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Abstract :   
 
Analysis of spatiotemporal observations often leads to decomposition of the problem into a spatial part 
multiplied by a temporal part (factorization). Principal component analyses produce factors that are 
temporally uncorrelated but that remain spatially correlated, leading to incomplete factorization. Min–max 
autocorrelation factors developed many years ago are adapted here to ecological applications, leading to 
empirical orthogonal maps (EOMs). EOMs owe their name to the fact that they are indeed an 
enhancement of empirical orthogonal functions which extract the spatial patterns that explain most of the 
variability of a set of spatiotemporal observations indexed by time. Application on a time series of 61 
scientific monitoring surveys targeting octopus distribution off the Mauritanian coast indicates that ten 
basic maps are sufficient to recover 68% of the total variability, and that the first two EOMs explain 38.4% 
of this variability. This manuscript clarifies the concept of orthogonality between factors in a spatial 
context. This provides the conditions for using Euclidean distance between spatial distributions, which in 
turn supports the reduction of a large set of spatial distributions into a small subset of basic spatial 
distributions explaining most of the variability within the set of input maps. 
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1 INTRODUCTION

Several approaches, stochastic or deterministic, parametric or empirical, can be ex-
plored to analyze data with dual spatial and temporal dimensions. The complexity of
the landscape of possible approaches is complicated by the semantic that, sometimes,
introduces ambiguity. For instance, it is common to say that some methods are spa-
tial while, in fact, they are not. Our criterion is to consider that a method is spatial
(respectively temporal), if the exchange of two observations in space (respectively in
time) modifies the result. Spatial representation of outputs is not sufficient to claim
that the method that generated the outputs is spatial. For instance, empirical orthog-
onal functions - EOFs (Lorenz 1956) produce outputs that can be represented on a
geographical scale. However, EOFs do not account for spatial structures and spatial
auto-correlation that exist in the observations and are not, per se, spatial statistics.
This was precisely the improvement brought in by Switzer and Green (1984) with
the min-max auto-correlation factors - MAF that explicitly account for spatial corre-
lation.

When dealing with spatio-temporal observations, an objective shared by a large
part of the different approaches is to factorize the spatio-temporal problem into a
spatial part multiplied by a temporal part. Based on the stochastic partial derivative
equation - SPDE framework recently developed by Lindgren et al. (2011), Thorson
et al. (2015) conducted a spatial factor analysis – SFA. This approach uses a reduced
number of orthogonal random fields with SPDE characteristics. Each latent random
field is a stationary random Gaussian field characterized by a Matérn spatial covari-
ance function (related to the distance between observations). In such a model, spatial
independence between factors is guaranteed by construction and their number is con-
strained to be small for inference and parsimony considerations. This framework is
thus quite appealing in that it allows identifying few factorial maps summarizing the
input spatio-temporal signal. A possible drawback of this approach is that the fac-
tors, both their numbers and their shapes, are model based. Once the model types are
chosen (i.e., Matérn spatial auto-correlations functions), the parameters are inferred
using integrated nested Laplace approximation - INLA algorithms making the overall
approach efficient.

Switzer and Green (1984) proposed a factorization based on so-called min-max
auto-correlation factors – MAFs to filter out the noise of a series of multi-channel
spatial imagery data. Even though their approach uses variogram computations, no
variogram model is required and their approach is model-free. The MAF procedures
is a sequence of two principal component analyses – PCA, and can be fully devel-
oped empirically, that is, without any parametric assumption. Since their seminal
work, several studies have been developed using MAF decompositions (e.g., Shapiro
and Switzer 1989) notably in marine ecology (Fujiwara 2008; Woillez et al. 2009;
Petitgas et al. 2020), and several papers have contributed to further describe the con-
nection between MAF and the linear model of coregionalization (LMC) (Desbarats
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and Dimitrakopoulos 2000; Vargas-Guzman and Dimitrakopoulos 2003). These latter
references established also that for particular situations like the intrinsic correlation
models, the absence of cross-correlation at some particular distance propagates to all
spatial distances insuring full orthogonality between factors.

When applied to multivariate time series, the different variables, taken in columns
of the database, are often systematically measured over time taken as the rows (prefer-
ably regularly, but not always). In these cases, temporal MAFs can be readily applied,
as in Solow (1994) or in Woillez et al. (2009). The situation is more problematic con-
sidering time series of spatial distributions. In these cases, each column is a spatial
distribution ; the rows corresponding the geographical sites. Precisely because it is
a model-free approach, the main drawback of MAF is that they need isotopic ob-
servations, that is that data should be observed at the same spatial points over time
(Wackernagel 2003). This is seldom achieved for spatial survey following a scientific
random design. In these cases, observations must be transformed into isotopic sets of
data prior to factorization by ad hoc methods. For instance, Petitgas et al. (2020) used
migration to the nearest point of a common grid prior to the computation of MAFs.
However, when the sampling protocol varies from one survey to the other, or when
the number of samples fluctuates between surveys, heterotopy cannot be solved by a
simple migration; instead, a spatial interpolation (e.g., kriging) is required to return
to isotopy. Regular and isotopic grids correspond to particularly suitable situations.
In these cases, as we will see in this manuscript, the first PCA of the MAFs is nothing
but an EOF. This paves the way for a new nomenclature that is justified below.

MAFs are ordered by say, descending, spatial auto-correlation intensity (the first
MAFs are, by construction, those with the strongest auto-correlation at small geo-
graphical distance). This is the reason why the first MAFs suppress noise compo-
nents. However, in the ecological context for instance, what matters is rather the
relative importance of the different spatial factors with regards to the variability of
the observations, which corresponds to a different perspective. The objective is no
longer to filter out the noise but to build the spatio-temporal patterns that best explain
the time series of distribution maps, with the possible consequence that the most
important part of the spatio-temporal signal could be the noise (nevertheless, this is
important to know from an ecological point of view). In this paper, MAFs are thus
reformulated so that the first factors of the decomposition, hereafter called empirical
orthogonal maps – EOMs, make it possible to reproduce a reasonable portion of the
variability of the initial data, which is not necessarily ensured by MAF.

The objectives of this manuscript are then threefold. First, the calculation of
EOMs are detailed, clarifying the standardization steps which is important for the
interpretation of the outputs. Second, the percentage of variance explained is defined
which gives the basis for the distinction between MAF and EOM. Third, the orthogo-
nality between factors is enlarged to encompass mean orthogonality for spatial scales
not restricted to the shortest ones. This opens the possibility to compute Euclidean
distance between spatial distributions and to map them into small dimensional spaces.

The developments are illustrated by an application on a time series of sixty one
scientific monitoring surveys of the octopus spatial distribution off the Mauritanian
coast.
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2 METHOD

The whole framework can be developed outside of any probabilistic framework even
though the use of random function formalism could be relevant. In this context, capi-
tal letters are used to denote matrices. The factors are obtained by linear combination
of a set of spatially regular distribution maps represented by the matrix Z of dimen-
sion S×T where S indicates the spatial dimension (e.g., the number of geographical
locations sampled each time) and T the temporal dimension (e.g., the number of
times the spatial distribution is observed). The matrix notation provides a connection
with the continuous space-time framework where Z[s, t] represents the value at site
s,s = 1, . . . ,S and at time t, t = 1, . . . ,T .

Without loss of generality, Z is supposed to be centered. Its standardized version is
denoted Ż = Z ·Ds−1 where Ds−1 is the T ×T diagonal matrix of the inverse standard
deviations of the column of Z.

2.1 SPATIALLY NON-CORRELATED FACTORS

The factorization consists of a sequence of two PCAs. When dealing with regular
gridded data, the first PCA is nothing but an EOF. It is based on the eigen elements of
Γ0, the correlation matrix of Z, that is, the variance-covariance matrix of Ż. The cor-
relation considered here is the correlation between observations made at the same site
but at different time, that is for a 0 distance in the geographical space, hence the no-
tations used (subscript 0 means ”related to distance equals to 0”). If we denote λ0 the
vector of the eigenvalues and P0 the T ×T matrix of the corresponding eigenvectors
of Γ0, the EOFs are given by

F0 = ŻP0, (1)

where F0 is a matrix with the same dimension as Z (S × T ). The variances of the
factors are given by the corresponding eigenvalues. Their sum equals T , that is the
number of input spatial distributions. This first PCA is a projection of the standard-
ized raw data in an orthogonal (but not orthonormal) base formed by the empirical
orthogonal factors. In the spatio-temporal representation, the orthogonality between
the factors refers to non-correlation of the factor values at the same geographical
points. However, these factors may exhibit spatial correlations in the sense that their
spatial covariances may be different from zero. The factors of an EOF are statistically,
but not spatially, orthogonal.

The second PCA thus aims at constructing new factors with no spatial correlation
for a given spatial distance (which usually corresponds to the distance to the nearest
neighbor in the case of systematic spatial sampling or to the average distance to the
nearest neighbor in irregular cases). The factors of the first PCA are first standardized,
that is divided by the square root of their eigenvalues

Ḟ0 = F0D
λ
−1/2
0

. (2)

The second PCA is then based on the diagonalization of the variance-covariance ma-
trix of their spatial increments for a given reference distance h = r, that is on the
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eigen decomposition of (twice) the matrix of variogram and cross-variogram values
between standardized EOFs for the distance h = r. Denoting Γr this T ×T matrix, λr
the vector of its eigenvalues and Pr the matrix of its eigenvectors, the factors associ-
ated to the reference distance h = r are

Fr = Ḟ0Pr = Z
(
Ds−1P0D

λ
−1/2
0

Pr
)
= ZΦr, (3)

where Fr is an S×T matrix, and where the linear operator Φr to transform directly
the input raw data into factors is defined by

Φr = Ds−1P0D
λ
−1/2
0

Pr. (4)

In this expression, the matrix Φr explicitly describes the sequence of operations re-
quired to build the factors:

1. first, the data are standardized (Ds−1 );
2. then, their statistical variance-covariance matrix is diagonalized and the data are

projected in this orthogonal space (P0);
3. then, the factors constituting this orthogonal space are normalized (D

λ
−1/2
0

);

4. and, finally, (twice) the variogram-cross-variogram matrix at distance h = r of
the projected data is diagonalized and the projected data are projected in this new
orthogonal space (Pr).

By construction, the final factors Fr, have a unit variance, and are uncorrelated
locally (h = 0) and at distance h = r (the proof is given in Switzer and Green, 1984).
Each factor (Fr[., t], t = 1, . . . ,T ) represents indeed a spatial distribution, which is a
linear combination of the input spatial distributions. As they are obtained by linear
combinations of the input spatial distributions, this can be reversed given that Φr is
invertible with Φ−1

r = Ψr (see the section “Practical considerations” below). Each
input spatial distribution can, in turn, be expressed as a linear combination of the full
set of the factors without any approximation (back-transformation) by

Z = FrΨr. (5)

This can be summarized by the following way and back transformation scheme

Z
Φr−⇀↽−
Ψr

Fr. (6)

2.2 ORDERING THE FACTORS AND DIMENSION REDUCTION: MAF
VERSUS EOM

The back-transformation equation Eq. (5) offers the possibility to use only a subset of
the factors when back-computing the spatial distributions from the factors. Approx-
imation or filtration of the input spatial distributions are then obtained by the linear
combination of, say, the n-first factors

Ẑ1:n = Fr[.,1 : n]Ψr[1 : n, .]. (7)

The question is thus to order the factors in accordance with the objectives of the
dimension reduction.
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2.2.1 MAF

While the primary objective of Switzer and Green (1984) was to remove the noise part
of a set of images, they ordered the factors, called MAFs, by increasing variograms
values at distance h = r in order to favor the spatially most regular factors and to
remove the factors with pure or strong nugget structure. The eigenvalues λr equal
(twice) the variogram of the final factors at distance h = r, so that for two factors
ranked i and j, one gets

γi, j(r) =

{
1
2 λr[i] if i = j (simple variogram)
0 if i ̸= j (cross variogram)

. (8)

This is the basis for ordering MAF which are organized in increasing order of
eigenvalues λr so that the first MAF gets the strongest spatial structures.

2.2.2 EOM

An alternative objective is to select as few factors as possible that explain as much
variability of the observations as possible, further called EOMs. Obviously, the larger
the n parameter, the better the approximation. In standard PCA, the total variance or
the total inertia I is equal to the sum of the variances of the input variables, given
by the trace of the variance-covariance matrix of I = tr(CZ), and the percentage of
variance explained by the first factors is equal to the sum of their eigenvalues over the
total inertia. This cannot be directly transposed to the spatial factors that are produced
by a sequence of two PCAs. Alternatively, one can consider, one by one, the sets of
T distributions obtained by the back-transformation of a single factor, say factor i

Ẑi = Fr[., i]Ψr[i, .]. (9)

The percentage of variance explained by this factor is hereafter defined by

pi =
tr(CẐi

)

tr(CZ)
=

tr(Ψr[i, .]tΨr[i, .])
tr(CZ)

=
∑

T
k=1Ψr[i,k]2

tr(CZ)
, (10)

This makes it possible to rank and re-arrange the factors (eigenvalues and eigen-
vectors) according to the percentage of variance that they explain and select the ones
that reproduce the largest part of the input variance. This ordering leads to empirical
orthogonal maps - EOMs.

There is a priori no reason for the two arrangements, MAF and EOM, to coincide.

2.3 MATHEMATICAL ORTHOGONALITY AND STATISTICAL
INDEPENDENCE

In spatial statistics, the orthogonality implies the absence of correlation between fac-
tors at any given possible distance (i.e., not only for zero distance). Strictly speaking,
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this means that the set of EOMs forms an orthogonal basis if and only if they are spa-
tially uncorrelated. However, by construction, EOMs get zero covariance only at dis-
tance 0 and at distance h = r. While it is a step ahead towards spatial non-correlation
compared to traditional EOFs, the EOMs are not fully spatially orthogonal and do
not form a basis sensus stricto. In some cases, notably in case of intrinsic correlations
models, absence of cross-correlation at some distance between principal components
propagates to all distances (Goovaerts 1993; Desbarats and Dimitrakopoulos 2000;
Rondon 2012). In these particular cases, statistical non correlation is equivalent to full
spatial orthogonality. However, this relies on particular models of coregionalization.
In an empirical approach which MAF are in essence, one can not rely on model’s
characteristics. An empirical alternative is however suggested below.

In their seminal paper, Switzer and Green (1984) computed MAF through a se-
quence of two PCA, the second one using spatial increments of a fixed spatial dis-
tance (e.g., the pixel size for grid data). A natural extension is to consider a range
of distances instead of precise distance for this second PCA. A weak definition of
orthogonality is thus envisaged here. Hereafter, regionalized variables are said to be
weakly orthogonal if the mean value of all their cross-variograms for all possible
distances is 0, that is if

γi̸= j(h) = 0, ∀h. (11)

We thus suggest to compute EOMs using a range of spatial distances (h ∈ [0,R])
rather than a reference distance (h = r) as in the original paper of Switzer and Green
(1984). To do so, the second PCA relies on Γ[0,R] the T ×T matrix of (twice) the mean
variogram and mean cross-variogram values for all possible distances between 0 and
R. Using the above notation, this would lead to the following factorization

F[0,R] = ZΦ[0,R] with Φ[0,R] =
(
Ds−1P0D

λ
−1/2
0

)
P[0,R]. (12)

The only difference between this decomposition (Φ[0,R]) and the former one (Φr)
relies on the second PCA (P[0,R] instead of Pr); the first PCA, non spatial, remains
unchanged. Weak non-correlation can be applied to the full set of the EOMs or to the
n-first ones in case of dimension reduction, in order to diagnose if the space where
the input spatial distributions are projected is more or less spatially orthogonal.

2.4 DISTANCE BETWEEN SPATIAL DISTRIBUTIONS

In the EOMs framework, each input spatial distribution is represented by the vec-
tor of coefficients of their EOMs decompositions. If the n-first EOMs are uncor-
related, these coefficients give the coordinates of the input spatial distributions in
the orthonormal space defined by the n-first EOMs. Each dimension of this space
is defined by an EOM, that is, a basic spatial distribution. The first factorial plan,
which corresponds to the first two EOMs, is the two-dimensional space defined by
the two principal spatial distributions that explain most of the variability of the in-
put spatial distributions. Each input distribution can be represented by a point in this
two-dimensional space.
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This can be generalized to any dimensional space and opens the use of a distance-
based metric to compare distribution maps or clustering techniques. For instance,
hierarchical ascending classification or k-means can be used to group spatial distri-
butions whose decompositions in the basis of EOMs are similar. Given the above
discussion on orthogonality (in the mathematical and statistical senses), the use of
Euclidean distance between spatial distributions is as relevant as the orthogonality of
the EOMs is effective. In this context, there is a strict equivalence in considering:

1. the coefficients of the decomposition of an input spatial distribution on n basic
spatial distributions/EOMs,

2. the coefficients of the approximation of an input spatial distribution by the linear
combination of n basic spatial distributions/EOMs and,

3. the coordinates of an input spatial distribution in an orthogonal space made of n
basic spatial distributions/EOMs.

2.5 STANDARDIZED AND NON-STANDARDIZED EOMS

Back-transformation, dimension reduction and approximation can refer to the stan-
dardized input data. This allows analyzing the shape of the input spatial patterns
irrespective to their level of variability. In this case, spatial distributions are simi-
lar if they have the same patterns, up to a multiplicative value. The EOMs are the
same as their computation is based on standardized data, but the transformation and
back-transformation matrices differ slightly as matrix Ds−1 must be removed.

Ż = FrΨ̇r, (13)

with
Φ̇r = P0D

Λ
−1/2
0

Pr = Ψ̇
−1

r . (14)

The percentage of correlation explained by the n-first EOMs may however differ
from the percentage of variance explained.

2.6 Practical considerations

EOMs are built for a given reference distance h = r. However one often needs to
use some tolerance around the reference distance to account for sampling sites that
are not regularly spaced, or a given reference distance lag h ∈ [0,R] to ensure weak
non-correlation.

The signs of the eigen elements are purely conventional but coherent between
eigenvectors and their eigenvalues. Therefore, their interpretation must be established
jointly.

Empirical variance-covariance matrices are not always positive definite. In par-
ticular, when T ≥ S, that is when the number of surveys is larger than or equal to
the number of sampling sites per survey, the variance-covariance matrices is singular
and cannot be inverted. In this case, its eigen elements do not exist and the EOM
decomposition is not possible.
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The time series of input spatial distributions may not be regular in time. It is also
worth mentioning that indices t could be interchanged without modifying the EOM
outputs. EOM is not a method that is explicitly temporal. However, unlike EOF that
are not a spatial method (sites could be interchanged without modifying the EOF
outputs), EOM are spatially explicit.

Each term is important and meaningful: “empirical” indicates that no parametric
assumption is required, “orthogonal” refers to non correlation, and “map” specifies
that the factors of the decomposition are maps or spatial distributions (contrary to
PCA where the factors are variables).

All the computations were performed under R using the package RGeostats (MINES-
ParisTech/ARMINES 2021). The scripts and the data required to reproduce the anal-
ysis are available here: https://github.com/abambad/EOM_Proj.

3 APPLICATION

3.1 DATA

EOMs are used to analyze the time series of sixty-one (T = 61) octopus surveys made
with the research vessels N’Diago and Al-Awam during the periods 1987-1996 and
1997-2017 respectively. Each survey follows a stratified random sampling based on
three latitudinal strata (Fig. 1). The average number of samples is 102 samples per
survey with some surveys having only few tens of samples. In each sampling site, the
density of octopus is provided in number of individuals per swept area (on average
0.055 km²). An inter-calibration experiment between the two research vessels was
carried out for the period 1987-89 in order to make the data series homogeneous by
taking into account the change of fishing gear that took place in 1989 (Gascuel et al.
2007). The timing of the surveys is not regular over years but there is at least one
survey per year.

The geographical locations of the sampling sites of each survey are drawn at ran-
dom and are thus different from one survey to another, with surveys with a low spatial
coverage. So, prior to EOMs computations, survey data were interpolated by ordinary
block kriging (Chilès and Delfiner 2012) on a regular 0.1° x 0.1° grid restricted to the
polygon of presence of octopus with a kriging neighborhood of 0.75°. Given the small
latitudes of the study area no projection was required (no significant space deforma-
tion at these latitudes). The omni-directional experimental variograms got reasonable
spatial structures (see Supplementary information). The number of active grid cells
is S = 341 (T < S).

As all regression techniques, kriging is smoothing. This means that the kriging
maps do not have the same level of variability than the raw input observations. This
favors using standardized EOMs that allow comparing and grouping the surveys only
based on the shapes of their spatial distributions.

https://github.com/abambad/EOM_Proj
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3.2 RESULTS

The first EOM alone explains 28.5% of the overall variability (Fig. 2) and four basic
EOMs were enough to recover more than half of the input variability. The rank-
ing based on the percentage of explained correlation is not fully consistent with the
ranking based on the variogram value (see for instance, the sixth EOM whose spa-
tial regularity is not intermediate between that of the fifth and the seventh ones).
The local variability, that is the variogram value at the reference distance of 0.1°,
starts increasing after the tenth EOMs. Moreover the ten first EOMs carry 68% of the
overall variability. This is considered as a good compromise for dimension reduction
(n = 10).

The cross-variogram values of the ten selected EOMs are equal to 0 for the refer-
ence distance (i.e., h=0.1°) and are equal to zero on average when mixing all pairs of
EOMs together (Fig. 3a) which is consistent with a weak non-correlation. However,
their fluctuations clearly increase for larger distances. When EOMs are computed
for a large interval of reference distance, say for distances between 0° and 1°, their
cross-variogram values are strongly reduced around 0 on average for all distance
classes between 0° and 1° (Fig. 3b) indicating that they form an orthogonal basis in
the strong sense. However, this produces EOMs whose spatial structures are rapidly
become pure noise with low descriptive power (Fig. 2). The first factorial space, that
is the space formed by the two first EOMs, explains 38.4% of the overall input corre-
lation. In this factorial space, the surveys display two clear groups with little overlap
(Fig. 4). This is further investigated through a hierarchical ascending classification
(HAC) based on the 10 first EOMs using the Ward distance. The HAC underlines the
existence of two groups of surveys with similar spatial patterns (Fig. 5) that strongly
matches the climatic seasons (Fig. 5; accuracy = 68%). While the first three EOMs
get clearly and statistically (ANOVA with p.value < 10−3; Fig. 6) different scores
for the two clusters, ANOVA diagnostics are also statistically significant for EOMs
ranked 6, 8, 9 and 10. Finally, the vectors of the average scores per cluster are used
to estimate the mean spatial distribution of each cluster (Fig. 4).

4 DISCUSSION

Being defined by the sequence of two PCAs, EOM is fundamentally an empirical
approach. The fact that it refers to variogram in the second PCA does not change
this fact. Incidentally, what is minimized is not the value of a variogram model at a
given distance, but the value of empirical covariance between the increments of two
EOFs for a given reference geographical distance. The recourse to random function
is thus external to the EOM: either before, in order to estimate or to simulate values
on fixed sampling sites over the study period to get isotopic data base, or after, to
map the EOMs if needed. The recourse to random functions and to model of core-
gionalization help understanding when the factors are spatial factors sensus stricto
(Goovaerts 1993; Desbarats and Dimitrakopoulos 2000). Being empirical, EOM has
the drawback that it can only be performed for sets of sampling sites (spatially regular
or not) that are systematically observed over time (isotopy). Factorizing a set of het-
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Fig. 1 Sampling protocol. Typical survey data (March, 2015). Octopus densities are in number of individ-
uals per swept area (on average 0.055km2)

erotopic variables (i.e., variables that are not observed at the set sets of geographical
points) by linear combinations remains an open question. Spatial covariance (simple
and cross covariance) can deal with heterotopic variables (Wackernagel 2003). How-
ever, the fundamental nature of factorization being to make a linear combination of
the variables at the same points, the problem cannot be fully solved by the recourse
to covariance.

Similar to EOFs that are not spatial in their construction but that can be repre-
sented spatially, EOMs are not temporal but can be represented temporally. It is thus
an abuse of language to say that EOM offers a spatio-temporal approach.

In statistics, the orthogonality of the factors (PCA, EOF, etc) refers to the absence
of mutual correlations. In a spatial context, this means the absence of correlation at
the same geographical points. After the second PCA, the orthogonality is extended to
a given geographical distance but not to all possible distances. So EOMs do not reach
a full orthogonality by construction. The only known case were orthogonal factors
in the statistical sense are also fully spatially uncorrelated is when all covariances
are proportional, also called intrinsic correlation model (Chilès and Delfiner 2012;
Goovaerts 1993; Desbarats and Dimitrakopoulos 2000). This model is very peculiar
and very specific. In the present analysis, we have shown that a weak orthogonality
can be considered when mutual correlations are not null one by one, but on average.
We also have indicated that enlarging the distance interval used in the EOM com-
putation can help reaching orthogonality. However, the EOMs that are obtained in
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Fig. 2 Values of the omnidirectional variogram of the EOMs for the grid cell distance (0.1°) as a function
of the percentage of correlation explained by the r-first EOMs. In black, the EOMs corresponding to a
reference distance equal to the grid cell size (h=0.1+/-0.05). In red, the EOMs obtained when h=0.5+/-0.5.
The first ten EOMs are depicted by plain circles

Fig. 3 Cross variogram values for the first distance lags for the first ten EOMs. Left: EOMs used in
the study corresponding to a reference distance equal to the grid cell size (h=0.1+/-0.05). Right, EOMs
obtained when using a large interval reference distance (h=0.5+/-0.5)
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Fig. 4 Factorial space made of the first two EOMs. In this space, the survey are located according to
their standardized scores in the EOMs factorization. The two EOMs associated to each dimension of the
factorial space are represented. The mean distribution of each group is also represented. Surveys that
happened during the hot season are denoted “H” and “C” for the cold season. Polygons are the convex hull
encompassing the surveys that belong to the same cluster of the hierarchical ascending analysis

this case lack of ecological interest. There is thus a compromise between orthogo-
nality, that makes orthogonal representations and Euclidean distances relevant, and
ecological interest when EOMs get meaningful spatial patterns.

MAFs were initially developed to eliminate noise in a set of images and extract
their common signal. They are thus naturally ordered by decreasing auto-correlation
at the reference distance, that is, by increasing order of the eigenvalue of the second
PCA. Considering all MAFs in the analysis and interpretation allows to restore all
the initial information and to describe perfectly the spatio-temporal variability of the
observed data. However, there is no reason why the most important factors should be
the most spatially regular. Indeed, the most important EOMs are rather those that en-
dorse most of the variability. In our study case, the percentages of variance explained
by the EOMs indicate that the two rankings are not similar, even though the first ten
EOMs are the same.

Depending on the EOMs’ algorithm, the approach refers either to the raw data
or to their standardized version. The empirical Taylor’s power law (Taylor 1961) has
been widely established in ecology. It can be summarized as the relationship between
mean and variance (of count data). In this context, looking at spatial patterns rela-
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Fig. 5 Dendrogram (Ward distance) of the 61 surveys based on the first ten EOMs. The color bar is defined
by the season: in blue, the months corresponding to the cold season (light blue for the two extreme months
of the cold season) and, in red, the months corresponding to the hot season (light red for the two extreme
months of the hot season)

tively to the standard deviations amounts to study the spatial patterns relatively to
the biomass. Therefore it is crucial to know precisely what kind of PCAs is used
and which EOMs are generated. Analyses reported here concern the spatial patterns
in relative terms, in order to compare and to group the surveys considering only the
shapes of their spatial distributions. This also weights down the impact of the kriging
performed prior to the analyses. An EOM decomposition together a the dimension
reduction make it possible to summarize a large set of distribution maps onto a single
factorial plan and to extract meaningful information. When the dispersion of a sub-
group of maps is small, this opens the possibility to built a relevant mean distribution
map which is of particular importance in ecology. In the present study, this allowed
grouping surveys that are characteristic of each ecological season, and allowed build-
ing the expected spatial distribution for each ecological season. This means that the
climatic season coincided with an ecological season. This corresponds to an a priori
knowledge however with no strong empirical foundations. The present comparison
and clusering of the spatial distributions strengthens the status of such a knowledge:
it is no longer an a priori, but it is now deduced from a long series of spatial distribu-
tions.



Title Suppressed Due to Excessive Length 15

Fig. 6 Boxplots per cluster of the scores of the decompositions of the 61 input spatial distributions on the
ten first EOMs. The color’s transparency is proportional to the p-value of the difference between means
per cluster: the more transparent, the less significant the difference between the two seasons
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