
HAL Id: hal-03893219
https://hal.science/hal-03893219

Submitted on 10 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum optimal control in quantum technologies.
Strategic report on current status, visions and goals for

research in Europe
Christiane P Koch, Ugo Boscain, Tommaso Calarco, Gunther Dirr, Stefan

Filipp, Steffen Glaser, Ronnie Kosloff, Simone Montangero, Thomas
Schulte-Herbrüggen, Dominique Sugny, et al.

To cite this version:
Christiane P Koch, Ugo Boscain, Tommaso Calarco, Gunther Dirr, Stefan Filipp, et al.. Quantum
optimal control in quantum technologies. Strategic report on current status, visions and goals for
research in Europe. EPJ Quantum Technology, 2022. �hal-03893219�

https://hal.science/hal-03893219
https://hal.archives-ouvertes.fr


Koch et al.

REVIEW

Quantum optimal control in quantum
technologies. Strategic report on current status,
visions and goals for research in Europe
Christiane P. Koch1*, Ugo Boscain2, Tommaso Calarco3, Gunther Dirr4, Stefan Filipp5,6,8, Steffen J.

Glaser7,8, Ronnie Kosloff9, Simone Montangero10, Thomas Schulte-Herbrüggen7,8, Dominique
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Abstract

Quantum optimal control, a toolbox for devising and implementing the shapes of
external fields that accomplish given tasks in the operation of a quantum device
in the best way possible, has evolved into one of the cornerstones for enabling
quantum technologies. The last few years have seen a rapid evolution and
expansion of the field. We review here recent progress in our understanding of the
controllability of open quantum systems and in the development and application
of quantum control techniques to quantum technologies. We also address key
challenges and sketch a roadmap for future developments.

Keywords: quantum control; optimal control; controllability; quantum
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1 Introduction
Quantum optimal control theory (QOCT) refers to a set of methods to devise and

implement shapes of external electromagnetic fields that manipulate quantum dy-

namical processes at the atomic or molecular scale in the best way possible [246].

It builds on control theory in more general terms which evolves at the interface

between applied mathematics, engineering, and physics and concerns the manip-

ulation of dynamical processes to realize specific tasks. The main goal is for the

dynamical system under study to operate optimally and reach its physical limits

while satisfying constraints imposed by the devices at hand. Quantum processes are

no exception to this general framework, but certain aspects of control theory must

be adapted to take into account the particularities of the quantum world. Over the

past few years, QOCT has become an integral part of the emerging quantum tech-

nologies [6], testifying to the fact that it is control that turns scientific knowledge

into technology [246]: If the superposition principle is the core feature of quantum

mechanics, quantum control is the superposition principle at work.

Quantum technologies require comparatively well-isolated and well-characterized

quantum systems. It is this very feature that makes them an ideal testbed for

QOCT, compared to other fields where QOCT has been used, such as chemical

reaction dynamics. Conversely, QOCT has matured to the stage that it is nowadays

readily used in experiments. The next challenge for QOCT will be to become an
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integral part of practical quantum devices or, in other words, of practical quantum

engineering.

Here we provide an update to Ref. [246], focussing on progress in QOCT and

its applications relevant to the development of quantum technologies. Under this

specific perspective, quantum optimal control sets out to answer typical engineering

questions. For example: To which extent can a quantum system be (i) controlled, (ii)

observed (sensed or tomographed), (iii) stabilised, etc. For classical (mostly linear)

systems, a rigorous systems and control theoretical framework exists and is core to

the teaching programme of every engineer. For training future quantum engineers,

such a framework is yet to emerge.

A rigorous and unified quantum systems theory is therefore among the current

overarching research goals — it will interface not only theory and experiment but

teaching programmes in quantum physics and engineering as well. Such a theory

also forms the basis for the derivation of optimal control strategies by ensuring the

well-posedness of problems and existence of solutions. We provide a brief summary

of basic definitions together with a review of recent progress towards these goals

and open questions in Sec. 2.

Section 3 presents the current state of the art in quantum optimal control method-

ologies. These can be classified into analytical vs numerical approaches and the lat-

ter into approaches evaluating only the target functional (gradient-free methods)

and those based on variational calculus such as the Pontryagin maximum princi-

ple (PMP). We review progress on these methodologies in Sec. 3, including corre-

sponding software development, for which we highlight publicly available software

packages.

Quantum optimal control is closely related, both in terms of goals and tech-

niques, to several neighbouring fields, including most notably quantum feedback

control, machine learning, and shortcuts to adiabaticity. We highlight similarities

and differences between quantum optimal control theory and these approaches in

Sec. 4, pointing also to recent fruitful cross-fertilization. An example of this is the

inclusion of ideas from both quantum feedback and machine learning to quantum

optimal control, in order to account for model inaccuracies and enhance practical

applicability of the approach.

When looking back to the start of the art presented in Ref. [246], scientific progress

has been most impressive in the number and extent of practical quantum techno-

logical applications exploiting quantum optimal control. We review these advances

in Sec. 5, starting with experimental demonstrations of quantum optimal control.

A recent and striking example of the power of quantum optimal control techniques

is illustrated in Fig. 1 showing the realization of a Bose-Einstein condensate (BEC)

printer [205]. In this experiment, a BEC of ultra-cold 87Rb atoms was loaded into

a one-dimensional optical lattice formed by two counter-propagating laser beams

with the same wavelength, but a different phase. A gradient-based optimal control

algorithm was used to calculate the phase which optimally ”shakes” the optical lat-

tice back and forth and thus brings the quantum system to the desired target state.

At the end of the control process, the atoms are in a well-defined superposition

of speeds, which are multiples of an elementary speed. This superposition can be

experimentally visualized through a ballistic expansion achieved after switching off
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Figure 1 A BEC ”printer”: The robust and versatile control of a BEC allows for producing
experimentally lines of points made up of atomic clouds, with which letters and words can be
formed.

the confining potential. The measured chain of small atomic clouds allows one to

write line by line, for example Quantum Control as shown in Fig. 1. This approach

to preparing states of a BEC in an optical lattice is also practically useful in many

areas from quantum simulation to quantum metrology [205]. We review further

highlights of experimental implementations of quantum optimal control in Sec. 5

and then provide an overview over quantum optimal control approaches tailored to,

respectively, specific quantum hardware and specific key tasks in the operation of

quantum devices. This section also elucidates the relation between quantum con-

trol and quantum thermodynamics. A summary of goals and challenges in view of

further expanding the scope of quantum optimal control applications in practical

quantum devices in the mid-term completes Sec. 5.

Finally, we discuss the goals and challenges that define our vision for the longer

term development of quantum optimal control in the quantum technologies in Sec. 6

and conclude in Sec. 7.

2 Controllability and accessibility of open quantum systems
Natural and foremost questions for engineering quantum technological devices are

‘what can one do with them?’, in particular ‘which states can be prepared?’ or

‘which quantum gates can be implemented?’ Answering these questions connects

engineering with the core of mathematical control theory. This section starts by

giving an account on how to formalise these questions mathematically, adapting

the classical engineering terminology of controllability, accessibility and reachable

sets to the realm of closed and open quantum systems. To this end, we start out with

the necessary basic definitions in Sec. 2.1 to describe the pertinent recent progress

for controlling symmetric systems in Sec. 2.2.1 and for reachable sets in Markovian

systems in Sec. 2.2.2. In a wider context, we characterise the role of Markovianity for

control in Sec. 2.2.3. The loss of compactness in (finite dimensional) open systems

paves the way to the even more intricate case of infinite dimensional closed systems

treated in Sec. 2.2.4. The problem of simultaneous robust control of infinitely many

(almost identical) subsystems in Sec. 2.2.5 may be seen in close spirit. Time-optimal

control problems are put into the context of the quantum-speed limit in Sec. 2.2.6.

Finally, the progress is wrapped up to serve as a roadmap to challenging goals and

open research problems formulated in Sec. 2.3.

2.1 Basic definitions

A control system is usually described by an equation of motion, e.g. an ordinary

or partial differential equation, involving additional “parameters” (controls). The
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controls can be time-dependently manipulated to “steer” the system, say from a

given initial state to a desired target state. The system is called controllable if any

initial state can be transformed into any desired target state. The reachable set of

a given initial state is composed of all states the initial state can be steered to. In

other words, a system is controllable if the reachable set to any initial state coincides

with the entire state space. The system is accessible if its reachable set contains at

least interior points. Roughly speaking, for an accessible system, the reachable sets

may be small but not too small in the sense that they embrace at least a set of full

dimension. In the following, we characterize standard quantum control scenarios

and their properties in terms of the notions introduced above.

A typical closed quantum control system extends the Schrödinger equation (just

governed via its so-called drift Hamiltonian) by several control Hamiltonians whose

impact is scaled by possibly time-dependent control amplitudes—for instance,

ux(t)σx for an x-pulse of amplitude ux(t) on a single qubit. With the controlled

part being linear in both the state and the control, it is an example of the wide

class of bilinear control systems [154, 212, 311]. Before investigating controllability,

one has to keep in mind that one can associate different state spaces to a quan-

tum control problem: pure states, mixed states, and unitary gates. An easy and

well-established criterion whether a finite dimensional quantum dynamical system

of such bilinear form is fully (i.e., unitary gate) controllable proceeds via the system

Lie algebra obtained as linear span generated by all iterated commutators among

system and control Hamiltonians (multiplied by i): if it amounts to the full Lie al-

gebra su(N), generating the special unitary group SU(N) by exponentiation, then

the system is fully controllable (also called universal). This widely used criterion

is termed ‘Lie-algebra rank condition’ (larc) [93, 311, 312]. It exploits the fact

that (due to compactness of SU(N)) the trajectory generated by the drift Hamil-

tonian is (almost) periodic, and therefore forward and backward time evolution of

the drift can be used to steer the system. When restricting to pure states in even

dimensions N , it suffices that the system Lie algebra yields the Lie algebra of all

unitary symplectic matrices of dimension N . Otherwise, in finite dimensional closed

systems, pure-state controllability, mixed-state controllability, and full unitary gate

controllability coincide [12, 186, 352]. In infinite dimensions, the situation is more

involved and in spite of recent progress elucidated in Sec. 2.2.4 and Sec. 2.2.5, a

controllability condition as powerful as larc is still sought for, see Sec. 2.3.

Already open quantum systems in finite dimensions are more complicated. Here we

focus on the Markovian scenario, i.e., on master equations taking the standard form

of a controlled Gorini-Kossakowski-Sudarshan-Lindblad equation [171, 187, 260,

344, 384] (GKLS). A caveat in advance: If the GKLS reduced dynamical equation is

derived under the additional assumption that the total of system plus environment

in the sense of Stinespring has time-translation symmetry (i.e. the total unitary

commutes with the sum of system and bath Hamiltonian), then one arrives at

enhanced thermal Markovian operations [152, 390]. Alternatively, this is implied

by Markovian evolutions respecting strict energy conservation as shown in [163],

where thermodynamic compatibility imposes a functional dependence between the

dissipative and unitary generators. It should be emphasized that in general, the

GKLS master equation per se need not obey thermodynamical principles [370, 455],
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cf. Sec. 5.3.6. An example of physical noise that does not meet thermodynamic

compatibility is standard bit-flip, while standard phase-damping does.

Possible state spaces for controllability analysis in open systems are the set of

all density operators (as the irreversible time evolution of open quantum systems

no longer preserves the spectrum of the initial density operator), or the set of all

quantum maps, i.e., the set of all completely positive and trace-preserving (cptp)

operators. These maps ensure density operators to evolve into density operators;

they form a semigroup — not a group as unitary propagators do in closed systems.

This issue will be further discussed below in Sec. 2.2.3. Here we just note that the

reachable set of open Markovian dynamics takes the form of a Lie-semigroup or-

bit [187, 362] generated by the associated Lie wedge [283], whereas in closed systems

the reachable set generically takes the form of a Lie-group orbit generated by the as-

sociated system Lie algebra. Remarkably, the set of all (time-dependent) Markovian

quantum maps carries the structure of a Lie semigroup [187, 509], whereas the entire

set of all quantum maps (with positive determinant) also embracing non-Markovian

ones does not.

By irreversibility, open systems with permanent noise are not exactly (mixed-

state) controllable [22, 186]. However, generic finite dimensional open quantum sys-

tems with (usually Hamiltonian) controls accompanying a (usually non-switchable)

relaxation term are accessible. The concept of accessibility, which is considerably

weaker than controllability, is nevertheless a good starting point for characterising

reachable sets in open quantum dynamics. Any finite-dimensional Markovian open

quantum system has at least one fixed point, the steady state under the drift Hamil-

tonian plus dissipator. If the identity matrix 11N and, by linearity, the maximally

mixed state 1
N 11N , is among the fixed points, the map is termed unital. A generic

finite-dimensional unital system is accessible [22, 186, 352], if its system Lie algebra

is isomorphic to the Lie algebra glN2−1(R) of all real square matrices with N2 − 1

rows and columns (details of the non-unital case are discussed in Refs. [186, 352]).

This criterion is likewise called Lie-algebra rank condition (larc), the difference

between closed and open systems being that in closed systems larc is equiva-

lent to controllability, while in open systems it is only equivalent to accessibility.

This contrast results from different compactness properties of the underlying Lie

groups SU(N) and GLN2−1(R): While the compactness of SU(N) forces the one-

parameter semigroup generated by the drift term to be (almost) periodic and thus

time-reverting, this argument fails for the dissipative term in open systems.

2.2 Recent progress on the controllability of open quantum systems

2.2.1 Controllability within symmetry-induced subsystems

Moving from controllability with respect to the entire state space to controllability

with respect to a symmetry-adapted state space has recently been exploited for

spin systems with permutation symmetry [14, 15, 155]. More precisely, by means

of a Clebsch-Gordan decomposition, one arrives at block diagonal Hamiltonians in

a symmetry-adapted basis, where controllability can naturally be discussed as sub-

space controllability for every block [13] (see also [500]). Loosely connected in spirit

is another recent development [578] which circumvents implementing controlled uni-

tary gates by resorting to Kraus maps implementing unitary gates or channels just
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on a d-dimensional subset of qubits, while leaving the remaining qubits invariant.

These channels are thus called sector preserving and they promise to widen the set

of implementable quantum circuits.

2.2.2 Reachable sets for open Markovian systems with switchable noise

As mentioned before, open systems with unitary control and non-switchable noise

are never controllable. On the other hand, under the assumptions that (i) the re-

spective noise term can be turned on and off and (ii) the “residual” closed system

(with the dissipator switched off) is fully unitarily controllable, one can precisely

characterize reachable sets for certain classes of unital and non-unital systems: In

unital systems with full unitary control and a single bang-bang switchable noise

generator, the reachable set to any initial density operator is given by all density

operators majorized [1] by the initial one [594] (details in [592]). Here, coherent and

incoherent controls are allowed to operate on different time scales, so the result

formally reproduces earlier findings with instant unitary controls [637].

Recently, first generalisations of these results to infinite dimensional systems with

a single switchable and compact noise generator [594] were obtained. Yet, a better

understanding of infinite dimensional systems incorporating earlier work on open

systems with unbounded drift or noise [527] requires further work.

For non-unital systems with a switchable Markovian coupling to a bath at tem-

perature T = 0, one obtains controllability on the set of all density operators [188].

A switchable cooling to low temperatures can readily be implemented experimen-

tally, for instance by a tunable coupling to an open transmission-line in the specific

GMon setting of [134], where the local cooling part itself can be made to respect

conditions for Markovianity as well as for enhanced thermal operations [66]. First

generalisations of cooling via baths of temperatures 0 < T <∞ (again in the realm

of enhanced thermal operations) have recently been obtained for a toy model re-

stricting the dynamics to population transfer in the (cooling-preserved) eigenbasis

of the drift Hamiltonian [188] thus respecting strict energy conservation. Using gen-

eralized majorisation techniques [593], the reachable sets of the restricted model

could be upper estimated [510]. Similar ideas discussed in earlier studies [492] are

considerably more difficult to handle explicitly in the general case, whereas two-

level systems can be treated exactly [491] even allowing for giving explicit reachable

sets [389]. Restricted to single two-level systems, the latter describes an intermedi-

ate scenario with coherent and incoherent controls, where full decoupling of system

and bath cannot be achieved.

2.2.3 Markovianity and its role in quantum systems and control theory

In terms of state transfer, non-Markovian control systems can be mimicked by

Markovian ones with switchable coupling to a bath at T = 0 [66, 510] so that their

reachable sets can essentially coincide. Yet non-Markovian transfer may at instances

be more efficient [531]. On the operator level, however, this coincidence no longer

holds: there are quantum maps in the Kraus representation that cannot be repre-

sented as solutions of Markovian master equations of gkls-form — these are non-

Markovian (i.e. neither time-dependent nor time-independent Markovian). Progress

[1]In a pair of Hermitian matrices, A majorizes B if all partial sums over the eigen-

values of A sorted by descending magnitude are larger or equal than those of B.
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has been made in characterising non-Markovianity [487] in particular by analysing

information backflow and structured environmental spectral densities [91], and a hi-

erarchy for abundant definitions of (non)Markovianity has been set up [377]. In con-

trast to standard Markovian master equations (of gksl form), non-Markovian mas-

ter equations come with different types of memory kernels [139, 140, 184, 222, 570].

Non-Markovian control systems thus depart from the bilinear setting with its clear

correspondence between generators and propagators of time evolution exploited to

assess controllability (respectively accessibility) on the generator level, which made

the Markovian case [187, 362] discussed above so convenient. Moving to the level of

Kraus maps instead is more involved. To our knowledge, the only explorations of

controllability at the level of Kraus maps [453, 619] have been performed without

comparing the non-Markovian reachable sets to their restrictions under Markovian

conditions.

2.2.4 Controllability of closed quantum systems evolving on infinite dimensional

Hilbert spaces

The loss of compactness mentioned in Sec. 2.2.2 already occurs in closed infinite di-

mensional systems [199, 200, 322, 594]. As a result, if the underlying Hilbert space

is infinite dimensional, one can only expect approximate controllability. This refers

to controllability in the sense that one can reach every state arbitrarily closely but

not necessarily exactly [46, 80, 86]. The common assumption that the Hamiltonian

drift term has a discrete spectrum suggests to use finite dimensional (Galerkin-

type) approximations [80, 81]. This allows to employ recurrence arguments similar

to the finite-dimensional case [78, 79, 128, 322]. If the spectrum of the drift is

non-resonant, i.e., all energy gaps are different, controllability analysis is compara-

tively straightforward [78]. In contrast, many degeneracies make the controllability

analysis harder [79]. Based on [79], the conditions for completely controlling the ro-

tational degrees of freedom of molecules, a quantum technology platform of renewed

interest [11], have been identified [82, 367, 469].

Systems with continuous spectrum—no matter whether closed or open—are even

more delicate. The typical scenario is that of a continuous variable without confining

potential and the corresponding controllability analysis has long been considered as

particularly difficult [85, 127]. A drift Hamiltonian with continuous spectrum also

arises from a parameter-dependent Schrödinger equation, where the parameters

describe some model uncertainties/inhomogeneities. This scenario, referred to as

simultaneous or ensemble control, is discussed in the next subsection.

2.2.5 Simultaneous controllability

Control of an ensemble of quantum systems is of particular interest for quantum en-

gineering because it allows to gain robustness of control procedures without feedback

techniques. Starting with the seminal paper [374], ensemble control has become an

active research field in control theory. In the simplest case of finite parameter sets,

the ensemble-control problem reduces to simultaneously controlling a finite number

of almost identical systems. If the individual subsystems evolve on SU(N), simul-

taneous controllability was first investigated in [23] and fully characterized in terms

of Lie algebraic conditions [64, 185]. Controllability in the case that the parameters
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can assume infinitely many different values, either in a countable set [136] or in a

non-trivial compact set, is much harder. The latter setting with its important appli-

cations in robust quantum control [30, 523] has led to a novel branch in non-linear

control theory [8, 131]. Roughly, one can distinguish two different approaches: (i)

infinite dimensional Lie group techniques and (ii) adiabatic methods [80]. Ensemble

controllability has been studied for the infinite-dimensional case [650] and efficient

numerical algorithms have been developed both for fixed-endpoint and free-endpoint

control problems [599, 600].

(i) For casting the simultaneous control problem into the setting of infinite dimen-

sional Lie groups, one chooses as state space all square integrable functions over the

compact parameter range K ⊂ Rm with values in the Hilbert space common to all

subsystems, e.g., L2(K,CN ). The corresponding unitary group contains the infinite

dimensional Lie subgroup which consists of all continuous maps from K to SU(N).

This subgroup takes to role of SU(N) in ensemble control. Ref. [374] showed that

one can achieve approximate controllability (with respect to above Lie subgroup) for

a very particular set of parameter-dependent generators of SU(2). A similar result

was obtained for the Bloch equation [61] while [8] generalized these ideas to the class

of control-affine systems including bilinear systems. Later [131] proved that every

semi-simple Lie algebra allows for a special set of parameter-dependent generators

such that the ideas of [374] can be carried over. This is important from an engi-

neering perspective because it says that one can design the control Hamiltonians of

a finite dimensional system such that approximate simultaneous controllability can

be achieved—yet the number of necessary control Hamiltonians is in general quite

large. However, it is still an open problem to what extent one of the control fields

can be replaced by the drift term without loosing controllability, see Sec. 2.3.

(ii) Adiabatic control is well known for its properties of robustness against disper-

sion of system parameters. Typical pulse designs based on these ideas are chirped

pulses [519] and counter-intuitive pulses for stirap processes [68]. Many more dif-

ferent control protocols based on adiabatic passage were proposed in the last three

decades by physicists [270]. The mathematical analysis developed in [41] permits to

understand and prove rigorously that, when acting with two controls, robustness

results from the presence of conical intersections between energy levels. Such eigen-

value intersections spread into a curve in presence of a dispersion parameter that

one can “follow” adiabatically and thus obtain population transfer for every value

of the parameter. The price to pay is an adiabatic transfer at the order
√
ε instead

of ε meaning that in a time of order ε−1 one obtains a transfer up to errors of

order
√
ε instead of ε. An extension of the adiabatic protocols based on the inertial

theorem [162] shares the property of “time-dependent” constants of motion. The

robustness property of the protocol has been studied experimentally [293]. Using

this idea, simultaneous controllability can be realized for a large class of systems.

However, how to extend these ideas to obtain simultaneous operator controllability

is an open question.

In many situations, more than one control is necessary for simultaneous con-

trollability [8, 61, 374]. For example, a typical scenario involves two controls that

are obtained after a rotating-wave approximation. However, compatibility of the

rotating-wave approximation with adiabatic theory is a problem overlooked for a
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long time (see the discussion in Ref. [496]). The compatibility of the two approxi-

mations has recently been studied in detail [42, 488]. In particular for a qubit driven

by a single control, the range of dispersion of the Larmor frequency allowing for

simultaneous controllability was identified. These ideas open new perspectives for

simultaneous controllability under a single control field. While all these findings

show that simultaneous control can be theoretically accomplished, reliable error es-

timates for numerical investigations, which are often based on standard algorithms

applied to a finite parameter sample, are still missing.

2.2.6 Quantum speed limit

The presence of a drift Hamiltonian that does not belong to the Lie algebra gen-

erated by the control Hamiltonians implies the existence of a system intrinsic

timescale. As a result, arbitrarily strong fields are not sufficient to speed up the

system dynamics, and it is impossible to prepare a desired state or carry out a

desired quantum gate in arbitrarily short time [326, 327]. The duration of a ”time-

optimal control sequence” is called the minimum time for the control task [326]

and is sometimes also referred to as controllability time [7] or the quantum speed

limit (qsl) [177, 461]. A vanishing controllability time or, equivalently, a diverging

quantum speed produces a reduced uncertainty in quantum observables, and it can

be understood as a consequence of emerging classicality for these particular observ-

ables [462]. Beyond two-level and three-level systems, the qsl is most often deter-

mined numerically in a heuristic way, by lowering the control time [110, 328, 508]

Recently, an alternative approach has been introduced where the qsl is deter-

mined by transforming the quantum control problem to a quadratically constrained

quadratic program with generalized probability conservation laws as the constraints

and relaxation of the quadratic to a semidefinite program [646]. Yet another alter-

native, applicable to Hermitian and non-Hermitian quantum systems, determines

the qsl by the changing rate of phase which represents the transmission mode of the

quantum states over their evolution [542]. A qsl for relative entropies between the

output and the input has been derived for a general unitary channel [460], and the

qsl for pure state entanglement corresponds, not too surprisingly, to the minimal

time necessary to unitarily evolve a given quantum state to a separable one [498].

For finite dimensional systems, the bound can also be expressed in terms of rota-

tions on the Bloch sphere [386]. Analysis of the qsl can be extended to a quantum

mechanical treatment of the external control [242]. The qsl has been suggested as

a measure of robustness [335] and as means to characterize the reachable set of

states [33, 334].

For open quantum systems, the qsl is most often determined by the dissipative

timescales [568]. More precisely, under the assumption that states with the same

purity can be reached in arbitrarily short time, a speed limit can be derived which

only depends on the relaxation rates [181, 568]. Mixed states are relevant also when

estimating the speed limit bound in the classical limit [75]. While for specific classes

of dynamical evolutions and initial states, a link between non-Markovianity of the

dynamics and the qsl exists, this is not true in general [551, 552]. The qsl has been

connected to thermodynamic quantities such as energy fluctuations or the entropy

production rate for Markovian and non-Markovian dynamics [170, 237]. The usual
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geometric approach interpreting the qsl as a consequence of the metric on the state

space can be complemented by action quantum speed limits [437]. These depend

on the instantaneous speed with which a path in state space is traversed and can

also be used as an indicator for optimality of the path [437].

Another challenge is the identification of the qsl in many-body systems: When

only local controls are allowed, the controllability time can be exponentially large in

the system size due to a diverging geodesic length [100]. This is related to an exten-

sively growing sensitivity of the many-body system to local perturbations which in

turn can be fully characterized by the qsl [228]. For systems undergoing quantum

phase transitions, the qsl is obtained for counterdiabatic driving which turns out

to encode the Kibble-Zurek mechanism [474]. Mixed states of many-body systems

require particular care since the qsl, typically, is dramatically overestimated but

for thermal states in a closed many-body system a meaningful bound can be derived

in the thermodynamic limit [296].

The results concerning the quantum speed limit described above concern sys-

tems evolving on finite dimensional Hilbert spaces. For systems evolving on infinite

dimensional Hilbert spaces the problem is more subtle. For example, there exist

systems for which the drift Hamiltonian is not generated by the controlled ones,

that have a controllability time that can be reduced to zero [84]. In contrast for

a charged particle in a magnetic field, the controllability time cannot be arbitrar-

ily reduced [62, 63]. The same conclusion was obtained in [70] for a large class

of systems using semiclassical analysis. More precisly, under mild hypotheses, in

[70] it was proved that for systems which are the quantization of classical systems

with an Hamiltonian containing kinetic and potential energy and controlled via the

amplitude of another potential, the existence of a speed limit passes through the

quantization procedure.

Very recently, it was shown there are systems relevant for applications for which

the controllability time can be reduced to zero between certain states [200]. Such

systems include planar rotating molecules driven by two electric fields. The results

of [200] are remarkable as they also apply to the nonlinear Schrödinger equation.

2.3 Goals and challenges for advancing the controllability of open quantum systems

An overview over the recent literature reveals that for both infinite-dimensional sys-

tems as well as finite-dimensional open quantum systems, controllability remains

an open challenge [336]. At the level of methods, extending finite-dimensional Lie-

group and Lie-semigroup techniques to infinite dimensions [431] is a challenging

desideratum. In particular, finding controllability [322] and accessibility conditions

as powerful as the Lie-algebra rank condition in finite dimensions would be signifi-

cant progress.

At the level of specific open challenges, the question how reachability differs for

non-Markovian compared to Markovian dynamics remains largely unexplored. This

is of practical relevance to quantum engineering with non-Markovian experimental

setups where the experiment is only sensitive to correlation effects in finite specified

time windows. A better understanding of reachability under Markovian and non-

Markovian dynamics would allow for estimating the error up to which the non-

Markovian dynamics can still be approximated by a simpler Markovian model.
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From reachable sets to resource theory

The characterization of reachable sets [188, 510] has so far been given in terms

of convex sets containing them. It is a worthwhile next step to distinguish clearly

non-reachable states from the convex hull embracing the reachable ones which gener-

ically form non-convex sets themselves. This may be possible via the Hahn-Banach

separation theorem [480, 497]. In analogy to entanglement witnesses, one seeks for

linear functionals that give negative values for clearly non-reachable states and

positive ones for the convex hull embracing the reachable ones. A further road to

specify reachable sets for Markovian dynamics is by devising efficient algorithms

for reachability sets as Lie-semigroup orbits when the generating Lie wedge can be

given [440]. Finally, in analogy to the recent description of a “distance to uncon-

trollability” [104] in closed systems based on earlier symmetry results [641, 658], a

feasible measure may also be devised for open systems.

Another obvious goal at the interface between quantum control and resource the-

ory is to generalize the recent reachability results from toy models with diagonal

states (i.e. states that are diagonal in the eigenbasis of the drift Hamiltonian) to

general states. The d-majorisation techniques then have to be pushed to the more

challenging operator lift of D-majorisation [590, 591]. At the same time, further

interconnections to thermal operations [89, 290, 392] and resource theory [390] will

emerge by quantifying benefits and limits of heat-bath coupling [19] in terms of

reachable sets. In particular, further insight may be inspired by elucidating the

connection between thermal operations and Markovianity [163, 342, 391].

Simultaneous controllability

While simultaneous controllability can be achieved for a large class of sys-

tems depending on one unknown parameter and driven by at least two controls

[8, 41, 61, 374], it is not clear when this can be obtained via one control only,

which however is the most common situation in experimental settings. For a qubit

driven by one control with a dispersion in the Larmor frequency it is possible [488].

Whether this feature is limited to two-level systems or whether it can be extended

to a larger class of systems is an important open problem. More generally, the role

of the drift Hamiltonian in ensemble control is not well understood. While in finite

dimensions (almost) periodicity of unitary one parameter groups allows one to use

the forward and backward evolution of the drift Hamiltonian to control a quantum

system, it remains an open problem in infinite dimensions.

Another challenge arises from the number of parameters involved. While systems

depending on two or more unknown parameters are in principle simultaneously con-

trollable [131] by finitely many independently addressable control Hamiltonians, the

minimal number of controls – important for reasonable technical implementations –

is unknown. Furthermore, effective numerical algorithms and in particular reliable

error estimates for the implemented approximations are also missing.

Quantum speed limit

For practical applications beyond two-level and three-level systems, quantum speed

limits have so far been determined numerically in heuristic way [110, 249, 253]. It

will be interesting to see whether recently introduced alternatives for determining



Koch et al. Page 12 of 65

the qsl, for example in terms of semidefinite programs [646] or the changing rate

of phase [542], provide a more systematic and numerically less costly approach.

Another promising development concerns use of the qsl to assess properties of the

system, e.g., reachability of states in an open quantum system [334], or properties of

the controlled dynamics, e.g., robustness [335]. This suggests to exploit the various

formulations of the qsl in optimization functionals in order to guide a numerical

search to solutions with desired properties such as robustness.

While progress on quantum speed limits for open quantum systems in gen-

eral [177, 461] and their relation to non-Markovianity in particular [551, 552] has

been remarkable, their identification in many-body systems continues to be an open

challenge. Here, the qsl is intimately connected to controllability. The latter may

be lost in the thermodynamic limit [99]. In fact, to date, for coherently evolving

many-body systems, thermal initial states are the only states for which the control-

lability time has been shown not to diverge [296]. If confirmed, this result implies

that driven dissipative evolution [582] will be the only generally viable route towards

many-body quantum control. While it is in line with physical intuition that control-

ling a many-body system requires simultaneous cooling, both a thermodynamic and

a rigorous mathematical underpinning of this conjecture would be desirable. Recent

insight into symmetry classes of open many-body quantum systems [24] may provide

guiding principles towards a better understanding of many-body controllability.

Concerning systems evolving in an infinite-dimensional Hilbert space (besides the

results [62, 63, 70, 84, 200] that treat specific situations), it is not yet entirely clear

which properties of a quantum system imply the non-existence of a quantum speed

limit. Whether and how the existence of a speed limit passes through quantization

and how this is related to the emerging classicality of certain observables in the

spirit of [462] are intimately connected problems, which deserve to be investigated.

Further characterization of Markovian and non-Markovian quantum maps

As outlined in Sec. 2.2.3, Markovian dynamics is particularly amenable to the frame-

work of bilinear control systems. For practical applications, one first has to assess

whether an experiment fits to a Markovian model. Remarkably, given experimental

data, the corresponding decision problem (encompassing both the time-independent

and time-dependent notion via infinitesimal cp-divisibility [616] on all time scales) is

np hard [149, 150]. For a quantum engineer, however, deciding approximate Marko-

vianity on a quantifiable level in the sense of “sufficiently” separate time scales of

system and environment dynamics would do in many applications.

Recently, it was elucidated that time-independent non-Markovian refocussing ef-

fects may root in correlations on long timescales that appear hidden to observa-

tions [102] or interventions [103] on shorter timescales. This, in turn, paves the

way to particularly easy fitting noise of models to tomography data [443]. Explor-

ing whether similar properties hold in the more general case of time-dependent

memory effects would be helpful. In that case, simpler (time-dependent) Markovian

models could serve—within certain time frames—as viable descriptions of dynam-

ics that outside these time windows are time-dependent non-Markovian. Given the

complication in non-Markovian control due to memory kernels (see above), the gain

of simplification by a Markovian substitute covering the pertinent time-window of
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the experiment would be most welcome. Compatibility with thermodynamics can

add an additional aspect to classify the equations of motion in either the Markovian

or non-Markovian case [169], cf. Subsec. 5.3.6.

Another route towards approximate descriptions that will ease the control anal-

ysis is motivated by a recent example [567] describing the scenario of a two-qubit

system coupled to a fermionic bath. This can be treated beyond the secular approx-

imation, where on longer time scales the Redfield equation captures the dynamics

more precisely than an adapted gksl-equation (which on short timescales ensures

positivity that the Redfield equation notoriously cannot). So finding quantitative

guidelines for a sweet-spot in time where to switch from the adapted gksl model

to the Redfield model such as to merge the best of the two worlds would allow for

obtaining more precise controls in the long-term part of the open system dynamics.

3 Optimal control methods
Typically one distinguishes open-loop control where no experimental feedback is

used for deriving the control and feedback control. Here, we focus on open-loop

control methods which make up the majority of quantum control protocols to date

but point out that a combination of optimal control and feedback control has re-

cently been proposed [466]. Different approaches have been proposed to optimize

control pulses in the open-loop configuration. Optimal control is born in its modern

version with the Pontryagin maximum principle (PMP) in the late 1950s and applied

to quantum dynamics since the eighties. We refer the interest reader to the recent

review [83] for an in-depth mathematical introduction. Quantum optimal control

has then undergone rapid development with a wide variety of methods extending

from analytical tools to different numerical algorithms. The analytic approach al-

lows a complete geometric understanding of the control problem from which one

can deduce the structure of the optimal solution and, in some cases, a proof of its

global optimality. Physical limits of a given process such as the minimum time to

achieve a state to state transfer can also be derived. We stress that such results can

be determined analytically or at least with a very high numerical precision.

The numerical approach is generally based on algorithms which compute iter-

atively control processes that are closer and closer to the optimal solution. This

method has key advantages which are complementary to the ones of analytic com-

putation. They are first applicable in complex quantum systems, that is not the case

of analytic tools which can be used only for quite simple systems. The flexibility of

numerical algorithms makes it possible to adapt them to specific control problems

or to experimental limitations and uncertainties. This aspect is crucial to fill the

gap between theory and experiments.

Note that different families of numerical algorithms have been developed according

to the characteristics of the optimization problem. Among others, we can distin-

guish the size of the system, the precision of the optimization process, the type of

constraints on the state or the control or the figure of merit to maximize. Such algo-

rithms can be roughly divided into two groups, namely the gradient-based numerical

methods and the gradient-free ones [246]. As their names suggest, the update of the

control sequence is either based on the calculation of the gradient of the figure of

merit or on a direct search method, i.e. without gradient. More precisely, when the
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pulse sequence is parameterized by piecewise constant controls in time, there are

two well-established gradient-based optimal algorithms, the Krotov-type [481] and

the GRAPE-type (Gradient Ascent Pulse Engineering) methods [328]. The main

difference between the two approaches concerns the update of the control which is

sequential in Krotov schemes, while is concurrent in GRAPE procedures. A system-

atic comparison and a discussion of the relative advantages of the two optimization

processes can be found in [397].

An alternative route is that to expand the pulse sequence in a functional basis,

e.g. a Fourier basis, and considering only a limited number of basis functions to

represent the control. This approach is justified by the exponential convergence the

achievable precision with the number of basis functions [388], that allows to dras-

tically reduce the optimization problem complexity. Moreover, a randomization of

the basis function improves convergence properties of the optimization. Within this

approach, which goes under the name of CRAB (Chopped random-basis quantum

optimization) [111, 195, 476], gradient-free approaches are an interesting and effi-

cient alternative. In this framework, the optimization problem can be transformed

from a functional one to a multi-variable optimization that can be solved with

a direct-search method. The development and current status of CRAB has been

recently reviewed in [427].

Gradient-based and gradient-free algorithms are two complementary methods

with their relative advantages and limitations. A very interesting aspect of gradient-

free approaches is their simple way of being implemented both numerically and to

take into account experimental constraints. They can also be used for controlling

high-dimensional quantum systems. On the other hand, their precision and the type

of controls that can be generated are limited by construction. Such problems can

be overcome by gradient-based methods, the price to pay being a higher numeri-

cal cost and a more technical and mathematical implementation. In this direction,

the efficiency of an exact-gradient based optimal control methodology [173] has re-

cently also been shown in the control of many-body systems [306]. In experimental

settings with only a limited number of control amplitudes, discrete-valued-pulse

optimal control algorithms can be useful [196].

Several software packages for QOCT implementing the methods listed above are

by now publicly available. These include software for the Krotov approach for both

unitary and open system quantum dynamics [254] and for quantum circuit op-

timization [373]. Simulation and control of spin systems have been developed in

Spinach [285]. An open-source code specifically designed to solve quantum control

problems in large open quantum systems whose dynamics are governed by the GKLS

master equation is described in [265]. A software framework for simulating qubit

dynamics and robust quantum optimal control is proposed in [553] with a special

emphasis on simulating realistic noise characteristics and experimental constraints.

Note that these methods can also be combined with software for computing quan-

tum dynamics [308]. Software tools are described in [45] to help with the application

and integration of quantum control in the framework of quantum computing. A de-

scription of the different steps going from control, characterization to calibration of

the use of quantum devices applied to superconducting qubits are discussed in [615].
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3.1 Recent progress on optimal control methods

We review in the section the recent progress done in the development of optimal

control methods since Ref. [246].

3.1.1 Analytic approach

A series of fundamental and practical issues in quantum technologies have been

solved recently using analytical techniques. These studies consider benchmark con-

trol problems for ideal quantum systems in which some experimental limitations

are neglected. Illustrative recent examples are the optimal synthesis of SU(2) op-

erations on a single qubit [16, 240], state control in a spin chain [18, 535], or the

simultaneous control of two or more uncoupled spins [17, 38, 207, 307, 489].

Even more difficult control processes such as the design of robust or selective pulses

with respect to parameters of the system Hamiltonian have been explored. The ba-

sic idea consists in simultaneously controlling an ensemble of identical systems, here

qubits, that differ only by the value of an unknown parameter. Robust, respectively

selective, optimal pulses correspond to the case where the target states are the same,

or different. In the simplest case with very few qubits, robust pulses can be derived

exactly [197, 571]. More complex systems require approximations such as lineariza-

tion of the dynamics [376, 407] or a perturbative expansion [105, 193, 574, 642–644].

Control protocols to enhance selectivity or discriminative power have been derived

for both state-to-state transfers and unitary transformations [30, 55, 573]. Another

example are entangling operations for two qubits where the control problem can be

mapped to geodesics after separating local and non-local contributions to the evolu-

tion [548]. An alternative route to robustness are generalizations of adiabatic evolu-

tions such as the Derivative Removal by Adiabatic Gates (DRAG) framework [423]

which has recently been extended to Λ-systems [584].

The analytical approach is not limited to closed quantum system, but can also be

applied to open quantum dynamics. The optimal synthesis of a qubit interacting

with a Markovian bath can be completely derived [354, 381]. Relaxation-free sub-

spaces for perfect state transfer in N -level systems with finite-power are obtained

if and only if each decaying state is connected to two non-decaying states [638].

The physical limits for fast qubit reset, where the qubit interacts with a structured

environment consisting of a strongly coupled two-level defect and a thermal bath,

have been derived in terms of minimal time and maximum purity [52, 56, 227].

Analytical techniques and the Pontryagin Maximum Principle may also play a

more unexpected role in quantum computing issues where the goal is not to find a

time-dependent control, but to optimize quantum algorithms or circuits. It has re-

cently been shown that a standard time-optimal control can be mapped to a Grover’s

quantum search problem [380]. A general connection between optimal control the-

ory and variational quantum algorithms has been established [633]. Such a link can

be used, for example, to precisely adjust the parameters of a quantum circuit [399].

Optimal protocols have been derived also for quantum annealing problems [88], at-

testing to the usefulness of optimal control theory as a general optimization tool in

various areas of application in the quantum technologies.
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3.1.2 Numerical approach

Major progress has been made with optimization algorithms, ranging from their nu-

merical implementation, adaptations of these algorithms to specific problems that

arise in the quantum technologies all the way to the role of measurement for the

pulse design. We start be reviewing the progress that has been made in the nu-

merical implementation of optimal control algorithms. It is important for studying

increasingly complex systems and for taking experimental limitations and uncer-

tainties into account.

In terms of better numerical efficiency, time parallelization accelerates the execu-

tion of quantum optimal control algorithms [485]. Memory requirements in GRAPE

can be reduced by exploiting the fact that the inverse of a unitary matrix is its con-

jugate transpose in combination with automatic differentiation [429]. A modified

version of GRAPE, based on a Krylov approximation of the matrix exponential,

allows for dealing with high-dimensional Hilbert spaces [355]. A global optimization

algorithm with quantics tensor trains has been proposed [524]. Improved conver-

gence is obtained when including second order derivative information. For example,

a Newton-Raphson method with a regularized Hessian can be applied [259]. This

should be used on top of exact, yet efficient calculations of the gradient [258, 304]

since approximations of the gradient also limit convergence of gradient-based meth-

ods. For spin systems in particular, the su(2) algebra can be exploited to calculate

both first and second derivatives exactly [230]. Similarly, faster optimization is possi-

ble by generalizing Krotov’s method to second order in all derivatives [514]. Further

speed-ups are possible by replacing standard time propagation with a product of

short-time propagators [156].

The topology of quantum control problems that governs the convergence of the

optimization algorithms, often termed control landscape, has recently been re-

viewed [241]. Analysis of the quantum control landscape can be exploited to de-

rive the Pontryagin maximum principle for robust control [345, 346]. Robustness

comes, however, at the expense of solving partial differential equations for the time

evolution of the system [345, 346]. Analytic descent for parameter optimizations

can approximate the corresponding control landscape locally [338]. Optimal con-

trol solutions can be reshaped and guided to produce user-customized solutions

by using the geometry of control landscapes [356, 357]. Improved performance of

gradient-based quantum control algorithms has also been found using push-pull op-

timization, where a hybrid cost function is used to maximize the overlap with the

desired target state while minimizing the overlap with orthogonal states [58]. This

is closely related to optimizing a target functional while penalizing the population

of undesired states via time-dependent targets [448, 481].

Another difficulty in optimal algorithms is how to initialize the guess field. A

recent study has put forward from a citizen science game the hypothesis that human

common sense could help the algorithm in this first step [305].

In open quantum systems, quantum trajectories instead of the density matrix

formalism and automatic differentiation have been used [248, 368, 369] to speed up

optimization and reduce the computation complexity. Steady states of dissipative

dynamics including non-equilibrium states can be targeted by optimal control via

implicit differentiation [579, 580]. Optimal control has been combined with time-

convolutionless master equations [53, 621] which allowed for studying, respectively,
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qubit reset and instantaneous tracking under non-Markovian dynamics. Such a com-

bination allows for investigating the impact of control on dissipators [53, 316], as a

means to implement QOCT for quantum reservoir engineering [289]. The simplest

way to treat memory effects consists in employing structured environments that are

partitioned into strongly and weakly coupled modes [31, 52, 56, 227, 482]. Novel

approaches to Non-Markovian dynamics that allow for a more detailed description

of condensed phase environments have also been combined with QOCT [238, 404].

Different approaches have been introduced to better account for experimental lim-

itations. For example, gradient optimization of analytic controls (GOAT) is a new

algorithm that allows to target high fidelities while designing pulses that conform to

hardware-specific constraints [398]. B-splines can be used for pulse parametrization

in gradient-based optimization [266, 446, 459]. A binary relaxed gradient in which

the pulse is either on or off has been introduced [587] for generating unitary gate

transformations. Multiple constraints in gradient optimization can be accounted for

via auto-differentiation in Tensorflow [528]. High-efficiency control sequences com-

patible with experimental constraints can also be designed based on the Magnus

expansion where the corrections necessary to reach high fidelity are found order by

order [493]. Riemannian optimization techniques for solving constrained optimiza-

tion problems are proposed [393] for quantum technology applications. GRAPE

can be modified to include binary control pulse optimization [218]. Time-correlated

multiplicative control noise can be mitigated based on a circuit-level representation

of the control dynamics [566]. Also, gradient-free optimal control can be formulated

such as to yield phase modulated-only driving fields which are more robust than

pulses which are both amplitude and phase modulated [557].

The applicability of existing numerical algorithms to the quantum technolo-

gies has been improved by tailoring to specific tasks such as system identifica-

tion [28, 40, 92, 97, 430, 602]. Based on a specifically tailored target functional, ro-

bust control sequences have been optimized to measure rates of stochastic processes

[434]. A number of target functionals specifically adapted to quantum technologies

have been introduced, for example to maximize the quantum Fisher information for

quantum metrology [382, 383], to optimize for mixed target states often encoun-

tered in squeezing [54], to design swap operations for encoded qubits [57], or to

optimize transport [144]. Several target functionals have been tested in quantum

estimation [56, 361]. An algorithm for periodic quantum dynamics has been pro-

posed to maximize the signal to noise ratio [303]. In order to find optimal control

solutions in presence of large measurement shot noise, use of Bayesian inference

has been suggested [501] and the efficiency of a modified gradient-based approach

which allows for feedback to stochastic quantum measurements has been demon-

strated on a Jaynes-Cummings model [466]. Robustness against specified frequency

bands of the noise power spectral density can be achieved based by including a filter

function which can either be derived from reverse engineering [145] or parametrized

and optimized [631]. The design of robust control protocols has been explored for

different sources of imperfections [49, 363, 473, 507, 545] and the optimal control of

an inhomogeneous spin ensemble coupled to a cavity has been studied [29].

Numerical optimal control algorithms are based on an open-loop configuration in

which no feedback from the experiment is used during the control process. This type
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of control is obviously limited by the precision of the modeling. The next generation

of algorithms will have to take measurement data into account in the design of the

control protocol [647]. A first step in this direction is to explore how optimal control

and the design of the corresponding pulses can be assisted by experimental data,

such as von Neumann measurements [454, 520, 541]. These data may modify the

characteristics of the optimal solution and its construction [426]. In this setting,

the ability to control and reconstruct the full state of the system from different

measures has been explored [32]. But also single qubit measurements alone are useful

to assist quantum control [464]. A theoretical framework combining a resource-

efficient characterization and control of non-Markovian open quantum systems has

been developed [126]. Standard approaches of direct feedback control in which a

function directly proportional to the output signal is applied have been extended

and applied to quantum control problems [129]. A data-driven regression procedure

that leverages time-series measurements to establish quantum system identification

for quantum optimal control has been proposed [256]. Further proposals to combine

machine learning approaches and QOCT will be reviewed below in Sec. 4.2.

3.2 Goals and challenges for advancing optimal control methods

Controlling quantum systems with high efficiency in minimum time is highly im-

portant for quantum computing and more generally quantum technologies. Control

laws are generally computed analytically or numerically in an open-loop fashion

on the basis of a theoretical model of the dynamical system. In this setting, a mid-

term objective is to continue the numerical development of both gradient-based and

gradient-free algorithms with the aim of treating increasingly complex quantum sys-

tems and accounting for all relevant experimental details while keeping calculation

times feasible.

In spite of recent progress, a main obstruction to the experimental realization

of optimized control pulses remains their high sensitivity to experimental imper-

fections and model uncertainties. This problem has motivated the development of

methods addressing control robustness since the early days of the field but impor-

tant limitations remain. For instance, it is currently not possible to mitigate random

fluctuations, and robust controls are very system-dependent. A general protocol for

the design of robust pulses against stochastic variations of system parameters would

be a crucial step forward.

Another key objective is to leverage optimal control techniques for a better charac-

terization of quantum systems and thus enhance the accuracy of the used models.

One idea is to use optimally shaped pulses for generating a transformation that

maximizes the difference in system response to different parameter values, in order

to facilitate their measurement. To date, this approach has been tested on small

model systems, and a mid-term goal would be to identify the most scalable version

among these approaches. In principle, such methods allow for a full characteriza-

tion of both the system and its environment. They are thus of interest in different

quantum technology applications, and possibly offer new directions in quantum

metrology and quantum sensing.

On the other hand, the control of macroscopic systems in robotics or mechanics

is very often carried out in a closed loop scheme with a only basic knowledge of
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the system dynamics. Real-time measurements allow the operator to correct and

systematically adjust the system trajectory in order to reach the desired target or

to carry out the expected task. While this approach to control is the most efficient

way to manipulate a system in a way that is robust against any form of disturbance,

it is difficult to transfer it to the quantum world due to the cost associated with

measurements and the short timescales of quantum dynamics. However, various

recent technological advances give hope that this objective is not out of reach. The

main objective of the next generation of quantum optimal algorithms will be to

take measurement data into account in the optimization procedure, the ultimate

goal being to achieve a quantum computation controlled in real time.

4 Similarities and differences between QOCT and related
approaches

4.1 Closed-loop vs open-loop control

Quantum optimal control as defined in this review is assuming that the time evolu-

tion of the quantum system is not actively observed by the controller during the time

span of the control. It could still be an open system evolution but the information

imprinted in the environment is not being used. This differentiates quantum optimal

control from quantum feedback [614], where information is extracted and used to

construct feedback controls in real time. Both have advantages and disadvantages

in their own right.

Still, within the domain of quantum optimal control in this sense, one can discrim-

inate open-loop and closed-loop approaches, which in the more modern language

of inference and learning can be called offline and online methods respectively. In

the open-loop / offline approach, a model of a physical system (e.g. a Hamiltonian

or the ingredients of a suitable master equation) are used to perform the control

calculation and then applied to an experiment that is described by that model. On

the other hand, closed-loop / online approaches directly use an experimental setup

to perform optimal control instead of a mathematical model, hence in its purest

form performing a model-free optimization.

While the former is described in other sections of the review, it is worth highlight-

ing the ingredients of the latter a bit more. Here, one needs to find an experimentally

accessible version of the stopping criterion for the optimization: The cost function

needs to be measured instead of being computed, and a rule for pulse updates needs

to be formulated. Depending on the isolation of the system, measuring the gradi-

ents might be rather imprecise and, depending on the level of noise, gradient-free

methods may be a better suited alternative. A simple and robust approach relies

on randomized benchmarking for quantum gates and Nelder-Mead optimization

[211, 321] or more advanced optimizers [225]. Model predictive control has been

suggested as a closed-loop optimization framework that inherits a natural degree of

disturbance rejection by incorporating measurement feedback while utilizing finite-

horizon model-based optimizations to control multi-input, multi-output dynamical

systems [257]. Special attention needs to be given to the single-qubit case as mea-

suring requires single qubit gates at least, but this can be bootstrapped [189]. An

impressive experimental test of this approach has been achieved in quantum dots

[123].
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Advanced methods combine both approaches on their merit - using the efficient,

fast and – within the model – precise convergence of open-loop techniques in com-

binations with closed-loop controls that contain the complete experimental reality

and provide data for updating the underlying model [157].

Another related approach appears in the area of variational quantum algo-

rithms [122], believed to be advantageous for noisy NISQ quantum computers [470],

that is rather similar to closed-loop optimal control. In these approaches, a quantum

algorithm that contains parameterized gates (i.e., gates that contain, e.g., a rotation

angle as a free parameter) is considered with the goal of moving a fiducial initial

state into a desired final state. In the language of quantum optimal control, it is a

state-transfer problem. In order to find the parameters from an initial ansatz, the

desired figure of merit or cost function is measured in the end of the algorithm and

according to its outcome, a classical optimization algorithm updates these parame-

ters. There are two classes of such algorithms: (i) The state preparation consists of a

set of sufficiently general operations and does not involve a quantum representation

of the cost function - this is, e.g., the case in the variational quantum eigensolver

(VQE) [458] for theoretical chemistry [350], high energy physics [339] or computa-

tionally hard problems in graph theory [208]. It requires a careful determination

of the reachable set of states and a sufficiently large number of controls in order

to be able to reach a sufficient approximation of the desired final state. A popular

choice is, e.g., the set of unitary coupled cluster states [490]. (ii) A so-called ”cost

Hamiltonian”, encoding the desired solution to the optimization problem, and a

fairly simple driver Hamiltonian, also referred to as mixer Hamiltonian which does

not commute with the cost Hamiltonian are alternated for adjustable durations, as

is the case for the QAOA algorithm [217] (Quantum Alternating Operator Ansatz

or Quantum Approximate Optimization Algorithm). While this has been proven to

be universal, clear proofs of quantum acceleration are difficult [159, 276]. In both of

these cases, the controls are written as parameterized gates in a quantum circuit,

which can be interpreted as a very simple parameterization of a long control pulse.

Recently, this has been taken to the domain of more continuous pulse parameteri-

zations [88, 138, 174, 410]. In both cases, insights of optimal control theory around

reachability, speed limits, and required number of parameters apply. Further ex-

amples for cross-fertilization between QOCT and variational quantum circuits are

reviewed below in Sec. 5.3.3.

In more practical terms, successful VQEs require fast and reliable classical opti-

mization algorithms. A recent comparison of four different gradient-free optimiza-

tion methods revealed superior performance of stochastic methods, in particular

when used with default parameters [76].

4.2 Quantum optimal control vs machine learning approaches

Machine learning is a field of computer science which has been attracting much

attention in many areas in physics [113, 309, 413]. The algorithms are built to

emulate human intelligence by learning the best way to proceed from a large data

set [419]. The power of this tool gives hope that long outstanding problems can be

solved. For example, in quantum physics [295] it has been applied with success in

many-body physics [112, 116] and quantum computing [113, 202]. We review in this

section recent studies investigating quantum optimal control problems.
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A specific branch of machine learning, namely reinforcement learning (RL), is

generally used to solve such problems. This approach is intimately related to opti-

mal control theory even if the way to describe the optimization process might look

different at first glance. In RL, an agent takes actions in order to maximize a current

or a final reward. The learning process is based on observing the effect of the ac-

tion on the dynamical system and on the reward. From this information, the agent

decides to modify (or not) the action. Replacing in the previous description, agent

by control, action by control law and reward by fidelity, the parallel between RL

and QOCT becomes immediate. The connection holds also in terms of the under-

lying mathematical structure since RL can be viewed as a dynamic programming

approach which in turn is based on the Hamilton-Jacobi Bellman formulation of

optimal control [96]. Finally, the main difference between the two formalisms is the

way to determine the new control from the previous ones in an iterative optimization

process. In particular, RL is expected to add value to optimal control techniques in

the case of a complex control landscape with many local maxima. Indeed, the pro-

cedure for designing control law can escape local traps through random changes in

control. A short introduction to the different learning control methods in quantum

physics is given in Ref. [192] and Ref. [245] provides a tutorial-style introduction

into both optimal control and reinforcement learning.

These ideas have recently been explored in benchmark quantum control problems

in order to show the efficiency of this RL approach. In a system of coupled spins

with bang-bang controls, RL has been shown to lead to a quasi-optimal fidelity [99].

Drawing a parallel with statistical mechanics, this study also interprets the change

of structure of the control landscape as a phase transition, highlighting the specific

role played by time-optimal control process [172]. Quantum speed limits can be

found in a spin chain [651]. Basic questions such as the implementation of quantum

gates [27], the transport of quantum states [465] and robust control against leakage

or control errors [435, 620] have been answered. The efficiency of learning algorithms

with experimental feedback has been explored [632] and the quantum analogue to

the classical cartpole balancing problem has been analyzed [603], showing that RL

matches or outperforms other methods in this example. A standard limitation of

open-loop control protocol is model bias. This limitation can be overcome by RL

in which the agent learns the system parameters through a series of interaction,

corresponding here to measurements, with the quantum system [522].

Another difficulty in numerical optimal control is the choice of a good guess field

to initiate the optimization process. This obstacle can be overcome by a learning ap-

proach [157]. A very good modeling of the cost functional landscape can be achieved

from deep learning. The efficiency of this approach has been shown for the control of

spin chains [158]. RL has been combined with analytical control pulses for spin ma-

nipulation in order to account for robustness constraints [182]. Another promising

example is given by a hybrid algorithm using a quantum computer as an active part

of the optimization process, devising the control of a molecule by a laser field [118]:

The time evolution of the wave packet is determined from a quantum computer,

while the iterative procedure is realized by a machine learning algorithm. A model-

based RL is investigated in Ref. [505] for different control problems. The authors

show that gradient-based approaches can be combined with learning processes to
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speed up the optimization procedure [506]. This approach named differentiable pro-

gramming is expected to be much more efficient than model-free RL. It has been

applied for state preparation and stabilization of a qubit subjected to homodyne

detection, in which the qubit dynamics are governed by stochastic Schrödinger equa-

tion, which is very difficult to deal with using standard optimization methods. A

recent systematic comparison has shown for qubit manipulation that RL outper-

forms standard optimization procedures when the problem is discretized and the

space of the action is sufficiently small [652]. RL can be also efficiently combined

with gradient-based optimization procedures for the robust control of spin 1/2 net-

works against different noise sources [324].

Finally, there has been a lot of cross-fertilization between QOCT and machine

learning recently [201]. In particular, QOCT can directly be exploited in the design

of quantum algorithms and the synthesis of quantum circuits. The corresponding

work is reviewed below in Secs. 5.3.3 and 5.3.4. In turn, the quantum variational

agent of a variational quantum circuit can learn to solve the quantum control prob-

lem [511]. Similarly, machine learning methods such as the recommender system

can be used to expedite both GRAPE and a hybrid method combining GRAPE

and simulated annealing [59]. As already mentioned, another recent development

is to combine GRAPE with feedback making use of reinforcement learning [466].

These results, as well as those covered in Secs. 5.3.3 and 5.3.4, highlight that QOCT

as a general optimization tool is not only interesting for the computation of time-

dependent control pulses, but also in other optimization problems of interest in

quantum technologies. In this framework, geometric control has been combined

with machine learning techniques in order to improve the synthesis of quantum

circuits [457].

4.3 Quantum optimal control vs shortcuts to adiabaticity

Shortcuts to adiabaticity (STA) is nowadays a well-established set of control pro-

tocols which have recently been reviewed in depth [178, 264, 562]. In short, STA

exploit the algebraic structure of quantum mechanics and correspond to fast routes

between initial and final states that are connected through a slow (adiabatic) time

evolution when a control parameter is changed in time. They also aim to preserve as

much as possible the robustness of adiabatic dynamics. STA solutions are generally

different from optimal ones and provide a complementary strategy which has pecu-

liar advantages and limitations as discussed below. Optimal control pulses are built

on a global constraint, the minimization of a cost functional, while STA techniques

are primarily built to account for local constraints, in particular at time interval

boundaries. These two different ways of attacking a control problem show that the

two formalisms can mutually benefit from each other.

Recent work has shown the flexibility of STA which can be applied to a wide

spectrum of quantum systems. Such studies focus on the fast and robust trans-

fer in a Su-Schrieffer-Heeger chain of quantum systems [160], fast and accurate

adiabatic quantum computing [280, 281], the control of Bose-Einstein conden-

sates [133, 657], applications in quantum thermodynamics [2, 236, 274], the gen-

eration of quantum gates [319, 449, 601, 628], the experimental initialization of
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spin dressed states [340] for optimal control procedures. In view of the develop-

ment of quantum technologies, this also includes, among others, the robust prepa-

ration of non-classical states [3, 135] as well as many-body states [114], the slowing

down of particles by laser fields [51], the propagation of matter waves in curved

geometry [297], the manipulation of two coupled Harmonic oscillators [560], the

control of multi-level quantum systems [160, 378, 586] and the displacement of a

trapped ion [26]. STA has been combined with machine learning techniques in [47]

to speed up the quantum perceptron, a fundamental building block for quantum

machine learning. Enhanced shortcuts to adiabaticity have been recently proposed

to broaden the scope of the approach [612] and STA protocols robust with respect

to different sources of noise have been derived [153, 371, 555, 642–644]. Similarly to

QOCT, the trade-off between speed and energy cost of the control process is a key

property [108, 563].

A key aspect of STA comes from the fact that the control law can be expressed in

most cases analytically which makes it possible to highlight the physical mechanisms

on which the control process is based. In comparison to QOCT, this approach

requires the system to satisfy specific algebraic properties [264] and therefore does

not have the full generality of QOCT. In particular, STA cannot be applied directly

to any type of dynamical systems or experimental constraints. This obstacle can be

overcome by combining STA protocols with optimal control techniques in a hybrid

strategy to benefit from the advantages of both approaches. Indeed, the search

for the optimal solution and in particular the choice of the cost functional can

be guided by the STA solution. This idea is illustrated by recent studies. It has

been applied for deriving and implementing experimentally a one-qubit quantum

gate [572], to generate specific states in a chain of coupled spins [44, 535] and

in a three-level quantum system [421], for the control of entanglement in bosonic

Josephson junctions [534], but also in many-body physics [109]. The connection

between STA and QOCT has been discussed in [649] for standard quantum control

examples. By using the optimal trajectory as a guide, the authors show that very

precise STA protocols can be achieved. Bang-bang control protocols have been

derived from the atomic transport in a moving Harmonic trap by using both STA

and the Pontryagin Maximum Principle [183]. QOCT may be combined with STA

to mitigate errors, for example those that result from imperfect implementation of

an STA trajectory in the fast shuttling of an ion [215], or improve effectiveness of

counterdiabatic local driving of cold atoms in an optical lattice for annealing, state

preparation and population transfer [121].

Conversely, STA can be used to extract information from numerical optimal tra-

jectories [644], which further illustrates the link and complementarity between these

two formalisms. Similarly, STA can be leveraged to determine one qubit filter func-

tions which can then be used in the cost functional for optimal control to improve

robustness with respect to noise [145]. Under certain circumstances such as the exci-

tation of a two-level quantum system, quantum dynamics can be well approximated

by a linear system. In this framework, very strong similarities exist between STA

and QOCT protocols, which differ only by the basis of functions on which the two

control laws are expanded [263, 407, 408]. In the case of the robust control of a

two-state quantum system against different sources of error, a systematic compar-

ison of several methods extending from adiabatic and STA processes to composite
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and resonant pulses has been performed in [561]. They can be combined with dy-

namical decoupling in order to generate quantum gates in presence of decoherence

effects [611]. Robust composite pulses mitigating systematic errors have also recently

been developed [351]. Finally, it should be pointed out that the DRAG technique

invented for superconducting qubits [423, 554] is based on counter-diabatic driving

and thus closely related to STA.

5 Applications of quantum optimal control theory
When a first version of this roadmap [246] was drafted, QOCT had evolved from

a largely theory-driven field to one where theory and experiment started to cross-

fertilize. This development has since continued with a steady growth in the num-

ber of examples demonstrating significant performance gains thanks to QOCT. We

start in Sec. 5.1 by highlighting successful implementations of QOCT in the labora-

tory and pointing out issues that needed to be addressed when integrating QOCT

into experiment. The following two subsections are then dedicated to a more com-

prehensive overview over applications of QOCT, organized according to hardware

platforms in Sec. 5.2 and according to control tasks in Sec. 5.3. Note that some

redundancy is intentional to ease locating relevant references.

5.1 QOCT in experiment

Quantum technology has proven to be an ideal testbed for QOCT. First and fore-

most, quantum technology’s precision requirements require an exquisite understand-

ing – even in the presence of uncertainties and fluctuations – of the physical systems

that serve as hardware platforms. This is an excellent starting point for quantum

optimal control when compared to other fields where QOCT has been explored, such

as chemical reaction dynamics [246]. Early scepticism towards QOCT has given way

to ready adoption of its toolbox all across the field of quantum technology. Concerns

about feasibility, robustness, or intelligibility, due to often somewhat peculiar pulse

shapes obtained with QOCT, have been dispelled by proofs to the contrary. We start

by highlighting the key experiments at the core of this development, focussing on

examples where QOCT results have been taken straight to the experiment or where

QOCT has been interfaced with an experiment. For each experimental platform, a

more detailed overview will be provided in Sec. 5.2.

Starting with superconducting circuit platforms, QOCT has been used to prepare

logical qubits encoded in bosonic modes [438] and to implement quantum gates [279,

409, 610, 622, 659]. Moreover, STA methods have been used to demonstrate a

reduction in the operation time scale [636], and chirped pulses to encode qubits

in donor spins in silicon coupled to a superconducting cavity have been utilized to

implement a random access quantum memory [445].

Moving to AMO platforms, optimal control has been used to prepare non-classical

states in Rydberg atoms [359, 441] and electric dipole spin waves in an atomic en-

semble [277]. Quantum brachistochrones between distant states of an atom have

been demonstrated [353], and a source of double twin-atom beams with splitting

ramp has been designed using QOCT [77]. Optimal control has been a key re-

source for the simultaneous execution of entangling gates in an ion-trap quantum

computer [226]. Robust two-qubit gates have been implemented in an ion chain
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[318] and using microwave near fields [640]. A gate-optimizing principle trading

small amounts of gate fidelity for substantial savings in power, which, in turn, can

be traded for increases in gate speed and/or qubit connectivity have also been

demonstrated on a trapped ion quantum computer [73]. A closed-loop optimization

procedure has been used for fast trapped-ion shuttling [537], and sideband cooling

of ions has been optimized [479]. The Heisenberg limit in terms of evolution time

has been reached in quantum metrology with a photonic platform [291]. Optimal

control of the quantum trajectory of an optically trapped nanoparticle combined

with Kalman filtering has allowed for real-time tracking of the particle motion in

phase space [401].

Successful application of the QOCT toolkit to color centers in diamond has been

continued, for example, to sense temperature [341] or to study dynamical symme-

tries that can arise in topological phases of strongly-driven Floquet systems [268].

Concatenated pulses have been applied for an easier observation of the Mollow

triplet [597]. Fast and high-fidelity geometric control of a quantum system on hy-

brid spin registers in diamond has been realized [194]. Robust pulse sequences and

optimized pulse pairs have been used to sense temperature and weak AC magnetic

fields while decoupling from environmental noise [583], and optimal control of a

nitrogen-vacancy spin ensemble in diamond has resulted in an improved detection

of temperature and magnetic field [468]. Provably noise-resilient single-qubit gates

have been designed with robust optimal control [653].

A further experimental platform where QOCT methods have been employed are

spin qubits in a GaAs double quantum dot where single-qubit and two-qubit gates

with optimized pulses have been implemented [123, 124, 629].

The successful application of QOCT in the lab has been made possible by advances

in the integration of pulse shaping techniques with the respective experimental

platforms. The development of hardware and interfaces [60, 69, 229, 609, 627] in

particular has been crucial. Pulse shaping can also compensate for experimental

imperfections. This has been demonstrated for signal distortion in electron spin

resonance spectroscopy [472].

5.2 QOCT tailored to specific quantum hardware

Applications of QOCT can be classified according to the different hardware plat-

forms for quantum technologies or according to different tasks for control. The latter

are typically reflected in the choice of optimization method whereas the former are

addressed at the level of the underlying dynamical model for system, controls, and

decoherence. We cover both classifications, starting with the hardware platforms

and allowing for some redundancy between platforms and control tasks, so that

readers might quickly identify the literature relevant to their specific concern.

5.2.1 Superconducting circuit based architectures

Superconducting circuits containing Josephson junctions [402] are one of the cur-

rently leading platforms to implement quantum computing. They are using the col-

lective electromagnetic variables of superconducting circuits [331, 348], building on

the character of superconductivity as a robust macroscopic quantum phenomenon

in its own right [141]. Hence, they are completely human-made which offers wide
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options for engineering but also opens the door for parameter uncertainty. Super-

conducting qubits have strongly improved in coherence of the last decade based on

specific design choices as well as material improvements. The theoretical descrip-

tion of superconducting ciruits resembles that of cavity quantum electrodynamics

at optical frequencies [72].

QOCT has also emerged as immensely important toolbox for the control of su-

perconducting qubit based quantum systems to reach error levels low enough for

error correction and NISQ-type quantum computing applications. However, a di-

rect adaption of numerical open-loop optimization concepts suffers mainly from

only partial knowledge of the system parameters and consequent requirement of

closed-loop protocols with long latency and measurement times.

In a few situations, analytic pulses can be constructed without resorting to numer-

ical strategies. A well known example is the DRAG-pulse for weakly-anharmonic

transmon-type qubits [423] and recently developed tools based on shortcut-to-

adiabaticity methods for fluxonium-type superconducting qubits [512]. Beyond an-

alytical calculations, numerical optimization schemes have been investigated to pre-

pare entangled states in a minimum amount of time [48] and to find fast pulses for

controlled-Z gates of frequency-tunable transmon qubits [239]. It has been found

that the larger coupling strength between higher-lying energy levels of weakly an-

harmonic systems, such as the transmon, can be utilized to shorten quantum gate

operations [36]. Moreover, with the flexibility in the design parameters of super-

conducting qubits not only pulse parameters but even system parameters can be

optimised to realize a fast universal set of gates with high efficiency [253]. A rather

common source of error for superconducting qubits is crosstalk, and one option to

allow for scalability may be to mitigate ZZ-crosstalk via co-optimization of pulses

and scheduling [624].

Open-loop control methods have been successfully applied to simple systems com-

prising only a single well-characterized an-harmonic systems to realize gates in

higher-dimensional Hilbert spaces [622] and to prepare logical qubits encoded in

bosonic modes, so called cat-states [438]. Optimal control methods have been used

to implement a universal gate set on a logical qubit encoded in a bosonic mode [279]

and are used in combination with STA methods to control a circuit QED system

consisting of two coupled bosonic oscillators and a transmon qubit [636]. For bosonic

qubits also, a hybrid approach combining gradient-free and gradient-based optimiza-

tion has successfully been used to enhance the entangling operation via an effective

beamsplitter interaction [57]. Moreover, local (or Lyapunov) control methods which

only require a single forward time propagation of the system wave function to

shape an external pulse – as used for example to steer chemical reactions – have

been proposed to construct modulated coupler pulses to swap excitations between

fixed-frequency qubits [403]. A fast nonadiabatic controlled phase gate between

two transmon qubits with tuneable coupling has been designed using dynamical

invariants of motion [216], and pulse shapes implementing controlled-phase gates

based on drive-amplitude and drive-frequency modulation have been derived with

a theoretical framework based on Floquet theory [180].

However, in many designed quantum systems such as superconducting quantum

circuits or defined quantum-dot systems, the information about the underlying
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Hamiltonian is typically not complete. For instance, the coupling to spurious modes

may cause level shifts that are not included in a genuine qubit description. More-

over, parameters may fluctuate on timescales that are comparable or slower than the

typical run-time of an algorithm. Pre-determined pulses found in open-loop schemes

may therefore not work and one has to resort to closed-loop schemes that optimize a

cost function based on experimental data. To go beyond gradient-based algorithms

and open-loop control is therefore to rapidly measure the cost function for each

pulse parametrization. Moreover, the optimization algorithm has to make best use

of the available hardware by reducing time-consuming pulse reparametrizations and

uploads of wave functions from the control PC to the electronics to a minimum.

To minimize the number of measurements required to completely characterize the

quantum operation, typically a fixed-length randomized benchmarking sequence

is used for single and two-qubit gates with a few parameters pulses [321]. It has

been demonstrated that this method can be used to achieve fast 4 ns-long single-

qubit pulses using piecewise-constant basis functions. Via a closed-loop protocol

both coherent gate errors and leakage can be reduced in a transmon-type qubit

[610]. Numerical studie show that single qubit gate durations can be reduced even

further into the 100 ps regime, provided that the an-harmonicity can be made large

enough [656]. A ’data-driven’ version of the GRAPE algorithm that updates the cost

function based on experimentally measured state and process tomography data has

been used to experimentally realize a controlled-Z gate with 99%- fidelity [659].

Ideally, control, calibration and characterization of a system is performed within

a general framework that allows for the efficient characterization of the system, the

calibration of pulse parameters and the subsequent control of the system [615]. For

simple pulse calibration, typically only a few pulse parameters, such as amplitude

or duration, are optimized. The response of the system to specific measurement

sequences is used to iteratively find optimal parameter values for single-qubit [516]

or two-qubit gate operations [517, 543] involving automatic protocols [627]. Based

on these methods, gates can be calibrated across a complete quantum processor

to reach high quantum volumes [310, 543]. Of particular interest is the mitigation

of errors caused by coherent ZZ-type crosstalk, which can be reduced via optimal

control pulses also on large scale systems to guarantee high-fidelity parallel gates

[613]. While the aim is typically to avoid such longitudinal couplings, by robust

control of the unitary evolution, large scale quantum computing on an array of

qubits can be envisaged even with fixed longitudinal qubit-qubit interactions [364].

Similar techniques can be applied to robustly create GHZ-states of transmons for

quantum sensing [365].

While transmon-type qubits are the current workhorse of superconducting qubit

quantum processors, protected superconducting qubits with exponentially sup-

pressed sensitivity to external noise are heavily investigated. The reduced sensitivity

comes at the expense of reduced control possibilities and the need for complex pulses

for the implementation of quantum gates. For so-called 0–π qubits [95, 271] control

pulses have been optimized that involve higher qubit levels during gate operation to

circumvent the intrinsic protection qubit states given by the disjoint support of the

low-lying wavefunctions [4]. Moreover, robust control techniques have been applied

in numerical simulations to fluxonium qubits to mitigate parameter-uncertainty

errors [473].



Koch et al. Page 28 of 65

On the other hand, ultrastrong coupling may allow for faster operations at the

expense of increased sensitivity to noise in superconducting circuit QED platforms.

Optimal control is a tool ideally suited to identify noise-resilient protocols in this

setting, for example to realize fast state transfer with noise protection due to an

interplay of the dynamical Casimir effect with cavity losses [244]. Further applica-

tions of optimal control methods include the concatenation of pulse sequences into

a single pulse[255] to realize efficient NISQ-type algorithms or to control hidden

qubits that are controlled and read-out via neighbouring qubits [101, 452].

5.2.2 Color centers in diamond

Color centers in diamonds are one of the most successful candidates for implement-

ing different quantum technologies, in particular quantum sensors [43, 432]. Color

centers are defects in the regular crystalline structure of diamonds, where one car-

bon atom is replaced by a different atomic species or a vacancy. This change in the

crystalline structure is reflected in the diamond spectral properties that, as a conse-

quence, might gain a colour – thus the name coloured centers [190, 617]. More im-

portantly for the quantum technology perspective, these point-like defects have very

important and useful properties for quantum information processing. In particular,

they satisfy – to some extent – the DiVincenzo criteria for quantum computation: it

is possible to individuate well defined energy levels to encode qubits states that can

be initialized and manipulated via laser excitation and microwaves; the system state

can be measured via fluorescence; and different centers can be coupled and entan-

gled, enabling – in principle – universal computation and simulation [106, 117, 191].

Despite these exciting properties, the scalability of the system is still a challenging

aspect that, to date, partly limits the applications of this architecture for quan-

tum computation. However, other unique properties make this system ideal to ac-

complish quantum sensing tasks [50, 477, 484]. Indeed, the defect quantum levels

are magnetically sensitive exhibiting Zeeman splitting, the quantum properties are

stable in a wide range of temperatures, from cryogenic to room temperature and

diamonds are biologically inert [50]. Thus, in the last years, a very fast development

of diamond-based magnetometers for nanoscale sensing also in biological and living

cells have been explored and achieved [125, 234, 282, 341, 349, 406, 546, 611]. More-

over, the sensitivity of the defect properties to strain, electric fields and temperature

open the way to a complete new set of sensors of pressure, fields and temperature

at the nanoscale [484].

Despite the aforementioned desirable properties of color centers in diamonds, the

very same characteristics make them naturally prone to static and dynamical errors,

calibration problems, and highly sensitive to drifts of the environmental conditions

when implementing, e.g., a spin echo experiment to measure an external magnetic

field. Thus, color centers are a natural playground for quantum optimal control,

needed to improve the sensing protocols, their stability or final fidelity [463, 484].

Indeed, a number of theoretical and experimental results have been achieved by

exploiting the successful interplay between optimal control and color centers in

diamonds that span a number of such possible applications. Among others, the ef-

fectiveness of shaped pulses for temperature sensing [341], for initialization [125],

and for the single-qubit rotations of the electron spin qubit in silicon-vacancy and
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tin-vacancy defects in diamond [546] have been demonstrated. On similar ground,

experiments have succesfully probed Floquet states for robust control of nuclear

spins in NV centers [611], and an optimal two-step approach has been used to

improve spin manipulation processes for robust magnetometry with single NV cen-

ters [444]. Building on these and other demonstrations of optimally controlled quan-

tum sensing protocols, more complex and challenging protocols have been proposed

such as the autonomous calibration of single NV center operations [232] and the

enhancement of the macroscopic hyperpolarization [406]. Finally, interesting links

with many-body theory have been unveiled, such as the determination that for a

spin sensor of time-varying fields with dephasing noise, the optimal control problem

of finding the optimal driving can be mapped to the search of the ground state of

a spin chain [282].

5.2.3 Trapped atoms, ions, and molecules

Quantum computing with trapped ions is a most promising architecture on par

with superconducting qubits and operating according to the gate model of quantum

computing. Quantum optimal control has been applied to this platform early on,

as summarized in our earlier review [246]. More recent advances include individual

addressability of qubits thanks to pulse optimization [137, 226] and robust control,

i.e., control pulses that perform well in the presence of parameter fluctuations as well

as decoherence. Robustness can be achieved numerically, for example for entangling

gates [65, 447], or using parametric control, i.e. applying sinusoidal modulations to

the amplitude, frequency, or phase of the pulses [34, 261, 369, 417, 640]. Moreover,

a pulse-shaping technique trading small amounts of fidelity for power savings or

trading power savings for gate speed has been used to demonstrate a speed-up of

two-qubit gates for a given power budget for trapped ions [73, 74]. Optimal control

theory has been employed to improve the dissipative preparation of entangled states

of trapped ions [289], and the optimized pumping scheme thus identified has recently

been implemented in an experiment [143].

Trapped atoms excited to Rydberg states have emerged as a competitive quantum

technological platform, most notably for quantum simulation, with key operations

demonstrated for hundreds of qubits [420]. Quantum optimal control has been used,

first theoretically [151] and later experimentally [441], to prepare many-body quan-

tum states of Rydberg atoms in optical lattices. In a similar sequence of theoretical

prediction [451] and experimental demonstration [359], quantum optimal control

has been used to prepare non-classical states in single Rydberg atoms. These can

serve as highly sensitive probes of external fields. The accurate preparation of non-

classical states of trapped Rydberg atoms relevant in quantum sensing has also been

suggested using Bayesian optimization techniques [425]. Single and entangling gates

for Rydberg quantum computing have been optimized for enhanced robustness with

respect to parameter fluctuations and decoherence [250, 267, 302, 447, 456].

Quantum optimal control of neutral atoms is not limited to the Rydberg plat-

form, it can also be applied to atoms forming a Bose-Einstein condensate (BEC),

see [246] for early work. In this setting, theoretical studies have shown how to con-

trol BEC through a variation of the magnetic confinement potential. This study can

be performed in a one [284, 286, 301, 529] and in a three-dimensional case [414].
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Another degree of control can be achieved by trapping a BEC in an optical lat-

tice where the system can be controlled by a phase modulation of the lattice. A

shaken-lattice interferometer can be obtained by selecting specific atom momen-

tum states [467, 606, 607]. Transport of BEC with atom chips has been opti-

mized [25, 132, 147, 648] and robust optimized pulses for cold-atom interferometry

have been designed [503]. Different experimental evidence for the efficiency of op-

timal control schemes has been provided. It extends from the loading of an atomic

gas in an optical array [494, 655] and the manipulation of motional states [576], in

particular for interferometry applications [575], to the crossing of a quantum phase

transition [494, 576] and the transfer to the first vibrational excited states [98]. Also,

a shaken-lattice interferometer has been experimentally realized through a specific

phase modulation of the lattice [605]. Recent extensions include remote control of

a BEC [278, 360] and state preparation of a BEC in an optical lattice [205] as

highlighted in Fig. 1 in Sec. 1. In the opposite limit of single atoms, a quantum

brachistochrone has been utilized for time-optimal transport between distant sites

of an optical lattice [353].

While trapped neutral and ionic atoms continue to be at the forefront of ex-

perimental quantum technologies, trapped molecules may eventually emerge as a

platform offering more versatility. An example testifying to their versatility is the

use of trap-induced resonances to implement two-qubit gates with shaped electric

fields for ultracold molecules trapped in optical tweezers [533].

5.2.4 Other platforms

Finally, we briefly summarize recent progress in further physical platforms for imple-

menting quantum technologies. Spin states in molecules studied by nuclear magnetic

resonance (NMR) have been an early proposed platform for quantum computing,

and optimal control applied to this platform has been extensively reviewed in [246].

Recent advances include optimized state preparation in a seven-qubit nuclear mag-

netic resonance system using hybrid quantum-classical approach to quantum op-

timal control [375] and the near time-optimal preparation of a Bell state where

modeling and experiments were operating in tandem [130]. Using optimal control,

also a novel class of refocusing pulses for ”delayed spin echoes” was developed

[39, 40], with potential applications in the general field of quantum technology. The

concept of optimal-control-based cooperative pulses [90], which are able to compen-

sate each others imperfections, has been introduced for the case of two 90◦ pulses

(separated by an arbitrary delay) as used in Ramsey experiments. The outstand-

ing robustness of cooperative 90◦ pulses was recently experimentally demonstrated

in ultra-broadband multidimensional NMR experiments [35]. The idea of optimal-

control-based cooperative pulses was extended to spin echo experiments consisting

of a cooperative 90◦ and 180◦ pulse pair with excellent robustness with respect

to detuning and scaling of the control amplitudes [314]. Furthermore, the physical

limits of the time-optimal excitation of maximum-quantum coherence was explored

for spin systems consisting of up to five coupled spins [337]. Another development

motivated by solid-state NMR experiments with potential applications in quantum

technologies was the demonstration that it is possible to design control sequences

that are robust to periodic modulations of the control amplitude with known mod-

ulation frequency but unknown amplitude and phase of the modulation [564, 565].
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The optimal-control-based tracking of desired spin trajectories has been used to

create highly robust heteronuclear decoupling experiments [433] and more recently

to tailor the detuning-dependent scaling of the the spectral splitting caused by spin-

spin couplings to reduce the dimensionality of heteronuclear correlation experiments

[645]. In addition to the control of nuclear spin systems in NMR, optimal control

pulses have been developed for the robust control of electron spins in the field of

electron paramagnetic resonance (EPR) spectroscopy, see [532] for a review. In sys-

tems consisting of both nuclear and electron spins, the time-optimal polarization

transfer from an electron spin to a nuclear spin was explored using optimal control

techniques [639].

The ideas developed for atoms and ions that are trapped by external fields, cf.

Sec. 5.2.3, are easily carried over to ions that are hosted in a molecule or crys-

tal. For example, triply charged lanthanide ions are a popular quantum platform.

Pulses to carry out all quantum gate operations have recently been calculated for

the example of gadolinium ions [119]. Microwave coherent control of the initial-

ization, operation, and readout of the electronic spin state in erbium dopants has

been demonstrated [148]. Closely related to donor-based solid state platforms are

quantum dots, where shaped pulses have been derived for single and two-qubit

control [273, 317, 548, 629]. And while Majorana-based topological quantum com-

putation is still elusive, their optimal transport has already been studied theoreti-

cally [146].

A large variety of experimental systems exists that realize the coupling of nanome-

chanical or micromechanical motion to a quantized electromagnetic field mode [37].

Coherent control of cooling such mechanical oscillators and coherent control of

energy transfer between mechanical modes has been demonstrated experimen-

tally [233]. Theoretical proposals for an optimized preparation of non-classical

states [54, 67] and optimized feedback for cooling [223] have been brought forward.

5.3 Applications to key tasks in the operation of quantum devices

We now review applications of QOCT according to control targets, respectively

tasks, with the exception of quantum sensing and metrology for which we refer

the reader to two recently published excellent reviews [387, 484]. We will start by

covering progress in QOCT for state preparation, including transport and storage

of quantum information, and measurement in Sec. 5.3.1, followed by QOCT im-

plementing desired dynamics in Sec. 5.3.2. New fields of application of QOCT are

quantum algorithms (Sec. 5.3.3), system identification (Sec. 5.3.5), and quantum

compilation (Sec. 5.3.4). We will conclude this overview with reviewing the role of

QOCT for quantum thermodynamics in Sec. 5.3.6.

5.3.1 State preparation and measurement

Tasks for state preparation are ubiquitous in quantum technologies: In quantum

sensing and communication, there are numerous tasks around preparing squeezed,

cat and GHZ states vs. photons respectively. In quantum simulation, preparation

of a complex state is often the very objective of the simulation task. In quantum

computing, there is some focus on unitary gates, i.e., rotations of a full (or computa-

tional subspace) basis. Methods for state preparation also pertain to measurements.
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We review below recent examples in which QOCT is applied for the preparation of

a specific state, whereas implementing a desired dynamics that concerns more than

a single state will be reviewed below in Sec. 5.3.2.

QOCT has been used in experiments with Rydberg atoms to increase the fi-

delity in the preparation highly entangled states [441] and long-lived states [359]. It

has also allowed to accurately prepare non-classical superposition states that can-

not be prepared with reasonable fidelity using standard techniques [359]. Shaped

laser pulses applied to shift a spin wave in momentum space of atomic ensemble

with state-dependent geometric phase patterning, in an error-resilient fashion and

on timescales much faster than spontaneous emission [277]. Starting from a Bose-

Einstein condensate, correlated pairs of atoms forming a Bell state involving their

external degrees of freedom have been created upon excitation of the condensate

with shaped RF pulses [77].

Another example for quantum technologically useful states are squeezed states

which allow for quantum enhancement of sensing protocols. In cavity optomechan-

ics, for example, where a mechanical resonator is coupled to a microwave or optical

cavity, significant squeezing can be obtained without the need of ground state cool-

ing. In this setting, QOCT allows to speed up the preparation of squeezed thermal

states by more than two orders of magnitude compared to a protocol with con-

stant drives, requiring only simple pulse modulations that are fully compatible with

current experimental technology [54]. When further coupling the optomechanical

system to a qubit, QOCT can exploit the non-linearity thereby introduced to pre-

pare the mechanical oscillator in non-classical states [67]. In harmonic potentials,

squeezed thermal states can be generated by a reverse engineering approach [203].

Time-dependent controls for spin squeezing in quantum metrology have been de-

signed with reinforcement learning [547]. Large spin squeezing for Ramsey inter-

ferometry based on an alternating series of one-axis twisting pulses and rotations

has also been designed with QOCT [115]. Coherent-state transfer in the ground-

state manifold of an NV center spin using a laser can be accelerated with optimal

control [556]. Optimal control of the harmonic potential which confines a levitated

nano-particle leads to a strong delocalization of its center-of-mass motional state

which is expected to enhance force sensing [608]. In a many-body setting, QOCT

allows for preparing non-Abelian anyons, important for topological quantum com-

putation, on timescales many orders of magnitude faster than adiabatic adiabatic

dynamics [478].

In contrast to state preparation that can be achieved with coherent dynamics,

tasks such as qubit reset or measurement are intrinsically non-unitary. Optimizing

them requires either the use of open system QOCT [53, 55, 227, 266] or a focus

on unitary steps that are part of the overall protocol [52, 209, 210]. A challenge

of qubit reset is that the protocol should work irrespective of the initial state. A

naive optimization strategy would seek a control that works for a complete basis

of Hilbert space but it turns out that a single, specifically chosen density matrix is

sufficient to optimize qubit reset [266]. Fundamental bounds on qubit reset in terms

of maximum fidelity and minimum time have been determined using the paradigm

of resetting via an ancillary quantum system [52, 55, 227], assuming control over the

qubit and no control over the ancilla. A practical implementation of ground state
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reset in a superconducting circuit pumps the excited-state population to a higher

excited state with a first pulse and then dumps it into a low-Q transmission-line

resonator, serving as lossy environment, which is also used for qubit read-out [209].

When the coupling with the thermal environment is tunable, QOCT can be used

to determine the optimal tuning protocol [53].

State preparation is also at the core of storing quantum information, and QOCT

has recently been used to derive protocols for the optimal storage of a single pho-

ton by a single intra-cavity atom, achieving the maximal efficiency by partially

compensating parasitic losses [243]. Broadband operation of the quantum memory

allows for simultaneously realizing high efficiency and high speed which only re-

quires Gaussian pulses with optimally tuned parameters [518]. QOCT combined

with a coherent spin-exchange interaction arising from random collisions has been

used to derive strategies for high-efficiency storage and retrieval of non-classical

light, in order to realize quantum memories with noble-gas spins [320]. A gradient-

based optimization strategy has been used to design the temporal shape of the laser

field driving a quantum transducer for photons between microwave and optical fre-

quencies to mitigate the effects of inhomogeneous broadening [418].

5.3.2 Implementing desired dynamics

We refer to desired dynamics as a control target that concerns more than a sin-

gle state in the target functional. A most prominent example are quantum gates.

Optimal control can be used to steer a quantum system toward a target state in

a time-minimum way, reaching thus the quantum speed limit. For the example of

superconducting qubits interacting via a transmission line cavity, QOCT has been

used to identify the quantum speed limit not only for a single gate but for a com-

plete universal set, i.e., several local plus one entangling gate, and not only for

a single choice of system parameters (qubit frequencies and anharmonicities and

cavity frequency) but for the complete design landscape [253]. This comprehensive

numerical study was made possible by combining several advances in the method

development of QOCT, including an optimization functional targeting an arbitrary

perfect entangler [251, 604] and a hybrid two-step optimization approach where the

result of a gradient-free optimization becomes the initial guess for a gradient-based

optimization [252]. Optimization towards an arbitrary perfect entangler has also

allowed to identify the natural entangling gate for two qubits coupled via a cav-

ity [253], while two-step optimization combining gradient-free and gradient-based

methods has more recently been employed to enhance the beamsplitter interaction

between qubits encoded in bosonic modes [57]. QOCT has been used to derive

gates that are robust to secular amplitude drifts [540]. Robustness of two-qubit

gates can also be achieved by interleaving with optimized single-qubit rotations

which suppress logical and leakage errors [513]. Another route towards robust gates

are composite pulses. For example, it is possible to derive composite pulses that

implement single-qubit gates, such as NOT, designed analytically or numerically

[198], that are robust against both detuning and scaling of the control field. The

design of broadband or narrowband excitation pulses was also studied, for example

using polychromatic pulse trains [299]. The generation of NOT and CNOT gates

with different optimization methods has been compared [486].
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Specific gate transformations have also been optimized for qudits, for example

encoded in atomic [439] or molecular spins [119]. Another generalization beyond

targeting specific gates is to optimize for a continuous family of gates [471, 502],

for example as a function of continuous system or gate parameters. The control

landscape for phase shift gates has been found to be free of traps [588, 589].

Optimization of quantum channels is formally closely related to gate optimization,

and the cheapest channel that produces prescribed output states for a given set of

input states has been determined [206]. Quantum secure data transfer has been

optimized [598], in which the transmitted data is encoded in the pulse shape of a

single optical qubit and high fidelity of the encoding and the receiving processes

is implemented with appropriate driving pulses. A unitary transformation of an

extended receiver as a tool for quantum state restoring has been studied via optimal

transfer of quantum states via spin chains [219].

5.3.3 Quantum algorithms

Quantum algorithms benefit from QOCT in a generic way - gates optimized by

quantum control have superior fidelity and thus bring real algorithmic performance

closer to the ideal one. Application of QOCT can go a lot further, however. On

the extreme end, adiabatic quantum computing and quantum annealing forgo the

notion of gates completely and focus on the preparation of complex ground states

using a slow annealing schedule. QOCT has been shown to be able to find optimal

annealing schedules [88, 410, 411]. In some cases, these are based on the Pontryagin

Maximum Principle [88, 581] and may include two independent controls [224].

Related to quantum annealing is the Quantum Approximate Optimization Algo-

rithm (QAOA) [217] which has already been touched upon in Sec. 4.2. For gate

based quantum computers, QAOA takes the Trotterized version of adiabatic quan-

tum computing and then uses a classical optimizer in order to improve the Trotter

parameters. The corresponding crossover between adiabatic quantum computing to

QAOA has been considered [88, 581].

The relation of QAOA and other variational algorithms [122] to QOCT is a lot

closer, though [138, 272, 633]. These algorithms employ parametrized quantum cir-

cuits, i.e., quantum algorithms whose gates depend on continuous parameters that

then are optimized by an external classical algorithm in order to extremalize the

variational cost function [399, 538, 633, 654]. In other words, these algorithms use

classical closed loop optimal control, choosing the decomposition of a unitary evolu-

tion into a set of quantum gates as their waveform parameterization [399]. Note that

this argument holds in two versions: In the case of variational algorithms for many-

body physics, one aims at a set of controls that suffices to match the desired reach-

able set of states to then sample from. In QAOA, one is interested in maximizing

the overlap with computational basis states of minimum cost function and includes

the unitary generated by cost function itself into the control set. It is thus a natural

idea to replace the gate parameterization of these algorithms by continuous parame-

terizations. Specific structures of quantum algorithms can be identified for quantum

optimization which is a key aspect in the development of new algorithms [412]. A

novel class of variational quantum eigensolvers is obtained by combining optimiza-

tion and measurement processes, leading to advantages in terms of resources and
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times [221]. Insight from QOCT on overcoming barren plateaus may help over-

come convergence problems in quantum machine learning [94, 288] or in variational

quantum algorithms [358]. A QOCT landscape analysis has been applied to the

combinatorial optimization problem MaxCut [366]. Quantum combinatorial opti-

mization without classical optimization can be based on another class of strategies

well-known from QOCT, those inspired by Lyapunov control [400]. Grover’s quan-

tum search problem can be mapped to a time-optimal control problem, and then

described through the Pontryagin Maximum Principle [380]. Furthermore, QOCT

has been used to optimize drives in quantum algorithms such as QAOA [436] and

quantum simulation, for example of a chiral effective-field theory [287] and of an

extended Bose-Hubbard model [313].

5.3.4 Quantum compilation and circuit synthesis

A first example for the usefulness of QOCT to quantum compilation is given by

the Deutsch-Jozsa algorithm which has been compiled on both a superconducting-

qubit-based and a spin-chain-based processor using control optimization algorithms

together with QuTiP [373]. Application of QOCT to quantum compilation and cir-

cuit synthesis follows similar lines as that for quantum algorithms outlined above.

Indeed, the two questions are closely related since variational optimization is often

implemented via Trotterization of a desired unitary, thus representing an important

example for quantum compilation. The corresponding gate sequences can be sub-

jected to optimization, for example to minimize the depth of the circuit on noisy

quantum processors [329] or to reduce the approximation error [405]. Use of varia-

tional quantum algorithms, instead of more traditional optimization tools, in order

to learn pulse parameters of a quantum circuit, has recently been termed variational

quantum pulse learning [379]. In order to scale to large circuits, a block-by-block

optimization framework has been suggested [623]. QOCT and trajectory learning

can be combined to map the space of potential parameter values of a quantum cir-

cuit to the control space and thus obtain continuous classes of gates [471]. The same

idea can be applied to Hamiltonian simulation [313]. When the gates in a circuit

are parametrized by continuous parameters, optimization may be hampered by the

non-Euclidean nature of the parameter space and proper evaluation of the gradient

becomes important, for example via natural gradients [634]. This problem is reminis-

cent of the best way to approximate the gradient in QOCT discussed in Sec. 3.1.2 or

the observation that estimating the expectation values in hybrid classical-quantum

optimization determines the convergences properties of the latter [544], highlighting

the importance of knowledge transfer between different subfields.

5.3.5 System identification and calibration

The identification of parameters that characterize the dynamics of a quantum sys-

tem is a fundamental prerequisite for controlling its evolution and realizing concrete

tasks in quantum technologies with sufficient precision. It is of particular importance

for open-loop configurations in which the control protocols are designed only based

on the system model, without any experimental feedback. System identification

aims to estimate the value of one or several parameters of the system Hamiltonian.

One option consists in building a database from the time evolution of an ensemble
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of dynamical systems driven by a specific field, which is designed by optimal con-

trol theory to maximize the efficiency of the recognition process [28]. Alternatively,

one can use the shape of the driving field to maximize the distinguishability of two

states that evolve under slightly different Hamiltonians [55, 475]. System identifi-

cation is possible even in the presence of large control perturbations [235]. When

using the quantum Fisher information as figure of merit for estimating the value of

an unknown parameter of the Hamiltonian [382], upper bounds for time-dependent

Hamiltonians have been established [450]. A variational approach combined with

shortcuts to adiabaticity has been used to determine the initial states and the

optimal controls that maximize the quantum Fisher information [630]. Multiple pa-

rameters in noisy quantum circuits can be estimated based on optimal control and

reinforcement learning [625], avoiding separate optimizations for each parameter.

When the environment of the system changes, the parameters of the Hamilto-

nian must be recalibrated experimentally as quickly as possible. Different protocols

have been suggested to this end. Leveraging concepts from machine learning and

optimization, the control parameters of a 53 qubit quantum processor can be cali-

brated much faster than the system drift [333]. Automated tune-up is possible for

any arrangement of coupled qubits [422]. Ultimately, for practical device operation,

system calibration and control should be unified [615].

5.3.6 Quantum thermodynamics

Control has been an inherent part of thermodynamics. Optimization of the efficiency

and power of heat engines has shaped the field. Originally applied to steam engines,

quantum thermodynamics addresses the issue of miniaturising thermal devices. How

small can a quantum heat engine be? What is the optimal performance? Is there a

quantum advantage? See [71, 428, 455, 585] for a recent overview. Quantum control

and quantum thermodynamics are closely interlinked:

(a) Thermodynamical consistency restricts the structure of the open system con-

trol GKLS master equation [20, 163, 164, 169, 596].

(b) Certain control task require a change of entropy, such as reset or thermaliza-

tion [52, 56, 166, 168, 227, 558, 559]. Tasks that do not require a change of

entropy may still benefit from it, for example by reaching the target while

actively cooling [316, 415].

(c) Quantum control can be used to optimize the operation cycle of heat engines

and refrigerators [168, 213, 323, 626].

(d) Experimental realizations of quantum information control and quantum heat

devices share common platforms [269, 332, 372, 442, 495, 595].

(e) Quantum thermodynamics supplies a resource theory framework addressing

the issue of the cost of the control [390].

Optimal control theory requires a dynamical equation of motion connecting the

input and the target state. For open quantum systems the theory is based on the

GKLS master equation, cf. Sec. 2. For realistic quantum devices it is almost impossi-

ble to derive from first principle these equations. As a result, an empirical approach

for developing quantum simulations prevails, employing the GKLS structure and

fitting the Lindblad jump operators and kinetic coefficients to the scenario. Quan-

tum thermodynamics imposes additional conditions on the admissible dynamical
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equations. An underlying assumption is that the dynamics of the system and its

surrounding environment is unitary. This assumption is shared with the theory of

open quantum systems [344, 384]. Thermodynamics then imposes additional restric-

tions on the reduced dynamical map of the controlled system Λ. The fixed point of

this map should be a thermal equilibrium state with the temperature dictated by

the environment. Another idealization is imposed by requiring an isothermal par-

tition between system and environment. In this partition no energy is accumulated

on the interface. This assumption reflects the intuition that the quantum device is

relatively isolated from the environment allowing local measurement of its observ-

ables. It is also consistent with a derivation of the master equation based on the

weak coupling limit and the secular approximation [120, 171, 504, 567]. In addition,

strict energy conservation implies a dynamical time-translation symmetry: The dy-

namical map of the system commutes with the free unitary map U , i.e., [Λ,U ] = 0

[163, 300]. Time-translation symmetry implies that the environment cannot serve

as a clock for the system [169]. From a control prospective, thermodynamics re-

stricts the admissible dynamical equations of motion; the dissipative and unitary

parts are linked. For slow external driving in the adiabatic limit, the free evolution

generator composed from the commutator of the instantaneous Hamiltonian and

the dissipative generators commute [10, 20, 163]. This implies that coherence in the

energy frame and population evolve independently.

Rapid control typically described by a time-dependent Hamiltonian requires a

non-adiabatic treatment of the dissipative map [164]. Time translation symmetry

imposes the condition that the free unitary map and the dissipative map commute.

A procedure to obtain the generators of the GKLS master equation has been devel-

oped based on the inertial theorem [162]. To date, this procedure has been obtained

only for closed form solution of the free dynamics [166, 168].

Controlling the Hamiltonian directly influences the unitary evolution accompa-

nied by an indirect control of the dissipation. This dependency influences the rules

for open system controllability presented in Sec. 2. Under these conditions, it can

be inferred that systems that are unitary controllable are state to state control-

lable [168, 188]. An open problem are the controllability criteria for dynamical

maps Λf under thermodynamically consistent dissipation.

Entropy-changing transformations are a hallmark of quantum thermodynamical

control tasks. An elementary and universal task is the reset transformation. The

control objective is a fast reset to a desired state with high fidelity [52, 56, 227, 558,

559]. The fidelity is restricted by the third law of thermodynamics: Very high fidelity

requires infinite resources [550]. The speed of the reset dynamical map is related

to the rate of transfer of entropy to the environment. Reset and cooling are similar

tasks for optimization of entropy-changing transformations. Cooling via a delta kick

protocol has been proposed [204] where the control is achieved by switching on and

off a noise source. These reset and cooling mechanisms are in line with the reachable

set when the interaction with the environment is controllable, cf. subsection 2.2.2.

A related control task is to speed up equilibration. A control strategy based on

the inertial theorem was developed [166, 168]. Speed-up is obtained by maintaining

the controlled system as far from equilibrium as possible by generating significant

coherence. The final step is to rotate this coherence back to population. The speedup
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comes with a cost, extra work is required which is dissipated to the environment

producing entropy [167].

Preserving entropy or, minimizing decoherence is another legitimate control task.

When considering protecting quantum gates from dissipation, active cooling is pos-

sible while performing the quantum operation [316]. An alternative strategy is to

formulate the control in a decoherence free subspace [294, 424, 618], or in a path

independent control [394, 395].

A favored subject of QOCT in quantum thermodynamics are heat engines—

devices that convert heat to work or operate in reverse as refrigerators [428]. These

engines can be classified as autonomous, continuously driven, and discrete [71].

QOCT for heat engines has been almost exclusively applied to the discrete Carnot

and Otto four stroke cycles. Typical optimization targets are maximum efficiency,

maximum power, or minimal fluctuations [214, 577, 635]. A trade-off has been iden-

tified between these tasks. Optimizing power requires reducing the engine’s cycle

period. Typically, this protocol is accompanied by an increase in dissipation and

therefore reduced efficiency.

In small quantum engines fluctuations become important [87, 275, 347, 385, 385,

416], diverging fluctuations make the device useless. Actively controlling fluctuations

comes at the expense of either efficiency or power. In view of miniaturizing quantum

devices the issue of fluctuation will become more important. Active control to reduce

fluctuations will become a legitimate goal [515].

The Otto cycle has been a popular target for optimization. The cycle is composed

of two unitary branches and two thermalization branches, thus separating the con-

trolled segment from the dissipation. The unitary branches are characterized by

rescaling the Hamiltonian. Whenever the drift Hamiltonian does not commute with

the control operators rapid protocols will generate coherence. Generating coherence

from an initial thermal state has a cost in additional work [315]. If coherence is

present at the terminus of the unitary stroke, the extra work will be dissipated

in the thermalization strokes reducing the engine’s efficiency. This phenomena is

termed quantum friction [107, 220, 298, 343, 416, 483]. The friction loss has been the

motivation for optimizing the protocol for the unitary branches [298, 499, 521, 536].

Some protocols employ shortcuts to adiabaticity, cf. Sec. 4.3, since at the terminus

of the stroke no coherence is present [2, 21, 179, 204]. Examining these protocols,

coherence is generated but is transient. There is a dispute if to associate a cost

to this coherence [1, 330, 563]. To overcome this cost, control methods were ap-

plied, for example a combination of dynamic programming, machine learning and

STA [213, 323].

Optimizing the Carnot cycle requires control of the isothermal strokes of the en-

gine [161, 167]. In this stroke, the Hamiltonian is varying while the working medium

is in contact with the thermal bath. The introduction of the non-adiabatic Mas-

ter equation [165] enabled to study the cycle and its optimization. The optimized

quantum Carnot cycle was found to possess the typical trade-off between power and

efficiency [167]. Speeding up the thermalization resulted in an increase in dissipa-

tion. These studies were based on the inertial approach allowing a quasi-analytic

solution [162]. In the weak dissipation limit for slow driving, a geometric optimiza-

tion approach was employed for a general engine cycle [5, 396]. The basic idea is to
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minimize a distance metric of the cycle from the equilibrium state. This approach

has also been employed to minimize dissipation [176].

Experimental realizations of quantum heat engines employ the typical setups de-

veloped for quantum information processing, such as ion traps [292, 495, 595], cold

atoms [87], NV centers [332], and Josephson devices [269, 442, 525], including a real-

ization of an absorption refrigerator [262]. These studies demonstrate that quantum

thermodynamic principles are able to address devices ranging from macroscopic bulk

engines to single qubit operated devices.

In quantum devices accounting for the physical resources required to achieve the

control task is a fundamental issue. Thermodynamics as a theory has been con-

structed to address this issue. Quantum thermodynamics is a confluence of quan-

tum information, quantum statistical mechanics and quantum dynamics. The the-

ory therefore has the capability to assess the requirements for quantum control. In

optimal control theory the energetic cost is typically incorporated by employing a

Lagrange parameter. The invested energy in the control is closely associated with

the quantum speed limit, cf. Sec. 2.2.6. The energetic cost in quantum thermody-

namics is reflected by the first law [530]; and the cost of quantum gates has been

analyzed [9, 175]. A different viewpoint is accounting for irreversible entropy genera-

tion required for control [316, 330]. The real resource for control is coherence. Under

a unitary map coherence is preserved. If we incorporate the system and controller in

a super-quantum system, coherence is transferred from the controller to the system.

In the semiclassical limit the controller is described by a time-dependent field. This

framework supports the viewpoint that coherence is a resource [539]. A quantum

signature in heat engines is the conversion of coherence to useful work [231, 569].

5.4 Goals and challenges for advancing the application of QOCT

The impressive progress in the application of QOCT to the various hardware plat-

forms and control tasks paves the way to further extending the versatility of the

QOCT toolbox. This requires, at the same time, significant advances from con-

trol hardware all the way to new conceptual solutions. A key challenge is hard-

ware development of a scalable control architecture; a microarchitecture for efficient

instruction-driven pulse synthesis has just been brought forward [325]. Another key

challenge is a better integration of control and calibration. For example, a require-

ment on future control electronics is a powerful internal optimization logic that

allows for fast pulse calibration. At the same time, better quantum engineering

in the sense of isolating and protecting quantum systems from external noise will

continue to be an active field for control and optimization.

Further progress is also required in basic control tasks, in particular those that

cannot be achieved with purely coherent control. For example, a prerequisite for a

quantum device is cooling or reset to a purified initial state. Control and optimiza-

tion of these processes carries a substantial benefit and this subject will continue

to be a major research topic in the near future. Similarly, a quantum refrigerator

removing entropy from the sensing or computation part supplying cold ancillas is

likely part of future technology [142, 247, 526, 549].

At the more conceptual level, QOCT in open quantum systems has so far largely

been based on a Markovian framework to supply the dynamical equations of motion,
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cf. Sec. 2.2.3. An open problem is a thermodynamically consistent theory for non-

Markovian, driven dynamical systems [169] that can be combined with QOCT, i.e.,

with arbitrarily fast drives.

6 Long-term vision for quantum optimal control in quantum
technologies

The vision for the future of quantum technologies is for quantum devices to provide

advantages with respect to classical devices in a broad range of applications. In this

context, the mission of quantum optimal control methods is to make it possible

for quantum technological devices to reach and maintain their best performance

outside of the lab, under real-world conditions.

This concerns the operation of quantum devices at many levels. Resource man-

agement is a crucial element in quantum engineering. In the case of quantum com-

puting, for instance, the aims of future QOCT encompass almost the whole software

stack underneath high-level programming languages. This ranges from expanding

the library of variational and optimisation-based algorithms such as QAOA and

VQE to orchestrating the distribution of computational tasks between classical

and quantum co-processors, and from compiling quantum circuits for reduced com-

plexity of the required gate sequences to enhancing the effectiveness of standard

quantum control tasks such as pulse shaping for hardware optimisation.

Several of these goals are essential also for the deployment of protocols for quan-

tum communication and quantum sensing. To fulfil the needs and realise the po-

tential of all QT application areas, future QOCT will aim at providing calibration

of the control sequences to the specific parameters of individual devices, as well as

recalibration for adapting to parameter drifts and other systematic disturbances, in

a fully automated manner not requiring constant specialist intervention.

To this end, QOCT aims not only at building on efficient and reliable modelling

and system identification, but also at consistently improving the models it relies on

based on the gathered data. This will require to intensify the already increasingly

pervasive use of machine learning techniques. The final goal will be the achievement

of general-purpose, specifically adaptable tools — a universal toolbox ideally to be

automatically tailored to the particular physical configuration of any given quantum

device to enable attainment of the best possible performance. Along the process, this

will include the ability to prescribe the most suitable requirements for the underlying

quantum hardware, leading to a systematisation of co-design, and ultimately to a

true quantum systems theory.

Finally, another key aspect in the development of quantum technologies through

the large-scale application of quantum control techniques will be the training of

engineers, researchers, and students in this rapidly evolving field both from the

experimental and theoretical points of view. Many initiatives are currently proposed,

in Europe and elsewhere, to improve the quantum workforce education. For the

quantum control part of that education, our roadmap provides an overview from

which essential components of the future common knowledge framework can be

drawn.

Novel challenges will keep the field alive and vibrant. At the same time, it is an

important task for the quantum control community to make its tools accessible to
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a wide audience with different levels of technical skills. This is key to ensuring the

long-term impact of quantum optimal control, which is to become the underlying

basis for any quantum technology application naturally embedded into each and

every quantum device.

7 Conclusions
We have reviewed the current state of the art in quantum optimal control as relevant

to the fast evolving field of quantum technologies and summarized the most pressing

open questions, updating an earlier roadmap [246]. When inspecting the global

perspective that our overview provides, two observations are striking:

(i) QOCT has significantly matured over the past few years and is about to become

a routine tool for laboratory quantum technologies. The next step will be to push

this development towards even more versatility and user-friendliness, to allow for

integration in practical quantum devices at the application-ready level. The need for

this development has already been realized, and more traditional academic research

settings are now being complemented by industrial development.

(ii) There has been a lot of cross-fertilization with neighbouring fields, with ma-

chine learning in both their classical and quantum versions as prominent example,

but there is plenty of room for more. As the quantum technologies spread out

towards engineering and computer science, there is, at the same time, a further

need to unify the various languages, or rather dialects, that capture the very same

foundational concepts. Take the example of the figure of merit — it is the target

functional in QOCT, the fidelity in system and process characterization, and the

cost in machine learning and the question about the resources needed for their esti-

mation. A global overview like the one we are presenting here will hopefully serve to

identify commonalities and thus prepare the ground for further cross-fertilization.

Such cross-fertilization suggests that the long-term future of quantum optimal

control is to be an integral part of the larger technical foundations of the quantum

technologies.
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19. Á. M. Alhambra, M. Lostaglio, and C. Perry. Heat-Bath Algorithmic Cooling with Optimal Thermalization

Strategies. Quantum, 3:188, 2019. URL https://doi.org/10.22331/q-2019-09-23-188.

20. R. Alicki and R. Kosloff. Thermodynamics in the Quantum Regime: Fundamental Aspects and New

Directions, chapter Introduction to Quantum Thermodynamics: History and Prospects, pages 1–33. Springer

International Publishing, Cham, 2018. . URL https://doi.org/10.1007/978-3-319-99046-0_1.

21. S. Alipour, A. Chenu, A. T. Rezakhani, and A. del Campo. Shortcuts to Adiabaticity in Driven Open

Quantum Systems: Balanced Gain and Loss and Non-Markovian Evolution. Quantum, 4:336, 2020. URL

https://doi.org/10.22331/q-2020-09-28-336.

22. C. Altafini. Coherent Control of Open Quantum Dynamical Systems. Phys. Rev. A, 70:062321, 2004. . URL

https://doi.org/10.1103/PhysRevA.70.062321.

23. C. Altafini. Controllability and Simultaneous Controllability of Isospectral Bilinear Control Systems on

Complex Flag Manifolds. Syst. Control. Lett., 58:213–216, 2009. URL

https://doi.org/10.1016/j.sysconle.2008.10.008.

24. A. Altland, M. Fleischhauer, and S. Diehl. Symmetry Classes of Open Fermionic Quantum Matter. Phys. Rev.

X, 11:021037, 2021. URL https://doi.org/10.1103/PhysRevX.11.021037.

25. S. Amri, R. Corgier, D. Sugny, E. M. Rasel, N. Gaaloul, and E. Charron. Optimal Control of the Transport of

Bose-Einstein Condensates with Atom Chips. Scientific Rep., 9:5346, 2019. URL

https://doi.org/10.1088/1367-2630/ab4c8c
https://doi.org/10.1103/PhysRevResearch.2.023120
https://doi.org/10.1103/PhysRevLett.124.180401
https://link.aps.org/doi/10.1103/PhysRevA.101.022321
https://doi.org/10.3390/e22101076
https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1051/cocv:2006007
https://doi.org/10.1051/cocv/2016029
https://doi.org/10.48550/arXiv.2202.01839
https://doi.org/10.1088/1367-2630/14/12/123016
https://link.aps.org/doi/10.1103/PhysRevX.10.031050
https://doi.org/10.1109/TAC.2003.815027
https://doi.org/10.1063/1.5004652
https://doi.org/10.1016/j.sysconle.2021.104913
https://doi.org/10.48550/arXiv.2111.07208
https://doi.org/10.1063/1.4906137
https://doi.org/10.1016/j.automatica.2016.07.014
https://doi.org/10.1109/TAC.2017.2727225
https://doi.org/10.22331/q-2019-09-23-188
https://doi.org/10.1007/978-3-319-99046-0_1
https://doi.org/10.22331/q-2020-09-28-336
https://doi.org/10.1103/PhysRevA.70.062321
https://doi.org/10.1016/j.sysconle.2008.10.008
https://doi.org/10.1103/PhysRevX.11.021037


Koch et al. Page 43 of 65

https://doi.org/10.1038/s41598-019-41784-z.

26. S. An, D. Lv, A. del Campo, and K. Kim. Shortcuts to Adiabaticity by Counterdiabatic Driving for

Trapped-Ion Displacement in Phase Space. Nature Comms., 7:12999, 2016. URL

https://doi.org/10.1038/ncomms12999.

27. Z. An and D. L. Zhou. Deep Reinforcement Learning for Quantum Gate Control. EPL (Europhys. Lett.), 126:

60002, 2019. URL https://doi.org/10.1209/0295-5075/126/60002.

28. Q. Ansel, M. Tesch, S. J. Glaser, and D. Sugny. Optimizing Fingerprinting Experiments for Parameter

Identification: Application to Spin Systems. Phys. Rev. A, 96:053419, 2017. URL

https://doi.org/10.1103/PhysRevA.96.053419.

29. Q. Ansel, S. Probst, P. Bertet, S. J. Glaser, and D. Sugny. Optimal Control of an Inhomogeneous Spin

Ensemble Coupled to a Cavity. Phys. Rev. A, 98, 2018. URL

https://doi.org/10.1103/PhysRevA.98.023425.

30. Q. Ansel, S. Glaser, and D. Sugny. Selective and Robust Time-Optimal Rotations of Spin Systems. J. Phys.

A, 54:085204, 2021. . URL https://doi.org/10.1088/1751-8121/abdba1.

31. Q. Ansel, J. Fischer, D. Sugny, and B. Bellomo. Optimal Control and Selectivity of Qubits in Contact with a

Structured Environment. arXiv:2203.15553, 2022. URL https://arxiv.org/abs/2203.15553.

32. C. Arenz and H. Rabitz. Drawing Together Control Landscape and Tomography Principles. Phys. Rev. A,

102:042207, 2020. . URL https://link.aps.org/doi/10.1103/PhysRevA.102.042207.

33. C. Arenz, B. Russell, D. Burgarth, and H. Rabitz. The Roles of Drift and Control Field Constraints upon

Quantum Control Speed Limits. New. J. Phys., 19:103015, 2017. URL

https://doi.org/10.1088/1367-2630/aa8242.

34. I. Arrazola, M. Plenio, E. Solano, and J. Casanova. Hybrid Microwave-Radiation Patterns for High-Fidelity

Quantum Gates with Trapped Ions. Phys. Rev. Applied, 13:024068, 2020. URL

https://link.aps.org/doi/10.1103/PhysRevApplied.13.024068.

35. S. Asami, W. Kallies, J. C. Guenther, M. Stavropoulou, S. J. Glaser, and M. Sattler. Ultrashort Broadband

Cooperative Pulses for Multidimensional Bio-molecular NMR Experiments. Angew. Chem. Int. Ed., 57:

14498–14502, 2018. URL https://doi.org/10.1002/anie.201800220.

36. S. Ashhab, F. Yoshihara, T. Fuse, N. Yamamoto, A. Lupascu, and K. Semba. Speed Limits for Quantum

Gates with Weakly Anharmonic Qubits. Phys. Rev. A, 105:042614, 2022. URL

https://doi.org/10.1103/PhysRevA.105.042614.

37. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt. Cavity Optomechanics. Rev. Mod. Phys., 86:

1391–1452, 2014. URL https://doi.org/10.1103/RevModPhys.86.1391.
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144. S. Cole, M. Eckstein, S. Friedland, and K. Życzkowski. Quantum Optimal Transport. arXiv:2105.06922, 2021.

URL https://doi.org/10.48550/arXiv.2105.06922.

145. R. K. L. Colmenar and J. P. Kestner. Efficient Reverse Engineering of One-Qubit Filter Functions with

Dynamical Invariants. arXiv:2204.08457, 2022. URL https://doi.org/10.48550/arXiv.2204.08457.

146. L. Coopmans, D. Luo, G. Kells, B. K. Clark, and J. Carrasquilla. Protocol Discovery for the Quantum Control

of Majoranas by Differentiable Programming and Natural Evolution Strategies. PRX Quantum, 2:020332,

2021. URL https://doi.org/10.1103/PRXQuantum.2.020332.

147. R. Corgier, S. Amri, W. Herr, H. Ahlers, J. Rudolph, D. Guéry-Odelin, E. M. Rasel, E. Charron, and
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160. F. M. D’Angelis, F. A. Pinheiro, D. Guéry-Odelin, S. Longhi, and F. Impens. Fast and Robust Quantum State

Transfer in a Topological Su-Schrieffer-Heeger Chain with Next-to-Nearest-Neighbor Interactions. Phys. Rev.

Research, 2:033475, 2020. URL https://doi.org/10.1103/PhysRevResearch.2.033475.

161. R. Dann and R. Kosloff. Quantum Signatures in the Quantum Carnot Cycle. New J. Phys., 22:013055, 2020.

URL https://doi.org/10.1088/1367-2630/ab6876.

162. R. Dann and R. Kosloff. Inertial Theorem: Overcoming the Quantum Adiabatic Limit. Phys. Rev. Res., 3:

013064, 2021. URL https://doi.org/10.1103/PhysRevResearch.3.013064.

163. R. Dann and R. Kosloff. Open System Dynamics from Thermodynamic Compatibility. Phys. Rev. Res., 3:

023006, 2021. URL https://doi.org/10.1103/PhysRevResearch.3.023006.

164. R. Dann and R. Kosloff. Quantum Thermodynamical Construction for Driven Open Quantum Systems.

Quantum, 5:590, 2021. URL https://doi.org/10.22331/q-2021-11-25-590.

https://doi.org/10.1103/PhysRevLett.126.023602
https://doi.org/10.1016/j.sysconle.2018.01.008
https://doi.org/10.1103/PhysRevLett.112.190502
https://doi.org/10.1103/PhysRevResearch.3.023092
https://doi.org/10.1007/978-3-030-13046-6
https://doi.org/10.1103/PhysRevA.94.020103
https://doi.org/10.1038/nature07128
https://doi.org/10.1103/PhysRevLett.123.170605
https://doi.org/10.1103/PhysRevLett.128.080502
https://doi.org/10.48550/arXiv.2105.06922
https://doi.org/10.48550/arXiv.2204.08457
https://doi.org/10.1103/PRXQuantum.2.020332
https://doi.org/10.1088/1367-2630/aabdfc
https://doi.org/10.1103/PhysRevApplied.15.064028
https://doi.org/10.1103/PhysRevLett.108.120503
https://doi.org/10.1007/s00220-011-1402-y
https://doi.org/10.1088/2058-9565/aa7daf
https://doi.org/10.1103/PhysRevLett.115.210403
https://doi.org/10.1103/PhysRevLett.111.050404
https://doi.org/10.1201/9781584888833
https://doi.org/10.1007/s10883-020-09488-0
https://doi.org/10.48550/arXiv.2110.061877
https://doi.org/10.1038/s41534-019-0241-0
https://doi.org/10.1103/PhysRevA.105.012402
https://doi.org/10.22331/q-2020-05-11-264
https://doi.org/10.1103/PhysRevResearch.2.033475
https://doi.org/10.1088/1367-2630/ab6876
https://doi.org/10.1103/PhysRevResearch.3.013064
https://doi.org/10.1103/PhysRevResearch.3.023006
https://doi.org/10.22331/q-2021-11-25-590


Koch et al. Page 48 of 65

165. R. Dann, A. Levy, and R. Kosloff. Time-Dependent Markovian Quantum Master Equation. Phys. Rev. A, 98:

052129, 2018. URL https://doi.org/10.1103/PhysRevA.98.052129.

166. R. Dann, A. Tobalina, and R. Kosloff. Shortcut to Equilibration of an Open Quantum System. Phys. Rev.

Lett., 122:250402, 2019. URL https://doi.org/10.1103/PhysRevLett.122.250402.

167. R. Dann, R. Kosloff, and P. Salamon. Quantum Finite-Time Thermodynamics: Insight from a Single Qubit

Engine. Entropy, 22:1255, 2020. URL https://doi.org/10.3390/e22111255.

168. R. Dann, A. Tobalina, and R. Kosloff. Fast Route to Equilibration. Phys. Rev. A, 101:052102, 2020. URL

https://doi.org/10.1103/PhysRevA.101.052102.

169. R. Dann, N. Megier, and R. Kosloff. Non-Markovian Dynamics under Time-Translation Symmetry.

arXiv:2106.05295, 2021. URL https://doi.org/10.48550/arXiv.2106.05295.

170. A. Das, A. Bera, S. Chakraborty, and D. Chruściński. Thermodynamics and the Quantum Speed Limit in the
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301. G. Jäger, D. M. Reich, M. H. Goerz, C. P. Koch, and U. Hohenester. Optimal Quantum Control of

Bose-Einstein Condensates in Magnetic Microtraps: Comparison of Gradient-Ascent-Pulse-Engineering and

Krotov Optimization Schemes. Phys. Rev. A, 90:033628, 2014. . URL

https://link.aps.org/doi/10.1103/PhysRevA.90.033628.

302. S. Jandura and G. Pupillo. Time-Optimal Two- and Three-Qubit Gates for Rydberg Atoms.

arXiv:2202.00903, 2022. URL https://doi.org/10.48550/arXiv.2202.00903.

https://doi.org/10.1103/PhysRevLett.125.213602
https://doi.org/10.1073/pnas.1716869115
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1103/PhysRevApplied.15.024038
https://doi.org/10.1103/PhysRevA.105.012612
https://doi.org/10.48550/arXiv.2112.14998
https://link.aps.org/doi/10.1103/PhysRevA.93.053612
https://doi.org/10.1016/j.jmr.2010.11.008
https://doi.org/10.1103/PhysRevA.75.023602
https://doi.org/10.1103/PhysRevA.101.062307
https://doi.org/10.1103/PhysRevLett.126.190501
https://doi.org/10.1088/1367-2630/aaf360
https://doi.org/10.1038/ncomms3059
https://doi.org/10.1103/PhysRevLett.126.070503
https://doi.org/10.1038/s41534-020-00300-2
https://doi.org/10.1088/1367-2630/ac2710
https://doi.org/10.1103/PhysRevA.104.062612
https://doi.org/10.1126/science.aam6564
https://doi.org/10.1103/PhysRevA.103.062204
https://doi.org/10.1103/PhysRevLett.124.250403
https://doi.org/10.3390/e22091060
https://doi.org/10.48550/arXiv.2204.02147
http://dx.doi.org/10.1103/PRXQuantum.2.020312
https://link.aps.org/doi/10.1103/PhysRevA.90.033628
https://doi.org/10.48550/arXiv.2202.00903


Koch et al. Page 53 of 65

303. N. Jbili, K. Hamraoui, S. J. Glaser, J. Salomon, and D. Sugny. Optimal Periodic Control of Spin Systems:

Application to the Maximization of the Signal-to-Noise Ratio per Unit Time. Phys. Rev. A, 99:053415, 2019.

URL https://doi.org/10.1103/PhysRevA.99.053415.

304. J. H. M. Jensen, F. S. Møller, J. J. Sørensen, and J. F. Sherson. Achieving Fast High-Fidelity Control of

Many-Body Dynamics. Phys. Rev. A, 104:052210, 2020. URL

https://doi.org/10.1103/PhysRevA.104.052210.

305. J. H. M. Jensen, M. Gajdacz, S. Z. Ahmed, J. H. Czarkowski, C. Weidner, J. Rafner, J. J. Sørensen,

K. Mølmer, and J. F. Sherson. Crowdsourcing Human Common Sense for Quantum Control. Phys. Rev.

Research, 3:013057, 2021. . URL https://link.aps.org/doi/10.1103/PhysRevResearch.3.013057.

306. J. H. M. Jensen, F. S. Møller, J. J. Sørensen, and J. F. Sherson. Approximate Dynamics Leading to More

Optimal Control: Efficient Exact Derivatives. Phys. Rev. A, 103:062612, 2021. URL

https://doi.org/10.1103/PhysRevA.103.062612.

307. Y. Ji, J. Bian, M. Jiang, D. D’Alessandro, and X. Peng. Time-Optimal Control of Independent Spin-1/2

Systems under Simultaneous Control. Phys. Rev. A, 98:062108, 2018. URL

https://doi.org/10.1103/PhysRevA.98.062108.

308. J. Johansson, P. Nation, and F. Nori. QuTiP 2: A Python Framework for the Dynamics of Open Quantum

Systems. Computer Phys. Comm., 184:1234–1240, 2013. URL

https://doi.org/10.1016/j.cpc.2012.11.019.

309. R. S. Judson and H. Rabitz. Teaching Lasers to Control Molecules. Phys. Rev. Lett., 68:1500–1503, 1992.

URL https://doi.org/10.1103/PhysRevLett.68.1500.

310. P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F. Bogorin, M. Brink, L. Capelluto, O. Günlük,
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337. S. S. Köcher, T. Heydenreich, Y. Zhang, G. N. M. Reddy, S. Caldarelli, H. Yuan, and S. J. Glaser.

Time-Optimal Excitation of Maximum Quantum Coherence: Physical Limits and Pulse Sequences. J. Chem.

Phys., 144:164103, 2016. URL https://doi.org/10.1063/1.4945781.

338. B. Koczor and S. C. Benjamin. Quantum Analytic Descent. Phys. Rev. Research, 4:023017, 2022. URL

https://doi.org/10.1103/PhysRevResearch.4.023017.

339. C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt,

C. F. Roos, and P. Zoller. Self-Verifying Variational Quantum Simulation of Lattice Models. Nature, 569:355,

2019. URL https://doi.org/10.1038/s41586-019-1177-4.

340. J. Kölbl, A. Barfuss, M. S. Kasperczyk, L. Thiel, A. A. Clerk, H. Ribeiro, and P. Maletinsky. Initialization of

Single Spin Dressed States Using Shortcuts to Adiabaticity. Phys. Rev. Lett., 122:090502, 2019. URL

https://doi.org/10.1103/PhysRevLett.122.090502.

341. P. Konzelmann, T. Rendler, V. Bergholm, A. Zappe, V. Pfannenstill, M. Garsi, F. Ziem, M. Niethammer,

M. Widmann, S.-Y. Lee, P. Neumann, and J. Wrachtrup. Robust and Efficient Quantum Optimal Control of

Spin Probes in a Complex (Biological) Environment. Towards Sensing of Fast Temperature Fluctuations. New

J. Phys., 20:123013, 2018. URL https://doi.org/10.1088/1367-2630/aaf315.

342. K. Korzekwa and M. Lostaglio. Quantum Advantage in Simulating Stochastic Processes. Phys. Rev. X, 11:

021019, 2021. URL https://doi.org/10.1103/PhysRevX.11.021019.

343. R. Kosloff and T. Feldmann. Optimal Performance of Reciprocating Demagnetization Quantum Refrigerators.

Phys. Rev. E, 82:011134, 2010. URL https://doi.org/10.1103/PhysRevE.82.011134.

344. A. Kossakowski. On Necessary and Sufficient Conditions for a Generator of a Quantum Dynamical Semigroup.

Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys., 20:1021–1025, 1972.

345. A. Koswara, V. Bhutoria, and R. Chakrabarti. Quantum Robust Control Theory for Hamiltonian and Control

Field Uncertainty∗. New J. Phys., 23:063046, 2021. . URL https://doi.org/10.1088/1367-2630/ac0479.

346. A. Koswara, V. Bhutoria, and R. Chakrabarti. Robust Control of Quantum Dynamics under Input and

Parameter Uncertainty. Phys. Rev. A, 104:053118, 2021. . URL

https://doi.org/10.1103/PhysRevA.104.053118.

347. T. Koyuk and U. Seifert. Quality of the Thermodynamic Uncertainty Relation for Fast and Slow Driving. J.

Phys. A: Math. Theor., 54:414005, 2021. URL https://doi.org/10.1088/1751-8121/ac231f.

348. P. Krantz, M. Kjærgaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver. A Quantum Engineer’s

Guide to Superconducting Qubits. Appl. Phys. Reviews, 6:021318, 2019. URL

https://doi.org/10.1063/1.5089550.

349. G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin.

Nanometer-Scale Thermometry in a Living Cell. Nature, 500:54–58, 2013. URL

https://doi.org/10.1038/nature12373.
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456. G. Pelegŕı, A. J. Daley, and J. D. Pritchard. High-Fidelity Multiqubit Rydberg Gates via Two-Photon

Adiabatic Rapid Passage. arXiv:2112.13025, 2021. URL https://doi.org/10.48550/arXiv.2112.13025.

457. E. Perrier, C. Ferrie, and D. Tao. Quantum Geometric Machine Learning for Quantum Circuits and Control.

New J. Phys., 22:103056, 2020. URL http://doi.org/10.1088/1367-2630/abbf6b.

458. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L.

O’Brien. A Variational Eigenvalue Solver on a Photonic Quantum Processor. Nature Communs., 5:4213,

2014. URL https://doi.org/10.1038/ncomms5213.

459. N. A. Petersson and F. Garcia. Optimal Control of Closed Quantum Systems via B-Splines with Carrier

Waves. arXiv:2106.14310, 2021. URL https://doi.org/10.48550/arXiv.2106.14310.
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641. R. Zeier and T. Schulte-Herbrüggen. Symmetry Principles in Quantum Systems Theory. J. Math. Phys., 52:

113510, 2011. URL https://doi.org/10.1063/1.3657939. also see addendum

https://doi.org/10.1063/1.4904017.

642. J. Zeng and E. Barnes. Fastest Pulses that Implement Dynamically Corrected Single-Qubit Phase Gates.

Phys. Rev. A, 98:012301, 2018. URL https://doi.org/10.1103/PhysRevA.98.012301.

643. J. Zeng, X.-H. Deng, A. Russo, and E. Barnes. General Solution to Inhomogeneous Dephasing and Smooth

Pulse Dynamical Decoupling. New J. Phys., 20:033011, 2018. URL

https://doi.org/10.1088/1367-2630/aaafe9.

644. J. Zeng, C. H. Yang, A. S. Dzurak, and E. Barnes. Geometric Formalism for Constructing Arbitrary

Single-Qubit Dynamically Corrected Gates. Phys. Rev. A, 99:052321, 2019. URL

https://doi.org/10.1103/PhysRevA.99.052321.

645. G. Zhang, F. Schilling, S. J. Glaser, and C. Hilty. Reaction Monitoring Using Hyperpolarized NMR with

Scaling of Heteronuclear Couplings by Optimal Tracking. J. Magn. Reson., 272:123–128, 2016. URL

https://doi.org/10.1016/j.jmr.2016.09.006.

646. H. Zhang, Z. Kuang, S. Puri, and O. D. Miller. Conservation-Law-Based Global Bounds to Quantum Optimal

Control. Phys. Rev. Lett., 127:110506, 2021. URL

https://link.aps.org/doi/10.1103/PhysRevLett.127.110506.

647. J. Zhang, Y. xi Liu, R.-B. Wu, K. Jacobs, and F. Nori. Quantum Feedback: Theory, Experiments, and

Applications. Phys. Reports, 679:1–60, 2017. URL https://doi.org/10.1016/j.physrep.2017.02.003.
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