
HAL Id: hal-03892561
https://hal.science/hal-03892561

Submitted on 9 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Fidelity Gradient-Based Strategy for Robust
Optimization in Computational Fluid Dynamics

Aldo Serafino, Benoit Obert, Paola Cinnella

To cite this version:
Aldo Serafino, Benoit Obert, Paola Cinnella. Multi-Fidelity Gradient-Based Strategy for Robust Opti-
mization in Computational Fluid Dynamics. Algorithms, 2020, 13 (10), pp.248. �10.3390/a13100248�.
�hal-03892561�

https://hal.science/hal-03892561
https://hal.archives-ouvertes.fr


algorithms

Article

Multi-Fidelity Gradient-Based Strategy for Robust
Optimization in Computational Fluid Dynamics

Aldo Serafino 1,2,* , Benoit Obert 1 and Paola Cinnella 2

1 Enertime, 1 rue du Moulin des Bruyères, 92400 Courbevoie, France; benoit.obert@enertime.com
2 Laboratoire Dynfluid, Arts et Métiers ParisTech, 151 blvd de l’hopital, 75013 Paris, France;

paola.cinnella@ensam.eu
* Correspondence: aldo.serafino@ensam.eu

Received: 31 July 2020; Accepted: 24 September 2020; Published: 30 September 2020
����������
�������

Abstract: Efficient Robust Design Optimization (RDO) strategies coupling a parsimonious uncertainty
quantification (UQ) method with a surrogate-based multi-objective genetic algorithm (SMOGA) are
investigated for a test problem in computational fluid dynamics (CFD), namely the inverse robust
design of an expansion nozzle. The low-order statistics (mean and variance) of the stochastic cost
function are computed through either a gradient-enhanced kriging (GEK) surrogate or through
the less expensive, lower fidelity, first-order method of moments (MoM). Both the continuous
(non-intrusive) and discrete (intrusive) adjoint methods are evaluated for computing the gradients
required for GEK and MoM. In all cases, the results are assessed against a reference kriging UQ
surrogate not using gradient information. Subsequently, the GEK and MoM UQ solvers are fused
together to build a multi-fidelity surrogate with adaptive infill enrichment for the SMOGA optimizer.
The resulting hybrid multi-fidelity SMOGA RDO strategy ensures a good tradeoff between cost and
accuracy, thus representing an efficient approach for complex RDO problems.

Keywords: robust design optimization; uncertainty quantification; gradient enhanced kriging;
method of moments; multi-fidelity surrogate; continuous adjoint; discrete adjoint

1. Introduction

In recent years, robust design optimization (RDO) [1] has received increasing interest in
engineering applications, due to its ability to provide efficient designs with a stable behavior
under uncertainties of a diverse nature, such as randomly fluctuating operating conditions,
geometric tolerances, and model uncertainties. Taguchi’s method [2], relying on the simultaneous
optimization of the average and variance of the stochastic cost functions, is by far the most popular
RDO method, although approaches allowing accounting for rare events, such as the low-quantile [3,4]
or the “horsetail matching” [5] methods, have been paid significant interest recently.

The main ingredient for RDO is an uncertainty quantification (UQ) method, allowing
characterizing the probability distribution functions (pdf) or, at least, the lower order statistics
of the cost functionals for each proposed design, in order to select those that guarantee the best
possible average performance while avoiding critical deviations when nominal design conditions
are not matched. According to the RDO method in use, a single objective deterministic design
problem is generally converted into a multi-objective (Pareto front) one, with the aim to optimize
the average performance while avoiding critical performance loss at off-design conditions. For this
reason, RDO often combines an UQ solver with evolutionary algorithms (typically, multi-objective
genetic algorithms (MOGA) [6,7]), which are naturally suited for providing a full set of compromise
solutions among the multiple objectives. On the other hand, evolutionary optimizers are generally
very demanding in terms of cost function evaluations, which may require in the end a prohibitive
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computational effort for problems described by costly computer models, such as those encountered
in computational fluid dynamics (CFD), despite the use of massive parallelization [8–10]. In order
to reduce the number of costly function calls, it is crucial to select parsimonious UQ methods and
optimizers, the overall cost of RDO being typically the product of the cost of the two approaches [11].
Past examples of RDO in CFD include various forms of UQ solvers based on non-intrusive polynomial
chaos expansion [11,12] or surrogate models such as simplex stochastic collocation [13] or kriging [9].
All of them require a number of CFD solves quickly increasing with the number of uncertain
parameters, and their direct coupling with MOGA optimizers is not computationally affordable
for industrial applications, especially if massively parallel computers are not available.

An interesting option for reducing the cost of UQ solves is to use gradient information. A simple
method for approximating statistical moments of the cost function by Taylor series expansions is the
so-called first-order method of moments (MoM) [14]. Such a method can be remarkably fast if the
derivatives of the cost function with respect to the uncertain variables are readily available by means
of a discrete or continuous adjoint solver [15–20]. Nevertheless, its accuracy is limited to Gaussian or
weakly non-Gaussian processes with small uncertainties, since higher-order terms become increasingly
important for strongly non-Gaussian input distributions. Some improvement can be achieved by using
higher-order expansions, but these require information about higher-order sensitivity derivatives,
which may represent a delicate and highly intrusive task. A more complete discussion can be found
in [21]. An alternative to MoM, better suited for high uncertainty ranges and generic pdf, consists of
leveraging gradient information to construct a high-quality surrogate from a reduced number of
samples. Such an approach is used for instance in gradient-enhanced kriging (GEK) surrogates [22–24].
Once the surrogate is available, inexpensive Monte Carlo sampling on the response surface can be
used to estimate the required statistics.

Massive parallelization is of great help for speeding up the RDO process [10,11,25], but it is not
promptly applicable for routine industrial use. A way of drastically reducing the required number of
function calls consists of replacing the costly CFD or UQ solvers with surrogate models, such as radial
basis functions [26], artificial neural networks [27], and kriging [9,10], approximating variations of the
cost functions through the design space. Such an approach is called a surrogate-based multi-objective
genetic algorithm (SMOGA).

Further reductions of computational time can be achieved by combining models with various
levels of fidelity during the optimization. Such so-called multi-fidelity (MF) models [28,29]
leverage the use of inexpensive, but low-fidelity (LF) models for efficiently exploring the design
or stochastic spaces, while using parsimonious high-fidelity (HF) samples to improve model accuracy.
Examples of LF models are given by coarse-grid approximations [30–33], data-fit interpolation and
regression models [34], projection-based reduced models [35,36], machine-learning-based models [37],
or simplified models relying on approximations of the underlying physics [38–40]. In addition
to an LF and an HF model, a correlation model is also required for combining data with various
fidelity levels. A simple approach consists of linking the HF and the LF models by means of an
additive correlation [41]: given an LF model fLF(ξ) and an HF model fHF(ξ), it is assumed that
fHF(ξ) = fLF(ξ) + δ(ξ) where δ(ξ) is an error function to be estimated. This approach is accurate
enough when HF and LF models have similar scales and a good correlation, as is the case for
coarse-grid approximations [42]. As an alternative, a multiplicative correlation can be used [43–45]:
fHF(ξ) = ρ(ξ) fLF(ξ), with ρ(ξ) a constant scalar multiplier. A more comprehensive formulation
combining the preceding ones was proposed in [32]: fHF(ξ) = ρ fLF(ξ) + δ(ξ). This approach is
considerably more robust, and it has been extensively used in conjunction with Gaussian process
approximation (including kriging) and Bayesian inference [46–49]). More sophisticated correlations
exist [50–52], but they may be difficult to implement for complex problems.

In the present paper, we build on a SMOGA-based RDO technique introduced in [10], relying
on the coupling of two nested Bayesian kriging (BK) surrogates: the first one is used to compute the
required statistics of the objective functions in the uncertain parameter space, while the second one
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is used to model the response of these statistics to the design variables. Such an approach is called
“combined kriging” [53]. An expected improvement criterion is used to update the second kriging
surrogate during convergence towards the optimum. This technique has been successfully applied
to the design of turbine blades for organic Rankine cycles [9] and to the RDO of the thermodynamic
cycle [54]. Assuming that each kriging surrogate requires a number of samples approximately equal
to 10 times the cardinality of the parameter space to build a reasonably accurate approximation [55],
the nested BK RDO strategy needs O(100× nunc × ndes) function evaluations (with nunc the number
of uncertain parameters and ndes the number of design variables) in the first generation of the GA to
generate the initial kriging surrogates for the statistical moments. AdditionalO(10× nunc) evaluations
are required for each update of the external kriging surrogate. Such a number of function calls is still
too expensive for industrial CFD problems, even for uncertain or design spaces of low to moderate
dimensionality (up to about eight uncertain or design parameters). GEK surrogates can be used to
reduce the number of samples for the UQ step, but GEK-based MOGA is not straightforward in the
context of RDO problems, since it requires also the gradient of the statistical moments of the QoI’s pdf
with respect to the design variables. Obtaining such a piece of information by using efficient adjoint
methods is not a trivial task; on the other hand, finite difference approximations are easily applicable,
but at the price of a considerable computational expense for high-dimensional design spaces.

This is why we propose in this work a new multi-fidelity strategy for RDO that drastically
reduces the required number of function calls by leveraging an inexpensive (but low-accuracy)
first-order method of moments (MoM) and a Bayesian GEK [56]. Using gradient-based solvers
allows reducing per se the number of function solves in the UQ step and to mitigate the curse of
dimensionality. Here, the two models are fused together by using a methodology similar to [57]
to generate a surrogate model for the MOGA optimization that combines the efficiency of MoM
and the accuracy of GEK. The surrogate is enriched based on the expected improvement criterion
during MOGA convergence, as in [9]. The required gradient information is obtained by using either
continuous or discrete adjoint formulations. The new MF-RDO strategy is applied to an inexpensive
test problem, i.e., the stochastic inverse design of a supersonic quasi-1D nozzle. The results show that
a few GEK UQ solves are sufficient to correct the MoM solution, thus reducing the computational
cost of the RDO by approximately one order of magnitude with respect to the nested BK strategy.
Computational gains are expected to be even more substantial for costly industrial CFD problems.

The paper is organized as follows. In Section 2, we present the RDO problem and the test
problem. The UQ methods considered in the study are described in Section 3. Section 4 presents the
surrogate-based and multi-fidelity RDO strategies. In Section 5, we first apply various UQ methods to
the test configuration and compare their accuracy and computational costs; afterwards, such methods
are combined with a SMOGA or MF-SMOGA, and their efficiency in solving the RDO problem is
assessed. Conclusions and final remarks are reported in Section 6.

2. Problem Definition

Following Taguchi’s RDO method, we look for a methodology allowing optimizing a set of QoIs,
J = J(x, ξ), J ∈ Rm depending on a vector of deterministic design parameters x ∈ Rndes and on
a vector of uncertain parameters ξ ∈ Rnunc . Note that some of the design parameters may also be
uncertain. We formulate the RDO problem by using the expectancy and the variance of J as measures
of robustness, which leads to the solution of the two objective deterministic optimization problem in
Equation (1).

minxE[J], minxvar[J] (1)

The preceding optimization problem is solved by means of an MOGA. More precisely, following
our previous studies [10,12], we adopt the non-dominated sorting genetic algorithm (NSGA-II) of
Deb et al. [58], which provides an approximated Pareto front of optimal solutions corresponding
to different trade-offs between average performance and robustness for the various QoIs at hand.
For simplicity, in the following, we consider only the case of a single QoI, m = 1, but the approach
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can be extended to multiple QoIs. The required statistics of the QoIs are calculated by means of
a non-intrusive UQ method, which, for CFD models, is coupled with a suitable (costly) flow solver.
Thus, the first ingredient of the RDO process is an efficient UQ approach, which provides accurate
approximations of E[J] and var[J] based on a set of N deterministic samples of the solution. The UQ
methods investigated in this work are described in Section 3.

Direct coupling of the MOGA with the UQ solver is overly costly for CFD, due to the high number
of function evaluations. For instance, running the MOGA with a population of npop individuals
over ngen generations and using N samples for UQ lead to an overall number of CFD evaluations
of the QoI of about N × npop × ngen. The computational cost can be greatly alleviated by running
N × npop deterministic runs in parallel at each NSGA generation [8,25], but: (i) the required number of
computational cores may exceed the computational resources available, and (ii) even with a perfect
parallel scaling at each generation, the turn-around time of the RDO equals at least the average cost of
a CFD run multiplied by ngen. To reduce the computational cost, a second (external) surrogate model
is introduced to predict the response of the cost functions to the design parameters, as described in
Section 4.

2.1. Test Problem: Quasi-1D Supersonic Nozzle

Various RDO strategies are assessed against an inexpensive test problem (also studied in [10,17]),
namely the inverse design of a supersonic quasi-1D diverging nozzle. This allows validating UQ
methods against MC sampling.

The nozzle geometry is assigned through the area distribution S(x) along the longitudinal axis x.
This is chosen to be of the form:

S(x) = a + b tanh(cx− d) (2)

with a, b, c, and d coefficients defining the geometry. The nozzle length is set to L = 10. A typical
nozzle geometry is depicted in Figure 1.

Figure 1. Baseline quasi-1D nozzle.

For this test case, the QoI J (Equation (3)) is a scalar, namely the mean quadratic error of the actual
pressure distribution in the nozzle P(x) with respect to the target design pressure distribution Pdes(x).
The latter corresponds to the pressure distribution for a nozzle geometry with a = 1.75, b = 0.699,
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c = 1.00, and d = 3.80, a reservoir pressure PT,in = 1 bar, an outlet static pressure Pout = 0.6 bar, and a
gas specific heat capacity ratio γ = 1.4.

J =
1
2

∫ L

0
(P− Pdes)

2dx (3)

The optimization goal is to determine the design parameters a, b, c, d in Equation (2) providing
the best fit to the target pressure distribution under multiple uncertainties, in the sense of Equation (1).

The flow is assumed to be governed by the steady Euler equations for quasi-1D flows
(Equation (4)):

R(w, x) =
∂( f S)

∂x
+ K

dS
dx

= 0 (4)

where w = [ρ, ρv, ρet]T and f (w) = [ρv, ρv2 + P, ρvht]T are, respectively, the conservative variable and
the physical flux vectors [59]. In the preceding equations, ρ is the fluid density, v is the velocity along
the nozzle axis, et and ht are the total specific energy and enthalpy, and K = [0,−P, 0]T . The system
of equations is supplemented by the equation of state for thermally and calorically perfect gases,
P = (γ− 1)ρ(eT − v2/2). The governing equations are discretized by a cell-centered finite volume
formulation, using Rusanov’s first-order upwind scheme for space integration. The steady state
solution is computed iteratively by solving a false transient with four-stage explicit Runge–Kutta
time-stepping [59]. Characteristic boundary conditions based on Riemann invariants are imposed
at the nozzle inlet and outlet. Sonic flow conditions are prescribed at the inlet, so that all Riemann
invariants enter the domain. The range of variation of the total pressure is such that a shock is always
created in the divergent nozzle. As a consequence, outlet flow conditions are always subsonic. In this
case, we impose the outlet static pressure, which is treated as deterministic, and fixed to Pout = 0.6 bar.
Based on a preliminary mesh study, a computational grid of 300 uniformly spaced cells is used in all of
the following calculations.

The system is assumed to be subject to uncertainties of various nature, specifically:

• geometric tolerances on the nozzle shape, modeled by treating the shape parameters a, b, c, d
as normally distributed random variables, with mean µ and coefficient of variation CoV = σ/µ,
with σ the standard deviation;

• uncertainties in inlet total pressure PT,in described as a uniformly-distributed random variable
with imposed lower and upper bounds;

• uncertainties in the gas properties, here represented by the specific heat ratio γ, which is also
assumed as uniformly distributed.

The characteristics of the random parameters are listed in Table 1. In the inverse design process,
the uncertain geometric parameters are also (uncertain) design variables: for this reason, their mean is
not fixed, but varies within the ranges corresponding to the bounds of the design space. This means
that, even for designs corresponding to the upper/lower bounds, a realization of the nozzle geometry
may lie outside the prescribed limits, due to geometric tolerances.

Table 1. Characteristics of the pdfs used to model the uncertain parameters.

Quantity pdf Distribution Distribution Parameters

a Gaussian µ ∈ [1.5–2.0], CoV = 0.01
b Gaussian µ ∈ [0.6–0.8], CoV = 0.01
c Gaussian µ ∈[0.7–0.9], CoV = 0.01
d Gaussian µ ∈ [3.9–4.1], CoV = 0.01

PT,in Uniform [0.90–1.10]
γ Uniform [1.39–1.41]
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3. Uncertainty Quantification Methods

The goal of UQ methods is to estimate variability in the output of a model, corresponding to
a set of QoIs, given variations in the model inputs. We present in the following two gradient-based
UQ methods. The first one is a so-called probabilistic and non-intrusive approach, which predicts the
approximate pdfs of the output QoIs, given the probability distributions assigned to the inputs and
a set of samples of the QoI obtained by running the model as a black-box function. It relies on MC
sampling on a gradient-enhanced kriging surrogate. The second one is a deterministic, more intrusive,
approach based on Taylor-series expansion of the QoI with respect to the uncertain parameters, and
it corresponds to a first-order adjoint method of moments (MoM). In addition to those UQ methods,
we also consider a UQ solver based on the BK surrogate of [9], which does not use gradient information.
BK is also used as the external surrogate model for SMOGA in the next section.

3.1. Bayesian Kriging and Gradient-Enhanced Kriging

Surface-response methods based on Bayesian kriging (BK) are implemented to achieve
a non-intrusive estimate of the cost function statistics. In the following, we first introduce a BK
formulation using only the observed values of the QoI J. Afterwards, we extend the formulation to
account for gradient information, leading to Bayesian GEK.

3.1.1. Bayesian Kriging

A surface-response method based on BK was implemented to achieve a non-intrusive estimate of
the cost function statistics. The QoI J is modeled as a regression function of the form:

J(ξ) = ∑
i

fi(ξ)βi + Z(ξ) = m(ξ) + Z(ξ) (5)

where we dropped the dependency on the deterministic quantities for simplicity, so that ξ defines a
generic point in the nunc-dimensional uncertain space, fi are basis functions of the regression model,
βi are regression coefficients to be determined, and Z(ξ) is a zero mean Gaussian process (GP) [60],
modeling the deviation between the regression function and the data. Choosing a zeroth-order
polynomial as the regression model leads to the so-called ordinary kriging. The deviation Z is
represented as a multi-variate normal distribution Z ∼ N(0, R), with zero mean and covariance
matrix R.

The kriging approximation can be formulated in a Bayesian statistical framework. In this
case, the BK surrogate predicts a set of M values of the QoI J(ξ), conditional on N observed
data J∗, where J∗ is selected from the full set of J through the observation matrix H of size
N ×M: J∗ = H J with:

Hij =

{
1, if i = j
0, otherwise

(6)

for i = 1, ..., M and j = 1, ..., N. The vector of the unknown QoI J(ξ) is supposed to follow
a normal prior distribution p(J), J∼N(0, P), where the covariance matrix P has to be estimated.
Besides, the conditional probability to observe the N data J∗ given the unknowns J (known as the
likelihood function) is also supposed to be a normal distribution of the form:

J∗|J ∼ N(H J, R) (7)

The observation error is modeled as uniform and uncorrelated, resulting in a covariance matrix of the
form R = ε2 I, where I is the unit matrix and ε a pre-specified error of the observed variable values.
The posterior distribution of the unknowns, conditional to the observed data, can be inferred by means
of the Bayes theorem, such that:

p(J|J∗) ∼ p(J∗|J)p(J) (8)
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The posterior being the product of two normal distributions results in being a normal distribution as
well, whose parameters depend on the expression of the prior covariance P:

p(J|J∗) ∼ N(E [J|J∗] , var [J|J∗]) (9)

Assuming that J and J∗ are normalized such that J∗ has zero mean and unit variance, the covariance
matrix P of the prior distribution p(J) is defined such that its elements are generated by the squared
exponential kernel (reported below in the 1D case, for simplicity):

P = cov(hij, θ) =

[
exp

(
−

h2
ij

2θ2

)]
(10)

where hij = ξi − ξ j is the correlation range, ξi the generic coordinate of the observation point J∗,
and θ a hyperparameter that has to be estimated (for multi-dimensional problems, it is a vector whose
dimension is the cardinality of the parameter space). Following [61], the kriging predictor mean and
variance are:

E(J|J∗) = PHT(R + HPHT)−1 J∗ (11)

var(J|J∗) = [I − PHT(R + HPHT)−1]P (12)

The advantage of this methodology is that the kriging variance provides a natural measure
of the accuracy of the surrogate model. Because we deal with an ordinary kriging model
where the hyperparameters need to be estimated, the maximum likelihood estimation (MLE)
approach is implemented in order to evaluate the hyperparameter vector θ as the solution of the
optimization problem:

maxθ

{
−
(

ln |A|+ J∗T A−1 J∗
)}

(13)

where A = (R + HPHT). Since the optimization problem in (13) is defined over a multidimensional
space of cardinality nunc, whose cost grows as O(nsN3), where ns is the number of optimization steps
and N is the number of observed samples, it represents a bottleneck for the above methodology.
The MLE problem is classically solved by means of the Nelder–Mead downhill simplex method [62].
Here, a global search algorithm based on a differential genetic evolution approach was implemented,
providing an improvement in terms of computation time. Besides, efficient inversion of matrix A is
achieved through Cholesky decomposition.

Once the kriging surrogate has been trained from the data and the hyperparameters are
estimated, the statistics of the QoI are calculated through Monte Carlo sampling of the kriging surface,
according to some prescribed joint probability function distribution of the parameters ξ.

3.1.2. Gradient Enhanced Kriging

Bayesian kriging can be accelerated by adding gradient information. The formulation described
hereafter is the form of so-called gradient-enhanced co-kriging, denoted GEK for simplicity, where the
gradient data are added as covariables. This approach has been shown to be simpler and more robust
for indirect gradient-enhanced kriging, where the gradient information is included in the surrogate
by adding finite difference-based values at small distances from the sample locations, and then, a
standard kriging is performed on the resulting augmented sample [22–24].

For the sake of clarity, we first describe GEK in the one-dimensional case: J = J(ξ). Assuming that
the derivatives of dJ/dξ are known at the M sampling points, the observation vector is redefined by
concatenating the gradient information to the function values:

J∗ =
(

J1
∗, J2

∗, . . . , JM
∗,

dJ
dξ∗

∣∣∣∣
1

∗
,

dJ
dξ∗

∣∣∣∣
2

∗
, . . . ,

dJ
dξ∗

∣∣∣∣
M

∗)T

(14)
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The covariance matrix is subsequently modified to account for the observational errors on the
derivatives, also assumed to be uniform and uncorrelated. This results in a diagonal matrix of
dimension 2M× 2M:

R = diag(ε2, . . . , ε2︸ ︷︷ ︸
M times

, ς2, . . . , ς2︸ ︷︷ ︸
M times

) (15)

where ς2 is the variance of the (identically distributed) observation errors on the gradients.
Finally, the prior covariance is reformulated as in [63]:

P =

[
P00 P01

P10 P11

]
(16)

with P00 = cov(hij, θ),P01 =
∂cov(hij, θ)

∂hij
,P10 = −

∂cov(hij, θ)

∂hij
, and P11 =

∂2cov(hij, θ)

∂h2
ij

.

In the above, P00 is the covariance of the function values, P11 is the covariance of the derivatives,
and P01 and P10 are the cross-covariances.

The GEK formulation is extended to M-dimensional problems in a straightforward manner:
the observation vector is expanded by adding N M-dimensional gradients, which results in the
N × (M + 1) compiled observations [64]. The prior covariance P becomes:

P =


P00 P01 · · · P0M
P10 P11 · · · P1M

...
...

. . .
...

PM0 PM1 · · · PMM

 (17)

where:

Pkl
ij =

∂2cov(ξk,j, ξl,i)

∂ξk∂ξl
(18)

Due to the use of additional gradient information, GEK achieves a given level of accuracy with
a number of samples that is consistently lower than BK. However, the solution quality may be highly
dependent on the accuracy of the computed gradients [24], which must be properly accounted for
when building the surrogate.

3.2. Method of Moments

Among deterministic UQ methodologies, an interesting approach is the MoM,
which approximates the statistical moments of the fitness function by Taylor series expansions. This
method may provide fast and sufficiently accurate estimates of the QoI statistics, as long as the fitness
sensitivity derivatives with respect to uncertain parameters are provided by an efficient method and
complete output statistics are not required [17]. Both first- and second-order MoM formulations have
been considered in the literature (see for instance [17]). Here, we restrict our attention to the first-order
MoM, as a candidate low-fidelity UQ method to be combined with a higher-fidelity approach, as
discussed later. Following [65], the first-order approximation for the expected value (mean) of J is
simply given by:

EFO [J(ξ)] = J(ξ̄) (19)

which is nothing but the deterministic evaluation of function J at the mean value of the input ξ̄.
The first-order variance is:

VarFO [J(ξ)] =
N

∑
i=1

N

∑
j=1

∂J
∂ξi

∣∣∣∣
ξ̄

∂J
∂ξ j

∣∣∣∣
ξ̄

cov(ξi, ξ j) (20)
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with cov(ξi, ξ j) the covariance matrix. If the variables ξ = {ξ1, ξ2, ....ξN} are uncorrelated,
the covariance is a diagonal matrix and Equation (20) takes the simplified form:

VarFO [J(ξ)] =
N

∑
i=1

N

∑
j=1

∂J
∂ξi

∣∣∣∣
ξ̄

∂J
∂ξ j

∣∣∣∣
ξ̄

σ2
i (21)

where σ2
i stands for the variance of the i-th uncertain parameter.

3.3. Gradient Calculation

The gradient information required for the GEK and MoM approaches is calculated by means
of the adjoint method. Both the continuous and the discrete adjoint formulations are used in the
following. Their derivation for the present quasi-1D nozzle problem is described in Appendix A.

4. Robust Design Optimization Strategy

As the RDO problem defined in Equation (1) is an intrinsically multi-objective problem,
the well-known non-dominated sorting genetic algorithm NSGA-II [58] has been used as the optimizer.
The MOGA requires evaluations of the RDO cost functions through the UQ method for each individual
and for each generation. To reduce the computational cost of the RDO, one possibility is to construct
a BK or GEK surrogate over a parameter space extended to the design variables, i.e., of dimensionality
nunc + ndes. Due to the curse of dimensionality, constructing a reliable surrogate over such a large
parameter space may result in an unacceptable cost of the kriging approximation. To avoid this issue
and to facilitate the use of gradient-based UQ, including MoM, we chose to construct instead a separate
surrogate model mapping a variable in the design space to the cost function space.

4.1. BK-Based Robust Design Optimization

In [9,10,54], an external BK surrogate was constructed to describe variations of the mean and
variance of the QoIs in the design space, by using ninit samples chosen according to a preliminary
design of experiments (DOE). In those references, a first-level UQ BK using N samples was used to
evaluate the cost functions. In the present work, a similar approach is used, whereby a GEK surrogate
or the MoM may replace first-level BK for the UQ step; a flowchart of the RDO process is provided in
Figure 2.

The construction of the second-level surrogate requires N × ninit deterministic runs of the
direct CFD solver in the case of BK and of the direct and adjoint solvers for GEK, which can be
parallelized in a straightforward manner. The moderate extra-cost of adjoint solves for GEK is in
general counter-balanced by a smaller N required for achieving a given accuracy. If the MoM is used
as the UQ solver, the cost of the initial surrogate is reduced to ninit deterministic runs of the direct
(nonlinear) and adjoint CFD solvers. Numerical tests show that a sufficiently accurate BK surrogate
can be obtained by setting ninit = 10ndes. Once ninit estimates of the QoI mean and variance have
been obtained, a second-level BK is constructed and coupled with the MOGA. In order to control
the accuracy of the approximated cost functions, an adaptive infill strategy is adopted to enrich the
external BK surrogate during the evolution. For this purpose, we add to the initial new DOE samples
selected during the MOGA iteration and retrain the BK model. Several infill criteria are available. For
an overview about all these techniques the reader is addressed to [66,67]. Among them, the expected
improvement (EI) criterion [68] has been shown to provide a good trade-off between exploitation and
exploration, and it was therefore selected for the RDO carried out in the present work.
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Figure 2. Flowchart of the BK-based SMOGA RDO process.

The new samples are drawn in such a way that the EI of the global minimum is maximized [69,70].
The EI quantifies the probability to improve the surrogate on the design space parameters. A global
optimization of the EI function is then carried out to find the most suitable location for the new sample
(see [70] for details).

Since RDO is intrinsically a multi-objective optimization process, the EI function is a surface of
a hyper-dimensional parameter space, and a more complex formulation is developed, referred-to as
the multi objective expected improvement (MOEI) approach (see [70]). The accuracy of the surrogate
is rapidly improved with a few MOEI infills, so that nMOEI << ngen. An MOEI update implies
running the UQ algorithm for the additional sample to be integrated to the second-level BK. The N
deterministic CFD and adjoint runs required for the BK and GEK UQ solvers can be carried out in
parallel. Finally, the cost of the RDO based on the adaptive infill strategy in terms of cost-function
evaluation is given by N × (ninit + nMOEI) direct CFD calculations for BK, N × (ninit + nMOEI) direct
and adjoint CFD calculations for GEK, and (ninit + nMOEI) direct and adjoint calculations for MoM.
The turn-around time, in the case of a perfectly-scaling parallel implementation, is approximately
equal to nMOEI + 1 runs. Based on numerical experiments, an MOEI adaptation every three to five
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MOGA generations is generally sufficient to achieve an accurate approximation of the optimum, as
shown in the Results Section.

The full BK-based RDO loop is described in the pseudo-code provided hereafter in Algorithm 1.

Algorithm 1: BK RDO loop with the MOEI adaptation.

1. Initialization: LHS DOE with ninit samples SDOE =
{

s(1), s(2), ..., s(ninit)
}

While i < ninit
Select design s(i) in SDOE
Run UQ solver to compute the statistics µs(i) ,σ

2
s(i)

Train surrogates Sµ(SDOE), Sσ2(SDOE)
2. BK-SMOGA loop

While n < ngen
If MOEI infill prescribed:

Solve MOEI pbto choose a new sample sopt

Run UQ solver to compute µsopt , σ2
sopt

Re-train Sµ, Sσ2 by adding sopt

4.2. Multi-Fidelity Methods for RDO

Although the BK-based SMOGA allows a considerable reduction of function calls during the RDO
loop, the overall computational cost remains significant for high-dimensional design and uncertain
spaces. While the computational cost is higher for BK or GEK solvers than for MoM, the former may
provide an accurate estimate of the QoI statistics, which is not the case for the first-order MoM. With
the aim of achieving a compromise between the accuracy of kriging-surrogate UQ solvers and the
computational efficiency of the MoM, in this section, we introduce an advanced SMOGA, based on
a multi-fidelity surrogate model of the design space replacing the preceding external BK surrogate
(MF-SMOGA).

In the MF surrogate, the MoM UQ solver is used as the low-fidelity (LF) model, and the GEK
UQ solver is the high-fidelity (HF) one. In the present implementation, an initial DoE is run at the
first iteration of the SMOGA, where the HF and LF sampling points are generated independently.
The auto-regressive correlation:

fHF(ξ) = ρ fLF(ξ) + δ(ξ) (22)

is used for correcting the discrepancy between the LF and HF models. More specifically, we follow the
implementation proposed in [57], and we use the LF model as a basis function for the regression term
expression of a universal kriging model; therefore, the term m(ξ) in Equation (5) becomes:

m(ξ) = ∑
i

fi(ξ)βi + fLFβρ (23)

where βρ is an estimate of the coefficient ρ of Equation (22) by means of a GP regression. Assuming that
the LF and HF models are independent, the mean µHF and variance σ2

HF of the high-fidelity model are
given by: {

µHF = ρµLF + µδ

σ2
HF = ρ2σ2

LF + σ2
δ

(24)

with µLF, σ2
LF, µδ, and σ2

δ the means and variances of the LF model and of the discrepancy function δ,
respectively. In order to improve the MF surrogate accuracy during SMOGA convergence, adaptive
infill based on the MOEI criterion is used. In this case, however, either the LF or the HF model can be
used for the infill. In the following calculations, we adopt the strategy of [42]: for the infill, priority is
given to the less expensive LF model, and the HF one is used only when improvement achieved with
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the lower level of fidelity is below a given tolerance, tol = 10−4 in the present calculations. Either way,
re-sampling at the same location is avoided.

Pseudo-code for the MF model is provided below in Algorithm 2; for more information about it,
the reader is addressed to [57].

Algorithm 2: MF RDO loop with the MOEI adaptation.
1. Initialization:

LHS LF DOE with nLF,init samples SDOE,LF =
{

s(1)LF , s(2)LF , ..., s(nLF,init)
LF

}
LHS HF DOE with nHF,init << nLF,init samples SDOE,HF =

{
s(1)HF, s(2)HF, ..., s(nHF,init)

HF

}
While i < nLF,init

Select design s(i)LF in SDOE,LF

Run MoM solver to compute the statistics µ(s(i)LF), σ2(s(i)LF)
Train LF surrogates SLF,µ(SDOE,LF), SLF,σ2(SDOE,LF)
While i < nHF,init

Select design s(i)HF in SDOE,HF

Run GEK solver to compute the statistics µ(s(i)HF), σ2(s(i)HF)
Use Equation (22) to construct MF surrogates: SMF,µ(SDOE,HF), SMF,σ2(SDOE,HF)

2. MF-SMOGA loop
While n < ngen

If MOEI infill prescribed:
Solve MOEI pb on MF surrogate to choose a new sample sopt

If EI>tol:
Run MoM solver to compute µsopt ,σ

2
sopt

Re-train SMF,µ,SMF,σ2 by adding sopt
Else:

Run GEK solver to compute µsopt ,σ
2
sopt

Re-train SMF,µ,SMF,σ2 by adding sopt

5. Results

The quasi-1D supersonic nozzle test problem presented in Section 2.1 is first used to assess the BK,
GEK, and MoM UQ methods against reference MC sampling. Afterwards, the methods are applied
to a sample of nozzle geometries and used to build single or multi-fidelity surrogates used in the
SMOGA RDO loop.

5.1. Preliminary Assessment of the UQ Methods

We select one of the nozzle geometries in the design space by assigning the geometric coefficients’
fixed normal pdfs with the standard deviation equal to 1% of the mean. The pdf parameters for
the geometric variables are provided in Table 2. The operation and thermodynamic parameters
are assigned the same pdf as in Table 1. The pdfs are sampled in order to build BK and GEK
surrogates, while the MoM is applied by computing the QoI and its gradient at the expected value of
the input parameters.

A summary of the UQ results is given in Table 3, where we report the approximated mean
and variance of the QoI J according to the various UQ methods. A reference calculation based on
MC integration over 105 samples is carried out to provide a reference solution. For the present
inexpensive test problem, the CPU time required for MC sampling is approximately 3× 106 seconds on
a personal computer having an Intel(R) Xeon(R) CPU E5-1620 v3 at 3.50 GHz. Results are also reported
for MC sampling on the BK surrogate. The latter uses 60 function evaluations at points selected
according to a Latin hypercube sampling (LHS) of the six-dimensional uncertain space. The sample
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size corresponds to the empirical rule N = 10nunc. This is already sufficient to achieve extremely low
errors with respect to the MC mean and variance, while reducing the overall computational cost of
the UQ by three orders of magnitude. The GEK UQ based on the discrete adjoint solver provides an
accuracy similar to BK by using only 15 samples. Despite the additional adjoint solves for gradient
computations, the computational cost is reduced by more than 1/3 with respect to BK. The accuracy
of GEK is confirmed by inspection of Figure 3, showing the full empirical pdfs of J computed with PC,
BK, and GEK. A very good agreement between MC, BK, and GEK is observed.

(a) MC (b) BK (c) GEK

Figure 3. Assessment of UQ methods: approximate pdf of QoI J for MC, BK, and GEK.

Table 2. Design parameters for the quasi-1D nozzle used for the assessment of the UQ techniques.

Design Parameter pdf

a ∼N(1.75, 0.0175)
b ∼N(0.699, 0.00699)
c ∼N(0.8, 0.008)
d ∼N(4.00, 0.004)

Table 3. Accuracy and computational efficiency of the UQ solvers.

UQ Method CFD Solves Adjoint Solves E[J] var[J] err% E[J] err % var[J] Time (s)

MC 1.0 × 105 0 3.508 0.6724 - 0.0% 3.0 × 106

BK 60 0 3.507 0.6724 −0.03% 0.0% 1.8 × 103

GEK (discrete adjoint) 15 15 3.506 0.6724 −0.05% 0.0% 9.0 × 102

GEK (continuous adjoint) 15 15 3.467 0.6972 −1.16% 3.69% 6.8 × 102

MoM (discrete adjoint) 1 1 3.451 0.6464 −1.63% −3.87% 6.0 × 10
MoM (continuous adjoint) 1 1 3.451 0.6757 −1.63% 0.49% 4.5 × 10

The accuracy is less satisfactory for the continuous adjoint approach, due to the less accurate
computation of gradients. This reflects numerical errors introduced by the discretization of the
adjoint equations and the treatment of boundary conditions, which are not completely consistent
with the discretization errors introduced by the direct CFD solver. On the other hand, the continuous
adjoint solver is developed independently on the direct solver, and in this sense, it is non-intrusive.
The computational cost of GEK samples using the direct or continuous adjoint is approximately the
same. The MoM method is obviously less accurate than the other UQ solvers. Nevertheless, the errors
on both the computed mean and variance remain very reasonable, despite the presence of a shock
in the divergent nozzle(where the Taylor-series expansion is not defined) and the relatively large
uncertainty range on the reservoir pressure (approximately 20%). The shock is in practice regularized
by numerical diffusion both in the direct and the adjoint solvers, while the uncertainty ranges of all
other parameters are reasonably small. While the discrete and continuous-adjoint MoM calculations
provide strictly the same results for E[J] (which does not use gradient information), they predict
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different results for the standard deviation. The slightly lower errors obtained for the continuous
adjoint method is the effect of the compensation of errors for the case at hand. Since the MoM requires
only one direct and one adjoint CFD calculation, its computational cost is essentially 1/15 of the GEK
sampling. Overall, the first-order MoM provides a reasonably accurate estimate of the lower order
statistics of the QoI and a very good tradeoff between cost and accuracy for the present problem. Its
accuracy is however expected to decrease for more severe uncertainty ranges. For this reason, the
MoM is categorized as a lower fidelity model than BK or GEK.

The UQ results for MC, BK, and GEK can be used to carry out a global sensitivity analysis and
to identify the random parameters contributing the most to the variance of the QoI by means of
an analysis of variance (ANOVA) decomposition. Specifically, exact or surrogate-based MC samples
are employed to calculate the Sobol indexes [71] in the parameter space defined by all uncertain
inputs. For this purpose, we used the SALib Python library [72]. Only the discrete GEK results
(reported in Figure 4) are considered here, the MC, BK, and continuous GEK methods leading to
similar conclusions. The figure reports the first-order Sobol indexes with respect to each uncertain
parameter, as well as the sum of the higher order indexes, corresponding to the interaction between
parameters when these are changed simultaneously. Sobol total indexes are also included in order
to further evaluate the relative importance of the various input parameters. The inlet total pressure
PT,in appears to be by far the most influential parameter, consistent with the much larger range of its
pdf. Nevertheless, the interactions terms are very significant, due to the highly nonlinear nature of the
compressible CFD problem, with geometric parameters c and d contributing by more than 10% to the
total variance and parameters a and b by more than 2%. For this reason, in the RDO calculations of the
following section, we treat all six input parameters as random variables.

Figure 4. Global sensitivity analysis with Sobol indexes.

5.2. RDO Results

In this section, the UQ methods are coupled with a SMOGA RDO optimizer. The objective
is to investigate how different approximations of the statistical models of J, i.e., of the RDO cost
functions, may affect the RDO process. The BK and GEK UQ solvers were used in the same setting
as Section 5.1, i.e., they are trained for each new design by using 60 and 15 samples in the uncertain
space, respectively. This choice provides a good tradeoff between accuracy and computational cost.
More sophisticated approaches involving an adaptive refinement of the UQ surrogates are possible
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and will be the object of future work. Secondly, an MF SMOGA RDO is carried out, and the results
are compared with single fidelity RDO. For the single fidelity surrogates, an initial LHS DOE of
10× ndes = 40 UQ runs was carried out prior to the first generation. Then, the first population was
randomly initialized in the design space, and the GA was allowed to evolve over 80 generations.
MOEI infills were conducted every five generations. For the MF surrogate, the initial DOE contained
40 LF continuous MoM and 10 HF discrete GEK UQ runs. Low-fidelity MOEI infills were added every
five generations except for the last infills, for which the tolerance criterion suggested an HF infill.
The evolution of the SMOGA search in the objective space E[J] vs. var[J] is depicted in Figure 5 for
various RDO optimizers: for each strategy, designs belonging to the first generation, the generations
after the first and the second MOEI infill, and the last one are highlighted in red, while all other designs
are depicted in grey. For the present inverse design problem, the Pareto front collapses onto a single
point corresponding to simultaneous minimization of both objectives E[J] and var[J]. The progression
toward the optimal point is similar for all UQ techniques and optimization surrogates.

Figure 5. Objective space.

For more clarity, Figure 6 shows the locations of selected GA populations in the objective space.
For each technique, four subplots are provided showing in red all points calculated respectively at the
SMOGA first generation, at the generation after the first MOEI infill, at the generation after the second
MOEI infill, and at the last generation. Moreover, in grey, as a background for each subplot, the reader
can find all points calculated with each technique during the SMOGA optimization. It appears that
kriging, GEK, the MoM, and MF evolve similarly, as they quickly reach the area near the optimum
after only two MOEI infills.
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(a) BK, 1st
generation

(b) BK,
generation
after 1st
MOEI infill

(c) BK,
generation
after 2nd
MOEI infill

(d) BK, last
generation

(e) GEK, 1st
generation

(f) GEK,
generation
after 1st
MOEI infill

(g) GEK,
generation
after 2nd
MOEI infill

(h) GEK, last
generation

(i) MoM, 1st
generation

(j) MoM,
generation
after 1st
MOEI infill

(k) MoM,
generation
after 2nd
MOEI infill

(l) MoM, last
generation

(m) MF, 1st
generation

(n) MF,
generation
after 1st
MOEI infill

(o) MF,
generation
after 2nd
MOEI infill

(p) MF, last
generation

Figure 6. Evolution of the convergence for BK, GEK, MoM, and MF. Red color highlights designs
belonging to the first generation, generations after the first and the second MOEI infill, and the last one.
Other designs are in grey color.
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The optimal solutions calculated with each technique are reported in Table 4. Despite the different
accuracy of the UQ techniques in use, all RDO loops converge to very similar solutions identified
through the expected values of the four design parameters [a, b, c, d], which differ only on the sixth
decimal digit or less for BK, GEK, and MF and on the fifth decimal digit for the MoM. The table also
displays the values of the objective functions computed on the surrogate models. BK-BK, GEK-BK, and
MF surrogates lead to close estimates of the objective functions, with discrepancies of less than 1%
on the mean and less than 2% for the variance. The CPU cost of the different RDO algorithms on
a single processor personal computer are reported in the same table. Due to the reduced number of
samples used in the UQ runs, the GEK algorithm allows gaining a factor of two to 2.5 over the BK. A
further reduction of a factor of 15 or larger is obtained using the MoM, but caution must be taken in
systematically preferring such a method for RDO problems, because of its lower accuracy. Finally, the
MF SMOGA RDO has a computational time eight times smaller than BK and four times smaller than
GEK while ensuring similar accuracy to BK SMOGA.

Table 4. Optimal solutions of RDO according to the various strategies.

UQ Method E[a] E[b] E[c] E[d] E[J] var[J] Optimization Time (h)

BK 1.500000 0.800000 0.900000 3.900000 0.28509 0.08545 ∼20
GEK (discrete adjoint) 1.500002 0.799998 0.900000 3.900000 0.28771 0.08368 ∼10

GEK (continuous adjoint) 1.500000 0.799999 0.900000 3.900000 0.28743 0.08416 ∼8
MoM (discrete adjoint) 1.500042 0.799961 0.898917 3.940293 0.28514 0.08465 ∼0.7

MoM (continuous adjoint) 1.500012 0.799993 0.899999 3.900004 0.28815 0.08502 ∼0.5
MF model 1.500000 0.799205 0.899942 3.900006 0.28501 0.08471 ∼2.5

As a further verification of the RDO results, the optimal design is recomputed using MC sampling,
resulting in E[J] = 0.32325 and var[J] = 0.09487, which is in rather good agreement with the SMOGA
estimates, appearing to be slightly over-optimistic in predicting the objective functions. Indeed, the full
pdf of the QoI computed by propagating the uncertain parameters through the CFD solution for the
optimal nozzle geometry by using the BK and GEK methods (shown in Figure 7 alongside the MC
distribution) exhibits moderate deviations from the MC one. Globally, the optimal distributions
are much closer to zero on average, and they exhibit a smaller variance than the baseline geometry
investigated in the preceding section, showing that the RDO effectively improves both criteria.

(a) MC (b) BK (c) GEK

Figure 7. pdf of the QoI J for the optimal solutions in Table 4.

Finally, the optimized geometry is depicted for all of the employed methodologies in Figure 8,
and it is compared with the baseline one. The plot is obtained by propagating the pdf of the geometric
coefficients through Equation (2), with the mean equal to the optimal RDO values and CoV = 0.01 as
prescribed in Table 4, by using MC sampling. Afterwards, the average geometries and the 3σ confidence
intervals are computed. In the figure, average geometries for all methods are essentially superposed to
within plotting accuracy, and the differences are largely smaller than the geometric uncertainty.



Algorithms 2020, 13, 248 18 of 25

Figure 8. Baseline geometry and optimized geometries (with 3σ uncertainty intervals) for various
RDO strategies.

6. Conclusions

In the present work, we first assessed various gradient-based methods for uncertainty
quantifications, in view of their use for the robust design optimization (RDO) of CFD problems.
Specifically, the capability of a Bayesian gradient-enhanced kriging surrogate model and a first-order
method of moments to accurately and efficiently compute the lower order statistical moments of
a quantity of interest was evaluated for an inexpensive test problem, representative of a supersonic
divergent nozzle, for which the results can be compared with well-converged Monte Carlo sampling.
The results show that GEK allows computational gains of a factor of two or more with respect to a
Bayesian kriging surrogate not using gradient information, when the gradients are efficiently computed
using an adjoint method. In the present work, both a discrete and a continuous adjoint method were
used for building GEK surrogates. The first one provides more accurate results, but it is somewhat
more costly and requires intrusive automatic derivation of the CFD code, which is not possible if,
for instance, a commercially available CFD solver is to be employed. The continuous adjoint method
allows developing a non-intrusive adjoint solver, but it is less accurate due to inconsistencies in the
numerical treatment of the direct and adjoint equations. In the present implementation, the continuous
adjoint solver benefits from a direct solution of the linear system of adjoint equations, and it is therefore
quicker than the discrete adjoint solver, which converges by means of a pseudo-transient technique.
The first-order moment method, based on either discrete or continuous adjoint gradients, is less
accurate than GEK, but it still provides satisfactory estimates of the QoI for the present shocked flow
problem, due to the relatively small variation ranges of the uncertain parameters.

The UQ methods are then combined with a genetic algorithm for solving the RDO problem.
The computations are sped up by constructing a Bayesian kriging surrogate model of the design space.
The surrogate is enriched during GA iterations by means of a multi-objective expected improvement
(MOEI) infill criterion. For the test problem at hand, the RDO results are found to be similar for the
BK, GEK, and MoM methods, the latter being much less expensive in terms of CPU time, but slightly
less accurate than the former ones. In order to benefit from the computational efficiency of the MoM
and the accuracy of the GEK UQ solvers at the same time, a multi-fidelity surrogate model is built by
fusing together the low-fidelity MoM and the high-fidelity GEK. An MOEI infill is used again to enrich
the surrogate during convergence, with preference for low-fidelity infills. The multi-fidelity approach
successfully identifies the RDO optimum, while dividing by a factor of 3÷ 4 the computational cost
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with respect to GEK. Such an approach is then identified as a promising candidate for more complex
RDO problems using CFD models. Further work is however required to assess its effectiveness for
more realistic and complex CFD problems. For this aim, its application to the RDO of the stator row of
an organic Rankine cycle turbine is underway and will be reported in the near future. In such a context,
the introduction of multi-fidelity UQ solvers combining BK and/or GEK based on different numbers
of samples could be an interesting future development for further speed up of the RDO procedure.
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Abbreviations

The following abbreviations are used in this manuscript:

CF(s) Cost function(s)
CFD Computational fluid dynamics
CoV Coefficient of variation
DoE Design of experiment
EI Expected improvement
MOEI Multi-objective expected improvement
BK Bayesian kriging
GEK Gradient enhanced kriging
GP Gaussian process
HF High fidelity
LF Low fidelity
MC Monte Carlo
LHS Latin hypercube sampling
MF Multi-fidelity
MoM Method of moments
NSGAII Non-dominated sorting genetic algorithm II
MOGA Multi-objective genetic algorithm
SMOGA Surrogate-based multi-objective genetic algorithm
QoI(s) Quantity(ies) of interest
RDO Robust design optimization
UQ Uncertainty quantification

Appendix A. Calculation of the Gradient from CFD Codes

As GEK and the MoM both require as input also the gradient of the QoIs with respect to the
uncertain parameters, it is worth providing a quick overview of the methodologies used to calculate
the derivatives of the quantities from the CFD code employed.

In general, the gradient evaluation problem may be stated as follows: J is a vector of objective
functions and constraints of dimension Nj (Equation (A1)) that must comply with a set R of governing
equations (Equation (A2)).

J = J(ω(α), α) (A1)

R(ω(α), α) = 0 (A2)

where:

• α is a vector of the control/design variables of dimension Nα, which parametrizes the problem.
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• ω is a vector of state variables depending on α with dimension Nω.

In this work, J is the objective function defined in Equation (3); the governing equations R
correspond to Euler equations for quasi-1D flow Equation (4); ω are the conservative variables
[ρ, ρv, ρet]; and α is the vector of the design parameters parametrizing the geometry [a, b, c, d] that
should be optimized.

The final aim of the problem is to evaluate the gradient of the objective functions and constraints
J expressed in Equation (A1) with respect to the design variables α, as defined in Equation (A3).

dJ
dα

=

[
∂JT

∂ω

]
dω

dα
+

[
∂JT

∂α

]
(A3)

In the present work, the continuous adjoint and discrete adjoint were used to compute the
gradient in Equation (A3); hereafter, in the following sections, the adopted formulation of both of these
techniques is provided.

Appendix A.1. Discrete Adjoint

For the discrete adjoint approach, both J and R must be considered in discrete form.
Therefore, as the differential form of the governing equation R Equation (A2) is equal to zero, it is
possible to plug it in the gradient equation Equation (A3), obtaining Equation (A4).

dJ
dα

=

[
∂JT

∂ω

]
dω

dα
+

[
∂JT

∂α

]
−ΨT

([
∂R
∂ω

]
dω

dα
+

[
∂R
∂α

])
(A4)

where Ψ is an arbitrary line vector with dimension Nω containing the discrete adjoint variables [73].
Equation (A4) can be arranged to obtain Equation (A5).

dJ
dα

=

{
∂JT

∂ω
−ΨT

[
∂R
∂ω

]}
dω

dα
+

{
∂JT

∂α
−ΨT

[
∂R
∂α

]}
(A5)

The first term of Equation (A5) can be eliminated by choosing the values for the components of
vector Ψ to satisfy the adjoint Equation (A6).

∂JT

∂ω
−ΨT

[
∂R
∂ω

]
= 0⇒

[
∂R
∂ω

]T
Ψ =

∂J
∂ω

(A6)

Thus, gradient
dJ
dα

can be easily calculated as in Equation (A7).

dJ
dα

=
∂JT

∂α
−ΨT

[
∂R
∂α

]
(A7)

In the present work, the direct and the discrete adjoint codes presented in [17] were used; the
latter was implemented by means of the algorithmic differentiation software Tapenade [74].

Appendix A.2. Continuous Adjoint

For the continuous adjoint, the adjoint equations with respect to J are derived from the continuous
form of the governing equations R; afterwards, they are discretized and solved.

Considering the quasi-1D nozzle geometry described in Section 2.1 and the definition of J provided
in Equation (3), one can write the differential form of J as in Equation (A8).

∂J
∂α

=
∫ L

0
(P− Pdes)

δP
δα

dx (A8)
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As the differential form of the governing equation R Equation (A2) is equal to zero, it is possible to
multiply it by a vector θT , then integrate it over the domain, and finally, subtract it from the variation
of the cost function dJ, obtaining the relation in Equation (A9).

J = J −
∫ L

0
θT dR

dx
dx (A9)

where θT is an arbitrary line vector with dimension Nω containing the continuous adjoint variables.

As the objective is to obtain the gradient
dJ
dα

, Equation (A9) can be differentiated, and with the

assumption that θT is also differentiable, it is possible to integrate the integrals containing θT by parts,
obtaining the formulation as in Equation (A10).

dJ
dα

=
∫ L

0
(P− Pdes)

δP
δα

dx−
∫ L

0

dθT

dx
S

d f
dα

dx−
∫ L

0

dθT

dx
f

dS
dα

dx +
∫ L

0
θT ds

dx
dK
dα

dx−
∫ L

0

dθT

dx
K

dS
dα

dx +

[
θTS

d f
dα

]L

0
+

[
θT f

dS
dα

]L

0
+

[
θTK

dS
dα

]L

0

(A10)

where K, S, and f were already defined in Equation (4). At this point, since θT is an arbitrary
differentiable function, it can be chosen in order to remove the dependence of dJ from the variation of
the state vector dω, obtaining the differential adjoint problem defined in Equation (A11).

∫ L

0
(P− Pdes)

δP
δα

dx−
∫ L

0

dθT

dx
S

d f
dα

dx +
∫ L

0
θT ds

dx
dK
dα

dx +

[
θTS

d f
dα

]L

0
= 0 (A11)

As all thermodynamic conditions are fixed at the nozzle inlet, so the boundary conditions
[

d f
dα

]
0

are equal to zero; consequently, solving θT becomesthe differential problem defined by the linear
system in Equation (A12) with the boundary conditions provided in Equation (A13).

∫ L

0
(P− Pdes)

δP
δα

dx−
∫ L

0

dθT

dx
S

d f
dα

dx +
∫ L

0
θT ds

dx
dK
dα

dx = 0 (A12)

[
θTS

d f
dα

]
x=L

= 0 (A13)

Once θT has been determined, the variation of the cost function dJ with respect to the
design parameters α can be easily calculated by considering just the variation of dS, as stated in
Equation (A14).

dJ
dα

= −
∫ L

0

dθT

dx
f

dS
dα

dx−
∫ L

0

dθT

dx
K

dS
dα

dx +

[
θT f

dS
dα

]L

0
+

[
θTK

dS
dα

]L

0
(A14)

In the present work, the system of linear equations defined in Equation (A12) is discretized by
a cell-centered finite volume formulation, using Rusanov’s first-order scheme for space integration,
while the boundary conditions in Equation (A13) with a second-order backward finite differences
scheme; this set of equation was solved with Gaussian elimination with partial pivoting.

Appendix A.3. Discrete and Continuous Adjoint Validation

In order to validate both the discrete and continuous adjoint, a comparison with gradients
calculated with finite differences was performed for the baseline geometry defined in Table 2. For finite
differences, a second-order central scheme was employed with a discretization step of 10−5.
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In Table A1, we compare the gradients from the finite differences method vs. the one calculated
with the discrete adjoint, while Table A2 presents the comparison with the continuous adjoint.

Table A1. Gradients from finite differences vs. gradients from the discrete adjoint for the
baseline geometry.

Quantity Finite Differences Discrete Adjoint Error %

∂J
∂a

341296 341302 0.002%
∂J
∂b

−854,462 −854,564 0.012%
∂J
∂c

−2,473,058 −2,473,429 0.015%
∂J
∂d

497,319 497,371 0.010%

Table A2. Gradients from finite differences vs. gradients from the continuous adjoint for the
baseline geometry.

Quantity Finite Differences Continuous Adjoint Error %

∂J
∂a

341,296 341,313 0.005%
∂J
∂b

−854,462 −854,609 0.017%
∂J
∂c

−2,473,058 −2,473,571 0.021%
∂J
∂d

497,319 497,401 0.016%
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