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Intracellular VHHs to monitor
and modulate GPCR signaling
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and Pascale Crépieux1,2*
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Single-domain antibody fragments, also known as VHHs or nanobodies, have

opened promising avenues in therapeutics and in exploration of intracellular

processes. Because of their unique structural properties, they can reach cryptic

regions in their cognate antigen. Intracellular VHHs/antibodies primarily

directed against cytosolic proteins or transcription factors have been

described. In contrast, few of them target membrane proteins and even less

recognize G protein-coupled receptors. These receptors are major therapeutic

targets, which reflects their involvement in a plethora of physiological

responses. Hence, they elicit a tremendous interest in the scientific

community and in the industry. Comprehension of their pharmacology has

been obscured by their conformational complexity, that has precluded

deciphering their structural properties until the early 2010’s. To that respect,

intracellular VHHs have been instrumental in stabilizing G protein-coupled

receptors in active conformations in order to solve their structure, possibly

bound to their primary transducers, G proteins or b-arrestins. In contrast, the

modulatory properties of VHHs recognizing the intracellular regions of G

protein-coupled receptors on the induced signaling network have been

poorly studied. In this review, we will present the advances that the

intracellular VHHs have permitted in the field of GPCR signaling and

trafficking. We will also discuss the methodological hurdles that linger the

discovery of modulatory intracellular VHHs directed against GPCRs, as well as

the opportunities they open in drug discovery.

KEYWORDS

G protein-coupled receptor, conformations, intracellular VHHs, Cell signaling, G proteins,

b-arrestins, biosensor
Abbreviations: GPCR, G protein-coupled receptor; VHH, VH of heavy-chain only antibodies; Nb,

nanobody; sdAb single-domain antibody; CDR, complementarity-determining region.
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Introduction

Antibody fragments are currently revolutionizing the

specific targeting of molecules inside the cell. Among those,

paramount importance has been given to variable fragments

from single-chain antibodies encountered in the blood of some

Camelidae and cartilaginous fishes. These fragments represent

the VHH (VH of heavy-chain only antibodies), and their

recombinant analogues have been baptized as Nbs for

nanobodies, or sdAbs for single domain antibodies. When

compared to conventional immunoglobulins (Igs), they have

smaller molecular weight (∼13 kDa) and size (diameter of 2.5

nm, length of 4 nm), and they consist in the minimum paratope

able to recognize an epitope. They are composed of 4 framework

regions (FR) and 3 complementarity-determining regions

(CDR) that support complementarity to the epitope. A striking

feature of these VHHs is the greater length of their CDR3

compared to that of a VH, that optimizes the contact surface

with the epitope and compensates the lack of light chain. The

length and flexibility of CDR3 are properties that are

advantageous to reach poorly accessible, cryptic epitopes (1).

VHHs contain a canonical disulfide bond linking FR1 and

FR3, and possibly additional bonds, for example between CDR2

and CDR3 in lama. These disulfide bonds are essential for

thermal and thermodynamic stability (2), but apparently,

reducing conditions do not compromise antigen binding

affinity, nor mechanical stability (3). In addition, because of

“hallmark” hydrophilic residues at solvent-exposed positions,

they are less prone to protein aggregation than single-chain

variable fragments (scFv) (4). These properties are of uttermost

importance when intracellularly expressed VHHs (intra-VHHs)

are being studied, because they are placed in a mildly reducing

environment in the cytosol. Although we are aware that the

terminology of “nanobody” given by Ablynx in 2001 is widely

accepted, in the case of intracellular Nb we prefer the term

“intra-VHH” over “intrabodies”, that does not explicitly indicate

the format of the antibody (VHH, scFv, Ig). This is the term that

will be used in this review.

Intra-VHHs are a new type of biological tools that target

proteins present at different sub-cellular compartments

[reviewed in (5)], such as the GTP-bound form of RhoA at the

inner face of the plasma membrane (6), or lamin lining the

nuclear envelope (7). They can be used to enhance, block or

monitor (8) protein activation/activity, to track protein

trafficking inside the cell when fused to fluorescent probes (7),

to hinder protein/protein interactions, or to direct the antigen

protein to degradation pathways (9). Some of them appear

exquisitely sensitive to protein conformational dynamics, and

this chaperone-like property has been particularly useful to

decipher the conformational complexity of G protein-coupled

receptors (GPCR) in their ligand-activated states.

GPCRs are involved in most physiological responses and as

such, they bind ligands encompassing a vast array of biochemical
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classes, ranging from photons or ions to large glycoprotein

hormones. Accordingly, they are major targets of the

therapeutic arsenal, including treatments of hypertension,

migraine, cancers, metabolic diseases, or disorders of the

central nervous system, among other pathologies. But drug

discovery of small chemicals with high potency, efficacy and

selectivity is reaching a limit, and in 2017, the 481 referenced

drugs against GPCRs only targeted 107 out of 850 receptors of

this protein family (10). Conventional antibodies now open new

avenues in the field, but still, GPCRs remain extremely difficult

targets since i/they are highly hydrophobic in nature because of

their seven transmembrane helices, ii/most of them expose very

limited regions outside the cell membrane, iii/their wide

conservation across the animal kingdom goes together with a

low immunogenicity, which precludes a strong immune response

in heterologous animals. Until now, only two therapeutic

monoclonal antibodies that recognize extracellular regions of

GPCRs are on the market: mogamulizumab, an anti-neoplasic

Ig directed against C-C chemokine receptor type 4 (CCR4) in T

cell leukemia (11) and erenumAb, an antagonist of the Calcitonin

gene-related peptide type 1 receptor (CALCRL) used to treat

migraine (12). The remarkable properties of VHHs now raise

exciting prospects for future therapies, because they could

stimulate GPCR activity in vivo by binding their orthosteric

ligand-binding site, or they could modulate the activity of the

endogenous ligand by binding to allosteric sites of the receptor.

But this line of research is still in its infancy and so far, only the

apelin receptor (APLNR) (13) and the metabotropic glutamate

receptor 2 (GRM2) (14) have been targeted with agonistic/

positive allosteric modulator VHHs, while others, such as

CXCR4 (15), are recognized by antagonists. Interestingly, a

VHH directed against the parathyroid hormone receptor

(PTHR1) has recently been used as a tether of PTH(1–34), a

bioactive N-terminal fragment of PTH, in order to improve its

selectivity for the receptor (16).

In contrast, the use of intra-VHHs has been essentially

limited to academic research. Remarkably, they have been

instrumental in overcoming the major challenges associated to

the conformational complexity of GPCR in their ligand-

activated states. These receptors basally exist in transient

conformational states due to rearrangements at the atomic

level and at larger receptor portions (17). The corollary of

GPCR intrinsic instability is that obtaining the necessary

periodic organization required for resolving the 3D structure

of ligand-bound GPCRs at high resolution has been a major

stumbling block in the GPCR research field.

These transient conformational states are stabilized by

ligand binding and by the subsequent coupling of their

intracellular transducing partners, namely G proteins and b-
arrestins (Figure 1). Hence, there is an allosteric communication

whereby ligand binding induces conformational changes at the

ligand-binding pocket that propagate to the inner side of the

receptor. Allosteric communication goes also the other way
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round, since, reciprocally, transducer binding enhances the

affinity of the receptor for the ligand (18, 19) (Figure 2). A

decisive breakthrough has been achieved on the G protein and

ligand binding pocket allosteric dialog (20–22), with the use of

Nb80. Indeed, binding of this antibody to the b2-adrenergic
receptor (ADRB2) induces a closed conformation of the

orthosteric site that traps the agonist while decreasing its

dissociation rate (20, 22). Reciprocal, allosteric coupling of the

two regions is essential for full receptor activation. It explains

why the crystal structure of ADRB2 bound to a potent agonist

unexpectedly matched with the inactive crystal structure of the

receptor (23), unless it was stabilized intracellularly (24).

Structural studies have provided detailed insights into the

critical epitopes on GPCRs that could be targeted by intra-VHHs
Frontiers in Endocrinology 03
in order to be able to lock the receptors in the active,

intermediate, or inactive conformations. For class A GPCRs,

displacement of the transmembrane domains (TM), in

particular TM6, results into a range of ‘open-active’ or ‘close-

inactive’ states on the intracellular side of the GPCR, which in

turn determines the degree of activity of the receptor, via G

protein or b-arrestin coupling (25, 26). For instance, the

structure of ADRB2 stabilized in the active conformation by

Nb80 showed that this intra-VHH possesses G protein mimetic

properties (24). Upon agonist binding, Nb80 was capable of

maintaining the receptor-activated form by having its CDR3

inserted in the hydrophobic allosteric cytoplasmic pocket,

formed by TM segments 3, 5, 6 and 7, otherwise occupied by

the C-terminal a-helix of Gas (27). Leading to major outward
FIGURE 1

Intra-VHH interference on GPCR signaling. An intra-VHH may stabilize inactive conformations of the GPCR (upper panel) and dissociate upon
stimulation. The size of the aura indicates the degree of intrinsic instability. Intra-VHHs may also stabilize active conformations (bottom panel),
and compete with G proteins and/or b-arrestins (not shown on the figure) for binding to the receptor, depending on their affinity (left).
Alternatively, intra-VHH and transducer binding may be compatible. In that case, GRK phosphorylation sites may be masked (middle) or the VHH
may allosterically enhance Ga binding (right).
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displacement of the TM6, Nb80 disrupts the critical ‘ionic lock’

interaction between R1313.50 of TM3 and E2686.30 of TM6,

which would otherwise maintain the receptor in the inactive

state (24). Similar G protein mimetic intra-VHHs targeting

corresponding regions of muscarinic acetylcholine receptor

M1 (CHRM1) (28) and mu-type opioid receptor (OPRM1)

(29) have also been structurally described. Partial agonism was

demonstrated with intra-VHH Nb71 bound to ADRB2, of which

the TM6 had lesser outward displacement (30). Alternatively,

acting as a negative allosteric modulator (NAM), intra-VHH

Nb60 also had its CDR3 inserted in the allosteric cytoplasmic

pocket of ADRB2 (31). However, the inactive state of the

receptor was maintained since residues of the CDR3 of the

intra-VHH bridged ‘the ionic lock’.

Since 2011, more than a hundred structures of active GPCR

conformationally stabilized with intra-VHHs directly or via

stabilization of G proteins, have been solved. By stabilizing

discrete receptor conformational states, in the close future,

these single domain antibodies are expected to provide

significant insights onto the dynamics of the signaling network

and integrated cell response induced by G protein and b-arrestin
binding to a ligand- activated GPCR. However, very few VHHs

directed against the intracellular parts of GPCRs have been

extensively studied functionally. Here, we highlight the

outcomes of intra-VHH binding to GPCR intra-cellular

regions, or to their transducers, on the receptor signaling

properties and trafficking. We will also discuss the

methodological pitfalls that preclude extensive studies on

GPCR modulation by intra-VHHs, and conclude with the

therapeutical avenues that they open in drug discovery.
Frontiers in Endocrinology 04
Expected insights onto GPCR
activity and regulation

Upon agonist binding, GPCRs undergo an ensemble of

conformational state transitions enabling the recruitment of G

proteins and b-arrestins, that propagate the membrane signal to

a complex intracellular signaling network. G protein-coupled

receptor kinases (GRKs) also are direct binding partners that

desensitize the receptor by phosphorylation and promote b-
arrestin-dependent G protein uncoupling and internalization. In

addition, GPCRs make direct interactions with less conventional

partners, such as HOMER protein homologs (32), PDZ domain-

containing protein GIPC (33), Na(+)/H(+) exchange regulatory

cofactor NHERF1 (34), vesicle-fusing protein NSF (35) or

Multiple PDZ domain protein (MPDZ) (36), that also deserve

interest since they generally intervene in receptor targeting to

specific subcellular compartments and cell signaling (37). Like G

proteins, GRKs and b-arrestins, their interaction with GPCRs

could also be modulated by intra-VHHs.

Since anti-GPCR intra-VHHs stabil ize select ive

conformations of the receptor, they have been named

“confobodies”, a registered trademark of Confo Therapeutics

(38). They can recognize intracellular regions of the receptor

devoted to signal transduction (Figure 1). Hence, their expected

modulatory effect is a competition with direct transducers such

as G proteins and b-arrestins by steric hindrance. Alternatively,
they may also mask regulatory GRK phosphorylation sites on the

receptor. In addition, some intra-VHHs may bind to an active

conformation of the receptor without competing with the

transducers, by positive allostery. So far, no intra-VHH
A B

FIGURE 2

Allosteric communication between the ligand-binding pocket and the intracellular sites of an activated GPCR. (A) By mimicking occupancy of
the receptor by a transducer, an intra-VHH increases its affinity for the ligand. (B) A VHH may also allosterically enhance the efficacy of the
ligand to stimulate some signaling pathways, hence inducing a biased response when compared to the reference ligand alone.
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enhancing the affinity of a transducer for a GPCR has been

identified, nor, to our knowledge, intra-VHH forcing a new

receptor conformation by induced fit.
Intra-VHHs to modulate
GPCR activity

The Nb80 intra-VHH and Gas binding regions on ADRB2

overlap, which explains that the conformation of ADRB2

stabilized by Nb80 or by the Gabg trimer are structurally very

close (24, 27). As such, this intra-VHH displaces Gas and

stabilizes active conformations of ADRB2 (27). Eighteen other

anti- ADRB2 intra-VHHs have been selected from llama

immunization with ADRB2 embedded in lipids and covalently

bound to the BI-167107 high affinity agonist. These VHHs have

been functionally characterized and most of them decreased or

inhibited isoproterenol-induced cAMP production and b-
arrestin recruitment (39). However, their inhibitory effect

likely results from different causes, since 12 of them exhibited

preference for agonist-bound ADRB2, which suggests a probable

steric hindrance of transducer binding, while the 6 remaining

ones, including Nb60, selectively bound to inactive

conformations immobilized in the presence of antagonists that

do not support transducer recruitment (39). The Nb71 intra-

VHH preferentially binds to Isoproterenol-activated receptor,

and decreased cAMP production. However, it impaired

phosphorylation of ADRB2 by GRKs, hence precluding b-
arrestin recruitment and proper receptor intracellular

trafficking, which suggests that Nb71 recognizes the carboxy-

terminal region of ADRB2 and not the Gs binding region as

Nb80 for example, although both intra-VHHs functionally

inhibit cAMP production. Four additional anti- ADRB2 intra-

VHHs with even better affinity than Nb80 have been isolated

from a yeast synthetic library by combining magnetic-bead and

fluorescence-activated cell sorting (FACS) enrichments, and

they all inhibited the activity of a cAMP-responsive reporter

gene, in response to adrenaline, up to 45% of Emax (see Nb.c200

in Figure 3) (40).

Biological characterization of intra-VHH is easier for GPCR

with diversified ligands and well-described pharmacology. By

using agonists and antagonists of a given receptor, it is possible

to conclude whether a VHH preferentially stabilizes inactive

forms of the receptor or if it binds constitutively the active

receptor and is displaced by further recruitment of G proteins, or

whether it only binds activated conformations and then prevents

G protein binding, provided that it has a sufficient affinity for the

receptor, as seems to be the case of Nb80 (estimated Kd ≃140
nM) (41). Several authors have developed a bioluminescence

resonance energy transfer (BRET) assay to monitor the

interaction of the intra-VHH and a GPCR (42–44). This is the

case of the interaction of the kappa-type opioid receptor
Frontiers in Endocrinology 05
(OPRK1) with the Nb6 and Nb39 intra-VHHs (Figure 3) (42,

45). The profile of dose-response curves obtained in the presence

of the salvinorin A (SalA) agonist indicates that Nb6 binds

preferentially to inactive OPRK1, whereas Nb39 binds to the

receptor only when fully active, and, as expected, enhances SalA

binding affinity (42). Accordingly, increasing concentrations of

the JDTIc antagonist prevent Nb39 binding to OPRK1 but has

no effect on Nb6 binding that recognizes inactive conformations.

Interestingly, domain swapping experiments grafting the

OPRK1 intracellular loop (ICL3) 3 to seven heterologous

receptors physiologically coupled to Gs, Gi or Gq, confer not

only Gq recruitment ability but also antagonistic Nb6 binding

(45), suggesting that this system can be used to monitor the

activation state of Gq-coupled GPCRs. Thus, the Nb6 intra-

VHH could be used similarly as the mini-Gq biosensor, and may

possibly help de-orphanising orphan Gq-coupled GPCRs (45).

The human cytomegalovirus US28 receptor is an interesting

example of a receptor exhibiting high constitutive activity. The

latter is due to structural instability of the inactive state, and is

only modestly enhanced by ligand binding (46). This

observation suggests that constitutively active US28 and

ligand-bound receptor have distinct conformations. In

agreement, the conformation-specific VUN103 intra-VHH

competes with Gq and b-arrestin 2 that constitutively interact

with US28, and severely impairs inositol phosphate

accumulation, nuclear factor of activated T cells (NFAT),

signal transducer and activator of transcription 3 (STAT3) and

NF-ϰB activation. In contrast, Nb7 does not affect constitutively

active US28, but rather stabilizes US28 bound to its fractalkine

CX3CL1 ligand, and inhibits the cell signaling it mediates (44)

(Figure 3). Although both Nb7 and VUN103 bind ICL2 and

ICL3 (46), they seem to recognize distinct active conformations

of US28. Importantly, by interfering with US28 constitutive

activity, VUN103 partially inhibited the growth and US28-

dependent signaling of glioblastoma spheroids as well as

glioblastoma cells.

Most G protein mimics described above have affinity for an

agonist-bound GPCR, but none of them is able to allosterically

enhance receptor-Ga interaction. By using viral evolution of

genetically actuating sequences (VEGAS), intra-VHHs against D

(2) dopamine receptor (DRD2), the pH-sensing GPR68 and the

5-hydroxytryptamine receptor 2A (HTR2A) receptor have been

obtained (43). One of these, VGS-Nb2, was qualified as positive

allosteric modulator (PAM). It directly associates to HTR2A and

stimulates a serum-responsive element (SRE) responsive

reporter gene in the absence of ligand and regardless of Gaq
expression, hence inducing an active conformation of the

receptor. This response was still enhanced after stimulation by

5HT viaGq, coupling, but not b-arrestin 2, whose recruitment to

the receptor was decreased. Hence, intra-VHHs isolated by

VEGAS are able of inducing receptor activity in the absence

of ligand.
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Intra-VHHs as conformational
biosensors to explore subcellularly
localized GPCR signaling

GPCR intrinsic instability is the major driver of biased

signaling. The latter is determined by the selection of discrete

conformational states, stabilized by a given ligand, that will

ultimately lead to the recruitment of different transducers (e.g. G
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proteins and b-arrestins) with various efficacy or kinetics,

according to the ligand (47–50). The high conformational

dynamics and heterogeneity of GRKs and b-arrestins and their

multiple modes of interactions with GPCR contribute to this

diversity (51). The ability of a ligand to selectively stimulate a

signaling pathway over the other, when compared to a reference

ligand, has been mainly approached as an indirect measure of G

protein vs b-arrestin-dependent downstream signaling, and

estimated by calculation with the operational model and
FIGURE 3

Functional action of intra-VHHs against OPRK1, OPRD1 and OPRK1 opioid receptors, ADRB2 and US28. Nb39 reveals the location of opioid
receptors when stimulated by a peptide ligand (bright green) or a cell-permeant non-peptide ligand (black dot). Nb60 locks ADRB2 in an
inactive conformation that precludes interaction with transducers. Nb80 stabilizes conformationally active ADRB2. Nb.c200 stabilizes ADRB2
even when stimulated by its natural, low-affinity agonist, adrenaline. Nb71 stabilizes active conformations of ADRB2 and prevents b-arrestin
recruitment by limiting access to GRKs. US28 is a constitutively active GPCR. The VUN103 and Nb7 intra-VHH discriminate respectively between
constitutively active and agonist-stimulated conformations of the receptor, because Nb7 has no affinity for the apo-conformation. Competition
between VUN103 and Nb7 and the transducers hampers US28 signaling and expression of its target genes. Agonists are in bright green,
antagonist are in light grey.
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variants thereof (52–54). But it is not directly informative of

receptor conformation. By providing important advance onto

active receptor trafficking, intra-VHH conformational

biosensors provide insights directly at the level of the receptor

on the mechanisms underlying signaling bias.

GPCR signaling and trafficking are closely connected, since

it has been unambiguously demonstrated that GPCR signaling

does not exclusively take place at the plasma membrane, but also

occurs in several intracellular compartments, ultimately leading

to distinct biological outcomes (55–59). This conceptual advance

has been enabled by repurposing intra-VHHs sensitive to GPCR

conformational dynamics initially developed for structural

biology. These antibodies can be converted to genetically-

encoded conformational biosensors by fusion to a fluorescent

protein derived from green-fluorescent protein (GFP). With

these tools, it becomes possible to detect where activated

receptors are located inside the cell. The first anti-GPCR intra-

VHH biosensor was derived from Nb80, that contributed to the

resolution of activated ADRB2 3D structure (24). By tracking

isoproterenol-activated ADRB2 inside the cell, this biosensor has

uncovered that receptor stimulation leads to cAMP production,

not only from the plasma membrane but also from endosomes,

once the receptor is internalized (60). This finding was

confirmed with Nb37-GFP, that recognizes the alpha-5 helical

domain of Gas in the guanine nucleotide-free form that is an

activation intermediate and is important for GPCR binding (61).

At intra-cellular concentrations that do not inhibit Gas
activation, the Nb37-GFP biosensor is resident in the cytosol,

and is recruited to the cell membrane upon ADRB2 activation.

Even more importantly, this biosensor detects ligand-activated

ADRB2 wherever it is located in the cell, hence providing

precious informations on the sites of persistent ADRB2 cAMP

signaling, such as the endosomes (Figure 4) (60). Similar

observations were extended to the gastric inhibitory

polypeptide receptor (GIPR), that also induces cAMP

production once in the early endosomes (62). Single-molecule

imaging with the Nb37-GFP biosensor has further uncovered

that the alpha2A adrenergic receptor (ADRA2A) coupling to G

protein is trapped to defined hot spots of interactions inside the

plasma membrane, where signaling mainly occurs. These

nanodomains are partially constituted by actin fibers,

microtubules and clathrin-coated pits (63). Nanoclustering

depends on the receptor conformational state, as demonstrated

by single-molecule tracking of active and inactive conformers of

ADRB2 bound to GFP-tagged Nb80, Nb37 or Nb60 biosensors

in PC12 cells (64).

The NbSmo8 biosensor was the first intra-VHH biosensor

directed against a class F GPCR. Similarly to anti-class A

biosensors, it has been shown to bind the Smoothened

homolog (SMO) only when activated by agonist binding (65).

Diverse ligands stabilizing discrete active states of the receptor

induce its interaction with the conformational intra-VHH

biosensors in a concentration-dependent manner, without the
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signal amplification that happens when measuring downstream

signaling. Therefore, these intra-VHH biosensors may potentially

provide a more reliable access to efficacy and potency of each

ligand-receptor pair. Biosensors to monitor OPRM1, OPRD1,

OPRK1 opioid receptors activity have been developed, either to

monitor receptor activation state by different ligands, by

quantifying biosensor interaction (42, 66), or to track activated

receptor inside the cell (45, 66, 67). One of the latter ones has been

developed to discriminate the side-effects of non-peptide

clinically-relevant drugs versus the beneficial therapeutical effects

of natural peptide ligands of OPRM1 (67, 68). This biosensor,

derived from Nb33, is almost similar to Nb39, the intra-VHH that

binds selectively to activated OPRM1 andOPRK1 described above

(29, 42, 69). By total internal reflection fluorescence (TIRF) time-

lapse experiments in neurons, the Nb33 biosensor reveals that

met-enkephalin- or b-endorphin-activated OPRM1 or OPRD1

signals transiently from the plasma membrane, and then from

receptor internalized in the endosomes. In contrast, non-peptide

opioid drugs, such as morphine or etorphine, induce an

additional, very early stimulation wave in the Golgi, that is

independent of receptor trafficking (Figure 3). Similar results

have been gathered when probing OPRK1 with the Nb39

conformational biosensor in cells stimulated with the SalA

permeant drug or with Dynorphin, the OPRK1 natural ligand

(45). These observations, emphasizing the notion of spatio-

temporal bias, have wide implications for the development of

neuro-modulatory drugs that generally penetrate the cell, hence

are prone to illegitimate signaling from the Golgi. The latter might

be involved in the well-known side-effects of opioids such as

toxicity and addiction. With the use of Nb6B9, a high-affinity

derivative of Nb80, agonist-activated D1A dopamine receptor

(D1DR) or b1-adrenergic receptor (ADRB1) has also been

observed at the Golgi apparatus in addition to the plasma

membrane (70).

Intra-VHHs directed against the C-C chemokine receptor

type 7 (CCR7) have been recently derived by random

mutagenesis of CDR1 and CDR3 of Nb80 (71). Interaction of

Nb1, Nb5 and Nb38 with CCR7 was tracked by bimolecular

fluorescence complementation (BiFC) using split-YFP,

regardless of the receptor activation state. They co-localized

with CCR7 at the plasma membrane in resting conditions, and

also in membrane ruffles and endosomes upon CCL19

stimulation, confirming that they do not recognize selective

conformations of the receptor. Accordingly, they also modestly

interfered with Gi binding to the receptor and Ca2+ response.
Intra-VHHs to mimic transducer
activity

Ligand binding induces conformational modifications of

GPCRs that lead to the recruitment of intracellular

transducers, among which G proteins and b-arrestins have
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been the most extensively studied. Intra-VHHs stabilizing G

proteins or b-arrestins have served as tools to address the

following questions, that are theoretically applicable to every

GPCRs: i/the cryogenic electron microscopy (cryo-EM)

structure of activated GPCR complexes with G proteins or b-
arrestins, ii/the sub-cellular localization of signaling receptor, iii/

the modulation of transducer activity and signaling outcomes,

iv/understanding the relationships between b-arrestin
conformational transitions and its activity, v/modulating the

interactions of b-arrestins with their binding partners.

The structure of Gs-bound ADRB2 complexes has been

resolved with the Nb35 as a structural chaperone (27). Because

it recognizes the interface between Gas Ras domain and Gbg
and prevents GTP dissociation when the trimer is bound to

agonist-occupied receptor, Nb35 has helped solving the high

resolution 3D structures of other active, Gs-coupled GPCRs,
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such as the thyrotropin receptor (TSHR) (72, 73), the lutropin-

choriogonadotropic hormone receptor (LHCGR) (74) or the

adenosine receptor A2a (ADORA2A) (75) among others, in

active, transducer-bound conformation. In contrast to the

paradigm establishing that b-arrestins binding precludes Ga
binding on the receptor in order to desensitize it, it has been

demonstrated by single-particle electron microscopy that Gas
and b-arrestin 1 can bind simultaneously the GPCRs that

strongly interact with b-arrestins, such as the vasopressin V2

receptor (AVPR2) (76). In agreement, Nb35 has been used to

stabilize the Gabg trimer within an activated ADRB2/AVPR2

chimeric receptor in complexation with both transducers (77)

(Figure 4). The AVPR2 moiety represents the carboxyterminal

region of the AVPR2 receptor that confers long-lasting

interaction with b-arrestins, in contrast to ADRB2 that only

transiently interacts with them (78). This study has profound
FIGURE 4

Mechanisms of action of intra-VHHs against GPCR transducers. Nb37 recognizes the nucleotide-free form of active Gas, and has been used as
a conformational biosensor to track receptor activation and signaling throughout the cell compartments. Nb35 stabilizes the interface between
Ga and Gbg, and prevents GTP release. Nb5 binds to Gbg. It has a pronounced effect on Gbg signaling (adenylate cyclase, pERK and pAkt) and on
the K+ current of the GIRK channel in the striatum. Nb32 is an anti-b-arrestin 1 VHH. Nb35 and Nb32 have been used to reconstruct the
structural arrangement of the megacomplex composed of an agonist-stimulated ADRB2-V2R chimera simultaneously bound to Ga and to b-
arrestin 1.
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biological impact because it revisits the role of b-arrestins as

desensitizing agents presumably precluding Gs access to the

receptor, by showing that b-arrestin and Gs binding is in fact not

mutually exclusive. Gs occupies the core domain of the receptor,

while b-arrestin 2 remains bound to the phosphorylated

carboxy-terminal region of the receptor, in a so-called “tail”

conformation. b-arrestins can also adopt a “core” conformation

whereby they engage three structural elements, including the

finger loop, into the core (transmembrane helices and

intracellular loops) of the receptor for desensitization, their

classically assigned role (77). Hence, by demonstrating that a

GPCR coupled to b-arrestins can continue to signal through Gs,

even if internalized, this “megaplex” hypothesis has provided a

mechanistic clue on endosomal signaling, as presented above.

Because of its negative regulatory action on Ga through re-

association, the Gbg complex has raised interest as intra-VHH

target. Therefore Nb5, that recognizes Gb subtypes 1-4, has been

developed (79). By suppressing Gbg signaling, Nb5 inhibits Gbg-
regulated G protein-gated inward rectifier potassium (GIRK)

channels signaling in medium spiny neurons of the striatum

excited with DRD2- or CHRM4-mediated inhibitory post-

synaptic current (IPSC). In response to apelin, Nb5 indirectly

limits the inhibition of the Gi-coupled apelin receptor on

forskolin-stimulated cAMP, by suppressing the inhibitory

action of Gbg on adenylate cyclase. Nb5 also inhibits

downstream kinases such as Akt and Erk. But despite its

inhibitory action on Gbg functioning, this intra-VHH has no

effect on GTP-bound Ga (Figure 4) (79).

Intracellular antibodies against b-arrestins exhibiting

interesting biological properties have also been characterized,

although the first ones were not VHHs but scFv or Fabs. For

example, scFv5 disrupted the interaction of b-arrestins with

clathrin and inhibited the endocytosis of 8 different GPCRs,

suggesting a generic value of this scFv as a tool to assess GPCR

internalization (80). In addition, a Fab, Fab30, that recognized

an active “tail” conformation of b-arrestin 1 when bound to a

phosphorylated carboxyterminal region of V2R (81), was

isolated. From Fab30, an intra-cellular scFv, named Ib30 by

the authors, has been derived as a biosensor to monitor

b-arrestin 1 recruitment to chimeric as well as GPCRs with a

native carboxyterminal region, and then to track b-arrestin
trafficking inside the cell (82). Importantly, Ib30 confers a

gain-of-function in b-arrestin 1 conformation, since it restores

its translocation to endosomes and its ability to stimulate ERK

MAP kinases, otherwise impaired upon agonist-stimulation of

the AVPR2 T360A phosphorylation mutant (83). Structural

analysis and molecular dynamics indicate that only Lys11 of

b-arrestin 1 phosphate sensor remains engaged by ionic

interactions with the phosphorylated receptor and not Lys 294

in the polar core, nor Arg25, that are also involved in fully

activated conformation of b-arrestin 1. This analysis explains

that, when bound to the AVPR2 T360A mutant, b-arrestin 1
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adopts a partially active conformation that can be allosterically

modified to accommodate b2-adaptin interaction and

subsequent internalization. The use of Ib30 as a biosensor to

monitor b-arrestin 1 conformational changes has been extended

to other GPCRs (82, 84, 85).

Finally, bona fide camelid anti-b-arrestin 1 intra-VHHs

came out, and one of them, Nb32, has been very useful to

investigate the functional outcomes of b-arrestin 1 binding to the
GPCR core and/or to the tail (Figure 4) (86). This antibody binds

b-arrestin 1 only when associated to a receptor. When

comparing a b-arrestin 1 deleted of its finger loop, hence

devoid of its ability to bind the core domain of the receptor,

and the Nb32-stabilized b-arrestin 1, it appeared that b-arrestin
1 binding to the tail predominantly drives the receptor to

internalization and promotes signaling, but is not able to

promote G protein desensitization, as expected from the

megaplex model (76, 77).

So far, the anti-b-arrestin antibody fragments that have been

described allosterically modulate b-arrestin/GPCR interaction by

stabilizing selective receptor conformations. In the future, it will be

of great interest to stabilize selective, fully or partially engaged

conformations of b-arrestins instead. In this way, it should be

possible to control independently receptor-mediated signaling and

trafficking. Beyond b-arrestin/GPCR interaction, only scFv5 has

been shown to impair the interaction of b-arrestin 2 with one of its

non-receptor interaction partner (80). This finding opens the

promising possibility of interfering with b-arrestin signaling

partners. This is of paramount interest because b-arrestins
undergo interactions with hundreds of signaling proteins,

including at least 17% of direct interactions, leading to diversified,

yet essential biological responses (87–89). Hence, intra-VHHs

directed against precise interfaces of b-arrestins might help to

decipher the specificity of their signaling outputs.
Methodological limitations and
opportunities

Methodological hurdles that linger the development of

VHHs against GPCR, such as the selection of the antigen (90),

the advantages of synthetic libraries versus libraries from

immunized animal (40, 91, 92), the comparison of display

methods (5, 38, 40) have been previously reported. Here, we

focus on the specificities that make anti-GPCR intra-VHH

expression inside the cell and characterization particularly

challenging (Figure 5).

One is that the anti-GPCR intra-VHHs isolated so far are

generally conformational antibodies that recognize non-linear

epitopes within the inner core domain of the receptor, as shown

for Nb80. However, the intracellular loops, especially ICL3, and the

carboxyterminal region of GPCR are intrinsically disordered, which

may be a disadvantage to select specific, high-affinity VHHs.
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The key parameter to be monitored when isolating an antibody

against a selected target is direct antibody/antigen binding. But in

vitro binding by enzyme-linked immunosorbent assay (ELISA),

surface plasmon resonance (SPR) or interferometry can be a

challenging task when the target is a GPCR that cannot be easily

produced and purified in native, active conformation. Assaying

intra-VHH-GPCR binding in cell can be an alternative by using

BRET (42–44) or the developing Nanobit complementation

technology (83, 93). Cytometry is also an efficient means (39),

but low level of endogenous or exogenously expressed recombinant

receptor and limited intracellular affinity of the VHH may lead to

signal below the detection threshold. In addition, in vitro affinity

may not be linearly correlated to efficacy in the reducing milieu of

the cytoplasm, as shown for the anti-ADRB2 Nb.c203, which

exhibits moderate affinity maturation in yeast when compared to

the other intra-VHHs selected, but was the most efficient to

decrease the Emax of adrenaline to produce cAMP. Similarly, the

folding of a VHH produced in bacteria and expressed from inside

the cell may be different, which adds another level of variability

when assessing affinity. These observations underscore the necessity

to test several intra-VHHs to obtain a maximum effect on

receptor signaling.

Since the VHH is generally expressed inside the cell from a

transfected plasmid, it can be difficult to accurately control its

quantity from the beginning of the experiment. If it recognizes
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inactive conformations of the receptor, it would be bound to the

GPCR prior to agonist stimulation. Therefore, if its affinity is high

enough, it should prevent transducer binding and lead to functional

inhibition of downstream signaling. But if it is not, then it should be

displaced by the ligand-activated transducers, without any detectable

functionaloutcome,whichmay lead tobewilderingconclusions.One

alternative is to express the VHH intracellularly from an inducible

promoter, as previously done with anti-US28 VUN13 intra-VHH

(44), which also minimizes off-target reactions. Quite interestingly,

destabilizing mutations of an intra-VHH that are silent only in the

presence of the specific antigen have been reported (94). These

mutations constitutively drive the intra-VHH to the proteasome-

degrading pathway, unless the antibody is bound to its cognate

antigen. Hence, an intra-VHH may be permanently degraded until

its cognate GPCR target adopts the suitable active conformation

upon ligand binding. This work is of broad potential applications

because the destabilizing mutations are present in the structurally

conserved framework regions of the antibody. In addition, several

optically-controlled intra-VHHs have been engineered [reviewed in

(95)]. Additional endeavors have to be pursued, based on the

introduction of the antibody with a cell-penetrating peptide (96),

or the transfection of in vitro-transcribed RNA, to detect the intra-

VHH as soon as 3 hours after introduction (97).

The fact that it is very difficult to date to control precisely the

expression level of an intra-VHH severely compromises
FIGURE 5

Examples of methodological challenges associated to functional studies on intra-VHHs that modulate GPCR signaling, and the existing solutions.
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reproducibility between independent experiments, especially

because the stoichiometric ratio between the receptor and the

VHH, by altering ligand binding affinity, indirectly alters the

efficacy to stimulate a given functional readout.

In several instance, the question remains as whether

conformational intra-VHHs that have been reported are really

specific of one receptor, or if they recognize active/inactive

conformations that are common to several receptors of the

same family (ex, the opioid receptors, adrenergic receptors,

etc) or even receptors from distinct classes (ex, class A GPCR

vs class F). As indicated above, Nb6B9 recognizes D1DR in

addition to ADRB1 and ADRB2 (70). For class A GPCR, cross-

reactivity could reflect the relative conformational conservation

of their intracellular half, that accommodates to a limited

number of G proteins and b-arrestins (98, 99).
Therapeutic opportunities

The explosion of structures of GPCRs in active conformations

since 2011 has paved the way for the rational, structure-based

design of new drugs of potential therapeutic interest.

In drug discovery, one moonshot is to enhance binding affinity

of biased agonists of therapeutical interest because, by stimulating

various signaling pathways with distinct efficacy when compared to

the natural agonist, they are expected to lead to less side-effects

(Figure 6). If a GPCR is stabilized in a defined active conformation
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with an intra-VHH, then the affinity of not only its natural ligand

will increase but also any other biased ligand with interesting

signaling properties. This is the purpose of reverse pharmacology,

where a receptor is locked in an active conformation with an intra-

VHH, to screen for (allosteric/biased) ligands endowed with new

pharmacological properties when compared to the reference

agonist. A proof-of-concept of reverse pharmacology has been

successfully applied to ADRB2 fused to the transducer-mimicking

Nb80 and to the OPRM1-Nb33 fusion, in a fragment-based

screening of 1000 small molecules (38, 100, 101). This

comparative fragment screen has led to the pharmacological

classification of multiple novel ligands as agonists, antagonists,

inverse agonists, etc, on the basis of their efficacy to stimulate

readouts of interest (100). Fragment-derived compounds binding

the orthosteric site of ADRB2-Nb80 fusion with affinity in the nM

range were selected, and they discriminate accurately the active and

basal states of the receptor. Hence, this strategy raises hopes to the

selection and characterization of ligands selective of a given receptor

conformation of interest, in a cell-free system.

In the ADRB2-Nb80 complex, a b hairpin conformation of the

VHH CDR3 engages interactions with the receptor overlapping the

Gas binding site (24). This prompted research groups to launch

rational design programs using CDR3 b hairpin peptidomimetics to

stabilize active conformations of ADRB2 for ligand screening (102).

Two of these peptidomimetics inhibited cAMP production, as

expected from competition with endogenous Gas. Nevertheless,
the effect was modest when compared to Nb80 inhibitory effect.
FIGURE 6

Potential therapeutical applications of anti-GPCR intra-VHHs. A GPCR immobilized by an intra-VHH in an active conformation of biological
interest may serve as a target for drug discovery of new biased ligands, be they allosteric or orthosteric (left). In vivo, provided that intra-VHH
may be vectorized into the appropriate target cell, they could allosterically modulate the pharmacological properties of the endogenous ligand,
which, for example, would respect the endocrine physiological rhythms and control.
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These attempts still need more efforts for success, probably because

peptidomimetics for ADRB2 fail to fully stabilize active

conformations of the receptor (103, 104).

Importantly, intra-VHHs have the unique potential to isolate

GPCR agonists, not only as small chemical compounds, but also in

the VHH format, recognizing the extracellular regions of a receptor.

As indicated above, VHHs with agonistic have only been described

for APLNR and GRM2. Hence, intra-VHHs may increase the

discovery of new agonistic VHHs to GPCR of clinical relevance.

Another application of intra-VHHs in drug discovery for

GPCR can be foreseen through the example of atypical

chemokine receptor 3 (ACKR3), that is naturally biased

towards GRK and b-arrestin signaling, because of the absence

of a kink of TM4 that leads to a clash of ICL2 and Ga (105, 106).

Hence, it is conceivable that an intra-VHH stabilizing this

compact conformation of the Ga-binding cleft would increase

the probability to isolate new biased ligands of this receptor.
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The exquisite properties of anti-GPCR VHHs, such as

specificity, affinity, short serum half-life, open exciting

opportunities for future therapeutics. Obviously, these

properties are shared with intra-VHHs. However, in the latter

case, even more critically than for in vitro applications, a major

issue to be overcome is their functional delivery into target cells

in vivo, although some progress are being made, as reviewed in

(107). This is why, to date, no example of intracellularly

delivered VHH has been reported.
Conclusions

Intra-VHHs have widely proven their utility as chaperones

for structural studies of GPCR by X-ray crystallography or cryo-

EM. In contrast, the characterization of anti-GPCR intra-VHHs

with functional properties inside the cell is still poorly developed.
TABLE 1 Summary of intra-VHHs modulating GPCR signaling and/or on trafficking cited in this paper.

Intra-
VHH

Target Signaling Reference

Nb80 Active ADRB2 Gas mimic Disrupts the ionic lock between TM3 and TM6. Decreases cAMP response (Gas competition)
and b-arrestin recruitment

(24, 39)

Nb80-GFP Active ADRB2 Probes receptor activity from the plasma membrane and from the endosomes (60)

Nb6B9 Active ADRB2, ADRB1,
D1DR

Nb80 high affinity derivative. Detects active D1DR and ADRB1 at the plasma membrane and in the Golgi (70)

Nb60 Inactive ADRB2 Prevents cAMP response and b-arrestin recruitment (39)

Nb71 Partially active ADRB2 Partial outward shift of TM6. Decreases cAMP response. Inhibits receptor phosphorylation by GRKs and
b- arrestin recruitment

(30, 39)

Nbc.200 ADRB2 stimulated with
adrenalin

Decreases cAMP response (40)

Nb6 Inactive OPRK1 Binds ICL3. Displaced by Gq recruitment (42)

Nb39 Active OPRK1 No effect on Gi binding (42, 45)

Nb39-GFP Active OPRK1 Detects signaling from plasma membrane and from endosomes with dynorphin. and also from Golgi if
non-peptide opioid

(67)

VUN103 Constitutively active US28 Binds ICL2 and ICL3. Displaces Gq and b-arrestin 2. Impairs IP3 accumulation, NFAT, NF-KB and STAT3
activity

(44)

Nb7 Ligand-activated US28 Binds ICL2 and ICL3. Neutral to constitutive activity (44)

VGS-Nb2 Active HTR2A PAM even in the absence of Gq. Stimulates SRE activation, decreases b-arrestin 2 recruitment (43)

NbSmo8-GFP Active SMO Detects active SMO at the plasma membrane (65)

Nb33-GFP Active OPRM1. OPRD1 Detects signaling from plasma membrane and from endosomes with met-Enk. and also from Golgi if non-
peptide opioid

(67)

Nbl Inactive and active CCR7 Slightly interferes with Gi binding. Detects CCR7 at the plasma membrane in basal conditions and also in
membrane ruffles and vesicules upon CCL19 stimulation

(71)

Nb38 Inactive and active CCR7 Inhibits Gi binding. Detects CCR7 at the plasma membrane in basal conditions and also in membrane
ruffles and vesicles upon CCL19 stimulation

(71)

Nb37-GFP Alpha-5 helical domain of
nucleotide-free Gas

Detects active Gas at the plasma membrane and at the endosomes (ADRB2 and GIPR). Identifies hot spots
of Gas-dependent signaling in the plasma membrane (ADRA2).

(60, 62, 63)

Nb35 GPCR bound Gas and Gbg
interface

Prevents Gas and Gbg dissociation upon activation. Stabilizes the megaplex (27, 76, 77)

Nb5 Gb subtypes 1-4 Suppresses Gbg signaling, Akt and ERK signaling (79)

Nb32 Activated b-arrestin 1 Stabilises b-arrestin binding to the GPCR core and promotes desensitization (77, 86)
fro
Only the targets for which a signaling outcome has been measured are indicated. Below the dark line, the intra-VHHs recognizing G proteins or b-arrestins are also indicated.
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So far, the functional impact of only very few intra-VHHs on

GPCR signaling activity has been characterized, when

considering that only ADRB2, OPRK1 and US28 and, to a

lesser extent, HTR2A, have been targeted to date (Table 1).

One clear bottleneck is the difficulty to properly characterize

their pharmacological properties in a complex cell system and to

assess specificity despite likely intracellular off-targets. Screening

for drugs that bind to conformationally stabilized binding

pockets within GPCR might lead to more selective and

efficient therapeutics. Intra-VHHs indirectly mimic the effect

of biased agonists, from the intracellular side.

In the future, exploration of the functionality of intra-VHHs on

a given GPCRwill need to be systematically coupled to resolution of

its structure. Only in this condition will it be possible to approach

the issue of conformation/activity relationship, to correlate a

(biased) ligand to a receptor conformation or ensemble of

conformations, to a signaling pathway, or even network, and

ultimately, integrated biological response. Still, one caveat is that

the conformations that are co-crystallized do not necessarily predict

accurately the conformations that are preferentially stabilized in a

complex cell system.
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66. Stoeber M, Jullié D, Li J, Chakraborty S, Majumdar S, Lambert NA, et al.
Agonist-selective recruitment of engineered protein probes and of GRK2 by opioid
receptors in living cells. eLife (2020) 9:e54208. doi: 10.7554/eLife.54208.sa2
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