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Abstract – Satellite-linked buoys used by tropical tuna purse-seine vessels on drifting fish aggregating
devices (DFADs)provide a continuous streamof informationonboth theoceancharacteristics and thepresence
and size of fish aggregations associated with DFADs, enabling the study of pelagic communities. This
unprecedented amount of data is characterized by ocean-scale coverage with high spatial and temporal
resolutions, but also bydifferent data formats and specifications dependingonbuoymodel andbrand, aswell as
on the typeofdata exchangeagreements intoplay.Theiruse for scientificandmanagementpurposes is therefore
critically dependent on the abilities of algorithms to process heterogeneous data formats and resolutions. This
paper proposes a unified set of algorithms for processing the buoys location data used by the two major purse
seine fleets operating in theAtlantic and Indian oceans. Threemain issues that need to be addressed prior to the
exploitation of the data are identified (structural errors, data records on land and on-board vessels) and five
specific filtering criteria are proposed to improve the data cleaning process and, hence, quality. Different
filtering procedures are also compared, and their advantages and limitations are discussed.

Keywords: Instrumented DFADs / satellite-linked buoys / purse seiners / tropical tunas / data processing
1 Introduction

Defined as man-made floating objects specifically designed
to attract tunas and improve catches, Drifting Fish Aggregating
Devices (DFADs), are a major fishing tool used in tropical tuna
purse seine fisheries (Fonteneau et al., 2013). It has been
estimated that approximately 65% of the global tropical tuna
purse seine landings stem from catches made using DFADs
(Scott and Lopez, 2014). The DFAD-based fishery relies on a
behavioral trait exhibited by several pelagic marine species,
including tropical tunas, which leads them to gather in mass
around objects floating at sea. Since their introduction in the
tropical tuna purse seine fisheries, DFAD technology has
rapidly evolved from simple floating objects often equipped
with radar reflectors to help fishermen locate them, to more
complex raft designs equipped with electronic tracking
devices, ranging from radio transmitters to GPS beacons
ding author: yannick.baidai@ird.fr
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(Dagorn et al., 2013; Lopez et al., 2014). Currently, all
deployed DFADs are equipped with satellite-linked buoys that
incorporate echosounder devices to estimate the biomass
underneath DFADs (Moreno et al., 2019). These buoys
remotely provide near real-time information on their position,
drift and the presence and size of the fish aggregation
associated to the DFADs. This telemetered information has
resulted in a significant increase in the fishing efficiency of
purse seine vessels (Fonteneau et al.,1999; 2013; Lopez et al.,
2014; Wain et al., 2020). The major changes in fishing
strategies resulting from the use of DFADs have also
introduced substantial uncertainties in the catch per unit effort
traditionally used to assess tuna populations from commercial
purse seine data. This stems especially from the non-random
nature of DFAD based fishery, which adds considerable
complexity to the estimation of the purse-seiner fishing effort
(Fonteneau et al., 1999; 2013; Torres-Irineo et al., 2014).
Moreover, the role of DFADs in improving purse seine fishing
efficiency and their intensive use have raised several questions
related to their impacts on tuna stocks and their ecology, as
mmons Attribution License (https://creativecommons.org/licenses/by/4.0),
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well as on marine ecosystems (Dagornet al., 2013).Asa result, a
major current concern for tuna Regional Management Organ-
isations (tRFMOs) surrounds the need for complementary data
on DFADs. In particular, growing concerns about the impacts of
DFAD use have led to a number of specific plans for their
management by tRFMOs, incorporating, inter alia, the
strengthening of reporting requirements on DFAD activities
anddensities (e.g. IOTC:Res. 19/08; ICCAT:Rec19-02; IATTC:
C-19-01;WCPFC: CMM2018-01). The vast amount of position
and biomass data collected by the instrumented buoys used to
monitor DFADs constitutes a unique and extremely important
asset for scientists. Because of their large number, wide spatial
distribution and constant maintenance by fishermen, satellite-
linked echosounder buoys allow effortless and cost-effective
collection of various types of data likely to provide valuable
insights into ocean dynamics (Imzilen et al., 2019), distribution
and behaviour of fishes (Lopez et al., 2017; Orue et al., 2019a;
Baidai et al., 2020a), or to be used to derive novel abundance
indices for tuna populations (Santiago et al., 2016, 2020), aswell
as newmethods to reduce bycatch in the tropical tuna purse seine
fisheries (Mannocci et al., 2021). The instrumented DFADs
represent an unprecedented observatory of marine pelagic
communities (Brehmer et al., 2018; Moreno et al., 2016).

Currently three major manufacturers dominate the DFAD
buoy industry1 in Atlantic and Indian Oceans, and each offer
models that differ in terms of their hardware and software
(Moreno et al., 2019). The output datasets can also vary greatly
in both their nature and format depending on manufacturer and
model. Furthermore, because the provision of DFAD buoy data
to scientists is still conducted at regional or national level, the
characteristics of the dataset can also depend on the details of
the specific data exchange agreement between industry and the
respective national authority. Although some processing
protocols have already been proposed (Maufroy et al., 2015;
Orue et al., 2019a), they have primarily been applied to single
buoy types and uniform datasets. The application of these
methods can quickly become limited when faced with datasets
that mix several fishing fleets, brands and models of buoys.
Just like the intensive work undertaken a few years ago on
VMS data filtering procedures, (e.g. Gerritsen and Lordan
2011; Hintzen et al., 2012; Lambert et al., 2012; Lee et al.,
2010), the design of a standardized framework to capture the
heterogeneity that typifies DFAD-related data for their
integration into research and management processes is now
emerging as a key priority. Buoy location data, in particular,
are critical to achieve some of the major objectives of DFAD
management; including estimating and monitoring the actual
number of DFADs at sea (Chassot et al., 2019; Escalle et al.,
2021; Gershman et al., 2015), improving the conservation
measures regarding DFAD limitations and their enforcement
by fishermen (Goñi et al., 2017; Lennert-Cody et al., 2018), or
defining strategies to mitigate their stranding in sensitive areas
(Curnick et al., 2020; Davies et al., 2017; Escalle et al., 2021,
2019; Imzilen et al., 2022, 2021). Hence, a processing
framework to transform this vast amount of industrial data into
harmonized information, notably through standard procedures,
1Marine Instruments (www.marineinstruments.es), Satlink (www.
satlink.es) and Zunibal (www.zunibal.com).
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independent of the characteristics of the databases, appears to
be of primary importance.

In this study a set of processing algorithms were proposed
and applied to the raw data provided by the buoys from the two
major tropical tuna purse seine fleets (French and Spanish) in
the Atlantic and Indian oceans. The outcomes of the filtering
algorithms were compared between the various buoy models
and heterogeneous buoys location data formats that make up
the two databases.

2 Material and methods

2.1 Buoy data

Buoy data has been collected in the Atlantic and Indian
Oceans, under specific data-exchange agreements signed
between different research organizations (i.e. AZTI and
IRD) and EU tuna purse seine associations (i.e. ORTHON-
GEL2 for the French purse-seine fleet, Echebastar and Atunsa
companies in ANABAC3 and OPAGAC4 for Spanish fleets),
under the framework of the EU project RECOLAPE5.

A dataset was created for each fleet and ocean. They
consisted of information collected by a sample of 1000 buoys
during a random month of the year 2016. Since the objective of
this workwas not to compare the characteristics of the databases
between fleets, buoy manufacturers or research organizations,
but rather to define a common processing protocol, the datasets
examined for each fleet (resulting from specific data exchange-
agreements) were referred to as D1 and D2. Details on the key
features anddifferences between the twodatasets areprovided in
the following section.Following the sameprinciple, thedifferent
buoy models included in this study were also anonymized. The
D1datasets consisted of 62,902 and 61,194 rows for theAtlantic
and Indian oceans respectively, whereas the D2 datasets were
composed of 25,304 rows for the Atlantic Ocean, and 22,461
rows for the Indian Ocean.
2.2 Datasets characteristics

Table 1 provides the list of the different buoy brands, as
well as a description of the raw data contained in each dataset.
Common information includes the buoy identification code,
hour, date, position (latitude and longitude) and buoy speed.
The other data types are dependent upon the buoy brand and
data-exchange agreements. In each of the two oceans, large
differences between the composition of buoy models available
in the different fleet datasets (D1 and D2) are observed (Fig. 1).
The D1 datasets is largely dominated by a single model of
buoy, especially in the Indian Ocean, but between two and four
models were present, depending on the Ocean. The D2 datasets
is more heterogeneous, with roughly twice as many buoy
geladores.
4 Organización de Productores Asociados de Grandes Atuneros
Congeladores.
5MARE/2016/22 “Strengthening regional cooperation in the area of
fisheries data collection”.
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models, and two to three dominant models in each ocean. The
temporal resolution of the buoy location data is also
characterized by significant variability depending on the
datasets. The D2 datasets is limited to a single location per
buoy per day, regardless of the ocean or buoy model. This is
contrasted by a higher resolution in the data of the D1 datasets,
with between 3 and 9 location data per day for both oceans,
depending on the buoy model (Fig. 2).
2.3 Data processing protocol

The data processing protocol comprises the definition of
five specific filtering criteria (defined here from F1 to F5),
structured into three main processing stages (Fig. 3).

2.3.1 Stage 1: Structural errors filtering

Structural errors, such as duplicate or irrelevant rows in the
dataset, resulting from failures during data collection or
transfer are defined at this stage. Three types of structural
errors, principally related to failures during satellite commu-
nication, were flagged in the databases.

(i) Filter F1: Duplicate rows
Duplicate data refer to rows with identical buoy codes,

timestamps and positions. Generally, all other information in the
duplicate rows remain strictly identical, however in rare cases,
missing values may occur for some lines. Duplicates were
identified based on their identical buoy codes, timestamps and
locations. In thecasesofmissingdata, the rowkept, andconsidered
as the original, was the one with the most complete information.

(ii) Filter F2: Ubiquitous rows
Ubiquitous rows consisted of cases where two rows have

identical buoy codes and timestamps, but different locations
(Supplementary Fig. 1). Rows with these characteristics were
identified and the distance between locations was calculated.
When the two positions were separated by less than 1 km, a
randomly selected row was retained while the other was
considered “ubiquitous”. Otherwise, the two rows were
assigned as “ubiquitous”.

(iii) Filter F3: Isolated positions
Positions separated from their nearest neighbors on a buoy

track, by more than 48 h (considering the general time
resolution in the data collection) or having an inconsistent
speed (considering a threshold of 35 knots, a value far above
speeds of both tuna purse seine vessels and ocean currents),
were referred to as isolated positions (Supplementary Fig. 2).
By addressing the buoy track (a collection of positions
belonging to a single GPS buoy), this filtering step allowed the
identification of a distinct series of consecutive positions
(segments) separated by potential GPS failures, buoy
relocations or buoy deactivation/reactivation events on a
given buoy track.

2.3.2 Stage 2: Filtering of land positions (Filter F4)

Buoys located on land (due to beaching events or active
buoys brought back to port) were detected using shoreline data
from the GSHHG database (Global Self-consistent, Hierarch-
ical, High-resolution Geography; Wessel and Smith, 1996).
The influence of different shoreline resolutions on the filtering
Page 4 o
procedure was assessed through the comparisons of results
from low and high-resolution shorelines (see details in Wessel
and Smith, 1996) buffered with 0.05° (Supplementary Fig. 3).

2.3.3 Stage 3: Filtering of “on-board”/“at sea” buoy
positions (Filter F5)

Echosounder buoys can be activated and transmit on-board
vessels prior to their deployment. Similarly, buoys retrieved
from the sea may continue to collect data on-board vessels for
variable durations. In order to discriminate “on-board” from
“at sea” positions, two different approaches were compared.
The first approach was based on a rule-based algorithm using
the buoy’s speed as the main classification variable. This was
referred to as the “kinetic classification algorithm”. The second
applied a random forest model (Breiman, 2001) trained using a
learning dataset containing information from a single buoy
type (Model 9, Tab. 1). The two algorithms classified the data
into three classes: “on-board” (for buoys emitting while on-
board a vessel), “at sea” (for buoys deployed in the water), and
“undetermined” (a subset of positions that remained unclassi-
fied). Finally, comparisons of the classification results of the
two algorithms were carried out through the calculation of
simple matching coefficient estimated from confusion matrices
derived from the outputs of the two approaches (Sokal, 1958).
For this purpose, unclassified buoy positions were considered
as emitting from water (“at sea”).

(i) Kinetic classification algorithm (KiC)
The kinetic classification algorithm uses deterministic

rules encoded in the form of if-then-else statements as a
representation of knowledge (Baidai et al., 2017; Grande et al.,
2020). The different rules were derived from knowledge of
surface currents in tropical oceans and the behaviour of tuna
purse seine vessels. The algorithm consisted of two iterative
classification steps based on three main parameters (see
Fig. 4A): (i) the buoy speed (calculated between consecutive
positions), (ii) the buoy speed history (the maximum value of
the speed recorded during a time window of three days before
the current position), (iii) and the change in buoy speed
(absolute value of the speed difference between two
consecutive points). The three rules governing the first
classification step were stated as follows:
f

–

10
A position with a buoy speed higher or equal to 6 knots
correspond to an on-board position (“on-board”);
–
 A position with a buoy speed history of less than 6 knots
corresponds to a buoy emitting from the water (“at sea”);
–
 A position that does not meet either of the two rules has an
undetermined status.
The selected cut-off value of 6 knots is largely higher than the
theoretical maximum drift speed in the Atlantic and Indian
Oceans. Since the average speed of tuna purse vessels is well
above thisvalue (from9 tomore than12knots), buoyswith speeds
exceeding this threshold are very likely to be on-board a vessel
(Supplementary Fig. 4). The second rule relates to the fact that
activepurse seinevessels rarelymaintain speedsbelow6knots for
long durations, therefore buoys that display low speeds for a
continuous period canbe considered as actually emitting from the
water. A number of segments (series of consecutive positions
along a track) can be classified from this set of rules. From these
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Fig. 1. Proportion of buoy model constituting the D1 and D2 datasets
in the Atlantic and Indian Oceans.

Fig. 2. Average number of location data provided per day by the
different buoy models in the Atlantic and Indian Ocean datasets.

Fig. 3. Flowchart of the standard processing protocol for satellite-
linked echosounder buoys used in tropical tuna purse seine fisheries.
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segments, (1) “constant sequences” defined as consecutive
positionswith thesamepredictedstatus (i.e.on-board�on-board,
or at sea� at sea) and (2) “transition sequences”, where the buoy
shifts from one status to another, were defined.

The second classification step relies on the comparison of
changes in buoy speed recorded for positions with undeter-
mined status with those found for “constant” and “transition
sequences” (Fig. 4B). The comparison starts from the first
undetermined position that immediately follows a classified
position (i.e. defined from the first classification step). The
change in buoy speed between the undetermined and classified
positions is estimatedandcompared to thechanges inbuoy speed
found in the constant and transition sequences, respectively,
usingaStudent t-test at confidence levelof95%.The statusof the
undetermined position is then assigned according to the result of
the test of comparison. For example, an undetermined position
following an “on board” position, and whose change in buoy
speed is not significantly different from “constant sequences”
will be classified as “on board”. Conversely, if the comparison is
not significantly different from “transition sequences”, its status
will be classified as “at sea”. This classification step is first
performed from neighbor to neighbor, moving along the buoy
segment. The same procedure is then carried out backwards
(from the end of the trajectory to the beginning), considering the
remaining unclassified positions (Supplementary Fig. 5).

(ii) Random forest approach (RF)
The RF approach was derived from the procedure

developed by Orue et al. (2019a). The learning dataset was
built using data from a single buoy model (model 9, Tab. 1),
which have a conductivity sensor to detect when the buoy is
immersed in seawater. The RF classification model was
constructed using (i) distance between two consecutive points,
Page 5 of 10
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Fig. 4. Description of the kinetic classification algorithm (KiC). (A) KiC flowchart: buoy speed history corresponds to speeds recorded 3 days
prior to the buoy position. (B) Example illustrating speed changes in constant (“on-board” – “on-board”, “at sea” – “at sea”), and transition states
(“on-board” – “at sea”, “at sea” – “on-board”) from the D1 dataset in the Atlantic Ocean. Values represent the number of data in each sequences.
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(ii) buoy speed; (iii) change in speed; (iv) acceleration,
(v) azimuth (degree), (vi) change in azimuth (degree) and
(vii) time since the first and last observation of the
corresponding buoy trajectory (days), as predictive variables.
This RF model has previously performed well in discriminat-
ing “on-board”/“at sea” positions from a buoy model,
(kappa= 0.87, further details regarding the model construction
and evaluation are provided in Orue et al., 2019a)

3 Results

3.1 Structural errors filtering outputs

For all oceans and datasets, structural errors represented less
than1.5%ofalldata (Tab.2).Duplicate rowsonlyoccurred in the
D1 datasets, while the largest amount of isolated and ubiquitous
rows was reported for the D2 dataset in the Indian Ocean.

3.2 Land filtering outputs

Overall, land positions comprised between 0.9% and 8.1%
of the data, depending on the dataset and resolution, with a
larger proportion observed in the Atlantic Ocean. The
difference in the amount of data filtered when using the low
and high-resolution shoreline data was minor and more
noticeable in the Indian Ocean than in the Atlantic Ocean for
both datasets (Tab. 3).
3.3 F5 outputs: on-board / at sea classifications

Cross-comparisons of classifications performed by random
forest and kinetic algorithms resulted in high matching
coefficients for the four datasets. The two approaches showed
very strong agreements for the D2 dataset in the Indian Ocean
(99%), and D1 datasets in both oceans (more than 96%). The
Page 6 o
weakest agreement (94%) was observed for the D2 dataset
collected in the Indian Ocean (Tab. 4).

Less than 0.5% of positions from the D1 datasets remained
unclassified after processing with the kinetic algorithm. This
value was considerably higher for the D2 datasets. For the
Indian Ocean, 10 times more unclassified data were observed
than in the D1 dataset while for the Atlantic Ocean this figure
rose to more than 30 times that of the D1 dataset (Tab. 5). More
than 87% of the positions were classified as “at sea” by both
approaches, while “on-board” positions varied from 0.1 to
5.5% depending on the algorithm, ocean and dataset.

4 Discussion

This study proposes a set of processing algorithms to be
applied to data from satellite-linked buoys provided by the two
major tropical tuna purse seine fleets operating in the Atlantic
and Indian Oceans. To date, there is still a significant lack of
information on the numbers and local densities of DFADs
worldwide, although such information is crucial for addressing
current issues related to their massive use in tropical tuna
fisheries. As outlined by Dagorn et al. (2013), the route
towards the sustainable use of DFADs requires a careful
assessment of their impacts on tuna stocks and non-target
species, as well as on habitats and ecosystems. The data
provided by satellite-linked buoys could be a valuable source
of information for ensuring that DFADs are monitored
adequately, thus supporting the various DFAD management
plans adopted by the tRFMOs in recent years.

Thefirst step towards the exploitation of this data is to ensure
an adequate level of quality in the data provided. Achieving this
requires an appropriate protocol for processing this industry-
baseddata,originallyonly intendedforuse atvesselorfleet level,
into standardized data that can be utilized for research and
management purposes. In this work, the proposed protocol
f 10



Table 2. Number and percentage (in brackets) of structural errors for the different datasets in the Atlantic Ocean (AO) and the Indian Ocean
(IO).

Filters D1 D2

AO IO AO IO

F1. Duplicated 47 (0.07%) 94 (0.15%) 0 (0%) 0 (0%)

F2. Ubiquitous 11 (0.02%) 11 (0.02%) 0 (0%) 149 (0.66%)
F3. Isolated 38 (0.06%) 46 (0.07%) 91 (0.36%) 174 (0.77%)
Total 96 (0.15%) 151 (0.24%) 91 (0.36%) 323 (1.43%)

Table 3. Number and percentage (in brackets) of data recorded on land for the different datasets in the Atlantic Ocean (AO) and Indian Ocean
(IO).

F4. Land D1 D2

AO IO AO IO

Low Res. 5099 (8.1%) 1708 (2.8%) 317 (1.3%) 205 (0.9%)

High Res. 4915 (7.8%) 2352 (3.8 %) 325 (1.3%) 333 (1.5%)

Table 4. Simple matching coefficients (percentage of agreement) between the random forest and the kinetic algorithm classifications for the
different datasets in the Atlantic and Indian Oceans.

Atlantic ocean Indian ocean

D1 96% 97%

D2 99% 94%

Table 5. Number and percentage (in brackets) of “at sea”, “on-board” and unclassified positions from kinetic classification (KiC) and random
forest (RF) algorithm in the different datasets for Atlantic (AO) and Indian (IO) Oceans.

F5. Water/Board D1 D2

AO IO AO IO

On-board
RF 2746 (4.4%) 595 (1.0%) 122 (0.5%) 971 (4.3%)
KiC 3469 (5.5%) 492 (0.8%) 22 (0.1%) 170 (0.7%)

At sea
RF 55,135 (84.5%) 56,020 (91.5%) 22,853 (90.3%) 18,976 (84.5%)
KiC 54,136 (86.1%) 58,679 (95.9%) 22,897 (90.5%) 21,307 (94.9%)

Unclassified
RF 2010 (3.2%) 2076 (3.4%) 1924 (7.6%) 1941 (8.7%)
KiC 102 (0.2%) 164 (0.3%) 1977 (7.8%) 726 (3.2%)
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focused on the location data provided by the buoys. It used a set
of filters, which were applied to different datasets with highly
varied structure and characteristics, resulting from the various
data-exchange agreements between national research institutes
and fleets, as well as the buoy specificities.

The first set of data processing filters (i.e. structural filters)
targeted possible satellite communication errors. Despite
isolated and ubiquitous positions being rare (<1%), they were
present in all datasets. Conversely, duplicated data, which had to
befiltered toavoidbeingcounted twice,wereonlydetected in the
D1 datasets (both in the Atlantic and in Indian Oceans).

The percentage of data recorded on land showed only
minor changes with respect to the resolution of the shoreline
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data. Lower resolutions could potentially lead to a slight
underestimation of location data collected on land, particularly
in the Indian Ocean, due to the possible removal of small reefs
and islands. However, due to the vast amount of data to be
handled (e.g. the “Marine Instruments” buoys operated by the
French purse seine fleet, represents, a raw data volume of
around 150 million entries for the 2010–2018 period), and the
subsequent computational costs required for their processing,
the use of low-resolution data should not be excluded, should
the study allow it. For example, studies related to DFAD
beaching events and their impacts on sensitive habitats (Davies
et al., 2017; Escalle et al., 2019; Maufroy et al., 2015) could
require full or high resolutions spatial data, whereas more
f 10
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global indicators on the number of buoys used for catch per
unit of effort (CPUE) standardization purposes (Katara et al.,
2016, 2017) could be obtained using low-resolution data.

Furthermore, a major issue inherent in buoy data is the
discrimination between buoys emitting on-board a vessel from
those actually deployed at sea. Although, some buoy models
include built-in sensors that identify when the buoy is
immersed in seawater, this information is not available for the
vast majority of models. Maufroy et al. (2015) were the first
authors to describe a processing protocol for buoy data in their
analysis of the spatio-temporal patterns in the use of DFADs.
They proposed an automatic classification of “at sea” and “on-
board” positions, based on a random forest approach trained
with a subset of manually pre-classified data, and followed by a
post-processing step to improve classification performance.
The random forest approach from Orue et al. (2019a), on the
other hand, benefited from ground-truthed information
provided by sensors integrated in some models of buoys,
indicating whether the buoy is in the water or not. The
comparisons of the results of this approach with the kinetic
algorithm classification proposed in this work, revealed very
high agreement rates for the classified positions. This is not
surprising, since the analysis of the importance of the
predictors in the random forest model revealed that the most
relevant variables for discriminating “on-board” from “at sea”
positions (i.e. buoy speed and its variation, see Orue et al.,
2019a), are also the main parameters on which the KiC
algorithm is based. Nevertheless, the random forest algorithm
produces a higher number of unclassified positions than the
KiC algorithm, as the first or the last positions of the analyzed
buoy segments are systematically unclassified due to the
impossibility of calculating the predictive parameters asso-
ciated with them. For the KiC algorithm, unclassified positions
are due to both the presence of very short trajectories and the
low temporal resolution of data. Since the KiC algorithm
analyzes the buoy segment, searching for characteristic
changes in speed between neighboring positions, its perform-
ance depends on the temporal resolution of the data.
Consequently, the larger number of unclassified positions
produced by the KiC algorithm in datasets D2, compared to
D1, results from the lower temporal resolution of these datasets
(only one position per day compared to the higher temporal
resolution of datasets D1). Globally, the use of high-resolution
data (all the positions recorded in a day), if available, is
recommended to reduce the number of unclassified positions.

In addition, despite this study is not including a framework
to process the acoustic data collected from the different
echosounder buoy models, the filtering approaches presented
here remains a requirement before any acoustic data analysis
could be conducted. This is because the buoys continuously
sample the acoustic energy beneath them, even when they are
located on land or on-board a fishing vessel. As such, the
processing framework presented here aims to achieve a
standardized protocol for preliminary data processing, prior to
the implementation of specific algorithms working on the
acoustic data that the buoys provide (Lopez et al., 2016; Orue
et al., 2019b; Baidai et al., 2020b).

Finally, the main objective of this paper was to propose a
standard protocol for processing buoy location data, particularly
with respect to datasets that include a mix of fishing fleets and
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buoy brands and models. Although the provided protocol
was designed from the most commonly used buoy models in
tropical tuna fisheries, this work could be further improved by
extending it to all existing satellite buoy data, including other
brands and models for which data availability remains limited to
date. However, through its main objective, as well as the
definition of a standard data format for buoy location data
(SupplementaryTab.1), asastartingpoint for the implementation
of a general standard format suitable for all the data collected by
buoys, this work provides the basis for the development of a
dedicated software environment for the processing, analysis,
visualization, and possibly the estimation of fish biomass from
echosounder buoy data, in order to simplify their use for both
scientific and management purposes.

Code availability

All the scripts used for the analysis can be found in the
following GitHub repository: https://github.com/yannickBai
dai/ProcessingBuoysLocationData.

Supplementary Material

Figure 1: Example of ubiquitous buoy positions. The two red
points correspond to two distinct positions provided by the
same buoy at the same timestamp (October 10, 2016 at 00:33).

Figure 2: Example of an isolated buoy position. The red points
correspond to the position of a buoy separated from its closest
neighbors by an inconsistent distance (the speed required to
achieve this distance is far greater than the speeds of both tuna
purse seine vessels and ocean currents).

Figure 3: Land positions. The white points corresponds to
sample of buoy positions detected on land using a 0.05°
buffered shoreline data from the GSHHG database (Global
Self-consistent, Hierarchical, High-resolution Geography;
Wessel and Smith, 1996). The red dashed line represents
the buffer zone around the shoreline.

Figure 4: Boxplots of on-board and at-sea buoy speeds (in
knots) from the training data used to build the random forest
classification algorithm. The training data consisted of location
data provided by buoys equipped with sensors that automati-
cally detect their immersion in seawater.

Figure 5: Schematic description of the kinetic classification
algorithm (KiC). (A) The green points represent the different
positions with undetermined status, recorded along a buoy
trajectory. The length of the black arrows roughly reflects the
valueof thespeedassociatedwith theposition. (B)The redpoints
correspond to buoy positions classified as “on board” after the
first step of the KiC algorithm, given their buoy speed above 6
knots. (C) The step 2 of the KiC algorithm relies on the
comparison of changes in buoy speed with those found for
“constant” and “transition sequences. Here, the value of the
speed change between the first undetermined position following
a classified position is consistent with a transition sequence. The
undetermined position is therefore classified as “at sea”. (D)The
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operation is performed along the buoy segment, classifying
positions from neighbor to neighbor. (E) The same procedure is
then carried out backwards (from the end of the trajectory to the
beginning), considering the remaining unclassified positions.

Table 1: Standard data format for buoy location data.

The Supplementary Material is available at https://www.alr.

org/10.1051/alr/2022013/olm.
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