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Aeroelasticity and Structural Dynamics

Advances in Parametric and  
Model-Form Uncertainty Quantification 

in Canonical Aeroelastic Systems

U ncertainty quantification is going to play a crucial role in the aeroelastic design 
and optimization of aircraft. Stochastic aeroelastic models are currently being 

considered to account for manufacturing tolerance in material properties, variability 
in flight conditions or uncertainty in the aeroelastic model itself. In this paper, some 
challenging issues in the development of efficient and robust stochastic solvers are 
reported within the framework of canonical aeroelastic systems. First, independent or 
correlated parametric uncertainties are propagated to compute the probability density 
function of the critical flutter velocity or the limit cycle oscillations in the presence 
of discontinuous responses. Secondly, inverse stochastic aeroelastic problems 
are addressed, in which experimental data are used to calibrate several stochastic 
aerodynamic models within a Bayesian framework. Studied configurations concern 
linear and non-linear pitching and plunging airfoils, and the stochastic flutter of a 
cantilevered straight composite wing subject to ply angle and thickness uncertainties.

J.-C. Chassaing, C. T. Nitschke, 
A. Vincenti
(Sorbonne Université)

P. Cinnella
(Laboratoire DynFluid)

D. Lucor
(LIMSI-CNRS)

E-mail:  
jean-camille.chassaing@
sorbonne-universite.fr

DOI: 10.12762/2018.AL14-07

Introduction

Aeroelasticity can be defined as the study of combined structural 
and aerodynamic effects on the vibratory behavior of aeronautical 
components, like panels, wings, rotorcraft or the whole aircraft itself. 
Aeroelastic effects result from the interaction of inertial, elastic and 
aerodynamic forces acting on aircraft components. Depending on the 
aeromechanical properties of the aircraft and the flight conditions, 
the aeroelastic response may exhibit some undesirable phenomena, 
ranging from the degradation of the aerodynamic performance of the 
aircraft to the apparition of self-sustained, possibly dramatic, oscil-
lations of the structure, such as divergence and flutter. Due to the 
explosive nature of the flutter phenomenon, aircraft certification is 
mandatory to guarantee that no aeroelastic instability can be encoun-
tered inside the flight envelope. However, small variations in the aero-
mechanical parameters may strongly affect the aeroelastic response 
of the aircraft [12, 56, 84]. For instance, Thomas et al. [103] observed 
that a 0.10 Hz change in the structural natural frequencies or a 1 deg. 
change in the mean angle of attack reduce by approximately 10% the 
computed flutter onset Mach Number.

The study of aeroelasticity with uncertainties, which can be illus-
trated by using an extension of the classical Collar’s aeroelastic 
triangle of forces (Figure  1), has become an extensive field of 

research over the last decades [6, 9, 10, 29, 84]. Based on state-
of-the-art traditional aeroelasticity and computational aeroelasticity 
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approaches [6,  10] originally used within a deterministic frame-
work, uncertainty quantification (UQ) will consist in studying the 
effect of both aleatory and epistemic uncertainties affecting the 
aeroelastic response of the aircraft. According to the taxonomy 
adopted by Melchers [64],any irreducible uncertainty in the system 
parameters is referred to as aleatory, whereas epistemic uncertain-
ties result from the lack of knowledge about the physical aeroelas-
tic model.

The identification of aeroelastic uncertainties was thoroughly dis-
cussed in the review by Pettit [84] on uncertainty quantification in 
aeroelasticity. Aleatory uncertainties may have various sources, 
such as, for example, manufacturing tolerance on aircraft geometry 
or material properties, and in-flight conditions (non-uniform and 
gusty winds). On the other hand, epistemic uncertainties are typically 
related to the choice of the physical aeroelastic model. A detailed 
description of uncertainty sources for physical parameters of aero-
elastic configurations can be found in [29].

The study of aeroelasticity with parametric uncertainty can be per-
formed using different approaches. Robust flutter aeroelastic analy-
ses are conducted using non-probabilistic approaches, by studying 
the stability of the aeroelastic system for parameter variations within 
given uncertainty bounds. Such approaches, which do not require the 
probability distribution of the input uncertain aeromechanical param-
eters, consist in identifying the worst aeroelastic case in the uncertain 
parametric support [15, 30, 58, 59]. The corresponding methods and 
advances in the development of non-probabilistic robust aeroelastic-
ity were recently reviewed in [29].

The second type of approach that can be considered to perform 
aeroelastic studies with uncertainties is referred to as probabilistic 
aeroelastic analysis. In such a stochastic representation, random 
input variables with known distributions are used to model the para-
metric aeroelastic uncertainties. Then, they are propagated using 
suitable probabilistic approaches, in order to compute the distribu-
tions of the aircraft aeroelastic response. The probabilistic colloca-
tion methods [5, 100, 124] and the stochastic spectral projection 
methods [40, 43, 115, 123] are two widely used approaches for 
the propagation of parametric uncertainty in computational struc-
tural dynamics (CSD) and in computational fluid dynamics (CFD). 
Boosted by the availability of open-source implementations of most 
popular stochastic solvers [1, 7, 38, 62], CFD-based computations 
of the stochastic aeroelastic response of elastic structures under 
uncertain flight conditions or structural variability have been wid-
ened substantially [6, 10, 12, 68].

Recently, Stanford and Massey [98] focused on the computation 
of the failure probabilities of the flexible Common Research Model 
[109] using a RANS-based CFD solver in the presence of atmo-
spheric, structural and inertial parametric randomness, where up to 
11 random variables were considered. In order to deal with a rela-
tively moderate number of random dimensions, a sparse Polynomial 
Chaos Expansion method (PCE) [45] was used to compute the flut-
ter probability. Although the probability that flutter appears within the 
commonly adopted 15% flutter margin [2] has been demonstrated 
at Mach 0.7, PCE fails to accurately compute the tail of the failure 
probability. It was shown that the lack of accuracy of the spectral 
projection approach is due to the presence of the physical nonlin-
earities associated with the transonic regime, which are reported in 
the random space.

Nowadays, uncertainty quantification in linear and nonlinear aeroelas-
ticity faces several issues that cannot be addressed directly using 
stochastic approaches like standard PCE and Stochastic Collocation. 
To this end, there is a need to develop adaptive stochastic approaches 
in order to deal with a discontinuous response due to the presence of 
aeroelastic mode switching or subcritical Hopf bifurcations. Moreover, 
aeroelastic uncertainty quantification studies of realistic configura-
tions involve a large number of random variables, like, for instance, 
in the case of aircraft components made of composite laminates with 
uncertain angles and thicknesses in their layup, making the use of 
adaptive methods more tricky [22]. In order to avoid the development 
of high-dimensional stochastic solvers, physical low-order modeling 
can be used to reduce the number of random variables to be propa-
gated, such as, for instance, the use of lamination parameters for the 
case of the stochastic flutter of a composite wing [94]. However, the 
resulting uncertainty propagation step must account for correlated 
random variables, again in the context of possible discontinuity in the 
random space.

Another major difficulty in the computation of the aeroelastic insta-
bility boundary of aircraft is related to the inherent sensitivity of the 
numerical predictions to the choice of numerical model, as illus-
trated, for instance, by the difference obtained between the results of 
Delayed Detached Eddy Simulation and Unsteady Reynolds Averaged 
Navier-Stokes of the flutter boundary of the AGARD wing 445.6 [125]. 
In such a context, copying with both parametric and model-form 
uncertainties in aeroelasticity enables the calibration of uncertain 
model coefficients from experimental data and, at the same time, the 
construction of adjusted stochastic models with robust predictive 
capabilities.

The scope of this paper is to review some recent advances in the 
development of uncertainty quantification in probabilistic aeroelast-
icty. Both aleatory and epistemic uncertainties associated with linear 
and nonlinear canonical aeroelastic systems [21, 52, 77, 78] are 
considered. Emphasis is placed in Section "Stochastic limit cycle 
oscillations of the PAPA aeroelastic model" on the treatment of dis-
continuous response surfaces due to bifurcations in the aeroelastic 
response of nonlinear PAPA test-cases. The propagation of correlated 
random variables with arbitrary distributions is described in Section 
"Stochastic flutter of a composite wing" for the prediction of the sto-
chastic flutter velocity of a composite plate wing.

Finally, the quantification of both model form and parametric uncer-
tainties associated with two low-order aerodynamic models of a 
PAPA aeroelastic configuration is carried out by using a Bayesian 
Model Averaging framework.

Forward uncertainty quantification of parametric 
uncertainties

Stochastic limit cycle oscillations of the PAPA aeroelastic model

Limit cycle oscillations (LCO) can be observed in the presence of 
nonlinearities in the structural or aerodynamic operator of the aero-
elastic system [27, 55, 56]. As illustrated by the typical bifurcation 
diagram of a PAPA model in Figure 2, the amplitude of these oscilla-
tions strongly depends on the subcritical or supercritical nature of the 
Hopf bifurcation corresponding to a change in the response from a 
stable solution to an oscillatory behavior [12, 57, 65].
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The onset of LCO of a typical airfoil section model in an incom-
pressible flow with structural nonlinearities in pitch stiffness was 
studied in a stochastic framework by Pettit and Beran [85]. Sub-
critical bifurcations were investigated by means of a pentic pitch 
stiffness model and uncertain initial conditions with Gaussian nor-
mal distribution were propagated using Monte Carlo simulations to 
compute the corresponding stochastic bifurcation diagram. Later, 
uncertainty quantification in LCO of canonical aeroelastic problems 
were performed using cheaper stochastic solvers, such as proba-
bilistic collocation methods based on polynomial chaos or Fourier 
chaos expansions [11, 12, 31, 44, 65, 66, 69, 72, 93, 101, 112], 
the unsteady adaptive stochastic finite-element approach [116-120] 
and the stochastic spectral projection [17, 21, 32, 52]. Stochastic 
LCO and bifurcation diagram of the PAPA canonical aeroelastic 
model were also investigated in [122] by means of bounded random 
variables with λ -pdf and in [12] using Wiener-Haar and Wiener-
Hermite expansions.

Uncertainty quantification using adaptive spectral methods

The convergence rate of PCE methods with global support may be 
very slow in the presence of discontinuities in the random space [17, 
25, 52, 113, 114, 123], due for instance to a jump from a stable 
to an unstable aeroelastic response. To circumvent this drawback, 
the capabilities of the adaptive multi-element generalized Polynomial 
Chaos (ME-gPC) method developed by Wan and Karniadakis [113] 
were investigated in [21, 52] for the case of stochastic bifurcation 
due to non-linear restoring forces in the aeroelastic model.

The first step in the application of the ME-gPC method relies on the 
definition of an N – element partition D of the random space with kB  
elements ( = 1,2,...,k N ).

Given a probability space ( , , PΩ  ), where Ω  is the sample space, 
  is a subset of Ω  and P  is the probability measure, the ME-gPC 
approximation ( )ru ξ  of any space-time random field 
( ) ( )2, ; , ,u t L Pξ ∈ Ω x  is written as [113] 

	 , ,
=1 =0

ˆ( ) = ( )
N M

r
k j k j k Bk

k j
u u Iξ ξΦ∑∑ 	 (1)

where ξ  is a random variable defined over the global random space 
whose components are independent uniform random variables, ˆku  is 

the local polynomial chaos expansion in element kB  with new ran-
dom variable kξ . The value of the indicator random variable 

kBI  is 
equal to 1 when the vector of random variables belongs to element k 
and is equal to zero otherwise.

The polynomial basis { },k jΦ  is orthogonal in each element with 
respect to the local probability measure. Then, the gPC coefficients 

,ˆk ju  are computed from the Galerkin projection of the stochastic solu-
tion onto each member of the local orthogonal basis. The total num-
ber of modes M is determined by the dimension d of ξ  and the order 
of the local gPC expansion P is written as ( )( ) ( )= ! / ! ! 1M P d P d+ − . 
Note that, when using uniform/Legendre discretization for the ME-
gPC representation, the local polynomials, which must be considered 
with respect to the conditional probability density function (pdf) in 
each element, remain Legendre polynomials. Therefore, a simple 
scaling, resulting from the derivation of the conditional pdf, is required 
to map the local element to a standard element of reference.

Although this piecewise polynomial approximation is more appropriate 
to deal with nonlinear dynamics than the global gPC approach, it must 
be combined with an adaptive framework in order to avoid computa-
tional growth [21, 52, 113]. To this end, a sensitivity-based adaptivity 
procedure can be constructed starting from the local solution variance 
obtained from the gPC approximation with polynomial order P.
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Then, coefficients representing the decay rate and the sensitivity to 
the random dimension can be constructed [113]

1

1

2 2
, , 2 2

= 1 , ,
2

2 2,

= 1

ˆ [ ]
ˆ [ ]

= , = , = 1,2, ,
ˆ [ ]

P

P

P

P

M

k i k i
i M i P i P

k i M
k p

j j
j M

u
u

r i d
u

η
σ

−

−

+

+

Φ
Φ

Φ

∑

∑






	 (3)

where subscript ,i P⋅  denotes the mode consisting only of random 
dimension iξ  with polynomial order P.

Finally, the refinement procedure is defined by the following criteria 
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Figure  2 – Left: typical 2DOF pitch and plunge (PAPA) airfoil section problem. Right: Corresponding typical aeroelastic bifurcation diagram due to softening and 
hardening cubic stiffness restoring forces in pitch.



Issue 14 - September 2018 - Uncertainty Quantification in Canonical Aeroelastic Systems
	 AL14-07	 4

where γ , 1θ  and 2θ  are prescribed constant parameters control-
ling the adaptive procedure. When the first condition is satisfied for 
element kB , an anisotropic splitting is performed based on the most 
sensitive random dimension according to coefficient ir . Alternatives 
to this error criterion were proposed by Chouvion and Sarrouy [25], 
based on the residual error and the local variance discontinuity cre-
ated by partitioning. In the following sections, the adaptive ME-gPC 
approach is used to predict the distribution of the LCO amplitude 
of nonlinear PAPA configurations for both incompressible [52] and 
supersonic [21] flows in the presence of uncertainties in the torsional 
restoring stiffness.

Stochastic limit cycle oscillations of a supersonic lifting surface

Lamorte et al. [51] used a stochastic collocation approach [36] to prop-
agate variabilities in the pitch and plunge natural uncoupled frequencies 
of an elastically-mounted 2D supersonic lifting surface. The use of a 6th 
order expansion with Lagrange polynomials was sufficient to show that 
under uncertainties, linear flutter may be observed at critical speeds 
below those obtained under deterministic nominal conditions.

In the following, results obtained about the study of stochastic limit 
cycle oscillations of an elastically-mounted 2-D supersonic lifting sur-
face (Figure 3) performed using a ME-gPC method [21] are reported. 

b b
z

h

Elastic axis

U∞

0x b 1x b

β

α

kξ

( )k α

Figure 3 – Two-degree-of-freedom pitch-and-plunge supersonic lifting surface 
model, with b the half chord, xα  the dimensionless static unbalance and U∞  
the free-stream velocity 

The pitch angle α  and the dimensionless plunge displacement 
= /h bξ  of the elastic axis are described by the following canonical 

aeroelastic equations [57] 

	

2

2

2

2  = ( )

12 ( ) = ( )

h a

a

x l
V V

x k m
r V V

α

α α

α

ω ωξ α ζ ξ ξ τ

ζξ α α α τ

 ′′ ′′ ′+ + +  
 

 ′′ ′′ ′+ + + − 
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	 (5)

The non-dimensional lift ( )al τ  and aerodynamic pitching moment 
( )am τ , which account for the flap deflection angle β , are computed 

using an unsteady nonlinear aerodynamic model based on the piston 
theory in the third approximation [57]. The complete description of 
the dimensionless aero-mechanical parameters rα , µ , αζ , ξζ , ω , 
( )k α  can be found in [54]. The nondimensional airspeed parameter 

is V and the primes refer to differentiation with respect to the nondi-
mensional time = /U t bτ ∞  (Figure 3). The aeroelastic equations can 
be written in space-state form as [21] 

	 ( ) 3= s a+ + + αx Ax p p f 	 (6)

where the state vector [ ]= T′ ′ξ α ξ αx  is obtained using an 
explicit fourth-order Runge-Kutta time-integration scheme. [54]

As discussed in the introduction, it is well known that physical nonlin-
earities in the restoring forces may promote sharp and sudden flutter 
onset for small changes in the reduced velocity. The purely deterministic 
parametric investigations conducted in [86] were revisited within a sto-
chastic framework using the ME-gPC approach in [21]. To this end, the 
structural damping coefficients hζ  and αζ  (Equation 6) are considered 
as input variables with an independent uniform random distribution:

	
1

2

=

=
hh h

α

ζ

α α ζ

ζ ζ σ

ζ ζ σ

+ Θ

+ Θ
	 (7)

where = = 0.005h αζ ζ  and = = 0.005
h αζ ζσ σ .

The response surface of the pitch amplitude obtained for a Mach 
number of 2.1 using a global gPC representation with a relatively high 
polynomial order P = 14 is shown in Figure 4-left. 

Spurious oscillations of the response surface are clearly visible for 
both the stable state and the LCO branch. The global gPC response 
surface fails to clearly identify the discontinuity front in the random 
space, resulting in a poor representation of the stochastic response. 
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Due to a refinement process performed according to the most 
sensitive random dimensions (Equation  3), the ME-gPC expansion 
with = 3P  succeeds in accurately capturing the steep front in the 
response, where 8 grid-levels were required to reach a resolution level 
set to 3

1 = 10ε − . The total number of cubature points required by the 
piecewise gPC solver is 1456 (encompassing 55 elements) com-
pared to 2( 1) = 225P +  points for the global gPC representation.

In the following, parametric uncertainties in the elastic axis loca-
tion, the nonlinear torsional stiffness parameter and flap angle are 
propagated using the ME-gPC approach. Figure 5-left shows the pdf 
of pitch LCO computed for operating conditions ranging from Mach 
number = 2M  up to = 4M . Each distribution is estimated from the 
ME-gPC expansions using 1 million samples. The bimodal shape of 
the distribution of the peak LCO, visible up to = 2.8M , corresponds 
to the stochastic bifurcation region. The stable stationary branch is 
characterized by a uniform-like distribution with possible pitch ampli-
tude ranging between 0 and 2 deg. We remark that the shape of the 
distribution is not strongly influenced by the Mach number in the post-
bifurcation region defined by > 3M . However, the upper limit of pos-
sible values of the peak pitch amplitude exhibits a nonlinear behavior 
according to the Mach number.

The analysis of the stochastic solution sensitivity to the uncertain 
parameters can be performed by means of the total Sobol indices 
[96], which are computed a posteriori using two independent MC 

sample sets drawn from the piecewise gPC expansion [21]. As shown 
in Figure 5-right, the most sensitive random variable differs depend-
ing on flow conditions. The lower bound of the Mach number range 
( < 2.1M ) is dominated by randomness in the flap angle. However, 
the stochastic solution in the bifurcation region ( [2.1,2.9]M ∈ ) is 
sensitive to inherent variations in the position of the elastic center. 
Conversely, uncertainties in both the nonlinear stiffness term and the 
location of the elastic axis mainly affect the stochastic response for 
high Mach numbers ( > 2.9M ).

Subcritical stochastic bifurcation with random initial pitch angle 
and cubic spring term

The ME-gPC approach was successfully used in [52] to predict sto-
chastic bifurcations with uniformly distributed random inputs in the 
linear torsional stiffness coefficient (

1
= 1kα  and 

1
= 0.1kα

σ ) and the 
cubic torsional stiffness coefficient (

3
= 3kα  and 

3
= 0.75kα

σ ) of a 
PAPA canonical model for incompressible flows. The pdf isocontours of 
the LCO amplitude in pitch Aα  (Figure 6-right) reveal that three distinct 
regions can be identified in the stochastic aeroelastic response of the 
airfoil: (i) damped oscillations for * < 6.6U , (ii) a bi-modal response in 
the bifurcation region with both damped oscillations and LCO and (iii) 
a post-bifurcation region for * > 6.6U . Moreover, the error bars of the 
prediction of Aα  (Fig. 6-left) show that, in the presence of combined 
uncertainties in 

1
kα  and 

3
kα , the instability onset could appear before 

the nominal (deterministic) flutter conditions are reached.
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Figure 7 shows a subcritical stochastic bifurcation obtained for 
uncertainties in the initial pitch angle ( )0α  and cubic spring 
term 

3
kα . The distribution of the peak pitch amplitude due to 

statistic of these uncertain variables defined by ( )0 = 12.5α  deg, 
( )0 = 12.5ασ   deg, 

3
= 3kα −  and 

3
= 0.75kα

σ  are presented in 
Figure  7-left. The stochastic bifurcation regime is studied for 
reduced velocities ranging from * = 5.8U  to * = 6.3U . The bimodal 
density response of the peak LCO amplitude in pitch corresponds to 

a sharp Dirac delta-like peak due to the zero-amplitude stable branch 
and a second peak corresponding to the probability to observe the 
stable large amplitude LCO branch, which results from the discon-
tinuous shape of the response surface, as shown in Figure 7-mid 
for * = 6U . 

Although the previous stochastic study was performed using uni-
formly distributed inputs, it is possible to compute the stochastic 
response due to different random input distributions defined on the 
same support of the probability space [52]. In this case, the statistics 
of the response can be readily obtained as a post-processing stage 
using Equation 1. As an example, Figure 7-right shows the shape of 
pdf of LCOα  obtained when both 

3
kα  and ( )0α  follow independent 

( )= 3, = 3Beta α β  distributions. Although the resulting distributions 
of the peak pitch amplitude look similar to Beta distributions, the tails 
of the distribution exhibits a longer left tail toward the zero-amplitude 
stable branch.

Stochastic flutter of a composite wing

Global-support-based Polynomial-Chaos expansions were used by 
Manan and Cooper [61] for the propagation of uncertain longitudi-
nal Young modulus and shear modulus in the frequency response 
function of a composite wing. Recently, Scarth et al. [94] addressed 
the problem of uncertainty quantification in the ply angle uncer-
tainty of a composite rectangular wing. To this end, the composite 
laminate layups were modeled using the lamination parameters 
[106], in order to reduce the number of random dimensions of the 
stochastic problem. Rosenblatt decomposition was applied to deal 
with correlations in the input random variables. Moreover, a convex-
hull approach was considered in order to split the random domain, 
according to the discontinuity due to the presence of a mode switch 
in the aeroelastic response of the composite wing. This approach 
was successfully used to capture the multi-modal response of the 
distribution of the critical flutter velocity, whereas results obtained 
using a Polynomial Chaos Expansion with global support are not 
sufficiently accurate. However, the aeroelastic configurations of 
interest were concerned with uncertainties in ply angles only and 
the effects of membrane-bending coupling were neglected, thus 
introducing an artificial symmetrization of the material in the sto-
chastic framework.

In this section, we consider the study of uncertainty propagation 
on the linear flutter speed of a composite cantilevered wing due to 
parametric variabilities in the angular ply placement and thickness 
for several laminate configurations [73, 78]. Since laminates with a 
dozen or more plies can be used in aeronautical components, the cor-
responding number of uncertain constitutive parameters is expected 
to be large compared to those of the stochastic study in Section "Sto-
chastic limit cycle oscillations of the PAPA aeroelastic model". There-
fore, we introduce the polar method [108, 111] as a possible way to 
reduce the random dimensional space. As a side effect, conventional 
spectral projection methods must be adapted to deal with correlated 
random variables and arbitrary input distributions.

Aeroelastic system

We aim to investigate the stochastic aeroelastic response of a flat 
cantilevered laminated composite plate [94, 99] depicted in Figure 8. 
The wing geometry is reported in Table 1.
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Figure 8 – Scheme of the studied cantilevered laminated plate wing [99]

Wing half 
span 
[ ]S m  

Chord 
 
[ ]c m  

Air 
density 

3/a kg mρ     

Lift 
excentricity 

e

Unsteady 
parameter 

Mθ

0.3048 0.0762 1.225 0.25 –1.2

Table 1 – Wing geometry and aeromechanical data [99]

Hereafter, we consider sixteen-layer layups based on AS4/3502 
graphite/epoxy laminate [106, 107], and the engineering moduli of 
this base layer are summarized in Table 2.

[ ]1E GPa  [ ]2E GPa  [ ]12G GPa  [ ]
12ν −  3/kg mρ     

Ply thickness 
[ ]t mm  

138.0 8.96 7.1 0.3 1600 0.1

Table 2 – Material properties of AS4/3502 UD layer

In the absence of membrane forces, the bending moments m are 

related to the curvature 
2 2 2

2 2= , , 2
T

w w w
x y x y

κ
 ∂ ∂ ∂
− − − ∂ ∂ ∂ ∂ 

 by 

	 ( )1= =κ κ−− m D BA B D 	 (8)

where A denotes the membrane stiffness, D is the bending stiffness, 
B describes the coupling between the membrane and the bending 
forces, and D  is the modified bending stiffness [67], which reduces 
to tensor D for uncoupled laminates.

The aeroelastic governing equations are obtained using the Lagrange 
equations for the generalized coordinates q 

	
( )=
( )

d T T U W
dt
 ∂ ∂ ∂ ∂

− + ∂ ∂ ∂ ∂ 
δ
δq q q q

	 (9)

where the potential energy U, the kinetic energy T and the virtual work 
of the aerodynamic forces are 

	

T

2

1=
2
1=
2
= ( )a a

U dxdy

T d w dxdy

W l w dx m dx

κ κ

− +

∫∫

∫∫
∫ ∫



ρ

δ δ δθ

D

	 (10)

As in the work by Stodieck et al. [99], the quasi-steady strip theory 
[121] was used to model the aerodynamic lift al  and moment am  
[99].

The governing equations are solved using a Rayleigh-Ritz approxima-
tion of the displacements w, which are represented by a combination 
of algebraic polynomials. The resulting equations of motion are writ-
ten as the following generalized eigenvalue problem [78] in terms of 
the vector q̂  of the x yn n×  amplitude coefficients ( )ˆ ijq  

	 ( )
ˆ ˆ0 0
ˆ ˆ0aero struct aero struct

=
      
      −      

λ
λ λ

I Iq q
K K D Mq q

	 (11)

where structM , aeroD , aeroK  and structK  are respectively, the struc-
tural mass matrix, the aerodynamic damping matrix, the aerodynamic 
stiffness matrix and the elastic stiffness matrix.

The critical flutter conditions are defined by ( ) = 0λRe  with corre-
sponding flutter speed fV  and circular frequency fω . Details about 
the aeroelastic solver can be found in [73].

Random variable reduction using the Polar Method

The concept of lamination parameters [106] and polar method 
[108, 111] are two widely used approaches for the analysis and 
design of composite laminates. They provide a smaller set of param-
eters to describe the behavior of a laminate instead of considering the 
entire set of constitutive parameters. Therefore, they are particularly 
suited for propagating uncertainties in layer thicknesses and angles 
due to the manufacturing process, by reducing the number of random 
variables, thus making possible the use of the Polynomial-Chaos-
based spectral projection method, for instance. Due to its natural 
ability to deal with uncertainty in ply thickness and its natural physical 
meaning, the polar method, which is based on tensor invariants was 
recently used by Nitschke et al. [73, 78] in the context of aeroelastic 
UQ of composite plates.

The polar method consists in describing the modified bending tensor 
D  by the polar constants { }0 1 0 1 0 1= , , , , ,D D D D D DT T R Rθ Φ Φ      , such as 

[108, 111] 

	

( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )
( )

0 1 0 0 1 1

0 1 0 0

0 0 1 1

0 1 0 0 1 1

0 0 1 1

0 0 0

= 2 cos 4 4 cos 2

= 2 cos 4

= sin 4 2 sin 2

= 2 cos 4 4 cos 2

= sin 4 2 sin 2

= cos 4

xx

xy

xs

yy

ys

ss

D T T R R

D T T R

D R R

D T T R R

D R R

D T R

+ + Φ + Φ

− + − Φ

Φ + Φ

+ + Φ − Φ

− Φ + Φ

− Φ













	 (12)

where quantities 0 1 0 1, , ,T T R R  and ( )0 1Φ −Φ  are invariants. The 
isotropic part of the tensor is represented by parameters 0T  and 1T , 
coefficients 0R  and 1R  are the modules of the anisotropic part and 

0Φ  and 1Φ  are the corresponding orientation angles.

Figure 9 presents the flutter response of the studied cantilevered wing 
(Table 1) over the polar domain of nominally orthotropic and uncou-
pled laminates and considering that the principal orthotropy axis of 
the laminate is aligned with the wing mid-chord axis.



Issue 14 - September 2018 - Uncertainty Quantification in Canonical Aeroelastic Systems
	 AL14-07	 8

–6

6

5

4

3

2

1

0
–4 –2 0

1D
R


 [N
m

]

( )
01 K DR− 

 
[Nm]

fV  [m/s]

2 4 6

140

120

100

80

60

Figure 9 – Response surface of the critical flutter speed fV  defined in the 
polar domain for orthotropic laminates [78] for the cantilevered plate wing 
(Figure 8). The green dot corresponds to the configuration depicted in Table 3 
and giving the maximum flutter speed. 

We immediately remark a step in the critical flutter speed fV , which 
separates the response surface into two sub-regions. This disconti-
nuity illustrates the mode switch present in the aeroelastic instabil-
ity mechanism of the studied configuration. We also note that the 
laminate configurations corresponding to the extreme values of fV  
( max

fV =148.5  m/s and min
fV =76.3  m/s) are very close, approxi-

mately in the region close to the point 0( 1)K DR− =  –1.948 and 
1
DR = 3.032 (green dot in Figure 9) apart from the step. This fact, 

clearly illustrates the need for considering uncertainties in the aero-
elasticity analysis, since tolerance errors in the elastic stiffness of the 
composite laminate, due for instance to the manufacturing process, 
could lead to the worst flutter case, whereas it is designed to be the 
best flutter case within a deterministic framework.

In the following, we consider the layup configuration, which maxi-
mizes the flutter speed (see the green dot in Figure 9). The corre-
sponding polar properties and stacking sequence are reported in 
Tables 3 and 4, respectively.

Next, we consider randomness in the ply angles and thicknesses, 
according to a Gaussian distribution with standard deviation of 1 [°] 
and 0.005 [mm] respectively. These parametric uncertainties in the 
sixteen-layer layup are propagated by Monte Carlo simulation, in 
order to characterize the pdf of the six polar constants (Equation 12). 
As illustrated by the scatter plot of 1

DR 

 against 0
DT 

 in Figure 10-left, 
the polar constants exhibit rather strong correlations depending on 
the configuration of the layup. Moreover, the resulting distributions no 
longer have a Gaussian shape, and they can be arbitrary symmetric 
or skew distributions, as shown in Figure 10-mid/right. 

The fact that the random variables of the polar constants are not 
independent, with non-Gaussian distributions, is due to the nonlinear 
nature of the transformation in Equation 12. Therefore, the uncertainty 
quantification in the ply angles and thicknesses by means of polar 
constants requires conventional global-Polynomial-Chaos stochastic 
solvers to be adapted, in order to deal with (i) arbitrary input distri-
butions, (ii) correlated random variables and (iii) discontinuity in the 
random space.

The first two points are addressed by using the arbitrary Polynomial 
Chaos method (aPC) presented in [70, 79, 82, 97, 120]. The latter 
point was treated by combining the aPC approach with machine-
learning techniques, in order to identify clusters of points belonging 
to each sub-region of the response surface.

Stacking sequence Property summary 

[28.42, –28.44, 28.42, –28.42, 28.44, –28.42] general orthotropic, 
maxfV  

Table 4 – Stacking sequence of the AS4/3502-based laminate corresponding to parameters given in Table 3

0 [ ]DT Nm

 1 [ ]DT Nm

 ( ) [ ]01 K DR Nm− 

 [ ]1
DR Nm

 0 [ ]DΦ 

  1 [ ]DΦ 

  [ ]/fV m s  f
rad

s
ω  

  

7.288 6.538 –1.948 3.032 0 0 143.48 505.24

Table 3 – Polar properties and flutter response of the studied configuration, which corresponds to the maximum flutter speed 
maxfV  in the response surface (Figure 9)
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Figure 10 – Scatter plots and distributions of modified bending polar parameters 1
DR 

 and 0
DT 

 due to uncertainties in angular ply placement and thickness based 
on the nominal configuration of the composite laminates in Table 3 [78]
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Dealing with correlations in the random polar parameters

As seen in Section "Uncertainty quantification using adaptive spectral 
methods", the spectral expansion in the stochastic space of the Poly-
nomial Chaos methods relies on the use of the orthogonal polynomial 
basis iΦ  and expansion coefficients ˆiu  (Equation 1). In order to be 
able to deal with arbitrary distributions and correlated variables, we 
follow the work by Navarro et al. [70, 120], in which a Gram-Schmidt 
algorithm is used to compute the coefficients of the polynomials 
based on the scalar product 

	 ( ) ( ) ( ) ( ){ }2, = =i j i j i ijp dθ θ θ θ θ∫φ φ φ φ φ δ
Θ

	 (13)

Since no analytical representation of the joint distribution of the 
random polar constants is available, the integrals required for the 
computation of the coefficients of polynomials are derived from MC 
integration based on the analytical expression of the polar parameters 
in Equation 12. Moreover, a least-square fitting procedure is used to 
compute the expansion coefficients ˆiu , based on MC draws in the 
random space. The extension of the aPC method to correlated ran-
dom variables is detailed in [78].

UQ in the vicinity of the aeroelastic mode switch

In Section "Stochastic limit cycle oscillations of a supersonic lifting 
surface", the ME-gPC method was used to deal with discontinuities 
in the random space. Here, an alternative method is developed by 
combining the global support aPC solver with a machine learning-
based filtering procedure in order to decompose the response surface 
according to different aeroelastic modal regimes. Note that Scarth 
et al. [94] have addressed the same aeroelastic problem by coupling 
the gPC method with the Rosenblatt transformation and convex hull 
identification for response surface splitting.

The present approach consists of two steps [73, 78]. First, the dif-
ferent modal regimes in the response surface are identified by apply-
ing the DBSCAN clustering algorithm [37] from a preliminary set of 
samples of the flutter speed fV  and frequency fω , requiring typically 
103 calls to the aeroelastic solver.

Figure 11-left illustrates the identification step of the modal regimes 
due to the uncertainties defined in Section "Random variable reduc-
tion using the Polar Method", from the laminate presented in Table 3 
and whose nominal configuration maximizes the flutter speed (green 
square symbol in Figure 9). Based on the preliminary sampling of fV  

and fω , the DBSCAN algorithm succeeds in clustering the data as 
shown by the different colors of the clouds. The number of samples 
used in the aPC.

In the second step, a large set of samples of polar parameters, drawn 
from their analytical expression (Equation 12), are used (typically with 
size of 105), in conjunction with the training data from the cluster-
ing, by a neural network-type Multi-layer perceptron classifier [83], 
in order to generate filtered samples that are used for the construc-
tion of the polynomials in the aPC solver for each sub-region of the 
discontinuous response surface. Moreover, the fitting procedure in 
the aPC is performed using the clustered samples, thus avoiding any 
additional calls to the aeroelastic solver. Details about the implemen-
tation of the machine-learning approach used within the context of the 
aeroelastic aPC framework are given in [78].

The multi-modal aPC-machine learning classifier method was used to 
compute the distribution of the flutter speed shown in Figure 11-right 
for nominal conditions giving the maximum flutter speed. As expected, 
the bi-modal shape of the distribution relies on the mode switch as a 
consequence of randomness in the ply angles and thicknesses. The 
peak at high critical flutter speed is located near the nominal value 

= 143 /fV m s . The lower peak appears for a critical flutter speed 
around = 83 /fV m s . It is clear that, in the present case, the conven-
tional flutter margin of122 /m s , which corresponds to a 15% offset 
from the nominal value, fails to define a safety operational range, as 
confirmed by the computation of the 1% percentile (Figure 11-right).

Note that the comparison of the distribution of fV  with a Monte Carlo 
simulation shows that the present multi-modal aPC approach could 
be an interesting approach to propagate correlated parametric uncer-
tainties with arbitrary input distribution in the presence of discontinu-
ity in the random space.

Model-form uncertainty quantification in aeroelasticity

Although it was previously shown that parametric uncertainties can 
be efficiently propagated through an aeroelastic model to predict the 
stochastic response of the critical flutter speed or LCO amplitudes, 
epistemic uncertainties, which result from a lack of knowledge, may 
induce greater variability in the stochastic response than real physi-
cal randomness [103, 126]. Therefore, the quantification of model 
assumptions and predictive uncertainties [26, 81] should be taken 
into account in the prediction of the stochastic aeroelastic response. 
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Figure 11 – Aeroelastic uncertainty propagation in ply angles and thicknesses of the sixteen-layer AS4/3502 graphite/epoxy laminate (Table 3). Left: Clouds of 
samples showing fV  plotted against fω  and colored by the results of the DBSCAN clustering. Right: Multi-modal distribution of the flutter speed fV  computed 
using the machine learning augmented aPC method [79]. The solid black arrow indicates the nominal critical flutter speed, the red dashed arrow is the classical 
15% flutter margin and the blue dash-dotted arrow indicates the 1% percentile for the occurrence of flutter.
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Typically, the choice of low- or high-fidelity structural and aerody-
namic operators to be considered for aeroelastic simulations relies on 
model-form uncertainty, with possible uncertain parameters, which 
may strongly affect the prediction of the flutter boundary. Another 
important issue concerns the sensitivity of these models, which may 
strongly differ depending on the physical scenario of interest.

Such stochastic problems can be addressed using Bayesian infer-
ence methods for parameter calibration and model updating, as in 
[4, 16, 53]. First, a likelihood function must be built, based on pre-
scribed prior distributions of model coefficients and observations of 
parameters of interest. Then, the Bayes theorem is applied to com-
pute the joint posterior distribution of model parameters using Mar-
kov Chain Monte Carlo (MCMC) sampling. In this case, an adjusted 
stochastic model can be constructed using the Bayesian Model Aver-
aging Approach (BMA) [42], where previously individual calibrated 
models are weighted using their posterior model probability.

A Bayesian estimation of structural uncertainties of the Goland wing 
was performed by Dwight et al. [35], in whose work the use of few 
observation data was sufficient to substantially reduce the variability 
in the parameters of the high-fidelity CFD/Finite Element aeroelastic 
solver. A BMA adjusted statistical model dedicated to the computa-
tion of the flutter margin of the 445.6 wing was deployed by Riley 
and Grandhi [88]. The same aeroelastic configuration was used by 
Riley [89] to predict both model-form and parametric uncertainties 
in the flutter margin, where the latter are propagated using the fast 
Fourier transform technique with a weighted-Stack Response Surface 
method.

Intensive research in the field of Bayesian parameter estimation for 
nonlinear aeroelasticity was carried out in a series of papers by 
Khalil et al. [48-50]. Initially, Markov Chain Monte Carlo (MCMC) 
algorithms were coupled to extended Kalman filter techniques to 
build the joint posterior distribution of LCO amplitude of a pitching 
NACA0012 airfoil in the presence of noisy experimental data. More 
computationally efficient methods were also considered, like parallel 
adaptive MCMC sampling algorithms [23, 90] and Bayesian Model 

Selection [49, 91, 92], for the calibration of a fully-unsteady nonlinear 
aerodynamic model using wind-tunnel test data. Finally, the Bayesian 
model averaging approach was used in [73-76] to build an adjusted 
PAPA-based aeroelastic model from different classes of stochastic 
aerodynamic operator.

Problem statement

The motivation of the work presented hereafter, relies on the exis-
tence of multiple approximations of the Theodorsen [104] lift func-
tion ( )C k , which can be considered to evaluate the unsteady aero-
dynamic forces acting on the pitching and plunging flat plate in an 
incompressible flow [33, 39, 41, 121]. Some of these approximations 
are given by the general form [75, 77] 

	 ( )
=1

1
N

j

j j

k
C k

k i
α
β

≈ −
−∑ 	 (14)

where N is the number of states of the models.

As illustrated in Table 5 and in Figure 12, several approximations can 
be found in the literature, depending on the number of states and the 
values of coefficients jα  and jβ  [18, 46, 47, 89, 110].

Table 6 summarizes the experimental data of *
fV  taken from [102] 

and obtained for four different values of the frequency ratio /h αω ω  
of uncoupled natural frequencies in pitch and plunge.

scenario A B C D

h αω ω 0.33 0.5 0.83 1

*
fV 10.67 9.19 6.41 7.30

Table 6 – Experimental dataset { }, , ,A B C Dd d d d=  for the critical flutter 
velocity *

fV , corresponding to four values of h αω ω . The other aeroelastic 
parameters are considered to be fixed, namely rα =  0.5, xα =  0.2, 

ha = –0.4, µ = 400 [102].

Number of states Reference  Function definition 

Two states Jones R.T [46]  ( ) 0.165 0.3351.0
0.0455 0.3

k kC k
k i k i

≈ − −
− −

 

Jones W.P [47]  ( ) 0.165 0.3351.0
0.041 0.32

k kC k
k i k i

≈ − −
− −

 

Riley [89] ( )
( )( )
( )( )
1.0 10.61 1.0 1.774
1.0 13.51 1.0 2.745

ik ikC k
ik ik

+ +
≈

+ +
 

Jones rounded [89] ( )
2

2

0.015 0.3 0.5
0.015 0.35

ik kC k
ik k

+ −
≈

+ −
 

Four states Brunton [18]  ( )
4 3 2 4

4 3 2 4

0.5 0.703 0.2393 0.01894 2.32510
1.158 0.3052 0.02028 2.32510

k ik k ikC k
k ik k ik

−

−

− − + +
≈

− − + +
 

Vepa [110]  ( )
4 3 2 3 6

4 3 2 3 6

0.761 0.1021 2.551 10 9.55710
2 1.064 0.1134 2.617 10 9.55710
k ik k i kC k
k ik k i k

− −

− −

− − + +
≈

− − + +
 

Table 5 – Approximations of the Theodorsen function used to construct the stochastic lift functions [75].
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Two-state function family
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Figure 12 – Plots of typical approximations of the Theodorsen function ( )C k  taken from [18, 75, 89] as described in Table 5. 
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Figure 13 – Linear flutter boundary as a function of the ratio of uncoupled natural frequencies in pitch and plunge. Left: Comparison between experimental data 
[102] and values of the flutter speed *

fV  obtained from the approximations of the lift function ( )C k  (Table 5). Right: Prior distributions of the model coefficients 
constructed according to Equation 15 using Monte Carlo sampling with 107 samples. 



Issue 14 - September 2018 - Uncertainty Quantification in Canonical Aeroelastic Systems
	 AL14-07	 12

Figure  13-left shows the aeroelastic responses of a typical PAPA 
aeroelastic configuration, where the linear critical flutter velocity index 

*
fV  is computed using the iterative frequency-matching V-g method 

[13] for given parameters: = 0.5rα , = 0.2xα , = 0.4ha − , = 400µ  
[77]. Different spreads are observed, thus making the identification of 
the best approximation for all scenarios tricky.

Considering that the uncertainty associated with the choice of the 
more suitable model belongs to the family of epistemic model-form 
uncertainty, the Bayesian model averaging approach provides a theo-
retical framework to identify the most suited model of the lift function 
( )C k  and to calibrate its coefficients defined in Equation 14 within a 

stochastic framework. To this end, approximations shown in Table 5 
are used to construct two stochastic models, depending on the 
number of states, by considering the following prior distributions for 
model coefficients jα  and jβ  [73, 74]

[ ] [ ]

=1

0,1 0,0.9 = = 1,...,j
j j j N

j
j

j N
α

α β α
α∑

 
  , , , 	 (15)

Figure 13-right shows the mean and the 50% maximum credibility 
interval of the flutter speed obtained by Monte Carlo sampling of the 
two stochastic models 2C  and 4C , constructed respectively using 
2 and 4 states in Equation  14 and according to the prior distribu-
tions of jα  and jβ  in Equation 15. The two models are driven by 
extreme outliers, resulting in mean values possibly outside the 50% 
confidence intervals. The relatively large spread of the realizations 
suggests that calibrations of the stochastic model might be required.

Bayesian calibration using parameter inference

Bayesian inference techniques were considered in [74, 76, 77] for the 
reduction of the uncertainty associated with the choice of model param-
eters by calibrating model coefficients of model 1 2=M C  and model 

2 4=M C , using the available experimental observations. Let y be the 
output of the deterministic aeroelastic model. The quantity of interest 
q, corresponding to the critical flutter velocity *

fV  in the present case, 
is modeled as the output of the deterministic aeroelastic model y plus a 
random error term ε  due to model inadequacy or measurement error 

	 ( ) ( )= , , , ,i i i i iq y M Mθ +ε µ σx 	 (16)

where x denotes the explicative aero-mechanical parameters  
and iθ  represents the random model coefficients subject to epis-
temic uncertainties. The mean iµ  and the standard deviation iσ  are 
the hyperparameters that describe the error term ε , which is chosen 
to be Gaussian with zero mean [20]. Let   be the set of experimen-
tal data points ( )= 1,j dd j n  of the flutter index *

fV . The likelihood 
function, which corresponds to the probability of observing the data 
D given a model iM , a set of parameters iθ  and hyperparameters iσ , 
is written as [8] 

( ) ( )( )2

=1 22
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22
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The joint posterior distribution of the model parameters is computed 
using the Bayes rule as [8] 

	 ( ) ( ) ( ), , , , ,i i i N i i i i i ip M f M p Mθ θ θ∝σ σ σ  	 (18)

where ( ),i i ip Mθ σ  is the joint prior probability density of the uncer-
tain parameters and hyperparameters.

Figure 14-left presents the posterior distributions of hyperparameters 
whose prior distribution was taken as ( ) [ ]= 0.01,0.7i ip Mσ  . 
Below values of = 0.3σ , the higher probability density values for 
model 2M  show that this model is able to yield more accurate results 
than model 1M .

Note that for 0iσ → , ( ),p σ    vanishes, meaning that the mod-
els cannot reproduce the results without considering a discrepancy 
term. All computations are performed using hyperparameter infer-
ence [77], where the posterior parameter distributions for coefficient 

1β  are presented in Figure 14-right. As expected, considering addi-
tional data leads to sharper distributions of the posterior pdf for the 
flutter speed. 

Robust prediction of the stochastic models

Based on the posterior distribution of the random parameters 
( ), ,i i ip Mθ σ   in Equation 18, it is possible to predict an updated 

estimate of the quantity of interest, namely the marginal posterior pre-
dictive distribution for the critical flutter speed fV  [24] 
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Figure 14 – Left: Kernel density estimations of the posterior distributions of iσ  for models 1M  and 2M . The prior distribution is [ ]= 0.01,0.7iσ  ; Right: Influence 
of the size of the calibration dataset   (Table 6) on the posterior of model coefficients computed using hyperparameter inference with [ ]0.01,0.7iσ   .
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( ) ( ) ( ), , = , , , , | ,i i i i i i i i ip q M p q M p M d dθ θ θ∫ σ σ σ x x 	 (19)
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where ( )iθ   and ( )iσ   are the  -th sample of ( , | , )i i ip Mθ σ   
used during the Monte Carlo integration procedure. The predictive 
distribution for a given set of parameters and hyperparameters 

( | , , , )i i ip q Mθ σx  is defined by 
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Bayesian model averaging

Bayesian Model Averaging (BMA) is a statistical method [42] that 
accounts for the uncertainty in the selection of the model itself. The 
total predictive distribution ( )| ,p q x  of the resulting BMA adjusted 
stochastic model is based on the average of the posterior predictive 
distributions of the two models, weighted by the posterior model 
probability of each individual model i  

	 ( ) ( ) ( )
=1

| , = | , , |
m

i i
i

p q p q M P M∑  x x 	 (22)

where ( )| , , ip q M x  is the robust or posterior predictive distribu-
tion of model iM . The posterior model probability ( )|iP M   is 
evaluated using Bayesian inference as 
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The prior model probability ( )iP M  is assumed to follow a uniform 
distribution. According to Cheung et al. [24], the marginal likelihood 
( )iP M  is given by 

( ) ( ) ( ) ( )= , ,i N i i i i i i i i iP M f M p M p M d dθ θ θ∫ σ σ σ  	 (24)

where the prior density ( )i ip Mθ  is evaluated based on expert opinion.

Table 7 shows that the higher model probability is attributed to the four-
state model 2M . The same conclusion holds when setting iσ  to a fixed 
deterministic value, or when including iσ  in the inference procedure, as 
described in Section "Bayesian calibration using parameter inference".

model error ( )1P M   ( )2P M   

iσ  = 0.6 0.3526 0.6474 

[ ]0.01,0.7iσ    0.311 0.689 

Table 7 – Posterior model probabilities ( ), , iP q Mx  for calibration over 
{ }= , ,A C Dd d d  (Table 6) obtained from BMA with different modeling of 

the random error term ( ),i iMε σ  [77] 

The total predictive distribution ( ) .
,

determ
p q x  for point Bd  based 

on BMA of the deterministic (e.g., non-calibrated) models, is pre-
sented in Figure  15. The most probable value for the flutter speed 
index is about * 8.1fV  , which is far from the experimental value 
given by * 9.19fV  . On the contrary, results obtained after individual 

calibrations of models 1M  and 2M  over dataset { }= , ,A C Dd d d  
clearly show the benefit of calibrating the coefficients of the lift func-
tion ( )C k , since their probability density values for the sought value 
of *

fV  are higher than those for the deterministic BMA. 

The differences between the individual models after the Bayes-
ian inference step are relatively small. Quite similar results are thus 
expected to be observed for the total predictive distribution given by 
BMA. Attempts were made in [77] to reduce the confidence intervals 
of the prediction of *

fV  by introducing a bias relative to the error term 
used in the Bayesian inference procedure.

Concluding remarks

This paper reviewed some recent development for the study of canoni-
cal aeroelastic systems under uncertainties. Forward stochastic anal-
ysis of parametric uncertainties in the aero-mechanical parameters 
were performed within the framework of Polynomial-Chaos-based 
approaches. Adaptive multi-element generalized Polynomial Chaos 
and machine learning-augmented arbitrary Polynomial Chaos were 
successfully used for capturing the multi-modal behavior of the sto-
chastic critical flutter velocity or limit-cycle-oscillations. In particular, 
the study of variabilities in ply angles and thicknesses of composite 
laminate layups on the aeroelastic flutter of a cantilevered plate wing 
was performed. Due to the presence of a mode switch mechanism 
in the aeroelastic response, a dramatic reduction in the linear flut-
ter speed was observed compared to values obtained from classi-
cal safety margins. Finally, the effects of model-form and predictive 
uncertainties on the flutter boundary of an elastically-mounted pitch 
and plunge airfoil were investigated within the framework of Bayes-
ian uncertainty quantification. To this end, Bayesian inference was 
used for the stochastic calibration of the coefficients of two low-order 
aerodynamic models. Then, a Bayesian Model Averaging method was 
used to construct an adjusted stochastic model with robust predictive 
capabilities, where substantial reductions in the variability of the flut-
ter boundary were obtained compared to the application of the BMA 
approach on deterministic aerodynamic models.

It is believed that forward uncertainty quantification in high-fidelity-
based aeroelastic systems will quickly benefit from the develop-
ment of advanced stochastic tools for the propagation of parametric 
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Figure 15 – Predictive distribution of the critical flutter velocity *
fV  for scenario 

Bd  obtained by applying the BMA framework to model-form uncertainty in 
( )C k  with calibrated stochastic coefficients jα  and jβ  in Equation  15 

( { }= , ,A C Dd d d  (Table 6) and [ ]0.01,0.7iσ    [78])
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uncertainties in canonical aeroelastic problems with discontinuous 
response. In particular, improvement in the prediction of the stochas-
tic flutter boundary of complete aeroelastic aircraft configuration in 
the transonic flight regime are expected, by combining CFD-based 
aeroelastic solvers with adaptive sparse stochastic solvers [14, 87]. 
Although probabilistic methods are not well-suited for the accurate 
estimation of quantiles and probability of failure, attempts to deal with 
the use of polynomial chaos for robust design and the computation 
of failure probabilities can be found in [34, 69, 80, 104] and could 
be considered for reliable aeroelastic stability analysis. Moreover, 
variable-fidelity and multi-fidelity surrogate modeling [6, 19, 71, 95] 
can be used to further reduce the computation cost by combining 
machine learning tools and Bayesian Inference steps for the calibra-
tion of low-order aeroelastic models and observations gained from 
possibly CFD-based higher-fidelity models.

Due to their ability to identify or verify parameter values in the pres-
ence of model-form uncertainties, Bayesian approaches could help 
in constructing an adjusted stochastic model for reliable predic-
tions of the flutter boundary. However, several issues remain to be 
addressed. First, the considered data sets must be sufficiently large, 
in order to avoid strong sensitivity of the adjusted model to the cali-
bration data  ideally, the posterior distributions should no longer vary 
when additional observations are added. Thus, this would lead to 
the construction of specially-designed aeroelastic databases for a 
large range of realistic scenarios. Secondly, efficient methods will 
be required to overcome the computational burden due to the use 
of CFD-based aeroelastic analysis within the Bayesian framework. 
To this end, surrogates based on Polynomial Chaos or stochastic 
collocation could be incorporated into the Bayesian inference step 
[3, 28, 60, 63, 105] 
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