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ABSTRACT 

Understanding energy consumption in the residential sector 

remains challenging. In current regression models, prediction 

performance on a test dataset is frequently used to justify the ability 

of the associated model to correctly describe the energy 

consumption. However, prediction and explanation are often 

conflicting goals in modelling and most models convey heuristics 

rather than a precise representation of the processes involved. From 

this point of view, comparing and analyzing several modelling 

strategies is a way to improve our comprehension. In this work, we 

studied both the prediction performance and the heuristics provided 

by nine models of housing energy consumption built from survey 

data of 2000 French households. Concerning prediction, the 

eXtreme Gradient Boosting algorithm based on features extracted 

from surveys provided the best predictor with an average MAPE of 

38%. Residual analysis showed that the models generally make the 

same type of errors, with absolute errors being much larger for 

houses than for apartments. This suggests that the improvement in 

predictive performance relies more on the introduction of 

supplementary predictive variables than on increasing the model's 

complexity. In terms of interpretation, all models identify building 

type, floor area, household composition and heating energy as key 

determinants of final energy consumption. We illustrate, through t-

SNE mapping, that these variables are in fact very much 

interrelated. The study therefore underlines the high interest of 

studying the interaction between the variables. Explanatory and 

predictive models could therefore be based on an adapted 

segmentation of dwellings and households. This type of modelling 

could also join the work in the sociology of energy which largely 

describes the interweaving of these variables within lifestyles. 
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1 Introduction 

1.1 Problem & context 

The building sector accounts for nearly 40% of global energy 

consumption and 20% of greenhouse gas emissions and, as 

stipulated by the Paris Agreement, this sector must implement 

drastic reductions in consumption [1]. Numerical modelling is a 

major tool in this sector as it allows one to better understand and 

quantify the effect of different parameters such as insulation, 

inhabitants' behaviours, climate, and equipment [2]–[4]. However, 

models have difficulty in estimating energy consumption 

accurately - a phenomenon known as the energy performance gap 

[5], which reflects a limited understanding of the processes at work, 

limited data, and imperfect models. As a result, there is a large body 

of literature in various disciplines including data-science, 

engineering, anthropology and sociology at all spatial and temporal 

scales [5], [6].  

 

Many physical and data-based numerical models have been 

developed. The purpose can be to predict residential consumption 

at a given spatial and temporal scale [4], [6], or to propose an 

explanation by inferring an understanding of the phenomenon [7]–

[9]. Several reviews have been carried out in recent years  [4], [6], 

[10], [11] to assess the state-of-the-art in the construction of 

predictive models. These studies divide the models into 3 

categories: engineering methods such as dynamic thermal 

simulation, statistical methods such as multiple linear regression 

(MLR), conditional demand analysis, and artificial intelligence 

methods such as artificial neural networks [12], support vector 

machine [13], random forest [14], or extreme gradient boosting 

(XGB) [15]. The review papers point out that a minority of the work 

reviewed has focused on residential buildings notably because of 

data availability. A large part of the literature focuses on short term 

prediction based on sensor data [16]. Other papers mobilize 

building, household and behaviour data to model long term energy 

forecasts [2], [17]. These can either focus on consumption related 

to end uses, such as heating, cooling, ventilation, or lighting, or on 

a type of energy (electricity, wood, gas, fuel oil, etc.). The 

investigations discuss architecture selection and dimension 

reduction through feature extraction strategies to improve 

mailto:matthias.heinrich@enpc.fr
mailto:marie.ruellan@cyu.fr
mailto:jean-pierre.levy@enpc.fr
mailto:allou.same@univ-eiffel.fr
mailto:latifa.oukhellou@univ-eiffel.fr
mailto:latifa.oukhellou@univ-eiffel.fr


FATESYS’22, November, 2022, Boston, USA M. Heinrich et al. 

 

 

 

prediction: they apply linear techniques such as factor analysis, or 

non-linear techniques such as auto-encoding using neural networks. 

As stated above, these predictive models suffer from considerable 

imprecision, which is greater for predictive models with a short 

time horizon (hour, day), or reduced spatial resolution compared to 

annual models or models at a higher spatial scale. In general, 

machine learning modelling provides better predictors than 

engineering modelling.  

 

These models are often used also to provide explanations about 

energy consumption in dwellings. Regression models are widely 

used to identify and quantify the causal effects of explanatory 

variables such as household, housing, and behavioural 

characteristics on energy consumption [2], [18]–[21] because they 

generally provide a good predictive performance, thus making 

validation possible, and because they carry with them a strong 

theoretical framework based on the additivity of individual effects 

"all other things being equal" [22]. An example is the work of 

Belaïd [18] who used a structural equation modelling approach to 

estimate the energy consumption of 2356 French households. To 

do so, he used data from the 2013 PHEBUS survey conducted by 

the French Ministry of Ecology. The data describe households and 

dwellings, behaviours, and final energy consumption. After 

validating the model, the article quantified the direct and indirect 

effects of household and housing characteristics on their energy 

consumption to support proposals for public action, in particular 

the thermal renovation of housing, which is shown to have a greater 

impact than household characteristics. Machine learning models 

such as decision trees and ensemble models can also provide useful 

information [23]. Decision trees provide a set of rules based on 

variables and thresholds. The variables used in ensemble models 

such as random forest and XGB can be compared in terms of their 

contribution to the accuracy of the algorithm.  

 

However, it is important to mention that there is no consensus in 

the scientific community about the interest of validating or not the 

predictive performances of the models before drawing any 

conclusions from them. Shmueli [22] reminds us that predicting 

and explaining are two different goals that should not be confused. 

He shows that it is sometimes possible to build a "false" model 

capable of providing better predictions than the "true" model. 

Furthermore, in a seminal article published in Science in 1994, 

Oreskes [24] recalled that: “Models can only be evaluated in 

relative terms, and their predictive value is always open to question. 

The primary value of models is heuristic.” In this perspective, the 

predictive performance of the models occupies a more nuanced 

place: rather than simply justifying an interpretation or validating a 

set of processes, it informs on the model’s capacity to reproduce 

the correlations through a set of heuristics. At this point, it is 

possible to formulate two different questions for these models: 

what are the most suitable modelling structures and features to 

build a good predictor? What insights are provided by models of 

diverse complexity?  

 

We propose in this work first to compare both the predictive and 

explanation performance from models classically used in the 

literature. This includes the comparison of 3 models of different 

complexity (decision tree, multiple linear regression, XGB model) 

and 3 feature extraction strategies (raw variables, principal 

components, and variables from autoencoder training). Then, by 

analysing these results, confronting them with a t-SNE observation 

of the data and by mobilising the literature in the sociology of 

energy, we try to justify the interest of a segment-based approach 

to build more accurate and realistic models. 

1.2 Methodology, data, and models  

The methodology followed is summarised in the figure below. 

 

Figure 1: Methodology of this work 

The study uses data from the 2013 PHEBUS survey conducted by 

the statistical department of the current French Ministry of 

Ecological Transition [25]. The sample consists of 8000 dwellings 

representative of French regions, climatic zones, housing types and 

years of construction. The data collected describe the occupied 

dwellings, including heating and renovations that have been carried 

out, the socio-demographic characteristics of households, energy 

consumption and energy behaviour. We used 47 variables from this 

survey, 11 of which describe households (income, sparings, 

composition, age of the reference person, number of person and 

consumption units, socio-professional group, …), 1 final energy 

consumption (noted FEC, as Final Energy Consumption), 12 

dwellings (type, surface, number of rooms and bedrooms, 

occupancy status, date of construction, urban area, insulation work, 

Unified Degree Days, type of heater and age of heater, …) and 23 

residential behaviour (including average attendance, number of 

equipment’s, declared heating temperature, number of showers per 

day, heating regulation level, heating deprivation,…). The dataset 

comprises 1999 households for which the data are complete. The 

data used are not freely available but can be requested with the 

agreement of the producer and the consent of a statistical 

confidentiality committee. In this modelling work the dependent 

variable is the logarithm of final energy consumption. The 

numerical variables are standardised and centred. In this study we 

Data-set 
constructio

n (2.1)

PHEBUS dataset : 1999 French households
11 Household variables
12 Housing variables
23 Domestic behaviour variables
1 variable giving the Final energy consumption  (FEC) in kWh

Feature 
extraction 

(2.2)

Simple features  "SF"
Principal components Analysis  "PC"
Auto-encoding "AE"

Model 
training 

(2.3)

Multilinear regression "MLR"
Decision tree "DT"
Extreme gradient boosting "XGB"

Model 
analysis 

(2.4)

Prediction performance : R², RMSE, MAE, MAPE
Model interpretation : Variable selection & Residual analysis
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built a total of 9 final energy consumption models. For that purpose, 

we combined 3 feature extraction strategies (Simple Features “SF”, 

Principal Components “PC”, and Autoencoding “AE”) and 3 model 

frameworks (decision tree “DT” [23], multiple linear regression 

model “MLR” [23], eXtreme Gradient Boosting “XGB” [26]). A 

few details on the features extraction strategies are given here. The 

SF are coded as dummy variables for the multiple linear regression 

(MLR) and by one hot coding (OHE) for the XGB training. PC 

feature extraction uses Factor Analysis on Mixed Data (FAMD) 

[27]. By performing three FAMDs on the groups of household, 

housing, and energy behaviour variables, we generated a total of 52 

synthetic variables to capture 80% of the variance each time. The 

calculations were performed on R using the FactoMineR library. 

The AE variables were generated by neural networks called auto-

encoders. As the data are sparse, we used a cosine loss function 

[28]. The size of the hidden layer was chosen to be 15 to achieve a 

threshold of -0.85 of the loss function. The encoding calculations 

were performed in Python using the Keras library [29]. 

Performance metric R² (%) RMSE (MWh) MAE (MWh) MAPE (%) 

Feature extraction SF PC AE SF PC AE SF PC AE SF PC AE 

Decision tree 51.7 50.2 35.7 7.8 7.9 9.1 5.0 5.1 6.0 43.4 44.1 53.4 

Multilinear regression 60.7 58.5 42.8 7.0 7.2 8.5 4.5 4.7 5.6 38.4 39.8 47.3 

Extreme Gradient Boosting 63.1 57.8 46.4 6.8 7.3 8.3 4.4 4.7 5.4 37.7 39.6 46.0 

Table 1: Average prediction performance for all models (DT, MLR, XGB) and feature extraction strategies (SF, PC, AE). The 

average indicators are calculated from 50 runs with random selection of test datasets. Top scores per column are shown in bold. 

(Data: Secondary processing from PHEBUS data).   

2 Model performance 

2.1 Prediction performance  

Each model was trained on 80% of the database, i.e. 1600 

households. They were then evaluated on their predictive 

performance, i.e. their ability to predict the annual final energy 

consumption of the 20% of households not included in the training 

set. To reduce the dependence of this evaluation on data selection, 

the models were trained and evaluated 50 times on randomly drawn 

samples. 4 indicators were calculated from the predictions of the 

models (R², Root Mean Square Error “RMSE” in kWh, Mean 

Absolute Error “MAE” in kWh, Mean Absolute Percentage Error 

“MAPE” in percent). The average of these 4 indicators over the 50 

trainings are given in Table 1.  We used the caret library 

implemented in R.  As a result, the choice of the metric has little or 

no impact on the ranking of the models. We see that the XGB-SF 

model offers the best predictive performance, slightly ahead of the 

MLR-SF multiple linear model. Secondly, we observe that feature 

extraction and the resulting loss of information degrades the 

predictive performance of the models. 

2.2 Model interpretation 

The analysis of the variables selected by the models generally 

makes it possible to draw insights about the phenomenon which is 

modelled. After computing several models, we noticed that with 

two notable exceptions (the variables describing the amount of 

sparings and the declared heating temperature) all the variables 

selected by DT were also selected by the XGB model. And all the 

variables selected by XGB were also selected by the MLR model. 

Whatever the feature extraction strategy and the model, the 

variables describing the dwelling, the heating energy, and the size 

of the dwelling were selected first. This confirms the important role 

of building characteristics on the FEC. However, the variables 

characterising the household and domestic behaviours occupy 

higher or lower ranks, depending on the training sample, but also 

on the feature extraction strategy. We compared the residuals of the 

MLR-SF, DT-SF and XGB-SF models to observe whether the 

modelling structure allows for a change in the nature of the errors 

or whether, on the contrary, all the errors are the same, which may 

then highlight a problem with the data or the modelling 

assumptions made. We observed that the residuals of the three 

models were similar and that the models tend to underestimate 

(resp. overestimate) low (resp. high) consumption levels.  

3 Conclusion and key messages : How to design 

more efficient energy models? 

Modellers would like to be able to provide a generic answer to 

explain and predict housing energy consumption through the 

abstractions and variables of the physical and social phenomena 

that models carry out. Obviously, the performance of current 

predictive models is modest as underlined by the indicators of the 

best predictor XGB-SF: R² ~ 63.1%, RMSE ~ 6.8 MWh, MAE ~ 

4.4 MWh, MAPE ~ 37.7% and the modelling interpretation says 

not much more than that the characteristics of the dwelling are 

determinant.  Depending on the target, we would consider two key 

messages for future energy modelling exercises. 

For prediction: search for more (and better) data. We found in 

this work that making the features and structure of the regression 

model more complex brought relatively little prediction 

performance. Furthermore, the errors in the models were of the 

same type, which suggests that the "raw" variables are good but that 

some are missing or that the data were not good enough.  

For explanation: Consider the significant correlations between 

the variables. The calculation of independence tests between the 

characteristic variables of the household (composition of the 

household, age of the reference person, occupation status), the 

dwelling (surface, type, type of heating) and the domestic 

behaviours give very significant p-values (<5%).  To observe these 

correlations, we project the households and dwellings in a two-

dimensional space. The space is constructed by t-SNE (see Maaten 
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and Hinton [30]) on the variables after one-hot encoding with a 

perplexity parameter of 50, which provided stable and relevant 

results. Note that the criterion for constructing the space is the 

relative position of individuals, which means that the axes cannot 

be interpreted with the initial variables. In figure 2, we have plotted 

the households map by intersecting it with variables such as surface 

area, type of dwelling, household composition, logarithm of final 

energy consumption, number of persons. The variable FEC was not 

used to create this synthetic space. Several remarks can be made. 

Firstly, the map allows several distinct and homogeneous zones to 

be distinguished for each variable. For example, the map describing 

the housing type highlights the fact that flats are mainly located on 

the left while single-family houses are mainly on the right. 

Additionally, regarding household composition, we can see that 

families with children are present in two distinct blocks on the right 

and left of the graph (in fact, it is the most affluent households on 

the right and the most deprived households on the left). Single 

people are positioned in the center while couples without children 

are located on the lower part. When plotting the maps by 

highlighting the level of energy consumption, we can see a strong 

separation between the less energy consuming flats and the more 

energy consuming detached houses. The visualization is interesting 

because it allows for going beyond a simple correlation and 

independence analysis: in particular, it suggests exploring a 

database segmentation exercise. This approach would make it 

possible to carry out separate models for flats and single-family 

houses, since the dynamics in terms of consumption seem to be 

very different. Also, modelling by segment would make it possible 

to account for the recurrent associations between the modalities of 

the different variables observed here in the data (e.g. couples 

without children living in a small - most likely old - gas-heated 

detached house). These associations are consistent with results 

from the sociology of energy, which describes the association 

between types of household, types of housing, types of energy [31] 

and behaviour [32]. We believe that it is not certain that segment-

based modelling will significantly improve the predictive 

performance of housing energy consumption models. However, 

segment-based models make it possible, if not to quantify precisely, 

to evaluate in relative terms the effect of any changes in this 

segment (insulation, regulation behaviour, energy efficiency of 

equipment, etc.). 
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Figure 2: t-SNE visualization of household, housing, and behaviour variables. The final energy consumption variable (FEC) is not 

used in the calculation. (Data: Secondary processing from PHEBUS data). Abbreviations: AB: Apartment Block; TH: Terraced 

House; MFH: Multi-Family house; SFH: Single Family House
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