
HAL Id: hal-03892379
https://hal.science/hal-03892379v1

Submitted on 22 Dec 2023 (v1), last revised 24 Oct 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simplify model design in MDE approaches
Asbathou Biyalou-Sama

To cite this version:
Asbathou Biyalou-Sama. Simplify model design in MDE approaches. 2022, pp.170-175.
�10.1145/3550356.3558515�. �hal-03892379v1�

https://hal.science/hal-03892379v1
https://hal.archives-ouvertes.fr

Simplify Model Design in MDE Approaches
Asbathou Biyalou-Sama

Univ. Lille, CNRS, Institut Mines-Télécom, UMR 9189 CRIStAL, Axellience/Ansys

 Lille France

 asbathou.biyalousama@univ-lille.fr

ABSTRACT

Many academic works prove that Model-Driven Engineering

(MDE) improves the quality of the application's production in

software engineering. However, its adoption remains limited for

several reasons: the complexity of the tools makes them less

productive, the modeling languages and the mechanisms

manipulating the models are hard to grasp. In that sense, low-code

platforms are an interesting proposition. These low-code

platforms, despite their simplicity of use, do not allow the design

of large systems because of the opacity of the various artifacts

(models, code, generation...). In our work, we want to improve the

adoption of MDE models, tools, and mechanisms in application

design process through a more simplified interaction. Rather than

constraining the developer in a closed environment as it is the

case with the Low-code platforms, we wish to allow him to have

access, if he wishes, to models as well as the generation

mechanisms of the application.

We propose to build applications that are instrumented with

modification actions on each element of their user interface. The

applications are generated from models. A developer can modify

or develop his application directly from the UI by calling upon the

added modification actions. This makes his work easier by

quickly locating (in the UI of the produced application) where to

make the modifications and directly visualizing the result, rather

than manually modifying each part of the model concerned. The

instrumentation is based on a descriptive language for possible

modification actions and a mechanism for injecting this language

into the application generation chain. We have designed a

demonstrator allowing us to conduct experiments, with various

audience, in order to validate our work.

CCS CONCEPTS

• Software and its engineering → Software design engineering

• Software and its engineering → Integrated and visual

development environments • Software and its engineering →

Visual languages

KEYWORDS

Software Engineering, MDE, Modeling interface, Tooling

ACM Reference format:

Asbathou Biyalou-Sama. 2022. Simplify Model Design in MDE

Approaches. In Proceedings of ACM Models conference (MODELS’22).

ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3550356.3558515

1 Problem

To design software applications, there are several design

approaches with some of them based on models. We can cite

generative programming [6], Model-Driven Engineering (MDE)

[9], domain-specific languages [7], Model-Integrated Computing

(MIC) [22], software factories [12], etc. A model is a simplified

representation of an aspect of a system (note that the system can

also be a model) that can be used instead of the modeled system,

for example to reduce costs or decrease risk [18]. In this work, we

are interested in Model-Driven Engineering (MDE). The MDE

can be used to generate code from a descriptive model. In this

case, the MDE can be decomposed in a chain made of five points

(figure 1) which are: (1) modeling, (2) transformation, (3)

generation, (4) maintenance and (5) execution.

(1) The application is first designed as conceptual models

using some design patterns where they are applicable. These

models allow to conceptualize and build the architecture of the

application. They allow to focus on the essentials without

worrying about implementation details or technical issues.

However, at this stage, modeling tools and languages can be an

obstacle to the adoption of MDE, as they are often complex to

master [4]. (2) Once the application has been designed, the models

can be used for generation, analysis or simulation. And for these

uses, models are, sometimes, transformed to more adapted

models. (3) From these models, all or parts of the application can

be generated [15]. Model-based generation improves the quality

of the software, on one hand by producing an application that

conforms to the design models and on the other hand by

benefiting from the expertise of technical experts encapsulated in

the generation mechanisms. But these generation mechanisms are

complex to implement, which makes the task of designing the

generation reserved only for modeling initiated and MDE experts.

(4) In maintenance, the models make it possible to better

understand the software architecture in order to locate the changes

to make. Unfortunately, models quickly become obsolete, because

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned

by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from

Permissions@acm.org.

MODELS '22 Companion, October 23–28, 2022, Montreal, QC, Canada

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9467-3/22/10…$15.00

https://doi.org/10.1145/3550356.3558515

mailto:asbathou.biyalousama@univ-lille.fr
mailto:Permissions@acm.org
https://doi.org/10.1145/3550356.3558515

 MODELS’22, October, 2022, Montreal, Canada A. Biyalou-Sama

in practice, it often happens that changes are made directly in the

code without updating the initial models [17]. We have modeling

approaches like in [16,25] which tend to resolve this problem, by

using an intermediate textual representation of the model. This

textual representation is always updated with the graphical model

but for the moment is not reflecting changes done in the Java or

PHP generated code. (5) The generated code can be executed.

As we can see, the use of MDE has many advantages to design

software applications with a better quality, but requires a

relatively long learning curve: it is necessary to know the

modeling languages, to know how to use tools [5] and to

understand the generation processes and the various mechanisms

[4].

Figure 1: The five main points of a MDE approach for a code

production chain

Designing applications using the MDE approach can be

difficult as illustrated by the problems raised above. But there are

other approaches to design applications that are easy to use.

Among them, there is the Low-code/No-code approaches.

Low-code/No-code platforms have emerged in recent years

[10,26]. They allow any profile/user, especially non-programmers,

to create software applications by generating the different parts of

the application. These platforms allow to design software

applications through click-and-drop, add and modify actions in a

dedicated environment. They allow not to write code or very little

code to develop a software application [21]. Low-code platforms

provide simplicity of use and facilitate the design and

development of software applications. Despite the simplicity that

these platforms bring, they have some drawbacks [8,14,21]: the

developed applications constitute black boxes in which the

generation mechanisms/processes are completely opaque to the

user and very poorly configurable. The developed applications

almost always run only in the dedicated environment of the

platform or through third-party services linked to the platform.

These software applications thus live in a very closed

environment [21]. These limitations lead to a certain frustration

for the designer and developer initiated respectively to

programming and modeling and compromise the extensibility of

tools and processes.

Even if the Low-code movement and the MDE community are

trying to get closer [8], Low-code platforms do not offer the

ability to manipulate models in the MDE sense (conforming to

languages/metamodels), nor to exploit the possibilities offered by

the MDE mechanisms (essentially based on Eclipse tools and

technologies). Low-code platforms (LCDP) do not allow to take

advantage of the code generation work done in the MDE

community.

We end up with the power of models and generation processes

on one side and the simplicity of using LCDP on the other side.

However, for people initiated to programming and modeling,

combining these advantages in a methodology or a tool would be

great.

Our problem can be expressed as follows: Can we propose an

approach combining both the ease of design of low-code (drag

and drop and interactions on an interface close to WYSIWYG)

and the power of MDE (abstraction, multi-target source code

generation, transformation, open tools ...).

2 Proposed Solution

To deal with the complexity related to most of MDE tools and

to provide answers to the various problems mentioned above, we

propose simple ways to interact with MDE models and

mechanisms. This proposal (figure 2) allows the designer to

interact with the User Interface of the running application, in

order to trigger MDE actions and mechanisms, including

modification of the application model, generation mechanisms

and re-execution of the application. In our proposal, just for sake

of simplicity and tool accessibility, we are working with web

applications. But our proposition is also targeting other kind of

application. As in figure 2, we are manipulating an application

obtained from a web application metamodel, the application here

always makes reference to a web application.

The originality of the proposal is that the designer acts on the

real application at runtime and not on a static model of it. To do

this, we propose to instrument the user interface of the web

application, so that an element of the interface that the designer

wish to modify is provided with contextual actions allowing these

modifications. These actions are of the CRUD (Create Read

Update Delete) type and allow, depending on the intention, to

create, modify and delete the element of the interface. These

actions have an impact, not only on the user interface, but also on

the application model. Moreover, depending on the application

model, a CRUD action on a user interface element can trigger

several modifications in the model. Thus, the designer acts

directly on the application architecture through the user interface.

In order to prevent an ordinary user from modifying the

application, the modification actions will only be available on the

user interface when the application is in 'development' mode. In

'production' mode, the application will not have any actions (not

even the action code). These two different modes are obtained

thanks to the MDE principle: we generate ‘development’ code and

‘production’ code from the same input model. In development

mode, the application augmented with appropriate actions will be

obtained by injecting a description of the actions into the

generation process. This description will be made thanks to a

Simplify Model Design in MDE Approaches MODELS’22, October, 2022, Montreal, Canada

description language that we propose. This description language

will describe the possible CRUD actions on each concept and how

these actions are executed.

Figure 2: Our proposal: model modification from the

application user interface

In summary, our proposal allows, from an action of the

designer on the user interface of an application, to generate a set

of actions on this application: the modification of the model; the

automatic generation of the code containing the modifications

made to the model; the re-execution of the code of the augmented

application.

3 Related Work

In this section, we will present some related works according

to two aspects: (i) those which deal with notions and technologies

related to MDE close to our approach and which will be used in

the realization of our approach and (ii) the works which try to

answer the more general question of the complexity during

modeling.

3.1 Notions and technologies

In the notions and technologies that enter in one way or

another in our approach, we have: Live Modeling/Live

Programming and Models at Runtime in relation with Adaptive

Systems.

According to [1], "in the context of Model-driven

Development (MDD) models can be executed by interpretation or

by the translation of models into existing programming languages,

often by code generation". Live Modeling is then a technique

allowing users of executable modeling languages to edit models

during their execution, thus helping to better understand the

impact of design choices.

In [24], the authors make a parallel between Live Modeling

and Live Programming, Live Modeling being seen as a

transposition of the concepts of live programming to modeling

languages. They bring the possibility to edit live models written

with these modeling languages. They focus on strategies to

instrument modeling languages in order to add live modeling to

them. The modification of models during execution becomes

possible, without necessarily stopping the execution.

In Live Modeling, the question of interaction with the models

is not addressed. The model is modified and we are interested in

how to apply the changes during the execution of this model. And

this regardless of the means by which the model has been

modified. In our work, we aim more at improving the ways the

designers interact with the model. In order to update the running

application after the model is updated by our proposal, we will use

the strategies of dynamic update offered by the live modeling.

Blair et al [3] define models@run.time as a causal self-

representation of the associated system, which focuses on the

structure, behavior, or goals of the system and can be manipulated

during runtime for specific purposes. Models@run.time can thus

be used to maintain different aspects of a system. They have been

used very often in the context of work on self-adaptation or the

evolution of software applications [2]. The works around self-

adaptation use models@run.time to have an updated view of the

system on which the changes of the real system can be followed in

real time (Monitoring) and conversely the real system can also be

updated (Execute) from this view on which analyses have been

performed [23]. This corresponds to the famous MAPE-K

feedback loop [11].

The interest of this work in our thesis is to exploit on the

medium term, the analysis possibilities offered by

models@run.time. We will be able to analyze the impact of the

changes on the models and at different levels of our system. Our

goal is not to realize self-adaptive systems or to propose new

strategies around them. We are much more interested in the user

interaction with the models and in the complexity during the

exploitation of MDE tools.

3.2 Works around complexity in modeling

Concerning the complexity during modeling, various works

have been carried out to first measure this complexity and

evaluate the reasons for this complexity [5,19]. Other works have

gone further by proposing approaches to reduce this complexity

[13,20] and lead to a better adoption of MDE in application

design.

Hill [13] measures the modeling effort when using domain-

specific modeling languages (DSMLs). He evaluates this effort in

terms of user actions. He proposes metrics to make this

evaluation, and then looks at various techniques to reduce this

modeling effort. Its work is based on external artifacts (model

observers, model decorators and model solvers) present in DSML

environments that can be used to reduce the modeling effort.

Pourali, in his thesis [20], does an interesting analysis of the

difficulties that modelers encounter when using UML modeling

tools. In particular, he points out that one of the challenging tasks

is to locate, understand and fix errors in a model. From these

analyses, he extracts a set of recommendations for modeling tools

in order to reduce the difficulties while using these tools. He

proposes reduction techniques and makes implementations to

verify some of these proposals.

 MODELS’22, October, 2022, Montreal, Canada A. Biyalou-Sama

We can see from the various works that the question of the

complexity of modeling tasks is real and needs to be addressed.

Many works focus either on modeling languages or on modeling

tools. But very few address this issue from the point of view of the

goal of the modeling tasks we perform, of the reason why we

model. In our case, the aim of the designers is to design a software

application. We are thus specifically interested in the modeling

tasks that are performed in the design of a software application

and we look for ways to simplify these tasks.

4 Plan for Evaluation and Validation

The evaluation and validation of our work is done in two steps:

1) the realization of a demonstrator and 2) the validation through

experiments.

A first demonstrator has been realized. It allows to validate

that it is possible to interact on the model of the application from

the UI of this application, to re-generate and re-execute the code

after the modification. The demonstrator is described in section 6:

Current Status.

For the experiments, a first step will be to define evaluation

criteria. These criteria will be based on questions we asked

ourselves during the design of the demonstrator and on some tests

done by first-time users in the laboratory.

The objective of the experiments is to validate our proposal. Is

it easier for an application designer to act directly on the

application's interface compared to a classic MDE approach? Is it

more efficient? Is the possibility of accessing the models and

generation mechanisms useful for application designers compared

to low-code tools that do not allow it?

The demonstrator will be available to two different user

profiles: learner profiles which are beginners in modeling and

professionals more experienced in modeling. We will observe the

users in the execution of modification tasks (addition, deletion of

elements...) that we will ask them to complete.

Regarding the learners, we will separate them into two groups,

one will have to perform model modification tasks without using

the demonstrator, the other will perform the same modifications,

but using the demonstrator, and thus acting directly on the UI. We

will be able to evaluate in which situations they can manage more

easily, if they understand more easily the application architecture

and if our approach helps them to integrate a new project.

Expert will probably want to act directly on the models, the

source code, or the various elements of the generation chain. As

for the beginners, we will propose to two groups of experts to

realize modifications of the application, for the ones in a classic

MDE approach, for the others through our demonstrator. This will

allow us to validate the fact that even experts in modeling

appreciate using the interface to modify the application while

having a look at the evolution of its models.

We also want to evaluate and validate the implementation of

the instrumentation. To do so, we will ask experts to instrument

an MDE-based generation application other than the one we used.

We want to evaluate the speed with which this implementation

can be done and the efficiency of this instrumentation. The

validation of such properties is crucial as they are determinant for

the adoption of this type of model-based approaches in projects.

5 Expected Contributions

One of our objectives is to improve the adoption of MDE

(models, tools, mechanisms) in the design of applications by

trying to reduce the learning curve. We propose to act on models

of an application by interacting with its user interface. This

approach simplifies the understanding of complex models and

MDE mechanisms. The direct interaction with the application

interface can be found in Low-Code platforms. However, these

platforms are often closed and opaque. By proposing a

reproducible and easy to implement approach, we want to allow

the designer to always have access to the models, code and

generation mechanisms of his application.

Our approach favors model modification over code

modification, making the model the preferred "source of truth".

This could lead to reduce model obsolescence.

We will also need a description language for the modification

actions proposed to the user and a mechanism to inject the

elements of this language into the application generation process.

In a first step, we will define an action description language

specific to the design of web applications. By projecting this work

in another application domain, we will extract a set of

generalizable criteria allowing the definition of a higher-level

action description language, to finally define an action description

language metamodel. In parallel, we will contribute to the

definition and implementation of an efficient and fast injection

mechanism. The dynamic re-execution of the application will be

based mainly on existing work on Live Modeling.

As stated in section 4, our work will be validated through case

studies and experiments. Then, we will extract from these case

studies and experiments a set of use cases in which our approach

has the most significant impact compared to other existing

approaches.

6 Current Status

6.1 Work Done

One of the main tasks that we have performed is the

development of a demonstrator to implement our solution.

To realize this demonstrator, we started from an existing

application generator, WebSiteGen, built on the principles of

MDE. WebSiteGen allows to generate websites from a model

describing the site to generate. The generated code is in React and

Spring.

We have modified this generator so that it produces

'instrumented' applications with actions allowing to modify the

model from the UI of the application. Currently, this modification

on the generator is 'manual': we have added the necessary code in

the generation templates in an ad hoc way.

Simplify Model Design in MDE Approaches MODELS’22, October, 2022, Montreal, Canada

The demonstrator is composed of the modified generator and a

basic model describing a web application with a simple home

page (figure 3).

Figure 3: Demonstrator made of an existing MDE application

generator, a basic model, and ‘Model Modification Actions’

(MMA). A server is used to receive modification requests and

to modify the model.

With the demonstrator, the (generated) page of the web

application contains actions allowing the addition and deletion of

pages or fields in a form. These actions are accessible from the

page when the application is running and as we mention already

are contextual. In figure 4, we are displaying ‘add field’ and

‘update field’ actions (blue buttons) on a form page. When an

action is triggered, a request is sent to a server, which processes

the action and modifies the model. The MDE chain re-generates

the code, the application is restarted, and the user can then see the

result of his action.

As the code is re-generated each time the model is modified,

the 'manual' code of the actions is inserted into the generation

templates. Thus, the actions are also re-generated.

Thanks to our demonstrator, we have a first complete loop

allowing us to test various properties related to model

modification from the user interface of a running web application.

Figure 4: A form page with some modification actions (blue

buttons)

6.2 Work to be done

For the next step, we will use and submit our demonstrator

internally within the laboratory in order to get feedback. Then,

tanks to discussions and observations, we will define and refine

the evaluation criteria that we will use later. These evaluation

criteria will be used to prepare a more formal experimentation

with a larger audience outside the laboratory. We will thus define

the tasks to be carried out during the experiments and the

questions to be asked in order to reach our objectives. In parallel

to the experiments, we will start working on the definition of the

description language.

In the actual demonstrator, we manually define the actions and

changes that are performed on the model. Our goals being to be

able to easily express and use these actions, a next step will be to

set up a description language for these actions. For this, we will

use the demonstrator to extract a base of simple and minimal

actions. We will define (in a formal way) a semantic allowing to

express these actions. Thus, the actions that we have written

manually in the demonstrator will be defined using the description

language.

We also plan to study the way the MDE compilation chain is

done: What are the best solutions to integrate the compilation

language, to generate action code, to re-execute the generated

application? For that, we will exploit works done around MDE

code generation.

We will explore how Live Modeling can be used to provide

the best dynamic execution strategy to re-execute the application.

Once the compilation chain is finalized, we will study how to

use more complex and more abstract modification actions, but

also the possibility of having modification actions on elements of

the model that have no visible counterparts in the page. Among

these elements we can mention the architecture of the cache in the

services, the configuration of the different services, the internal

processing operations, the relations between entities in the

database... A possible way to explore is to make these elements

visible in a 'configuration' page.

While improving the language, we will publish our results. We

will carry out a compilation and organization of our results in

order to write our PhD thesis.

ACKNOWLEDGMENTS

This work is supported by IRCICA research institute.

REFERENCES
[1] Mojtaba Bagherzadeh, Karim Jahed, Benoit Combemale, and Juergen Dingel.

2021. Live modeling in the context of state machine models and code

generation. Softw Syst Model 20, 3 (June 2021), 795–819.

DOI:https://doi.org/10.1007/s10270-020-00829-y

[2] Nelly Bencomo, Sebastian Götz, and Hui Song. 2019. Models@run.time: a

guided tour of the state of the art and research challenges. Software & Systems

Modeling (January 2019). DOI:https://doi.org/10.1007/s10270-018-00712-x

[3] Gordon Blair, Nelly Bencomo, and Robert France. 2009. Models@ run.time.

Computer 42, (November 2009), 22–27.

DOI:https://doi.org/10.1109/MC.2009.326

[4] Francis Bordeleau, Grischa Liebel, A. Raschke, Gerald Stieglbauer, and

Matthias Tichy. 2017. Challenges and Research Directions for Successfully

Applying MBE Tools in Practice. MDETOOLS 2017 (2017). Retrieved July 19,

2022 from https://research.chalmers.se/en/publication/500685

[5] Nelly Condori-Fernández, Jose Ignacio Panach, Arthur Iwan Baars, Tanja Vos,

and Óscar Pastor. 2013. An empirical approach for evaluating the usability of

model-driven tools. Science of Computer Programming 78, 11 (November

2013), 2245–2258. DOI:https://doi.org/10.1016/j.scico.2012.07.017

[6] Krzysztof Czarnecki. 2005. Overview of Generative Software Development. In

Unconventional Programming Paradigms (Lecture Notes in Computer

 MODELS’22, October, 2022, Montreal, Canada A. Biyalou-Sama

Science), Springer, Berlin, Heidelberg, 326–341.

DOI:https://doi.org/10.1007/11527800_25

[7] Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-specific

languages: an annotated bibliography. SIGPLAN Not. 35, 6 (juin 2000), 26–36.

DOI:https://doi.org/10.1145/352029.352035

[8] Davide Di Ruscio, Dimitris Kolovos, Juan de Lara, Alfonso Pierantonio,

Massimo Tisi, and Manuel Wimmer. 2022. Low-code development and model-

driven engineering: Two sides of the same coin? Softw Syst Model 21, 2 (April

2022), 437–446. DOI:https://doi.org/10.1007/s10270-021-00970-2

[9] Jean-Marie Favre, Jacky Estublier, and Mireille Blay-Fornarino. 2006.

L’ingénierie dirigée par les modèles : au-delà du MDA.

[10] FED. The Forrester WaveTM: Low-Code Development Platforms, Q2...

Forrester. Retrieved July 17, 2022 from https://www.forrester.com/report/The-

Forrester-Wave-LowCode-Development-Platforms-Q2-2016/RES117623?iOS=

[11] Holger Giese, Nelly Bencomo, Liliana Pasquale, Andres J. Ramirez, Paola

Inverardi, Sebastian Wätzoldt, and Siobhán Clarke. 2014. Living with

Uncertainty in the Age of Runtime Models. In Models@run.time: Foundations,

Applications, and Roadmaps, Nelly Bencomo, Robert France, Betty H. C.

Cheng and Uwe Aßmann (eds.). Springer International Publishing, Cham, 47–

100. DOI:https://doi.org/10.1007/978-3-319-08915-7_3

[12] Jack Greenfield. 2004. Software Factories: Assembling Applications with

Patterns, Models, Frameworks, and Tools. In Software Product Lines (Lecture

Notes in Computer Science), Springer, Berlin, Heidelberg, 304–304.

DOI:https://doi.org/10.1007/978-3-540-28630-1_19

[13] James H. Hill. 2011. Measuring and Reducing Modeling Effort in Domain-

Specific Modeling Languages with Examples. 2011 18th IEEE International

Conference and Workshops on Engineering of Computer-Based Systems

(2011). DOI:https://doi.org/10.1109/ECBS.2011.22

[14] Faezeh Khorram, Jean-Marie Mottu, and Gerson Sunyé. 2020. Challenges &

opportunities in low-code testing. In Proceedings of the 23rd ACM/IEEE

International Conference on Model Driven Engineering Languages and

Systems: Companion Proceedings. Association for Computing Machinery, New

York, NY, USA, 1–10. Retrieved July 18, 2022 from

https://doi.org/10.1145/3417990.3420204

[15] John Klein, Harry Levinson, and Jay Marchetti. Model-Driven Engineering:

Automatic Code Generation and Beyond. 51.

[16] Timothy C. Lethbridge, Andrew Forward, Omar Badreddin, Dusan

Brestovansky, Miguel Garzon, Hamoud Aljamaan, Sultan Eid, Ahmed Husseini

Orabi, Mahmoud Husseini Orabi, Vahdat Abdelzad, Opeyemi Adesina, Aliaa

Alghamdi, Abdulaziz Algablan, and Amid Zakariapour. 2021. Umple: Model-

driven development for open source and education. Science of Computer

Programming 208, (August 2021), 102665.

DOI:https://doi.org/10.1016/j.scico.2021.102665

[17] T. Mens and T. Tourwe. 2004. A survey of software refactoring. IEEE

Transactions on Software Engineering 30, 2 (February 2004), 126–139.

DOI:https://doi.org/10.1109/TSE.2004.1265817

[18] Pierre-Alain Muller. 2006. De la modélisation objet des logiciels à la

metamodélisation des langages informatiques. thesis. Université Rennes 1.

Retrieved August 24, 2022 from https://tel.archives-ouvertes.fr/tel-00538525

[19] Jakob Pietron, Alexander Raschke, Michael Stegmaier, Matthias Tichy, and

Enrico Rukzio. 2018. A study design template for identifying usability issues in

graphical modeling tools. In Proceedings of MODELS 2018 Workshops:

ModComp, MRT, OCL, FlexMDE, EXE, COMMitMDE, MDETools, GEMOC,

MORSE, MDE4IoT, MDEbug, MoDeVVa, ME, MULTI, HuFaMo, AMMoRe,

PAINS co-located with ACM/IEEE 21st International Conference on Model

Driven Engineering Languages and Systems (MODELS 2018), Copenhagen,

Denmark, October, 14, 2018 (CEUR Workshop Proceedings), CEUR-WS.org,

336–345. Retrieved from http://ceur-ws.org/Vol-2245/mdetools_paper_4.pdf

[20] Parsa Pourali. 2020. A User-Centric Approach to Improve the Quality of UML-

like Modelling Tools and Reduce the Efforts of Modelling. University of

Waterloo. Retrieved from http://hdl.handle.net/10012/15595

[21] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso

Pierantonio. 2020. Supporting the understanding and comparison of low-code

development platforms. In 2020 46th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), 171–178.

DOI:https://doi.org/10.1109/SEAA51224.2020.00036

[22] J. Sztipanovits and G. Karsai. 1997. Model-Integrated Computing. Computer

(1997). DOI:https://doi.org/10.1109/2.585163

[23] Marcello Thiry and Roger A. Schmidt. 2017. Self-adaptive Systems Driven by

Runtime Models. 248–253. DOI:https://doi.org/10.18293/SEKE2017-168

[24] Yentl Van Tendeloo, Simon Van Mierlo, and Hans Vangheluwe. 2019. A

Multi-Paradigm Modelling approach to live modelling. Softw Syst Model 18, 5

(October 2019), 2821–2842. DOI:https://doi.org/10.1007/s10270-018-0700-7

[25] Umple: Merging Modeling with Programming. Retrieved August 24, 2022 from

https://cruise.umple.org/umple/

[26] The Forrester WaveTM: Low-Code Development Platforms For Professional

Developers, Q2 2021. Retrieved July 17, 2022 from

https://reprints2.forrester.com/#/assets/2/228/RES161668/report

