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A high-order shock-capturing finite-difference scheme for scale-resolving numerical simulations of hypersonic high-enthalpy flows, involving thermal non-equilibrium effects, is presented. The suitability of the numerical strategy for such challenging configurations is assessed in terms of accuracy and robustness, with special focus on shock-capturing capabilities. The approach is demonstrated for a variety of thermochemical non-equilibrium configurations.

Introduction

High-enthalpy flows are encountered in many fields related to the aerospace industry. These flows are characterized by the presence of thermodynamic processes having a major influence on the performance of vehicles flying at hypersonic speeds, such as gas dissociation, vibrational relaxation, surface ablation or ionization [START_REF] Candler | Rate effects in hypersonic flows[END_REF]. The rate at which these different processes evolve are highly dependent on the local thermodynamic conditions and can be of the same order of the natural timescales of the flow, resulting in a nonequilibrium state. The overall picture is even further complicated when turbulence comes into play, because of the wide range of spatial and temporal scales involved. Carrying out numerical simulations of high-enthalpy turbulent flows is an extremely challenging task requiring the use of suitable numerical methods, which must be properly designed in order to meet the concurrent needs of ensuring a sufficient numerical robustness and an accurate representation of the flow scales to be resolved. Recently, Sciacovelli et al. [START_REF] Sciacovelli | Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations[END_REF] presented a high-order centred finite-difference scheme for the computation of compressible flows with shock waves, using tenth-order accurate approximations for the non linear fluxes supplemented with a higher-order extension of Jameson's adaptive artificial dissipation [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[END_REF]. The overall order of accuracy of the artificial viscosity term ensures a dissipative-dominant error, reducing the appearance and amplification of spurious oscillations. The numerical scheme has been successfully applied to the simulation of turbulent highspeed flows of dense gases [START_REF] Sciacovelli | Numerical investigation of highspeed turbulent boundary layers of dense gases[END_REF] and to flows with finite-rate chemistry effects [START_REF] Sciacovelli | Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations[END_REF]. In this study, we present an extension of such technique to flows with vibrational relaxation processes. This strategy, recently employed by Passiatore et al. [START_REF] Passiatore | Thermochemical nonequilibrium effects in turbulent hypersonic boundary layers[END_REF] to perform a Direct Numerical Simulation (DNS) of a boundary layer undergoing laminar-to-turbulent transition in thermochemical nonequilibrium conditions, is here tested in high-gradient flow configurations to verify its capabilities in handling strong flow discontinuities. The paper is organised as follows. The governing equations and the thermochemical models are described in Section 2. The numerical method and its extension for thermal nonequilibrium flows are shown in Section 3, whereas Section 4 presents a selected list of test cases of increasing complexity. Conclusions are then drawn in Section 5.

Governing Equations

In this work, the fluid under investigation is air at high-temperature, thermally and chemically out-ofequilibrium, modeled as a neutral five-species mixture of N 2 , O 2 , NO, O. Therefore, the governing equations are the compressible Navier-Stokes equations for multicomponent chemically-reacting and thermally-relaxing gases [START_REF] Gnoffo | Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium[END_REF], which read:

∂ρ ∂t + ∂ρu j ∂x j = 0 ( 1 
)
∂ρu i ∂t + ∂ (ρu i u j + pδ ij ) ∂x j = ∂τ ij ∂x j ( 2 
)
∂ρE ∂t + ∂ [(ρE + p) u j ] ∂x j = ∂(u i τ ij ) ∂x j - ∂(q TR j + q V j ) ∂x j - ∂ ∂x j NS n=1 ρ n u D nj h n ( 3 
)
∂ρ n ∂t + ∂ (ρ n u j ) ∂x j = - ∂ρ n u D nj ∂x j + ωn (n = 1, .., NS -1) (4 
)

∂ρe V ∂t + ∂ρe V u j ∂x j = ∂ ∂x j -q V j - NM m=1 ρ m u D mj e Vm + NM m=1 (Q TVm + ωm e Vm ) . (5) 
In the preceding formulation, ρ is the mixture density, t the time coordinate, x j the space coordinate in the j-th direction of a Cartesian coordinate system, with u j the velocity vector component in the same directions, p is the pressure and τ ij the viscous stress tensor, modeled as

τ ij = µ ∂u i ∂x j + ∂u j ∂x i - 2 3 µ ∂u k ∂x k δ ij , (6) 
with µ the mixture dynamic viscosity and δ ij the Kronecker symbol. The conservation of total energy E = e + 1 2 u i u i is expressed by means of equation [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[END_REF], where e is the mixture internal energy, q TR j = -λ TR

∂T ∂xj

and q V j = -λ V ∂T V ∂xj are the roto-translational and vibrational contribution to the heat flux, λ TR and λ V being the roto-translational and vibrational thermal conductivities, respectively. In such formulation, we are considering two temperatures, T being the roto-translational one and T V the vibrational temperature. u D nj denotes the diffusion velocity and h n the specific enthalpy for the n-th species. In the species conservation equations (4), ρ n = ρY n represents the n-th species partial density (Y n being the mass fraction) and ωn the rate of production of the n-th species. To ensure total mass conservation, the mixture density and NS-1 species conservation equations are solved, while the density of the NS-th species is computed as

ρ NS = ρ - NS-1 n=1 ρ n .
In the following, we set such species as molecular nitrogen, since it is the most abundant one throughout the computational domain. As for equation ( 5), e V = NM m=1 Y m e Vm represents the mixture vibrational energy, with e Vm the vibrational energy of the m-th molecule and NM their total number. Only one additional equation for the conservation of mixture vibrational energy is employed, relying on the assumption that the vibrational energetic modes of the three molecular species in the mixture are equilibrated with each other at the same T V . In the same equation, Q TV = NM m=1 Q TVm represents the energy exchange between vibrational and translational modes due to molecular collisions and NM m=1 ωm e Vm the vibrational energy lost or gained due to molecular depletion or production. Each species is assumed to behave as a thermally-perfect gas; Dalton's pressure mixing law leads then to the thermal equation of state:

p = ρT NS n=1 RY n M n = T NS n=1 ρ n R n , (7) 
R n and M n being the gas constant and molecular weight of the n-th species, respectively, and R = 8.314 J/mol K the universal gas constant. The thermodynamic properties of high-temperature air species are computed considering the contributions of translational, rotational and vibrational (TRV) modes:

e = NS n=1 Y n h n - p ρ = h - p ρ , with h n = h 0 f,n + h TR n + e V n . (8) 
Here, h 0 f,n is the n-th species enthalpy of formation at the reference temperature (T ref = 298.15 K), h TR n is the roto-translational specific enthalpy and e V n the vibrational energy of species n. These terms read:

h TR n = T T ref (c T p,n + c R p,n ) dT ′ with c T p,n = 5 2 R n , c R p,n =
R n for diatomic species 0 for monoatomic species [START_REF] Millikan | Systematics of vibrational relaxation[END_REF] and

e V n = θnRn exp (θn/T V )-1
for diatomic species 0 for monoatomic species [START_REF] Park | Review of chemical-kinetic problems of future NASA missions. I-Earth entries[END_REF] with θ n the characteristic vibrational temperature of each molecule (3393 K, 2273 K and 2739 K for N 2 , O 2 and NO, respectively). After the numerical integration of the conservation equations, the roto-translational temperature T is computed from the specific internal energy (devoid of the vibrational contribution) directly, whereas an iterative Newton-Raphson method is used to compute T V from e V = NM m=1 Y m e Vm . To close the system, we use Park's two-temperatures (2T) model [START_REF] Park | Two-temperature interpretation of dissociation rate data for N2 and O2[END_REF] to take into account the contextual presence of thermal and chemical non-equilibrium for the computation of ωn and Q TV . Specifically, the five species interact with each other through a reaction mechanism consisting of five reversible chemical steps [START_REF] Park | Nonequilibrium Hypersonic Aerothermodynamics[END_REF]:

R1 : N 2 + M ⇐⇒ 2N + M R2 : O 2 + M ⇐⇒ 2O + M R3 : NO + M ⇐⇒ N + O + M (11) 
R4 :

N 2 + O ⇐⇒ NO + N R5 : NO + O ⇐⇒ N + O 2
M being the third body (any of the five species considered). Dissociation and recombination processes are described by reactions R1, R2 and R3, whereas the shuffle reactions R4 and R5 represent rearrangement processes. The mass rate of production of the n-th species is governed by the law of mass action:

ωn = M n NR r=1 (ν ′′ nr -ν ′ nr ) × k f,r NS n=1 ρY n M n ν ′ nr -k b,r NS n=1 ρY n M n ν ′′ nr , ( 12 
)
where ν ′ nr and ν ′′ nr are the stoichiometric coefficients for reactants and products in the r-th reaction for the n-th species, respectively, and NR is the total number of reactions. Furthermore, k f,r and k b,r denote the forward and backward rates of reaction r, modeled by means of Arrhenius' law. The coupling between chemical and thermal nonequilibrium is taken into account by means of a modification of the temperature values used for computing the reaction rates. Indeed, a geometric-averaged temperature is considered for the dissociation reactions R1, R2 and R3 in [START_REF] Park | Assessment of two-temperature kinetic model for ionizing air[END_REF], computed as T avg = T q T 1-q V with q = 0.7 [START_REF] Park | Two-temperature interpretation of dissociation rate data for N2 and O2[END_REF]. Lastly, the vibrational-translational energy exchange is computed as:

Q TV = NM m=1 Q TV,m = NM m=1 ρ m e Vm (T ) -e Vm (T V ) τ m , ( 13 
)
where τ m is the corresponding relaxation time evaluated by means of the expression [START_REF] Millikan | Systematics of vibrational relaxation[END_REF]:

τ m = NS n=1 ρ n M n NS n=1 τ mn ρ n /M n . ( 14 
)
Here, τ mn is the relaxation time of the m-th molecule with respect to the n-th species, computed as the sum of two contributions

τ mn = τ M W mn + τ c mn . ( 15 
)
The first term writes:

τ MW mn = p p atm exp a mn (T -1 3 -b mn ) -18.42 , ( 16 
)
where p atm = 101325 Pa and a mn and b mn are coefficients reported in [START_REF] Park | Review of chemical-kinetic problems of future NASA missions. I-Earth entries[END_REF]. Since this expression tends to underestimate the experimental data at temperatures above 5000 K, a high-temperature correction was proposed by Park [START_REF] Park | Assessment of two-temperature kinetic model for ionizing air[END_REF]:

τ c mn = ϕ mn M m σ , ( 17 
)
where ϕ mn = MmMn Mm+Mn and σ = 8R T π 7.5×10 -12 NA T

, NA being Avogadro's number. As for the computation of the transport properties, pure species' viscosity and thermal conductivities are computed using curve-fits by Blottner [START_REF] Blottner | Chemically reacting viscous flow program for multi-component gas mixtures[END_REF] and Eucken's relations [START_REF] Hirschfelder | Molecular theory of gases and liquids[END_REF], respectively. The corresponding mixture properties are evaluated by means of Wilke's mixing rules [START_REF] Wilke | A viscosity equation for gas mixtures[END_REF]. Mass diffusion is modeled by means of Fick's law:

ρ n u D nj = -ρD n ∂Y n ∂x j + Y n ∂lnM ∂x j + ρ n NS n=1 D n ∂Y n ∂x j + Y n ∂lnM ∂x j , ( 18 
)
where the first term on the r.h.s. represents the effective diffusion velocity and the second one is a mass corrector term that should be taken into account in order to satisfy the continuity equation when dealing with non-constant species diffusion coefficients [START_REF] Poinsot | Theoretical and numerical combustion[END_REF]. Specifically, D n is an equivalent diffusion coefficient of species n into the mixture, computed following Hirschfelder's approximation [START_REF] Hirschfelder | Molecular theory of gases and liquids[END_REF], starting from the binary diffusion coefficients which are curve-fitted in [START_REF] Gupta | A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K[END_REF]. Further details about the selected models and the underling hypotheses can be found in Passiatore et al. [START_REF] Passiatore | Thermochemical nonequilibrium effects in turbulent hypersonic boundary layers[END_REF].

Numerical method

The governing equations presented in the previous section are integrated numerically by using the numerical scheme presented in Sciacovelli et al. [START_REF] Sciacovelli | Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations[END_REF]. In the following, we briefly recall the numerical strategy and we detail its extension to thermally out-of-equilibrium flows. Let us consider a 1D system of hyperbolic conservation laws:

∂w ∂t + ∂f (w) ∂x = 0 (19) 
where w denotes the vector of conservative variables and f (w) the flux function. A conservative semi-discrete approximation of the spatial derivatives writes

∂w ∂t j + (δF) j δx = 0 (20) 
where F denotes the numerical flux and δ is the classical difference operator over one cell

(δ•) j := (•) j+ 1 2 -(•) j-1 2 . ( 21 
)
The flux derivatives are approximated by means of a purely centered tenth-order operator, supplemented with a nonlinear adaptive artificial term. The resulting numerical flux at cell interface j+ 1 2 , F j+ 1 2 takes the following form:

F j+ 1 2 = H j+ 1 2 -D j+ 1 2 . ( 22 
)
with H j+ 1 2 the consistent (central) part and D j+ 1 2 the dissipative part. For a scheme of order 2P + 3 with a stencil of 2(P + 2) + 1 points, the centered term reads:

H j+ 1 2 = I - P p=0 a p δ 2+2p µf j+ 1 2 , ( 23 
)
where µ denotes the cell-average operator, namely:

(µ•) j+ 1 2 := 1 2 [(•) j+1 + (•) j ] . ( 24 
)
The coefficients a p have alternate negative and positive signs as P increases. For the sake of clarity, we give hereafter the expressions of the schemes of order 4 to 10 of the preceding family:

H j+ 1 2 = I - 1 6 δ 2 µf j+ 1 2 (order 4) ( 25 
)
H j+ 1 2 = I - 1 6 δ 2 + 1 30 δ 4 µf j+ 1 2 (order 6) ( 26 
)
H j+ 1 2 = I - 1 6 δ 2 + 1 30 δ 4 - 1 140 δ 6 µf j+ 1 2 (order 8) ( 27 
)
H j+ 1 2 = I - 1 6 δ 2 + 1 30 δ 4 - 1 140 δ 6 + 1 630 δ 8 µf j+ 1 2 (order 10) (28) 
The dissipative term, with the double role of damping grid-to-grid oscillations in smooth regions and controlling the appearence of spurious oscillations in the vicinity of flow discontinuities, is a nonlinear blending of a high-order dissipation and a low order shock capturing term, of the form:

D j+ 1 2 = ρ(A) j+ 1 2 ε 2 δw + (-1) (P +1) ε 2(P +2) δ (2P +3) w j+ 1 2 (29) 
with

ε 2j+ 1 2 = k 2 max(φ j , φ j+1 ), ε 2(P +2) j+ 1 2 = max(0, k 2(P +2) -k ε ε 2j+ 1 2 ), (30) 
where ρ(A) is the spectral radius of the flux Jacobian matrix A, whereas k 2 and k 2(P +2) are adjustable dissipation coefficients and k ε is a constant equal to a 0 /a P , determining the threshold below which the higher-order dissipation is switched off. For schemes of order 3 to 9, this gives the following expressions:

D j+ 1 2 = ρ(A) j+ 1 2 ε 2 δw -ε 4 δ 3 w j+ 1 2 ε 4j+ 1 2 = max(0, k 4 -ε 2j+ 1 2 ) (order 3) (31) D j+ 1 2 = ρ(A) j+ 1 2 ε 2 δw + ε 6 δ 5 w j+ 1 2 ε 6j+ 1 2 = max(0, k 6 - 1 5 ε 2j+ 1 2 ) (order 5) ( 32 
)
D j+ 1 2 = ρ(A) j+ 1 2 ε 2 δw -ε 8 δ 7 w j+ 1 2 ε 8j+ 1 2 = max(0, k 8 - 3 70 ε 2j+ 1 2 ) (order 7) ( 33 
)
D j+ 1 2 = ρ(A) j+ 1 2 ε 2 δw + ε 10 δ 9 w j+ 1 2 ε 10j+ 1 2 = max(0, k 10 - 1 105 ε 2j+ 1 2 ) (order 9) (34)
The activation of the lower-order dissipation component is governed by the shock sensor φ j , whose general formulation writes

φ j = (∇ • u) 2 (∇ • u) 2 + |∇ × u| 2 + ϵ × p j+1 -2p j + p j-1 p j+1 + 2p j + p j-1 (35) 
The two terms in equation ( 35) denote the classical Ducros' [START_REF] Ducros | Large-eddy simulation of the shock/turbulence interaction[END_REF] and Jameson's pressure-based [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[END_REF] shock sensors, respectively, ϵ being a small positive value to avoid division by zero. Note that, differently from the strategy of Sciacovelli et al. [START_REF] Sciacovelli | Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations[END_REF], the Ducros' sensor modification of Bhagatwala & Lele [START_REF] Bhagatwala | A modified artificial viscosity approach for compressible turbulence simulations[END_REF] is not considered here, since its addition would require larger k 2 values in order to ensure a proper amount of numerical dissi-pation close to flow discontinuities for the configurations under investigation. With the above definitions, the resulting numerical approximation of the inviscid terms is (2P + 1) th -order accurate in smooth flow region and becomes 1 st -order accurate close to flow discontinuities.

A modification to the shock sensor is introduced in order to deal with thermochemical non-equilibrium. For such flows the pressure-based shock sensor, is not suitable to detect regions with steep vibrational energy gradients since p and T V are not directly linked through the equation of state. A specific control is then introduced for the vibrational energy equation [START_REF] Passiatore | Thermochemical nonequilibrium effects in turbulent hypersonic boundary layers[END_REF], where the pressure-based sensor is replaced by an analogous term based on the vibrational temperature; additionally, the Ducros sensor is removed to ensure robustness:

φ jV = T V,j+1 -2T V,j + T V,j-1 T V,j+1 + 2T V,j + T V,j-1 . ( 36 
)
For Navier-Stokes simulations, the discretization is completed by a standard fourth-order approximation of the viscous terms. Lastly, time advancement is carried out by means of an explicit third-order TVD Runge-Kutta scheme [START_REF] Gottlieb | Total variation diminishing runge-kutta schemes[END_REF].

Results

In this section we validate the thermochemical modeling as well as the numerical strategy by means of selected test cases, ranging from 0D to 2D configurations.

Zero-dimensional heath baths

The implementation of the 2T model of Park [START_REF] Park | Assessment of two-temperature kinetic model for ionizing air[END_REF] is validated by comparing the results of zero-dimensional (0D) heath baths with reference data. In such a test case, non-equilibrium thermodynamic conditions are initially imposed for the gas mixture; the system then relaxes towards an equilibrium state through dissociation and vibrational relaxation effects. We begin by considering translational-vibrational relaxation with frozen chemistry, in order to assess the behavior of the vibrational source term Q TV uniquely. Figure 1 shows the timewise temperature distributions in a case of vibrational heating (left panel) and vibrational cooling (right panel) for N 2 . The initial pressure is equal to 1 atm for both cases. In the vibrational heating, the initial temperatures are T 0 = 10000 K and T 0 V = 1000 K and the system reaches an equilibrium temperature of roughly 7625 K; in the cooling configuration, instead, we set T 0 = 3000 K and T 0 V = 10000 K, and the equilibrium temperature reached is ≈ 4972 K. The profiles, in excellent agreement with reference results of Casseau et al. [START_REF] Casseau | A two-temperature open-source cfd model for hypersonic reacting flows, part two: multi-dimensional analysis[END_REF], underline that return to equilibrium is achieved in physical times between 10 -5 and 10 -4 seconds. The second set of test cases corresponds to the one investigated by Williams et al. [START_REF] Williams | Two-temperature extension of the htr solver for hypersonic turbulent flows in thermochemical nonequilibrium[END_REF] and takes into account also dissociation processes. The first heath bath still consists in pure nitrogen with T 0 = 20000 K, T 0 V = 300 K, p 0 = 27.25 atm and Y N2 = 1 as initial conditions. Figure 2(a) shows the relaxation of the two temperatures up to a physical time of 10 -6 s. The results are compared with reference solutions obtained by the softwares SU2-NEMO [START_REF] Walter T Maier | Su2-nemo: an open-source framework for high-mach nonequilibrium multi-species flows[END_REF], LeMANS [START_REF] Scalabrin | Numerical simulation of weakly ionized hypersonic flow over reentry capsules[END_REF] and HTR [START_REF] Di Renzo | HTR solver: An open-source exascale-oriented task-based multi-GPU high-order code for hypersonic aerothermodynamics[END_REF], using different thermochemical formulations and equipped with both preferential and non-preferential dissociation models [START_REF] Sharma | Rate parameters for coupled vibration-dissociation in a generalized ssh approximation[END_REF] (only the non-preferential models are shown in figure 2). Both the translational and vibrational temperature profiles are in agreement with the reference solution and relax towards the equilibrium state in approximately the same time. An air mixture is then selected, the initial conditions being T 0 = 15000 K, T 0 V = 300 K, p 0 = 20.42 atm, Y 0 N2 = 0.767 and Y 0 O2 = 0.233. The results shown in figure 2(b) exhibit similar discrepancies, with a major scatter on T V . It is noteworthy to mention that these results are extremely sensitive to the thermochemical models used, as also observed by Williams et al.. In our formulation, the use of the averaged temperature with q = 0.7 may be the principal reason for the discrepancy in time evolution, whereas the final equilibrium state is perfectly predicted. Moreover, Williams et al. [START_REF] Williams | Two-temperature extension of the htr solver for hypersonic turbulent flows in thermochemical nonequilibrium[END_REF] takes into account the contribution of the electronic energy as well, which is neglected in our work. Nevertheless, when thermochemical models are coupled with the fluid dynamic problem, each model provides a faithful representation, at least for (relatively) low-to-medium temperatures values. 

Shock tubes

We now focus our attention on the assessment of the numerical strategy and, in particular, the capability of the shock-capturing method to deal with flow discontinuities. A classical benchmark for such validations is the inviscid one-dimensional shock tube problem. In Sciacovelli et al. [START_REF] Sciacovelli | Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations[END_REF], the numerical strategy was found to correctly reproduce the exact solutions of two perfect-gas shock tube problems and the results of the multi-species high-enthalpy shock tube of Grossman & Cinnella [START_REF] Grossman | Flux-split algorithms for flows with non-equilibrium chemistry and vibrational relaxation[END_REF]. Even if the latter configuration considers an air mixture under thermochemical non-equilibrium conditions, the flow field was shown not to be affected by thermal nonequilibrium [START_REF] Sciacovelli | Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations[END_REF], with profiles of pressure, density and velocity essentially unaltered. We have therefore selected a different set of thermodynamic conditions, corresponding to those investigated by Williams et al. [START_REF] Williams | Two-temperature extension of the htr solver for hypersonic turbulent flows in thermochemical nonequilibrium[END_REF], in which thermal non-equilibrium plays an important role. The left (L) and right (R) initial conditions are the following:

P L = 2 MPa, u L = 0 m/s, T L = 12000 K T V,L = 12000 K (37) P R = 100 kPa, u R = 0 m/s, T R = 1000 K T V,R = 1000 K (38)
whereas the mixture is initially composed of pure molecular nitrogen. The domain has a length of L=1 and it is discretized with 1000 grid points. The system is integrated up to 156 µs of physical time, with a Courant number equal to 0.1. In such a configuration, the shock-capturing approach presented in section 3 with k 2 =2 and k 2,V =0.5 is able to ensure numerical robustness. The evolution of the dimensional values of density, pressure, temperatures and species molar fractions are displayed in figure 3, where the solution of Williams et al. [START_REF] Williams | Two-temperature extension of the htr solver for hypersonic turbulent flows in thermochemical nonequilibrium[END_REF] is also reported for reference. The high temperatures in the left side of the tube trigger chemical dissociation; the latter, draining energy from the flow, leads to a decrease of the two temperatures, which equilibrate at ≈ 7000 K. A distinct jump of the temperature value is shown at the shock location (x ≈ 0.74), whereas the vibrational temperature remains frozen and smoothly relaxes after the contact discontinuity.

Notwithstanding the presence of small oscillations in the post-shock region, a perfect agreement is observed for all the thermodynamic quantities throughout the computational domain, proving that the numerical strategy is able to handle the computation while correctly capturing shocks and contact discontinuities. For the sake of completeness, we performed another simulation by considering an air mixture with Y N2 = 0.767 and Y O2 = 0.233, while keeping the other initial conditions unaltered. The results are compared with the pure molecular nitrogen case in figure 4. Significant differences are encountered in all the variables. Dissociation of molecular oxygen is significantly higher, draining internal energy and reducing the temperatures on the left side of the tube below 6000 K. Consequently, the pressure is also reduced, whereas the differences in the density profiles are dictated by the different molar fraction composition of the species in the mixture. Thermal nonequilibrium is strongly reduced in the air case, the two temperatures reaching similar values after only 10 µs; as a result, the density profile exhibits a plateau between the contact discontinuity and the shock. Such a distinct behavior is originated by the different molar fraction composition of the two mixtures and the relaxation times of the diatomic molecules. At the final time, indeed, τ N2 is two orders of magnitude higher than τ O2 and five orders with respect to τ NO , confirming that the presence of the other two molecules promotes a faster recover of thermal equilibrium conditions (as already observed in the work of Passiatore et al. [START_REF] Passiatore | Thermochemical nonequilibrium effects in turbulent hypersonic boundary layers[END_REF]). The last shock tube configuration considered is the two-dimensional viscous case of Daru & Tenaud [START_REF] Daru | Numerical simulation of the viscous shock tube problem by using a high resolution monotonicity-preserving scheme[END_REF]. An extension of this configuration to a chemically reacting mixture has previously been considered in Sciacovelli et al. [START_REF] Sciacovelli | Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations[END_REF]. The case is then adapted to a thermochemical out-of-equilibrium mixture in the current work. This configuration consists in a rectangular box enclosed within non-catalytic adiabatic walls, with L x = 1 m and L y = 0.25 m as domain lengths. At t = 0 s, the flow is divided by a diaphragm at x = 0.5 m with the following thermodynamic conditions:

P L = 12 kPa, u L = 0 m/s, T L = 2000 K T V,L = 2000 K (39) P R = 0.12 kPa, u R = 0 m/s, T R = 2000 K T V,R = 2000 K, (40) 
and Y N2 = 0.767, Y O2 = 0.233 everywhere. It is worth noting that we have conserved the same initialization of the chemically-reacting configuration (i.e., air mixture in thermal equilibrium), with T = T V = T ref , to highlight the influence on the solution when vibrational excitation is taken into account. Uniform computational grids with the same density of those used in Sciacovelli et al. [START_REF] Sciacovelli | Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations[END_REF] are considered (namely, 4000 × 1000, 6000×1500 and 8000×2000 grid points), with a Courant number set equal to 0.04. In the top panel of figure 5, an instantaneous visualization of the temperatures difference is shown, at t = 1 ms. On the left side of the lambda-shock, the flow is vibrationally under-excited and the vibrational temperature is approximately 500 K higher with respect to the translational one. The dynamics of the shock reflected on the right wall generates extremely complex structures that efficiently redistribute the gas and generate an alternation of vibrationally under-and over-excited regions. The bottom panel of figure 5 displays the isocontours of the shock sensor of equation (36) used for the conservative variable ρe V . The sensor, which is active only on the right part of the shock tube, is able to properly capture T V gradients, while preserving the fine-scale flow structures and the unsteady dynamics. Globally, the values of φ jV do not exceed 0.2. Figure 6(a) depicts the density profile at the bottom wall of the thermochemical non-equilibrium simulation (TCNE) ad t = 1 ms for the three computational grids, showing that a good grid convergence is obtained with 6000 × 1500. In figure 6(b) instead, a comparison of the wall roto-translational temperature with respect to the thermally equilibrated 

Shock wave boundary layer interaction

The last configuration analyzed consists in a shock wave that impinges on a thermally and chemically out-of-equilibrium, two-dimensional laminar boundary layer. This setup represents a first step towards the simulation of a shock-induced, laminar-to-turbulent flow transition for a three-dimensional domain, motivating the interest for the study of such a configuration. In the following, the deflection angle will be called θ, whereas the shock angle will be denoted with β. The Rankine-Hugoniot conditions will be imposed at the left boundary (inflow) at a specific distance from the leading edge, where appropriate inlet profiles are prescribed. For calorically imperfect gas mixtures, the Rankine-Hugoniot relations have been generalized to an arbitrary equation of state and are iteratively solved to obtain post-shock conditions. Unless otherwise stated, p w represents the wall pressure normalized with respect to the freestream value, whereas the skin friction coefficient and the Stanton number are expressed by

C f = τ w 1 2 ρ ∞ u 2 ∞ and St = λ∂T /∂y ρ ∞ u ∞ c p (T r -T w ) (41) 
where T r = T ∞ 1 + P r 0.5 γ-1 2 M 2 ∞ . Before assessing the influence of high-enthalpy effects on the shock wave/boundary layer interaction (SWBLI), we aim at testing the numerical strategy by reproducing two different SWBLI configurations available in the literature. First, we consider the configuration analyzed by Sandham et al. [START_REF] Nd Sandham | Transitional shock-wave/boundary-layer interactions in hypersonic flow[END_REF] of a shock-wave interacting with a flat-plate boundary layer at Mach 6. The freestream conditions are T ∞ = 65 K, p ∞ = 335.24 Pa, M ∞ = 6; the wall temperature is fixed equal to T w = 292.5 K. In order to minimize the differences with respect to the reference case, Sutherland in × 35δ * in , discretized with 2400 and 300 grid points in the streamwise and wall-normal directions, respectively. A constant grid stretching is applied in the wallnormal direction. Figure 7(a)-(b)-(c) depict the evolutions of the normalized wall pressure, skin friction coefficient and Stanton number, respectively. The results are in excellent agreement with the reference data and faithfully reconstruct the pressure jump, the separation region and the reattachment zone. As a second validation, we consider the SWBLI configuration with finite-rate chemistry simulated by Volpiani [START_REF] Volpiani | Numerical strategy to perform direct numerical simulations of hypersonic shock/boundarylayer interaction in chemical nonequilibrium[END_REF]. It should be noted that the authors use different thermochemical models and the discrepancies observed in the results are attributed to this. In this case, the freestream thermodynamic conditions are T ∞ = 2275 K, p ∞ = 14692 Pa and M ∞ = 5.6; the values of the mass fractions are Y N2,∞ = 0.77 and Y O2,∞ = 0.23 while the wall temperature is set equal to 3042 K. The deflection angle of 6 • corresponds to a shock angle equal to ≈ 14 • and the shock impinges on the boundary layer at a distance from the leading edge equal to 0.1 m. The flow is initiated downstream of the leading edge at a distance to x = 0.001 m, corresponding to δ 99,in = 1 mm. At this station, the same inflow profiles of Volpiani [START_REF] Volpiani | Numerical strategy to perform direct numerical simulations of hypersonic shock/boundarylayer interaction in chemical nonequilibrium[END_REF] are prescribed; that is, a fourth-order polynomial approximation for the velocity and the Crocco-Buseman relation for the temperature with a γ = 1.29; pressure and species mass fractions are constant and the density is computed from the equation of state. The computational domain is L x × L y = 200δ * 99,in × 30δ * 99,in , discretized with 2000 and 350 grid points in the streamwise and wall-normal directions, respectively. Note that we use a slightly finer grid with respect to the reference case to avoid any numerical inaccuracy in addition to the thermochemical formulation. Figure 7(d) shows the trend of the normalized wall pressure; despite some discrepancies in the second pressure rise, our 
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(c) [START_REF] Nd Sandham | Transitional shock-wave/boundary-layer interactions in hypersonic flow[END_REF]. Evolution of normalized wall pressure (d), compared with the reference solution of Volpiani [START_REF] Volpiani | Numerical strategy to perform direct numerical simulations of hypersonic shock/boundarylayer interaction in chemical nonequilibrium[END_REF].
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results are able to match the global pressure jump and are in an acceptable agreement with the reference. After the validation of the reference results, we focus on the high-enthalpy configuration. The selected setup considers the post-shock condition of a scramjet, approximated by a six degrees planar wedge, flying at Mach 12 at an altitude of 36 km. The corresponding freestream conditions are then T ∞ = 405 K, p ∞ = 2258.6 Pa and M ∞ = 9. The wall temperature was fixed equal to 2500 K for both the translational and vibrational temperature and a non-catalytic condition is imposed for the species mass fractions. The solution of the jump equations with the selected freestream Mach number and β = 10 • , gives θ ≈ 5 • and the postshock (PS) variables T PS = 554 K, p PS = 6235 Pa and u PS = 3620 m/s. These conditions are imposed at left boundary of the rectangular domain as a jump on the inlet profiles. Specifically, these profiles are obtained by solving the locally self-similar equations reported in Sciacovelli et al. [START_REF] Sciacovelli | Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations[END_REF], extended to thermochemical nonequilibrium. For the sake of reproducibility, we show their trend in figure 8, at a distance of x 0 = 0.04 m from the leading edge, corresponding to the beginning of the computational domain for the SWBLI simulation. Figures 8(a)-(b)-(c) displays the evolutions of the two temperatures, velocity and density, normalized with respect to freestream values. A comparison against the solution of the chemically-reacting formulation is also provided and highlights the importance of taking into account vibrational relaxation effects. At these thermodynamic conditions and Reynolds numbers, a significant thermal non-equilibrium is present, with a monotonic profile for the vibrational temperature. The locally self-similar solution is validated against a baseflow simulation (that is, a laminar boundary layer without shock impingement) by comparing the resulting skin friction coefficient in figure 8(d). The extent of the computational domain is L x × L y = 1200δ * in × 90δ * in , with δ * in = 1.77 × 10 -3 m. As for the discretization, three computational grids have been considered, namely N x × N y = 3000 × 256 for the coarse grid, N x × N y = 5120 × 360 for the medium grid and N x × N y = 8280 × 512 for the finest one. A constant grid stretching is applied in the wall-normal direction, with the first wall cell being equal to 3.5 × 10 -5 m, 3 × 10 -5 m and 2 × 10 -5 m for the three computational grids, respectively. The impingement station is set equal to 0.7 m. The pressure isocontour shown in figure 9 gives an idea of the configuration under analysis. The incident shock creates a recirculation bubble (marked in the figure) in which the flow separates. Upstream of the separation bubble, a series of compression waves occur, which then coalesce into the separation shock. The latter interacts with the incident shock that penetrates the separated flow and is reflected as an expansion fan. Downstream of the separation bubble, a new shock (usually referred-to as reattachment shock) occurs, which readjusts the previously deflected flow. For a better understanding of the dynamics, three streamlines are also marked, one surrounding the recirculation bubble and the other two at larger wall-normal locations.

The evolutions of the skin friction coefficient and of the normalized wall pressure are reported in figure 10. The comparison between the three computational grids shows that grid-converged results are obtained already with the medium refinement. By analyzing the evolution of the wall quantities, it is possible to note that the interaction begins at Re x ≈ 8 × 10 5 , where the wall pressure distribution suddenly rises while C f decreases. Thereafter, the separation bubble extends from this point up to Re x ≈ 2 × 10 6 . The subsequent increase of C f and p w indicates the reattachment zone, before relaxing towards the new undisturbed conditions. The characteristic features of SWBLI configuration are not altered by high-enthalpy effects and the present numerical method is shown to be able to handle the strong pressure gradients using k 2 = 1.5 and k 2,V = 0.5. More interesting is instead the effect of this complex dynamics on thermal and chemical activities. reflected shock at Re x ≈ 4 × 10 6 . Coherently with the inlet temperature profiles, the amount of thermal non-equilibrium before the bubble is extremely high while chemical activity is essentially negligible. The rise of the temperatures and pressure in the separation zone promotes a more significant chemical dissociation but, at the same time, the gap between the two temperatures becomes smaller, moving towards a situation of quasi thermal equilibrium right after the recirculation bubble. Of note, the two temperatures keep distinct values at the edge of the boundary layer and in the undisturbed flow. A comparison with the same boundary layer without shock impingement has revealed that, for such thermodynamic conditions and Reynolds numbers, the flow would remain in a state of thermal non-equilibrium and quasi frozen chemical activity inside the entire boundary layer. The effect of pressure rise has then reduced the amount of thermal non-equilibrium and promoted the chemical activity with respect to the case without incident shock.

Figure 12 shows the isocontours of the temperatures difference for the current configuration (top) and for the corresponding base flow, in order to better appreciate the different thermochemical features promoted by the shock wave impingement.

Conclusions

In this study, a simple and robust numerical strategy for carrying out high-fidelity simulations of highenthalpy flows has been presented and validated. The present approach builds upon the numerical scheme described in Sciacovelli et al. [START_REF] Sciacovelli | Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations[END_REF], initially proposed for chemical nonequilibrium configurations, and extends it to take into account vibrational relaxation processes. For such configurations, the original shock sensor, based on a combination of Ducros' and Jameson's pressure-based sensors, is unsuitable to control the shock-capturing term in the vibrational energy equation because of the loose coupling between vibrational temperature and pressure. As a consequence, a modified sensor based on the vibrational temperature is proposed, and its performances are assessed against a selected test cases of increasing complexity. The thermochemical models implemented in the in-house CFD solver are first validated by means of several zero-dimensional heat baths. The vibrational heating and cooling of a N 2 molecule with frozen chemistry is validated against the data of Casseau et al. [START_REF] Casseau | A two-temperature open-source cfd model for hypersonic reacting flows, part two: multi-dimensional analysis[END_REF]; then, the coupled vibrational and finite-rate chemistry models are tested in the heat baths of pure nitrogen and air described by Williams et al. [START_REF] Williams | Two-temperature extension of the htr solver for hypersonic turbulent flows in thermochemical nonequilibrium[END_REF]. The results, highly sensitive to the particular model used, show a fair agreement with the reference ones. Afterwards, a 1D shock tube configuration exhibiting thermal nonequilibrium is investigated. The profiles of density, pressure, temperatures and mass fractions at the final time are in excellent agreement with those obtained by Williams et al. [START_REF] Williams | Two-temperature extension of the htr solver for hypersonic turbulent flows in thermochemical nonequilibrium[END_REF], confirming the capabilities of the numerical scheme to correctly handle strong shocks and contact discontinuities. The simulation is repeated by using an air-mixture instead of pure molecular nitrogen, showing that thermal nonequilibrium is drastically reduced because of the rapid dissociation of O 2 and the much faster relaxation times of O 2 and NO with respect to N 2 . The last shock tube setup considered concerns the thermochemical extension of the 2D viscous case described in Sciacovelli et al. [START_REF] Sciacovelli | Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations[END_REF]. The comparison between thermal nonequilibrium and thermally equilibrated conditions highlights the importance of taking into account vibrational relaxation processes, the difference between the two temperatures reaching values larger than 500 K. The last test case considered deals with a 2D shock-wave/boundary layer interaction (SWBLI). The numerical setup is first validated against the results of Sandham et al. [START_REF] Nd Sandham | Transitional shock-wave/boundary-layer interactions in hypersonic flow[END_REF], for the low-enthalpy configuration, and of Volpiani [START_REF] Volpiani | Numerical strategy to perform direct numerical simulations of hypersonic shock/boundarylayer interaction in chemical nonequilibrium[END_REF], taking into account finite-rate chemistry effects. Then, we focus on a high-enthalpy case representing the post-shock conditions of a scramjet flying at Mach 12 at an altitude 36 km, with a wall temperature of 2500 K. The locally self-similar profiles imposed at the inflow reveal strong thermal non-equilibrium and a mild chemical activity. The increase in temperature and pressure in the separation region tends to reverse the inlet trends, albeit a difference in the two temperatures persists at the edge of the boundary layer. A comparison with an unperturbed 2D boundary layer confirms that the presence of the incident shock leads to a reduced thermal non-equilibrium and promote chemical processes. Future work will address a 3D SWBLI configuration undergoing laminar-to-turbulent transition, with focus on interactions between thermochemical effects and turbulence in a shocked configuration, and the application of the present methodology to more complex multi-temperature models.
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 1 Figure 1: Translational-vibrational relaxation for vibrational heating (a) and vibrational cooling (b) of a N 2 heath bath; symbols from Casseau et al. [20].

Figure 2 :

 2 Figure 2: Dissociation/translational-vibrational relaxation heath bath for pure nitrogen (a) and air (b); symbols from Williams et al. [21].

Figure 3 :

 3 Figure 3: Profiles of density (a), pressure (b), temperatures (c) and molar fractions (d) for the thermochemically out-of-equilibrium shock tube of Williams et al. [21], at 156 µs; symbols from [21].

Figure 4 :

 4 Figure 4: Profiles of density (a), pressure (b), temperatures (c) and molar fractions (d) for the thermochemically out-of-equilibrium shock tube proposed by Williams et al. [21], using an air mixture initially composed by Y N2 = 0.767 and Y O2 = 0.233. Comparison is made against the pure nitrogen simulation.
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 53 Figure 5: Instantaneous visualization of temperatures difference (top) and logarithm of φ jV (bottom), at t = 1 ms, for the viscous shock tube in thermochemical non-equilibrium.

Figure 6 :

 6 Figure 6: Thermochemical non-equilibrium viscous shock tube. Normalized wall density for the three computational grids (a), normalized wall roto-translational temperature (b), nitric oxide mass fraction (c) and atomic oxygen mass fraction (d), compared with the chemically-reacting simulation of [2]. All the profiles are shown at the wall at t = 1 ms.
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 x7 Figure 7: Verification test cases for the SWBLI configuration. Evolution of normalized wall pressure (a), skin friction coefficient (b) and Stanton number (c), compared with the reference solution of Sandham et al.[START_REF] Nd Sandham | Transitional shock-wave/boundary-layer interactions in hypersonic flow[END_REF]. Evolution of normalized wall pressure (d), compared with the reference solution of Volpiani[START_REF] Volpiani | Numerical strategy to perform direct numerical simulations of hypersonic shock/boundarylayer interaction in chemical nonequilibrium[END_REF].

Figure 8 :

 8 Figure 8: Evolution of normalized temperatures (a), normalized velocity (b), normalized density (c), computed from the locally self-similar theory at x = 0.04 m. Comparison between simulation results and locally-self similar theory of the skin friction coefficient (d).

Figure 9 :

 9 Figure 9: Instantaneous visualization of the pressure field for the proposed SWBLI simulation in thermochemical non-equilibrium. In the figure, we display three streamlines which mark the separation bubble, the flow surrounding the recirculation zone and the dynamics of the far field, respectively.
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 10311 Figure 10: Evolution of the skin friction coefficient (a) and normalized wall pressure (b) for the proposed SWBLI in thermochemical non-equilibrium.

Figure 12 :

 12 Figure 12: Instantaneous visualization of temperatures difference for the SWBLI in thermochemical nonequilibrium (top) and the corresponding simulation without shock impingement (bottom).