives a remarkable view of the whole history of the tissue and could help
to better understand cancerogenesis and develop new therapeutic strategies.

2.1.4. ITH Is Associated with Poorer Clinical Outcomes

The analysis of data collected by the TCGA from more than 3300 tumours across
nine tumour types revealed that ITH has prognostic utility [84]. High degree of ITH
are closely related to poorer immune infiltration and worse prognosis for patients with
solid malignancies, including head and neck carcinomas, glioma, melanomas urothelial,
breast, renal, lung and prostate cancers [84]. The relationship between ITH and patient
outcomes is, however, complex to interpret and can be influenced by many aspects of the
tumour, including the tumour cell of origin, the number of clones, the level of chromosomal
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instability, the type of somatic events and their order of appearance [85]. The prognostic
value of ITH concerns other aspects than just genetic diversity [86–89], suggesting the
importance of capturing the full extent of ITH.

2.1.5. High Amounts of Biomarkers to Analyse in Order to Fully Decipher ITH

Emerging omics technologies have shown their interest in recent studies to analyse all
types of ITH. However, multi-omics analyses are still far from standard-of-care, considering
their cost, their low spread in clinical labs and the need for powerful data storage options
for these big data. The analysis of only few histomolecular biomarkers in tumours is still
the reference and may lead to misinterpretation.

Considering the huge amounts of data generated from multi-omics approaches and
their high complexity, there is a considerable need to develop automation tools able to
provide an integrative analysis of the multiple layers of heterogeneity without any expert
intervention. Last advances in artificial intelligence and machine learning models allowed
us to better predict cell subtypes and infer their proportions in tumours and TME based on
their inherent multi-omics characteristics. These approaches have the potential to integrate
both molecular and histopathological imaging data to refine tumour heterogeneity in the
spatial context and go beyond what can be distinguished by routine microscopy observa-
tions [90,91]. However, due to their recent development, they still lack standardisation and
need further evaluation prior to their implementation in a clinical setting [91].

2.2. Impact on Therapeutic Strategies

Although the notion of ITH and its impact on therapeutic response is now well
documented in research studies, ITH determination is rarely taken into account in cur-
rent clinical decision making that mostly relies on short-term treatment efficacy and the
detection of resistance mechanisms to adapt the treatment and forestall disease relapse.
However, capturing ITH could aid in developing novel strategies to provide long-term
drug response and minimise the emergence of resistance mechanisms [83]. For example,
in cases of heterogeneous tumours, upfront combination of therapies targeting different
cancer cell subpopulations or dependencies could help to obtain a more durable response
by minimising ITH and hindering minor subclones to expand under monotherapy pressure.
Given the high molecular diversity that can be observed between the different regions of
tumours, targeting all alterations is clearly unrealistic in clinical practice. The development
of such strategies would require the determination of the aberrations the most critical
for cellular functions and survival beforehand. The use of targeted therapy associated
with non-targeted agents or ITH-reducing agents (such as histone deacetylase (HDACi),
bromodomain and extra-terminal protein (BETi) or histone demethylase (HDMi) inhibitors)
could also be considered to prevent the emergence of resistance in the case of highly het-
erogeneous distribution of a molecular target in tumour tissues [83]. Some groups also
proposed adaptive therapies as a way to stabilise the balance between drug-sensitive and
drug-resistant subclones and maintain tumour burden [92–94].

3. Emerging Approaches to Evaluate ITH

Decoding tumour heterogeneity is a major clinical challenge, considering that it
immensely contributes to cancer progression, treatment failure and emergence of drug
resistance. Emerging technical and sampling strategies have been developed in order
to deeply characterise tumour complexity and clonal architecture, including single-cell
profiling, multi-region sampling, representative sampling and longitudinal analysis of
liquid biopsy samples (Figure 4).
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Figure 4. Emerging approaches to capture intra-tumour heterogeneity (ITH). (A) Single-cell ap-
proaches profile the characteristics of each cell individually. Compared to bulk-tumour sampling
(B), multi-region sequencing (C) measures cellular heterogeneity in distinct regions of the primary
site and of the metastases and/or tissue biopsy samples collected at different time points of the
disease. (D) Representative sampling (Rep-Seq) implies the analysis of a mixed solution composed
of tumour residual material that has not been used for standard pathologic procedures. (E) Liquid
biopsy consists in the analysis of tumour-derived components shed in body fluids.

3.1. Bulk-Cell Versus Single-Cell Approaches

Most studies that aim at profiling ITH and clonal evolution were based upon standard
bulk-cell methods [73], that refers to the analysis at once of all cell populations from a
sample, whatever their characteristics. Such approaches are able to infer tumour phyloge-
nies through computational methods. Briefly, the variant allele frequencies (VAF) of each
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somatic mutation are converted into cancer cell fraction (i.e., the proportion of cancer cells
that carry the mutation), estimates that indirectly permit the determination of the tumour
subclonal architecture by assigning the mutations into the different clones. However, the
estimation of the cancer cell fraction can be biased by tumour purity and copy number state
of the locus. Moreover, bulk-cell approaches, by nature, average the signals emanating
from the different tumour cell subgroups and can miss some variants only present in
minor subclones, which can be confounded with noise [73,95]. Finally, a high number of
computational tools has been developed but their use is sorely lacking in standardisation
of their methodologies [96].

Single-cell approaches (SCA), based on the analysis of a high number of cells indi-
vidually, gained popularity in the last few years, as they can unambiguously reconstruct
tumor subclonality. SCA provided a valuable opportunity to detect slight cell-to-cell vari-
ations and perform cell-type clustering, determine ITH and TME composition at high
resolution level, and evaluate the cellular evolutionary relationships [97–101]. Single-cell
RNA-sequencing (scRNAseq) accounts for one of the most applied technologies [102–105].
Through the assessment of gene expression patterns at the single-cell level, scRNAseq
allowed the detection of rare residual cells after treatment or the identification of minor
drug-resistant cell populations implied in disease relapse that would be missed by con-
ventional bulk-cell methods [106]. Some scRNAseq approaches may also help to predict
cellular evolutionary dynamics and future cell states [106]. scRNAseq protocols include a
single-cell isolation step (by flow-activated cell sorting or microfluidic device, for example),
followed by RNA isolation, reverse transcription and cDNA amplification before library
preparatin, sequencing and bioinformatics analysis. cDNA amplification represents a criti-
cal step, as sequencing methodology requires more input than we could expect to isolate
from a single cell; however, the use of unique molecular identifiers (UMIs) allows us to
reduce PCR error rates. The elevated risk of false negatives with scRNAseq due to allelic
drop-out or technical noise is challenging and requires the use of adapted pipelines to
analyse the data [73,107]. Recently, multi-omics SCA have emerged as promising tools to
capture different aspects of ITH and cancer evolution at once [106,108,109]. Contrary to sep-
arate single omics analyses performed on distinct cells, multi-omics SCA can undoubtedly
establish the correlation between the different macromolecules and their dynamics without
any confounding influence of ITH [108]. In this way, they reveal a more comprehensive
view of the state of an individual cell. Although the cost of the single-cell NGS-based
approaches has progressively reduced in the last years, it remains much more expensive
than the bulk-cell options, as they need sequencing at higher coverage depth [110].

3.2. Tissue Biopsy Sampling Approaches

For decades, the tissue biopsy sample remains the reference practice for tumour
testing. However, tissue biopsy sampling implies an invasive and putatively morbid
procedure. Further, it may be unfeasible in certain cases, as the tumour site is not accessible.
Moreover, the analysis of a unique limited tumour tissue sample provides by nature
only a spatiotemporal snapshot of the tumour. The input material for routine molecular
characterisation generally represents as little as 0.0005% of the tumour bulk, making it
inappropriate to fully capture the complexity of the whole disease [111].

Procuring multiple samples of the tumour for molecular analysis represents one way
to circumvent this limitation [112–114]. Multi-region sampling refers to the use of multiple
spatially distinct regions of the same tumour and of its metastases and/or tissue biopsy
collected from the same patient at different time points [73]. Some studies already reported
the interest of multi-site sampling approaches to better portray ITH and reconstruct the
cancer evolutionary history in diverse malignancies, including lung cancers [115], clear-cell
renal cell carcinomas [80,116,117], ovarian cancers [118], melanomas [119], osteosarco-
mas [120], urothelial carcinomas [121] and esophageal squamous cell carcinomas [122].
Notably, the TRACERx (TRAcking Cancer Evolution through therapy/Rx) project is a
UK-based large-scale longitudinal observational study based on multi-region sampling
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that aims at charting evolutionary dynamics of some malignancies, such as melanomas,
lung, prostate and renal cancers. As an example, the TRACERx renal cohort has served
to interrogate the molecular landscape of clear-cell renal cell carcinomas (ccRCC) starting
from the analysis by whole-exome sequencing of 1206 tumour regions from 101 patients.
It demonstrated mutational (0–15 per tumour with a median of three per tumour) and
copy-number (1–14 per tumour with a median of seven per tumour) ITH, to a higher degree
than previously observed in single-biopsy studies [117]. The clone number per tumour
was highly variable (ranging from 1 to 23) and strongly correlated with the stage and the
grade of the disease. By analysing the timing of the somatic events in cancer evolution, the
co-occurrence or contrariwise the mutual exclusivity of driver events in tumour subclones,
Turajlic et al. identified seven distinct evolutionary trajectories associated with different
phenotypic properties (Ki67 staining, levels of ITH and genome instability and clinical
outcomes). To better understand the genetic evolution of metastases in ccRCC, subclonal
heterogeneity was compared between paired primary and metastases regions from 38
patients of the TRACERx Renal cohort [116]. Metastases significantly display less driver
events (nine mutations and/or SCNA in average) and were found more homogenous (13%
of subclonal events) than the primary tumours (12 mutations and/or SCNA and 68% of
subclonal variants, respectively). A total of 456 driver events were common in matched
primary tumours and metastases, while 230 were found exclusively in primary sites and
39 exclusively in metastases. Based on the phylogenetic reconstructions of metastatic
progression, Turajlic’s group distinguished three types of tumour clones: (1) clones present
only in primary tumours that were “not selected” for metastatic dissemination, (2) clones
“maintained” during metastatic seeding and shared between primary site and metastases
and (3) clones “selected” for metastasis formation, that were found subclonal in primary
tumour and clonal in metastases or appear de novo in metastases. Selected clones were
characterised by elevated genomic instability, ploidy and proliferation index and HLA
allelic imablance, compared to non-selected clones. Based on a meta-analysis performed
on three distinct cohorts, loss of chromosome 9p or 14q is more frequently observed in
selected clones compared to non-selected ones, suggesting their potential role in promoting
metastasis. The timing of dissemination and the extent of metastatic seeding seem con-
ditioned by the levels of ITH and genomic instability in primary tumours as well as the
evolutionary subtype. Notably, progressive diseases were characterised by the presence
of multiple clonal driver alterations, BAP1 mutation or VHL wild-type status, lower ITH
and high genomic instability. Contrariwise, attenuated progressive diseases (longer time of
metastasis, single metastatic dissemination) preferentially harboured “PBRM1→ SETD2”
or “PBRM1→ PI3K” evolutionary trajectories, high ITH and low genomic instability in
primary tumours. This example illustrates well the interest of multi-region sampling to
better decipher the impact of ITH and genetic evolution on cancer progression. However,
such strategy seems impractical in routine care given the invasive nature of the process and
the marginality of tissue rebiopsy during the disease. Moreover, the analysis of multiple
samples in parallel implies tedious and costly procedures that cannot be easily performed
on standard tumour biology platforms.

Pooling DNA/RNA extracts from multiple anatomically distinct regions of the tumour
before sequencing could represent an option to reduce the cost, while optimising the variant
detection rates as well as the determination of mutation prevalence and clonal clustering in
the tumour mass compared to single-biopsy sampling [111]. Nevertheless, such strategy
implies the identification and selection of the more representative tumour areas to biopsy
with the non-negligible risk of missing a region of interest.

Representative sampling has been proposed by Litchfield et al. as a more realistic
approach for clinical routine [111]. Representative sequencing (Rep-Seq) protocol consists
in the analysis by next-generation sequencing (NGS) of a homogenised solution prepared
from all residual tumour material that was not used for standard pathology practice.
Rep-Seq methodology proved its higher reproducibility in detecting variants (95% of
similarity between Rep-Seq replicates) in ccRCC compared to single-biopsy sequencing
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(78% of similarity). Further, it succeeds in detecting variants with frequency as low as
0.15%. VAF obtained by Rep-Seq correlated well with those found by pooling sequencing
data generated from 64 spatially distinct primary biopsies (simulating the whole primary
tumour). Rep-Seq accurately determined the clonal architecture of the tested ccRCC
specimen compared to multi-region sequencing and avoided pitfalls of “clonal illusion”
(detection of a mutation that seems clonal in the tested sample but is actually subclonal
in the bulk tumour) that can be frequently observed with single-biopsy and multi-region
biopsy sampling. In the context of metastatic melanoma, Rep-Seq performed on lymph
node residual tissue was able to successfully determine the polyclonal tumour structure
that was missed by single-biopsy analysis (results are, however, nuanced, in that Rep-Seq
failed to detect some tumour subclones identified by multi-region sequencing). A proof-of-
concept study confirmed the capacity of Rep-Seq to detect driver events in eight non-ccRCC
cancer samples (breast, colorectal and lung).

3.3. Post-Mortem Samples

Emerging studies resorted to the analysis of tumour samples collected from patients during
autopsy to tackle the encountered limitations of sampling in living patients [73,123]. Such an
approach has the advantage to give access to high quantities of tumour material emanating
from different organs, tissues or body fluids and can represent a useful strategy to study tumour
evolution under therapeutic pressure and the emergence of resistant cancer cell clones [73].
Rapid research autopsies already demonstrated their interest in delineating ITH and tumour
evolution (particularly in the context of treatment resistance) in several malignancies, such
as lymphomas, cholangiocarcinomas, breast, prostate and lung cancers [124–128]. Growing
efforts are made to launch large-scale post-mortem studies, such as the UK national PEACE
(Posthumous Evaluation of Advanced Cancer environment) program (PEACE ClinicalTrials.gov
number, NCT03004755). The setting up of rapid autopsy programs require the development
of close collaboration between clinicians, researchers and the forensic team, the adaptation of
autopsy logistics and procedures and the gathering of previous consent of the cancer patients
and their family [73].

3.4. Liquid Biopsy-Based Approaches: A Better Reflection of ITH?

Liquid biopsy (LB), based on the analysis of tumour markers circulating in body
fluids (including circulating tumour cells (CTCs), circulating tumour nucleic acids (ctDNA,
ctRNA), circulating nucleosomes and tumour-derived extracellular vesicles), is emerging
as a promising alternative to tumour tissue biopsy. Numerous studies already demon-
strated its interest as a minimally invasive and easily repeatable tool for cancer screening,
diagnosis, prognosis, treatment stratification, minimal residual disease (MRD) evalua-
tion, disease monitoring and early detection of resistance mechanisms [129–133]. Plasma
samples represent the most studied source of tumour material; however, recent studies
highlighted the interest of other body fluids (including urine, saliva, stool, pleural effusions
or cerebrospinal fluids) for clinical investigations in cancers [134]. LB is argued to better
reveal tumour heterogeneity by randomly capturing the molecular alterations carried by
the clones from all spatially distinct tumour regions. Moreover, the analysis of serial plasma
samples seems easy to perform and could provide a non-invasive way to track the dynamic
nature of cancers. Different tumour-derived components, especially ctDNA and CTCs,
were assessed for their utility to decipher ITH.

3.4.1. CTCs

CTCs have been less extensively studied than ctDNA but research studies on CTCs
have been on the rise for a few years. CTCs were found to be heterogeneous at genetic and
phenotypic levels and evolve over the time as the tumour progresses [135]. As CTCs can be
shed by both primary sites and metastases, heterogeneity observed in CTCs could give a
global overview of the molecular landscape of the whole disease at a fixed time [136,137].
Recent evidence reported a correlation between CTC count and cancer progression as well
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as the patient’s survival [135]. Beside its prognostic value, the analysis of CTC heterogeneity
seems also of clinical significance to monitor tumour response, guide treatment decisions,
predict drug resistance and unravel the mechanisms behind them [138–144]. Moreover,
some groups reported the remarkable capacity of CTCs to form clusters (in association or
not with non-malignant cells) that enrich ITH and favour CTC homing to distant organs
(with a metastatic potential 23- to 50-fold higher compared to single CTCs) [135,145]. In this
context, CTCs identification and characterisation could help to understand the biological
processes implied in metastatic seeding.

CTC-based approaches imply a critical step of CTC isolation from blood samples prior
to single- or multi-omics analysis (genetics, epigenetics, transcriptomics and proteomics).
CTC analysis based on single-cell approaches has the advantage of providing representative
information on ITH at higher resolution level [135]. CTC isolation appears technically
challenging considering their extremely low proportion in the bloodstream (0.1–10 CTCs
per mL of blood, representing about 1:106–1:108 of all blood cells) [135,136,146]. Current
enrichment methods take advantage of CTCs physical (size, deformability, density and
electric charges), biological features (expression of epithelial cell markers and lack of
CD45 staining) or both, to specifically isolate CTCs from blood cells [147]. The CellSearch
system was notably the first to receive FDA-approval technique to detect CTCs (EpCAM+,
Cytokeratins+, CD45−) in patients with metastatic breast, prostate or colorectal cancer [148].
However, to date, no/only a few markers were identified as being exclusively present in
tumours, allowing some cases of false results by CTC approaches [149].

3.4.2. ctDNA

Cell-free DNA (cfDNA) is shed in body fluids by malignant and non-malignant cells
through different biological processes, including apoptosis, necrosis and spontaneous active
release (incorporated or not in extracellular vesicles or nucleoproteic complexes) [150].
CtDNA represents a small fraction of cfDNA that originates from tumour cells located in
primary or distant tumour sites as well as CTCs [151]. CtDNA is characterised by small
fragment length (around 146 bp) and contains tumour-specific genetic and epigenetic
alterations. In the last few years, there has been an extraordinary enthusiasm in the use
of cfDNA-based testing for cancer diagnosis and prognosis, treatment decision making,
treatment response monitoring, clonal evolution tracking and early detection of resistance
mechanisms [134].

In the Rep-Seq study, the clinical interest of plasma samples drawn at different time
points was evaluated to delineate ITH in ccRCC compared to Rep-Seq and multi-region
sampling [111]. Although it was not the main objective of the study, they reported a lower
reproducibility between plasma samples (only 24% of similarity between pairwise samples)
compared to other approaches. Given the temporal evolution of the cancers, heterogeneity
was expected between the different time points; however, even samples from close time
points presented disparate mutational landscapes. Inferring the clonal structure of tumours
based only on plasma samples seems challenging, as ctDNA investigations missed a high
number of events, including truncal variants. Yet, liquid biopsy based on ctDNA profiling
holds great promise for the longitudinal monitoring of tumour markers and the detection
of minimal residual disease (MRD).

In the same way, the NSCLC TRACERx study aimed at assessing the clinical utility
of ctDNA to track cancer evolution in 100 patients with resectable Non-Small Cell Lung
Cancer (NSCLC) [152]. Multi-regions of NSCLC tumours were first analysed by exome
sequencing to reveal the phylogenetic tree of each tumour. Then, patient-specific multiplex
PCR NGS assays were designed to follow, with ctDNA, a limited number of clonal and
subclonal variants per patient. Almost half of the patients presented positive pre-surgery
plasma samples with at least two variants detected. A total of 94% of the clonal variants
and 68% of the subclonal variants targeted by the custom-made panels were retrieved in
these samples. The VAF of the clonal variants were found higher than those of subclonal
ones and correlated well with the tumour volume. The probability to detect subclonal
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variants in ctDNA samples increased with the spread of these variants in the different
tumour regions. The characterisation of pre- and post-surgery plasma samples from 10
relapse-free patients and 14 patients with clinically confirmed relapse demonstrated that
subclonal variants were detected more frequently in patients who develop tumour relapse
(93%) than in relapse-free patients (10%). Variants were detected in plasma much earlier
than is possible to confirm tumour relapse by current radiological imaging procedures
(mean interval of 70 days between ctDNA detection and positive CT imaging). CtDNA
profiling also helps to early identify resistance to adjuvant chemotherapy. Subclone variants
in charge of metastasis spreading were successfully detected in plasma and can be tracked
through iterative plasma samples. These results confirmed the observations made by
Litchfield et al. [111] and foster the use of highly sensitive ctDNA-based custom-targeted
panels for prognostic and resistance prediction purposes.

One challenge of using plasma samples in cancer care is the fragmentation of ctDNA
molecules and their high dilution in cfDNA shed by non-malignant cells (representing a
fraction as low as 0.01% of the total cfDNA [153]). Recent progress has been made in order to
improve the detection performance of ctDNA-based approaches through the development
of novel ultra-sensitive techniques or in silico error-suppression tools [154]. Some groups
also proposed to more easily discriminate ctDNA from total cfDNA based on the profiling of
ctDNA-specific features (methylation profile and fragment length) [155,156]. It also appears
difficult in some cases to distinguish tumour-specific signals from physiological events that
can appear with ageing. Almost 60% of healthy individuals harboured at least one non-
synonymous alteration with similar VAF in both ctDNA and matched blood cell DNA [157].
Clonal haematopoiesis of indeterminate potential (CHIP) is an age-dependent biological
process in which somatic mutations occur in hematopoietic progenitor cells and drive
clonal expansion [158]. CHIP confers an increased risk of haematological malignancies
and cardiovascular complications. CHIP can affect genes coding epigenetic modifiers
(DNMT3A, TET2, ASXL1), spliceosome proteins (SF3B1, SRSF2), DNA damage response
regulators (TP53, PPM1D) or cell signalling pathway actors (JAK2, GNAS) [159]. In such a
way, CHIP can be easily confounded with mutations from tumour origin, especially as the
exposure to some anticancer treatments (radiation, carboplatin, topoisomerase II inhibitors)
favours the selection of clones with mutations in DNA damage repair genes in the context
of CHIP [160,161].

4. Concluding Remarks and Perspectives

Tumour heterogeneity appears multifaceted and pervasive across cancer types and
limits the diagnosis, prognosis and predictive value of tumour biomarkers. Although all
levels of tumour variability lead to challenges in oncology, ITH is of particular interest
considering its major consequences on cancer progression, metastatic dissemination, tar-
geted therapy failure, drug resistance and recurrences. The clinical evaluation of tumour
diversity should be a prerequisite for treatment-decision making; however, the information
obtained routinely from a single-site tumour tissue biopsy is not sufficient to fully reflect
the bulk tumour and its heterogeneity. Novel approaches are emerging to better capture
ITH. They present differential advantages and limitations that have to be considered in
order to select the most appropriate strategy depending on the clinical and biological
context. Single-cell approaches can reliably define extensive tumour taxonomy but suffer
from their cost and technical challenges. Multi-region sequencing represent appealing
approaches to decipher the clonal architecture of the tumours and understand the biology
of metastasis; however, Rep-Seq appears as a much more practical alternative for clinical
routine. Liquid biopsy offers the advantages to more easily reveal spatial but also temporal
ITH. The development of patient-specific cfDNA-based targeted assays notably holds great
promise for the longitudinal tracking of genomic evolution during the course of the disease
at more moderate cost.
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