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Abstract

In this paper, we present a continuum modeling for three-dimensional �ows of non-colloidal, non-Brownian suspensions

of particles immersed in a Newtonian liquid. Such suspensions exhibit complex behaviors such as jamming, anisotropic

normal stresses and shear-induced particle migration. These non-Newtonian e�ects arise from the solid contact forces

between the particles when the suspension is su�ciently concentrated. The modeling consists of a macroscopic one-phase

model close to the "Suspension Balance Model" [1, 2, 3, 4]. The particles migration �ux is governed by the divergence

of the contact stresses tensor. In order to describe the �ow in general 3D geometries, a frame-invariant constitutive law

for the stresses in �owing suspensions is developed. It is similar to the second-order �uid modeling, which is well-known

in polymer rheology, and allows for the presence of anisotropic normal stresses. The material functions are deduced from

discrete simulation data from the literature. The behavior of the model in shear and extensional �ows is discussed, as

well as its limitations when used for a more general �ow. To assess the modeling, numerical computations are performed

using a �nite volume method from the OpenFOAM suite. The implementation of the modeling is �rst validated by

studying particles migration in some classical rheometric �ows and then by studying the complex �ow of a suspension

in a tube through an abrupt expansion.

1. Introduction1

Understanding particulate suspension �ows is of pri-2

mary interest in a wide range of applications, spanning3

from natural �ows (blood �ow, lavas or debris �ows) to in-4

dustrial processes (fresh concrete manipulation, food pro-5

cessing, paint coating). A large amount of literature has6

been devoted to suspension �ows, that not only eviden-7

ced the great complexity of such materials, but also pro-8

vided keys to understand their properties (see [5] for a9

recent review). Non-Brownian suspensions display many10

complex rheological behaviors, such as shear-thinning [6,11

7, 8], continuous and discontinuous shear-thickening (see12

[9] for a review) and anisotropic normal stresses [10]. Time-13

varying suspension �ows may also display more peculiar14

features, such as stress discontinuity at shear-reversal [6,15

11, 12] and strain amplitude dependent response in os- 16

cillatory shear �ow [13, 14]. Particles in suspension �ows 17

undergo shear-induced migration [15, 16], sedimentation, 18

resuspension [17, 18, 19]. At particle scale, relevant mecha- 19

nisms are hydrodynamic interactions together with direct 20

contact interactions resulting in shear-induced microstruc- 21

ture [20, 21, 22] and irreversibility [23]. 22

During the last decades, particle scale simulations have 23

allowed deep insight in the microscopic mechanisms res- 24

ponsible for the suspensions �ow behaviors (see [24] for a 25

review), highlighting �rst the in�uence of lubrication in- 26

teractions and shear-induced microstructure [25, 26] and 27

later the role of contact between particles [27, 28] in sus- 28

pension rheology. However, even though more and more 29

powerful computers become available, discrete simulations 30

are mainly restricted to moderately large systems invol- 31
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ving a few thousand up to tens of thousands particles.32

While such simulations are well suited to determine ma-33

terial functions in homogeneous suspensions, they do not34

allow one to tackle real �ows in complex geometries. Conti-35

nuum modeling can then appear as an interesting mode-36

ling strategy. Such models dealing with suspension �ows37

and particle transport may be categorized in two main38

classes. In the frame of the �rst class, the so-called "two-39

phase" or "two-�uid" model, the particle and liquid phases40

are modeled as two interpenetrating and interacting conti-41

nuums, each with its own volume fraction and velocity42

�eld. Each phase obeys mass and momentum conservation43

equations (energy conservation equation may be added, if44

needed), and the phases interact with each other due to45

mass and momentum (and possibly energy) transfer. Part46

of these equations may be deduced from fundamental ba-47

lance equations at particle scale [29], but some closure re-48

lations have to be stated on an experimental basis or from49

theoretical conjectures. In the case of incompressible, non-50

reacting, athermal suspensions, such models deal with at51

least 8 scalar �elds, say the solid volume fraction, the pres-52

sure and two vector velocity �elds. Such models are natu-53

rally well-suited to �ows where the two phases move with54

signi�cantly di�erent velocities as in the case of �uidized55

beds [30] or bed-load transport [31]. This is however at56

the cost of computational di�culties, since a quite large57

number of coupled �elds must be computed.58

Another class of models mainly considers the �ow of59

the mixture as a whole, together with a balance equation60

for the solid volume fraction. The latter involves a speci-61

�c �ux that accounts for the motion of the particle phase62

with respect to the mixture. This �ux may be written as63

an athermal di�usive �ux depending on the volume frac-64

tion gradient and on the shear-rate gradient [32]. Other65

models start from the particle phase momentum equation66

mentioned in the previous paragraph and after some alge-67

braic manipulation derive the expression of the drift ve-68

locity, i.e. the velocity of the particle phase with respect69

to the mixture. The resulting �ux is given mainly as a 70

function of the divergence of some particle stress tensor, 71

which expression has to be stated as an additional closure 72

relationship. Such models are usually referred to the "Sus- 73

pension Balance Model" [1, 2, 3, 4]. In the present paper, 74

we follow this approach, as explained in 2.1. Such models 75

are computationally less expensive than two-�uid models, 76

since only 5 scalar �elds have to be determined. They are 77

well-suited to problems where the particle phase velocity 78

is close to the liquid velocity. 79

Constitutive relations must be stated, that allow com- 80

putation of the relevant stresses (suspension stress, particle 81

stress). Di�erent types of such relation have been proposed 82

in the literature. Most of the experimental or simulation 83

data deal with simple shear �ows, so that stresses have �rst 84

been written in a vector basis corresponding respectively to 85

the �ow, velocity gradient and vorticity directions, that is 86

well-suited to rheometrical shear �ows [3]. The aforemen- 87

tioned model accounts for the suspension viscosity, and 88

anisotropic normal stresses, both depending on the par- 89

ticle volume fraction φ, and proportional to the shear rate 90

γ̇. We note here that in the last decade, pressure imposed 91

shear �ow experiments have led to an alternative but equi- 92

valent form of the material functions, where the stresses 93

are written as a function of the particle pressure Pp and the 94

viscous number J =
ηf γ̇
Pp

[33, 5, 34]. The main drawback of 95

the model of [3] is that it is restricted to simple shear �ow 96

and thus cannot tackle general �ow geometries. It should 97

be noted however that a frame-invariant generalization of 98

this model has been proposed for two-dimensional �ows 99

[35]. In addition, the aforementioned model is restricted 100

to steady �ows and cannot account for the speci�c be- 101

haviors of the suspensions in time varying �ows, such as 102

oscillatory �ows or shear-reversal. 103

More general models have been proposed, that expli- 104

citly account for the in�uence of the so-called shear-induced 105

microstructure, i.e. the local relative arrangement of the 106

particles, on stresses (see the reviews in refs. [36, 37] and 107
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recent works in this area [38, 39, 40, 41]). This microstruc-108

ture is usually modeled using one or more tensor �elds,109

which obey a time di�erential equation, and a constitutive110

relation that connects the stress and the microstructure111

must be stated. Such models are very attractive since they112

stick to the particle scale sound concept of microstructure.113

They allow in principle to tackle any steady or transient114

�ow geometry, from extensional to purely rotational �ows,115

and may be in quite fair agreement with experimental data116

[42, 40]. However, they are not that simple to tackle : �n-117

ding a mathematical object that would properly describe118

the microstructure as measured in discrete simulations is119

not an easy task [38]. In addition, they usually involve120

a quite large number of free parameters, that should be121

determined from experiments or discrete simulations dea-122

ling with relevant �ows, in particular transient non-shear123

�ows. Even though considerable e�ort to generate such124

data [43, 38, 44] has been carried out, calibration of afore-125

mentioned modeling remains a quite di�cult task.126

In the present paper, we follow a simpli�ed approach,127

with no explicit reference to microstructure modeling. We128

propose a frame-invariant constitutive relation that allows129

computation of the relevant stresses in nearly steady �ows.130

Such modeling is not suited to �ow geometries where �ow131

conditions as seen by the moving �uid undergo rapid changes.132

In particular, fast transient �ows like shear-reversal or os-133

cillatory �ows are not expected to be properly accoun-134

ted for. However, such models are very easily calibrated135

since they involve a small number of free parameters. As136

mentioned above, Miller et al. [35] proposed such a mo-137

deling, that could generalize the model from Morris et al.138

[3] in the case of 2-dimensional general �ows. The authors139

note that the same type of model could be applied to 3-140

dimensional �ows, at the cost of higher mathematical com-141

plexity though. Here we propose another type of model,142

similar to the second order �uid modeling, which is well143

known in polymer rheology [45, 46]. In the context of sus-144

pension �ows such a model has already been proposed and145

implemented in computational study [47, 48], although in 146

these papers, stress was chosen to be proportional to γ̇2. 147

In the present paper, we are interested in low Reynolds 148

number �ows, where the stress scales as γ̇, so that the mo- 149

del has to be modi�ed. Lhuillier proposed such a model 150

with the relevant scaling in a theoretical paper concerning 151

particle migration [49], which is the starting point of the 152

approach that we follow. Actually, Mahmud et al. [50] ex- 153

plored the same idea in a recent paper, where the authors 154

propose a frame-invariant constitutive relation for the to- 155

tal suspension stress. They determine the free parameters 156

from experimental measurements of viscosity and normal 157

stress di�erences in shear �ow from the literature. We as- 158

sume here such constitutive relations for the total stress 159

and the particle stress as well, since the latter is also nee- 160

ded for the computation of the particle migration �ux. The 161

free parameters are determined from discrete simulation 162

data in shear �ow [28, 12, 8]. 163

The paper is organized as follows. Section 2 speci�es 164

the mathematical modeling : we �rst deduce the gover- 165

ning equations of the Suspension Balance Model from the 166

two-�uid balance equations for momentum and mass and 167

the material functions deduced from discrete simulations 168

are shown. The frame-invariant model allowing to compute 169

the total and contact stresses is explained, and the form 170

it takes for various standard homogeneous �ows is exami- 171

ned. Also, part of this section is devoted to the expected 172

limitations of the model. The numerical implementation 173

using the �nite volume toolbox OpenFOAM is explained 174

in section 3. In section 4, the velocity and volume frac- 175

tion distributions are computed for various standard �ows 176

of interest. The results are compared whenever possible 177

to theoretical predictions or experimental measurements, 178

emphasizing the range of applicability of the approach. Fi- 179

nally, a brief conclusion ends the paper in section 5. 180
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2. Mathematical modeling181

2.1. Governing equations182

We consider rigid spherical particles of radius a and183

density ρp in suspension within a Newtonian �uid of vis-184

cosity ηf and density ρf . The suspension is considered as a185

continuum. Starting from local � at the particle scale �186

balance equations for mass and momentum, Jackson [29]187

obtained the macroscopic scale two-phase balance equa-188

tions by averaging these micro-scale equations over a meso-189

scale Representative Volume Element containing "many"190

particles, and that is still signi�cantly smaller than the191

macroscopic scale. Starting from this two-phase modeling,192

we shall here proceed with an homogenization process in193

order to derive a macroscopic scale one-phase modeling.194

To do this, we will combine the two-phase equations into195

a single one and then propose closure expressions for some196

terms to get a one-phase system of equations.197

2.1.1. Mass conservation198

The volume fraction of the particulate phase in the199

suspension is noted φ. Mass conservation equations for res-200

pectively the particulate phase (with subscript p) and the201

�uid phase (with subscript f) are given by :202

∂φρp
∂t

+∇.(φρpvp) = 0 (1a)

∂(1− φ)ρf
∂t

+∇.((1− φ)ρfvf ) = 0 (1b)

where vp and vf respectively denote the velocity of the203

particulate and the �uid phases. By summing the two204

above equations (1), we obtain the mass conservation equa-205

tion for the mixture :206

∂ρm
∂t

+∇.(ρmvm) = 0 (2)

with ρm the mean density of the mixture and vm the mass-207

averaged suspension velocity :208

ρm = φρp + (1− φ)ρf (3)

vm =
φρpvp + (1− φ)ρfvf

ρm
(4)

Since densities ρp and ρf are constant, we can also deduce 209

the following equations : 210

∇.u = 0 (5)

with u the volume-averaged suspension velocity : 211

u = φvp + (1− φ)vf (6)

Eqs. (5) and (6) state that whenever the �uid and parti- 212

culate phases are both incompressible, the suspension also 213

is. The velocity vm is related to the velocity u by : 214

vm = u + φ(1− φ)
ρp − ρf
ρm

vpf (7)

with vpf = vp − vf the relative velocity between the two 215

phases. 216

2.1.2. Momentum balance 217

In the two-phase modeling, momentum balance equa- 218

tions for each phases read [30] : 219

∂φρpvp

∂t
+∇.(φρpvp ⊗ vp) = ∇.Σc + ρpφg + f (8a)

∂(1− φ)ρfvf

∂t
+∇.((1− φ)ρfvf ⊗ vf )

= ∇.Σf + ρf (1− φ)g − f

(8b)

with Σc the particle contact stress tensor and Σf the �uid 220

stress tensor (which expression is given in section 2.2) ; g 221

is gravity and f denotes the interaction force between the 222

two phases. Deriving a modeled expression for this force 223

is still an open problem [49, 4]. The most commonly used 224

expression for suspensions at low particle-scale Reynolds 225

number writes [51, 30] : 226

f = φ∇.Σf + α(φ)(vf − vp) (9)

The term φ∇.Σf includes buoyancy, α(φ) is the drag co- 227

e�cient, which reads, in the case of rigid spheres [5] : 228

229
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α(φ) =
9ηfφ(1− φ)2

2a2f(φ)
(10)

with f(φ) the empirical hindered settling function. We230

shall consider here the expression proposed in 1954 by Ri-231

chardson & Zaki [52], which is given by :232

f(φ) = (1− φ)5.1 (11)

Summing equations (8) yields the momentum balance equa-233

tion for the mixture :234

∂ρmvm

∂t
+∇.(φρpvp ⊗ vp + (1− φ)ρfvf ⊗ vf )

= ∇.Σc +∇.Σf + ρmg

(12)

The convective �ux term of the mixture can be written235

as :236

∇.(φρpvp ⊗ vp + (1− φ)ρfvf ⊗ vf )

= ∇.(ρmvm ⊗ vm) +∇.(ρpρf
ρm

φ(1− φ)vpf ⊗ vpf )
(13)

The drift tensor (
ρpρf
ρm

φ(1−φ)vpf ⊗vpf ) is denoted by τD237

[53]. Eq. (12) then becomes :238

∂ρmvm

∂t
+∇.(ρmvm ⊗ vm)

= ∇.Σc +∇.Σf + ρmg −∇.(τD)

(14)

2.1.3. Particulate phase continuity equation239

Using equations (1a) and (1b) together with Eq. (9),240

(8) yields :241

φρp
Dvp

Dt
= ∇.Σc + φ∇.Σf

+ ρpφg − α(φ)vpf

(15a)

(1− φ)ρf
Dvf

Dt
= (1− φ)∇.Σf

+ ρf (1− φ)g + α(φ)vpf

(15b)

242

with : Dvh

Dt = ∂vh

∂t +(vh.∇)vh , h = f or p, the material243

derivative of velocity vh.244

Eliminating∇·Σf , the relative velocity can be written : 245

α(φ)vpf = −φ(1− φ)

[
ρp
Dvp

Dt
− ρf

Dvf

Dt

]
+(1− φ)∇.Σc + φ(1− φ)(ρp − ρf )g

(16)

2.1.4. Model approximation 246

Gathering Eq. (1a), (2) and (14) yields the following 247

system of balance equations : 248

∂ρm
∂t

+∇.(ρmvm) = 0 (17a)

∂ρmvm

∂t
+∇.(ρmvm ⊗ vm)

= ∇.Σc +∇.Σf + ρmg −∇.(τD)

(17b)

∂φ

∂t
+∇.(φvm) = −∇.( ρf

ρm
φ(1− φ)vpf ) (17c)

with vpf given by Eq. (16). Eq. (1a) has been modi- 249

�ed using (4) to get Eq. (17c). This system, which was 250

used in [53, 54] is named mixture model. However, this 251

model is still a two-phase model since it needs two velo- 252

city �elds. In order to remove one phase in the modeling 253

and build a one-phase modeling, we propose an approxi- 254

mation that consists in assuming that the relative velocity 255

is negligible with respect to the average velocity, in all 256

the inertial terms. This assumption implies that the term 257

∇.(τD) vanishes and : 258

Dvp

Dt
≈ Dvf

Dt
≈ Dvm

Dt
≈ Du

Dt
(18)

This approximation will actually be ful�lled for every nu- 259

merical test we have run. The expression for the relative 260

velocity (16) can hence be simpli�ed as : 261

262

α(φ)

1− φ
vpf = ∇.Σc + φ(ρp − ρf )

[
g − Du

Dt

]
(19)

and the momentum equation (17b) becomes : 263

∂ρmu

∂t
+∇.(ρmu⊗ u) = ∇.(Σc + Σf ) + ρmg (20)
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Rewriting Eq. (17a) and (17c) as a function of u, the264

volume-averaged suspension velocity, we now obtain the265

following system of governing equations :266

∇.u = 0 (21a)

∂ρmu

∂t
+∇.(ρmu⊗ u) = ∇.(Σc + Σf ) + ρmg (21b)

∂φ

∂t
+∇.(φu) = −∇.(φ(1− φ)vpf ) (21c)

φ(1− φ)vpf =
2a2f(φ)

9ηf
×(

φ(ρp − ρf )

[
g − Du

Dt

]
+∇.Σc

)
(21d)

Equations (21c) and (21d) govern the transport of par-267

ticles by convection, according to the velocity �eld u. Mi-268

gration is governed by the divergence of the contact stress269

tensor. The gravity term, corrected by the suspension acce-270

leration, describes the particles sedimentation. Note that271

Eq. (21d) de�nes the RHS of the solid volume fraction272

transport equation (21c). The velocity �eld u is given by273

the equations (21a) and (21b) and the coupling will be274

done by ρm, Σc and Σf . We will now close the system by275

giving the constitutive equations for the stresses.276

2.2. Constitutive equations277

2.2.1. Material functions in simple shear �ow278

According to [49, 4], the total stress of the suspension279

mixture, sum of the �uid and contact contributions Σ =280

Σf + Σc can be expressed as :281

Σ = −(1− φ)pfI + 2ηfE + Σpf + Σc (22)

with pf the average �uid pressure, E the average deforma-282

tion rate tensor of the suspension, I the identity tensor ;283

Σpf denotes the hydrodynamic contribution from �uid-284

particle interactions while Σc refers to the particle-particle285

contact contribution. The �uid stress tensor can then be286

de�ned as follows :287

Σf = −(1− φ)pfI + 2ηfE + Σpf (23)

Most of experiments and numerical calculations currently 288

available in the literature deal with simple shear �ow, 289

where the stresses Σ and Σc are expressed in terms of pa- 290

rameters called material functions. In the present study, 291

these have been determined using discrete simulations [28, 292

8, 12] and are given below. Simple shear �ow is de�ned as 293

(see �gure 1) : 294

u = 2eyex, E =


0 e 0

e 0 0

0 0 0

 and γ̇ = 2|e| 295

The tangential stress depends on volume fraction φ and, at 296

�rst order, is a linear function of γ̇. In addition, anisotropic 297

normal stresses are also function of φ and proportional to 298

γ̇. However, for the total stress, we are only interested in 299

the normal stress di�erences which are de�ned as N1 = 300

Σ11 − Σ22 and N2 = Σ22 − Σ33. Indeed, since we deal 301

with incompressible �ows, the spherical part of the stress 302

tensor corresponds to pressure. Even if additional terms 303

are present in the modeling, the pressure will always adapt 304

to ensure that the �ow remains incompressible. The total 305

stress can be expressed as : 306

Σ = −pI + dev(Σ) (24)

307

Figure 1: Flow direction in a simple shear 308

The material functions for the total stress deviator, obtai- 309

ned from a best �t of simulation data [28, 8, 12], are : 310
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dev(Σ) = 2ηfηs(φ)E + ηfηs(φ)γ̇× (25)
1
3 (2N̂1 + N̂2) 0 0

0 1
3 (−N̂1 + N̂2) 0

0 0 1
3 (−N̂1 − 2N̂2)


• E�ective viscosity :311

ηs =

(
1 +

5
4φ

1− φ
φm

)2

(26)

• Jamming concentration :312

φm = 0.583 (27)

• Normal stress di�erences :313

N̂1 =
N1

ηfηsγ̇
(28a)

= a1

(
φ

φm

)2

+ a2

(
φ

φm

)4

+ a3

(
φ

φm

)6

N̂1 + 2N̂2 =
N1 + 2N2

ηfηsγ̇
(28b)

= b1

(
φ

φm

)2

+ b2

(
φ

φm

)4

+ b3

(
φ

φm

)6

314

With :315

a1 = −0.1352 a2 = −0.3174 a3 = 0.4656316

b1 = −0.3551 b2 = −3.4660 b3 = 3.2913317

The contact stress Σc can be completely determined from318

the simulations, including the isotropic part :319

Σc = 2ηcηfE

+ ηfηs(φ)γ̇


Σ̂c11( φ

φm
) 0 0

0 Σ̂c22( φ
φm

) 0

0 0 Σ̂c33( φ
φm

)

 (29)

• Contact viscosity :320

ηc
ηs

= c1

(
φ

φm

)4

+ c2

(
φ

φm

)5

(30)

with c1 = 4.4659 and c2 = 1− c1321

• Contact stress : 322

Σ̂c11 =
Σc11

ηfηsγ̇
= d1

(
φ

φm

)d2
(31a)

Σ̂c22 =
Σc22

ηfηsγ̇

= Σ̂c11

(
e1 + e2

φ

φm
+ e3

(
φ

φm

)2
)

(31b)

Σ̂c33 =
Σc33

ηfηsγ̇

= Σ̂c11

(
f1 + f2

φ

φm
+ f3

(
φ

φm

)4
)

(31c)

with 323

d1 = −2.4247 d2 = 4.128 324

e1 = 2.1446 e2 = −2.7234 e3 = 1.5759 325

f1 = 0.3750 f2 = 0.0366 f3 = 0.4846 326

All material functions are displayed in the Appendix. Part 327

of the simulation data that the functions are �tted to, na- 328

mely ηS ,N1,N2 and Σc22, have been shown to compare rea- 329

sonably well with experimental and simulation data from 330

the literature [5]. 331

2.2.2. Frame-invariant modeling 332

The expressions of both tensors Σ and Σc (Eq. (25) 333

and Eq. (29)) are obtained from the situation of a simple 334

shear �ow. Strictly speaking, they should hence be valid 335

only for this particular type of �ow and thus are not adap- 336

ted to general �ow situations. We shall therefore try and 337

generalize this modeling to general �ows and geometries. 338

To this purpose, a frame-invariant modeling is proposed in 339

the following. 340

General formulation of the stress. 341

Lhuillier [49], following the work by Rivlin and Ericksen 342

[55], proposes a frame-invariant expression for the stress, 343

that takes into account the experimentally measured quan- 344

tities and, in particular, the normal stress di�erences. The 345

proposed modeling in [49] reads as 346

7



Σ = β0I + 2β1E + 4β2E.E + β3
DE

Dt
(32)

with βi is a function of γ̇ and φ ; DE
Dt denotes the Jaumann347

derivative of the tensor E, and is de�ned as :348

DE

Dt
=
∂E

∂t
+ (u.∇)E + E.Ω−Ω.E (33)

The tensors E and Ω are respectively the deformation rate349

and vorticity tensors, de�ned in index notation as Eij =350

1/2 (∂ui/∂xj +∂uj/∂xi), Ωij = 1/2 (∂ui/∂xj−∂uj/∂xi).351

The shear rate is also de�ned as γ̇ =
√

2E : E.352

Eq. (32) is commonly used in the context of polymer353

rheology. This model, which is considered in that �eld as354

a simpli�ed model for slowly varying visco-elastic �uids355

in slow motion [45, 56], de�nes the so-called second-order356

�uid. It has also been used in the modeling of granular357

�ows [57] as well as in the �eld of suspensions rheology358

[47, 48, 58], with quite di�erent material functions though.359

In low Reynolds number suspension �ows, the �uid mix-360

ture is not visco-elastic, the stresses depend on the vo-361

lume fraction φ and can be, at �rst order in a simple362

shear �ow, be considered as a linear function of ηf γ̇ [5].363

Indeed, the purpose here is not to describe rate-dependent364

behaviour such as discontinuous shear-thickening [27], or365

shear-thinning [8]. At the same order of approximation,366

and also considering the absence of inertia at the particle367

scale (Rep =
ρfa

2γ̇
ηf

� 1) and the high sti�ness of the368

contact force between particles [12], the only relevant cha-369

racteristic time in the problem is given by the shear rate.370

As a consequence, the relevant dynamic parameter is de-371

formation, and not time [6, 11, 12]. Eq. (32) is modi�ed372

accordingly.373

Σ = ηf γ̇ [ψ0(φ)I + 2ψ1(φ) Ê + 4ψ2(φ)Ê.Ê

+ψ3(φ)
1

γ̇

DÊ

Dt

]
(34)

where the reduced strain rate is de�ned as Ê = E/γ̇.374

Eq. (34) therefore provides a general expression for 375

the stress tensor, that remains invariant under any time- 376

dependant combination of rotation and translation [55, 377

59]. The reduced strain rate Ê de�nes the type of extensio- 378

nal straining motion undergone by the �uid (planar, uni- 379

axial, biaxial etc.) independently of its intensity which is 380

measured by the strain rate γ̇. In the present modeling of 381

a rate independent suspension, the stresses are proportio- 382

nal to the strain rate. The terms inside the round brackets 383

are supposed to de�ne the in�uence of the local �ow geo- 384

metry and history on the underlying shear-induced micro- 385

structure. We note that Lhuillier [49] proposed a slightly 386

di�erent expression for the last term inside the round bra- 387

ckets, namely 1
γ̇2
DE
Dt . As explained in section 2.2.5, Eq. (34) 388

�ts closer to the experimental measurements performed in 389

time varying simple shear �ow. 390

As recalled previously, the Jaumann derivative DDt has 391

been extensively used in the modeling of polymer rheology. 392

The Jaumann derivative of a tensor �eld is the material 393

derivative of this quantity as seen by an observer atta- 394

ched to the �uid and that rotates at the angular velocity 395

Ω of the �uid [45]. The idea is that, as the moving and 396

rotating �uid "sees" a varying reduced strain rate tensor, 397

the microstructure is a�ected, and so is the stress. Due 398

to the prefactor 1/γ̇, this derivative should be understood 399

as a variation per unit strain. The corresponding term � 400

the last term of the RHS in Eq. (34) � which, as shown 401

below, is instrumental for accounting for the �rst normal 402

stress di�erence in simple shear �ow, may be conveniently 403

expressed in a slightly di�erent way. 404

The material derivative of the reduced strain rate ten- 405

sor can be split in two contributions. The derivation can 406

be easily carried out in the eigenframe, i.e. the frame of the 407

eigenvectors {ei} of the strain rate tensor attached to the 408

suspension. The reduced deformation rate tensor is written 409

using the reduced principal rates of strain ξ̂i = ξi/γ̇ : 410

8



Ê =

3∑
i=1

ξ̂i ei ⊗ ei (35)

So that the material derivative reads [45] :411

DÊ

Dt
=

3∑
i=1

Dξ̂i
Dt

ei ⊗ ei + ΩF .Ê− Ê.ΩF (36)

where ΩF is the angular velocity tensor of the frame {ei}.412

From Eqs. (33) and (36), the Jaumann derivative of the413

strain rate tensor reads :414

DÊ

Dt
=

3∑
i=1

Dξ̂i
Dt

ei ⊗ ei + ∆Ω.Ê− Ê.∆Ω (37)

where the angular velocity tensor of the eigenframe {ei}415

with respect to the rotating �uid is given by :416

∆Ω = ΩF −Ω. (38)

The �rst term of the RHS of Eq.(37), which is connected417

to the variation of the principal rates of the reduced strain418

rate tensor, is the material derivative of Ê in the frame419

{ei}, while the second term originates in the rotation of420

this frame with respect to the rotating �uid [45, 60]. The421

relative angular velocity tensor ∆Ω has been introduced in422

particular in the context of polymers [61] and suspensions423

[35] rheology modeling. Eqs. (37) and (38) allow categori-424

zation of the �ows that will be considered in the following425

sections (see also ref. [61]).426

The free material function ψi(φ) for the total stress427

and the contact stress will now be stated. It should be no-428

ted here that Mahmud et al. [50] (see also [62]) proposed429

recently a frame-invariant constitutive relation very close430

to the expression from (34) to compute the total stress.431

In this paper, the author deduced the free material func-432

tions they needed from experimental measurements. Since433

we need the constitutive relations for the contact stress as434

well, we decided to determine the complete set of mate-435

rial functions from the discrete numerical simulation data436

presented in section 2.2.1.437

Determination of the coe�cients ψi for the total stress. 438

Let us now express the coe�cients ψi in Eq. (34) as a 439

function of our material functions, de�ned by Eq. (25)� 440

(31). 441

As mentioned above, the incompressibility of the �ow 442

allows us to only focus on the deviatoric part, instead of 443

the entire total stress tensor : 444

Σ = −pI + dev(Σ) (39)

The deviator stress tensor dev(Σ) is given by : 445

dev(Σ) = ηf γ̇
[
2ψ1(φ)Ê

+4ψ2(φ)

(
Ê.Ê− tr(Ê.Ê)

3
I

)

+ψ3(φ)
1

γ̇

DÊ

Dt

] (40)

If we consider the case of a simple shear u = 2 e y ex, the 446

tensors E and Ω read : 447

E =


0 e 0

e 0 0

0 0 0

 Ω =


0 e 0

−e 0 0

0 0 0

 (41)

with, in this case, γ̇ = 2|e|. In addition, the strain rate 448

tensor is stationary in the frame at rest, so that ΩF = 0 449

and Dξ̂i
Dt = 0. In that case the Jaumann derivative accounts 450

for the rotation −Ω of the reduced strain rate tensor with 451

respect to the �uid. In particular : 452

DÊ

Dt
= −Ω.Ê + Ê.Ω =

γ̇

2


−1 0 0

0 1 0

0 0 0

 (42)

The expression for the deviator (see Eq. (40)) hence be- 453

comes : 454

455
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dev(Σ) = ηf γ̇

sign(e)ψ1(φ)


0 1 0

1 0 0

0 0 0



+ψ2(φ)


1
3 0 0

0 1
3 0

0 0 − 2
3

+ ψ3(φ)


− 1

2 0 0

0 1
2 0

0 0 0




(43)

where sign(e) denotes the sign of e. When identifying the456

terms of the above equation (43) with those of Eq. (25),457

one can deduce the expressions of the ψi coe�cients :458

ψ1 = ηs

ψ2 =
N1 + 2N2

2ηf γ̇
= ηs

(N̂1 + 2N̂2)

2

ψ3 = − N1

ηf γ̇
= −ηsN̂1

(44)

Note that if the �ow changes direction, then the term in ψ1459

(shear stress) changes sign while the other terms (normal460

stresses) do not, as expected from symmetry argument.461

Determination of the coe�cients ψci for the contact stress.462

The same approach was used for the contact stress tensor463

to derive its frame-invariant form :464

Σc = ηf γ̇ (ψc0(φ)I +2ψc1(φ)Ê

+4ψc2(φ)Ê.Ê + ψc3(φ)
1

γ̇

DÊ

Dt

)
(45)

We consider the case of a simple shear �ow :465

Σc =ηf γ̇

ψc0(φ)


1 0 0

0 1 0

0 0 1



+ sign(e)ψc1(φ)


0 1 0

1 0 0

0 0 0

+ ψc2(φ)


1 0 0

0 1 0

0 0 0



+ ψc3(φ)


− 1

2 0 0

0 1
2 0

0 0 0




(46)

Again, identifying this expression with Eq. (29) yields : 466

ψc0 = ηsΣ̂
c
33

ψc1 = ηc

ψc2 = ηs

(
Σ̂c11 + Σ̂c22

2
− Σ̂c33

)
ψc3 = −ηs(Σ̂c11 − Σ̂c22)

(47)

Note that in this case, all terms in the tensor Σc, including 467

the isotropic part, must be determined. 468

2.2.3. Application to rheometrical �ows 469

In this section, we apply the present frame-invariant 470

modeling to two classical rheological �ows widely analyzed 471

in the experimental context, namely steady Couette �ow 472

and torsional parallel plate �ow. In their paper concerning 473

shear-induced migration in curvilinear �ow, Morris and 474

Boulay [3] approximated such �ows by simple shear �ows. 475

We recall below that they are not strictly speaking simple 476

shear �ows. However, the present model yields the same 477

formal expression for the stresses as in Eq. (43) and (46), 478

which hold for simple shear �ows. 479

• For the cylindrical Couette �ow, the velocity �eld is 480

of the form u = uθ(r)eθ, the gradient of which is : 481

∇⊗ u =


0 −uθr 0

duθ
dr 0 0

0 0 0

 (48)
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482

Figure 2: Couette �ow geometry.483

The corresponding strain rate and vorticity tensors and484

read :485

486

E =
1

2
(
duθ
dr
− uθ

r
)


0 1 0

1 0 0

0 0 0



Ω =− 1

2
(
duθ
dr

+
uθ
r

)


0 1 0

−1 0 0

0 0 0


(49)

with the shear rate de�ned as γ̇ = |duθ
dr
− uθ

r
|. The angular487

velocity of the frame moving and rotating with the �uid is488

given by :489

ΩF =


0 −uθr 0

uθ
r 0 0

0 0 0

 (50)

The Jaumann derivative is completely speci�ed by relative490

angular velocity :491

∆Ω = ΩF −Ω

= −1

2
(
duθ
dr
− uθ

r
)


0 −1 0

1 0 0

0 0 0

 (51)

yielding :492

DÊ

Dt
= ∆Ω.Ê− Ê.∆Ω =

γ̇

2


1 0 0

0 −1 0

0 0 0

 (52)

493

The contact stress tensor then writes : 494

Σc = 2ηfηcE

+ ηfηsγ̇

Σ̂c33I + (
Σ̂c11 + Σ̂c22

2
− Σ̂c33)


1 0 0

0 1 0

0 0 0



− Σ̂c22 − Σ̂c11

2


−1 0 0

0 1 0

0 0 0


 (53)

yielding : 495

Σc = 2ηfηcE + ηfηsγ̇


Σ̂c22 0 0

0 Σ̂c11 0

0 0 Σ̂c33

 (54)

While this �ow is not a simple shear �ow since ||E|| 6= ||Ω||, 496

we observe that the contact stress is equivalent to the one 497

that would be found in simple shear �ow using Eq. (29) 498

with the shear rate γ̇ and, according to �gure 1, er = e2, 499

eθ = e1 and ez = −e3. This is easily understood, inspecting 500

the only contribution that could di�er, i.e. the Jaumann 501

derivative. In both cases, the derivative originates in the 502

relative rotation, that amounts to −Ω in the simple shear 503

�ow (Eq. (42)) and to ∆Ω in the cylindrical Couette �ow 504

(Eq. (52)). Since E and −∆Ω de�ne together a simple 505

shear �ow, as shown by Eqs. (49) and (51), it follows that 506

the expression of the Jaumann derivative is the same as 507

in the case of a simple shear �ow. The same conclusion 508

holds for the total stress. As a consequence, the present 509

frame-invariant model for the stresses does not introduce 510

any di�erence between a cylindrical Couette �ow and a 511

simple shear �ow. 512

513

• For the torsional parallel plate �ow, the velocity is 514

of the form u = uθ(r, z)eθ, with uθ =
ωrz

h
. The velocity 515

gradient reads : 516
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∇⊗ u =


0 −ωzh 0

ωz
h 0 ωr

h

0 0 0

 (55)

with the shear rate and angular velocity tensors :517

E =
1

2

ωr

h


0 0 0

0 0 1

0 1 0



Ω =
1

2


0 −2ωzh 0

2ωzh 0 ωr
h

0 −ωrh 0


(56)

and the shear rate :γ̇ = |ωr
h
|518

519

Figure 3: Torsional �ow geometry.520

The angular velocity of the frame moving and rotating521

with the �uid is given by :522

ΩF =


0 −ωzh 0

ωz
h 0 0

0 0 0

 (57)

Again, the Jaumann derivative is completely speci�ed by523

relative angular velocity :524

∆Ω = ΩF −Ω =
1

2

ωr

h


0 0 0

0 0 −1

0 1 0

 (58)

yielding :525

DÊ

Dt
= ∆Ω.Ê− Ê.∆Ω =

γ̇

2


0 0 0

0 −1 0

0 0 1

 (59)

The contact stress tensor for torsional �ow is �nally 526

given by : 527

Σc = 2ηfηcE + ηfηsγ̇


Σ̂c33 0 0

0 Σ̂c11 0

0 0 Σ̂c22

 (60)

Again, the expression of the contact stress in a simple shear 528

�ow is recovered assuming er = e3, eθ = e1 and ez = e2, 529

for the same reason as in cylindrical Couette �ow. This 530

results holds for the total stress too. 531

2.2.4. Application to extensional �ows 532

In this section, we show how the model that we propose 533

deals with homogeneous steady extensional �ows (EF). 534

The main trends are then discussed against available si- 535

mulations and experimental studies from the literature. 536

We shall successively address the planar, uniaxial and the 537

biaxial EF. For all three cases, the strain rate is constant 538

and uniform, and no rotation occurs so that DÊ
Dt = 0. 539

540

• Planar extension : 541

542

Figure 4: Planar extensional �ow 543

Starting with the planar extension, the deformation 544

rate tensor is here de�ned as : 545

E =


−ε̇ 0 0

0 ε̇ 0

0 0 0

 (61)

with ε̇ the extension rate. Then, γ̇ = ||E|| =
√

2E : E = 546

2ε̇ and Ê reads : 547
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Ê =
E

γ̇
=


− 1

2 0 0

0 1
2 0

0 0 0

 (62)

and the total stress from Eqs.(39) and (40) writes :548

Σ = −pI + 2ηfηsγ̇Ê (63)

+ 2ηfηsγ̇(N̂1 + 2N̂2)

(
Ê.Ê− tr(Ê.Ê)

3
I

)
or, in a more explicit form :549

Σ = −pI (64)

+ ηfηsγ̇


−1 + N̂1+2N̂2

6 0 0

0 1 + N̂1+2N̂2

6 0

0 0 − N̂1+2N̂2

3


The extensional viscosity ηE can then be computed,550

as :551

ηE =
Σ22 − Σ11

ε̇
= 2

Σ22 − Σ11

γ̇
= 4ηfηs (65)

• Uniaxial extension :552

553

Figure 5: Uniaxial extensional �ow554

Here, the deformation rate tensor writes :555

E =


− ε̇

2 0 0

0 − ε̇
2 0

0 0 ε̇

 (66)

and γ̇ = ||E|| =
√

2E : E =
√

3ε̇ so that :556

Ê =
E

γ̇
=


− 1

2
√

3
0 0

0 − 1
2
√

3
0

0 0 1√
3

 (67)

The total stress (39) can be expressed as : 557

Σ = −pI (68)

+ ηfηsγ̇

(
2√
3

+
N̂1 + 2N̂2

3

)
− 1

2 0 0

0 − 1
2 0

0 0 1


This enables us to compute the extensional viscosity : 558

ηE =
Σ33 − Σ11

ε̇

= 3ηfηs(1 +
N̂1 + 2N̂2

2
√

3
)

(69)

• Biaxial extension : 559

560

Figure 6: Biaxial extensional �ow 561

In this last canonical case, the deformation rate ten- 562

sor writes : 563

E =


ε̇ 0 0

0 ε̇ 0

0 0 −2ε̇

 (70)

with γ̇ = 2
√

3ε̇ so that : 564

Ê =
E

γ̇
=


1

2
√

3
0 0

0 1
2
√

3
0

0 0 − 1√
3

 (71)
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and the total stress writes :565

Σ = −pI (72)

+ ηfηsγ̇

(
1√
3
− N̂1 + 2N̂2

6

)
1 0 0

0 1 0

0 0 −2


The extensional viscosity is here de�ned as :566

ηE =
Σ11 − Σ33

ε̇

= 6ηfηs(1−
N̂1 + 2N̂2

2
√

3
)

(73)

Discussion.567

The Trouton Ratio (TR) ηE/(ηfηs) from Eqs. (65), (69)568

and (73) is displayed in Fig.7 as a function of the par-569

ticle volume fraction. We recall here that the TR for a570

Newtonian liquid is respectively respectively 3, 4, 6 for the571

uniaxial, planar and biaxial EF. On the whole, the suspen-572

sions behavior is quite close to that of a Newtonian liquid.573

In the planar EF, the predicted TR is exactly equal to the574

Newtonian value 4, while in the two remaining cases, the575

di�erence is due to the factor N̂1+2N̂2

2
√

3
, which amounts to576

0.25 at most (AnnexeA).577

There are only few discrete numerical simulations in578

the literature concerning suspensions in EF to which we579

can compare this behavior. Recently, Cheal and Ness [44]580

have computed the extensional viscosity of non-Brownian581

suspensions for all three EF. They have considered two dif-582

ferent values of the friction coe�cient between particles,583

namely 0 and 1. In both cases, they �nd values of the584

TR close to the Newtonian value, except in the very high585

volume fraction range close to the jamming point. Their586

computed TR is reproduced in Fig.7 for frictional par-587

ticles. The jamming volume fraction for their suspension in588

simple shear �ow is 0.575, close to value φm = 0.583 from589

our model. In the moderately concentrated range (φ .590

0.56), the computations and the predictions of our model591

are in good agreement. We note that Seto et al., in their pa- 592

per concerning the simulations of discontinuous shear thi- 593

ckening of non-Brownian suspensions [43], also found that 594

the TR for a planar EF is close to the Newtonian value 4, 595

both for frictional and frictionless particles, in the volume 596

fraction range that they probe (0.5 ≤ φ ≤ 0.55), provided 597

that the size dispersion is su�ciently strong to prevent spa- 598

tial ordering that occurs otherwise in the simple shear �ow 599

of frictionless suspensions. Returning to Fig. 7, in the high 600

volume fraction range (φ ≥ 0.56), the TR from the dis- 601

crete simulations signi�cantly increases as the suspension 602

approaches the jamming point. This is shown to originate 603

in the variation of the jamming volume fraction with the 604

�ow type for suspensions of frictional particles [44], which 605

is connected to the �ow-depending degree of anisotropy 606

in the suspension microstructure as jamming occurs. Our 607

model is clearly not designed to account for such TR spike, 608

which is however restricted to nearly jammed suspensions. 609

As a conclusion, the model/extensional simulations agree- 610

ment is very satisfactory, except in the close proximity of 611

the jamming point. 612

613

614

Figure 7: Trouton ratio as a function of volume fraction for biaxial,

planar and uniaxial extensional �ows. Lines : TR from the model

(jamming volume fraction φm = 0.583). Symbol : TR from discrete

simulations from ref. [44] (particle friction coe�cient µ = 1, simple

shear �ow jamming volume fraction φm = 0.575). Dotted line : TR

for a Newtonian liquid. 615
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Only few experimental studies are available in the li-616

terature to be compared to the predictions of our model.617

Very recently, the rheology of non-Brownian suspensions618

in uniaxial extensional �ow was explored [63, 50], with the619

purpose of building a general �ow model for the total stress620

[50] very close to Eqs. (39) and (40). Extensional �ow mea-621

surements are particularly subtle, since the force on the622

�uid cannot be directly measured. Besides, non-Brownian623

suspensions show speci�c features that makes such experi-624

ments even more di�cult : the strain-induced microstruc-625

ture develops over a �nite strain that is not easy to reach in626

experiments. In addition, the shear-viscosity of moderately627

concentrated non-Brownian suspensions usually displays628

shear-thinning behavior [64, 8]. In our attempt to build a629

simple model, we neglected part of those features : shear-630

thinning is not accounted for, nor is the transient response631

of the suspensions. Direct comparison with the cited expe-632

riments is thus not straightforward. However we now try633

to determine in what extent the present model is able to634

describe "real world" suspensions. From the experimental635

measurements in [50], both the shear and uniaxial exten-636

sional viscosities feature rate-thinning behavior. The TR is637

computed from the extensional viscosity at the strain rate638

ε̇ and the shear viscosity at shear rate γ̇, with γ̇ =
√

3ε̇, i.e.639

for the same ||E||. The TR that they measured somewhat640

depends on the volume fraction in the range 0.3− 0.5, but641

the main trend concerns the variation of the TR with the642

elongation rate ε̇, that decreases from approximately 5 to643

2 over a strain rate range 0.6 − 40s−1. The output of the644

present model is thus in qualitative agreement with the645

experimental range for the TR, even though this model is,646

again, essentially unable to account for the deformation647

rate-thinning behavior that is observed in experiments.648

2.2.5. The limitations of the model649

The present model has been examined in the case of650

classical steady �ows (Sec. 2.2.2 to 2.2.4) that correspond651

to most of the available experimental and discrete simu-652

lations data from the literature. However, the expressions 653

of the stresses in Eqs.(40) and (45) have quite large impli- 654

cations that may not be evidenced in the �ows that were 655

dealt with previously. The question arises as to what extent 656

this model would be able to describe general suspension 657

�ows. It should be �rst noted that in the �eld of polymer 658

rheology, the second-order �uid model is considered as a 659

simpli�ed version of more general models of visco-elastic 660

�uids. In particular, it is known to conveniently account 661

for the main rheological properties of such a �uid in slow 662

motion and in slowly varying �ow conditions [45, 56], i.e. 663

when the �ow characteristic times are much longer than 664

the relaxation time of the �uid. In other conditions, the 665

full visco-elastic models must be implemented. 666

The case of athermal suspensions of rigid particles im- 667

mersed in a Newtonian �uid is quite di�erent indeed : no 668

elasticity or relaxation time can be evidenced, and tran- 669

sient experiments are explained rather in terms of typical 670

strain than time. More precisely, the non-Brownian sus- 671

pension rheology is closely connected with the so-called 672

shear-induced microstructure that denotes the relative spa- 673

tial arrangement of the particles and the force network 674

[25, 20, 26, 21, 65]. For a given microstructure, stresses 675

are instantaneously imposed by the inter-particle force net- 676

work and the ambient strain rate [28]. Explicit modeling of 677

this microstructure and its time (strain) evolution seems 678

crucial to account for speci�c �ow histories, such as shear- 679

reversal, where stress discontinuity is observed as the shear 680

rate is reversed [12, 66]. In that case, a structure tensor 681

S, akin to a fabric tensor, accounts for the shear induced 682

microstructure [67, 68, 38, 39]. Also required are an evolu- 683

tion equation for S as well as a procedure to compute the 684

stresses from S and E. 685

In the present article, we follow a less ambitious pur- 686

pose. The idea is to tackle "steady-like" �ows, i.e. smoothly 687

varying �ows along time and space, keeping away from 688

discontinuously varying microstructure and velocity gra- 689

dients, yet accounting for relevant rheological properties, 690
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such as anisotropic normal stresses. We found not easy to691

formally determine how the model that we propose may be692

considered a simpli�ed version of more elaborated models693

based on a structure tensor. There are mainly two reasons694

for this : the microstructure of the suspension is strongly695

modi�ed by the velocity gradients and strongly a�ect the696

stresses, so that it cannot be considered a small perturba-697

tion. In addition, in connection with the lack of material698

relaxation time, the microstructure adjusts to �ow modi-699

�cations over a typical strain of 1 to 6, depending on the700

solid volume fraction [12]. As a consequence, any steady701

simple shear �ow, for which the relative angular velocity is702

equal to the strain rate, cannot be straightforwardly consi-703

dered slow. Hence, it is not easy to de�ne theoretically the704

scope of the present model. Rather, we try to bring out the705

�ow classes for which the model seems to �t to physical706

reality, and the �ows for which problems are expected.707

Inspection of Eqs. (40) and (45) shows that the stresses708

depend primarily on the instantaneous value of the shear709

rate γ̇ and of the reduced strain rate tensor Ê, the latter710

de�ning the type of considered straining �ow (planar ex-711

tensional, uniaxial extensional etc.). In addition, the term712

in 1
γ̇
DÊ
Dt depends on the time variation of Ê and on the713

vorticity tensor Ω. This term, which is instrumental in714

accounting for the �rst normal stress di�erence in simple715

shear �ow, deserves to be discussed in more general terms.716

We propose to use Eq. (37) to categorize di�erent types of717

�ow. We note that such a categorization has been found718

relevant in the polymer rheology literature [61]. To this719

purpose, the term in 1
γ̇
DÊ
Dt is explicitely quoted in Eq. (74) :720

1

γ̇

DÊ

Dt
=

1

γ̇

3∑
i=1

Dξ̂i
Dt

ei ⊗ ei +
∆Ω

γ̇
.Ê− Ê.

∆Ω

γ̇
(74)

According to this classi�cation, the �ows that were721

considered in Sec. 2.2.2 to 2.2.4 fall into two speci�c cate-722

gories. Firstly, the simplest case corresponds to the homo-723

geneous steady extensional �ows. Such �ows de�ne a class724

of �ows where the strain rate tensor as seen in the frame725

of the moving (non-) rotating �uid is constant : the redu- 726

ced principal rates ξ̂i are constant in space and time, and 727

both the �uid and eigenframe angular velocities vanish, so 728

that 1
γ̇
DÊ
Dt = 0. This feature �ts to the physical intuition : 729

the microstructure is built by the steady straining �ow, 730

without any rotation, and the stress only depends on the 731

volume fraction, the shear rate and the reduced strain rate 732

tensor. In addition, in the case of a time-varying extensio- 733

nal �ow, if the geometry, i.e. Ê, does not change, the stress 734

is instantaneously the same as in the corresponding steady 735

�ow, as expected from a rate-independent suspension [44]. 736

Then, according to the considered frame-invariant mo- 737

del, as shown in sec.2.2.3, steady cylindrical Couette and 738

torsional parallel plate �ows are completely equivalent to 739

homogeneous steady simple shear �ows. The strain rate 740

tensor E together with the relative angular velocity −∆Ω 741

form a simple shear �ow, where the strain rate and the re- 742

lative rotation rate are equal. The RHS of Eq. (74) is given 743

by the last two terms, leading to the expression in Eq.(42). 744

In particular ‖ 1
γ̇
DÊ
Dt ‖ ∼ 1. We stress again that, even in the 745

case of an unsteady version of such �ows, the �rst term in 746

the RHS of Eq.(74) vanishes, and the last two terms are 747

not modi�ed compared to the steady case. This behaviour 748

is thus consistent with the rate independent suspensions 749

that are dealt with in the present study. We note that Mil- 750

ler et al. [35] based their model of suspension rheology in 751

2-D �ow on this balance between strain rate and relative 752

angular velocity. 753

More generally, in the frame of the present model, any 754

homogeneous velocity gradient may be completely de�ned 755

by the shear rate γ̇, the reduced strain rate Ê = E/γ̇ and 756

the reduced relative angular velocity tensor ∆Ω/γ̇. For 757

such a �ow, it appears clearly from Eqs.(74) and (34) that 758

the ratio of the stress to the shear rate is not a�ected by the 759

time-variation of the shear-rate as expected from a rate- 760

independent material. The idea is that the microstructure 761

originates in the competition between Ê and ∆Ω/γ̇, and 762

that the overall �ow intensity only a�ects the stress level. 763
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However, there are �ows for which Eqs.(74) and (34)764

seem less plausible. The clearer example is maybe a homo-765

geneous 2-D velocity gradient for which the relative angu-766

lar velocity ‖∆Ω‖ is much larger than the shear rate γ̇.767

In that case, a moving �uid volume sees a rotating strain768

tensor at the angular velocity ‖∆Ω‖ : it is deformed back769

and forth at the frequency 2π/‖∆Ω‖. The deformation770

during half a period is given by γ ∼ πγ̇/‖∆Ω‖ � 1.771

According to oscillatory shear experiments [23, 14, 69],772

it is expected that no microstructure develops, leading773

to low viscosity and isotropic normal stress [70] . The774

present model predicts a totally di�erent behaviour, since775

‖1/γ̇ DÊ/Dt‖ � 1. For instance, in the case of the su-776

perposition of a planar straining �ow and a high speed777

angular velocity in the same plane, we get :778

Ê =


0 1/2 0

1/2 0 0

0 0 0


Ω

γ̇
=


0 ω/γ̇ 0

−ω/γ̇ 0 0

0 0 0


(75)

with γ̇ � ω yielding :779

1

γ̇

DÊ

Dt
=
ω

γ̇


−1 0 0

0 1 0

0 0 0

 (76)

The shear stress as measured in the present frame is the780

same as in simple shear �ow, while the �rst normal stress781

di�erence and part of the second normal stress is propor-782

tional to ‖∆Ω‖ ∼ |ω| � γ̇, in clear disagreement with783

physical sound arguments.784

Even though a few examples are not su�cient to draw785

de�nitive conclusions, and keeping away from shear-reversal786

or cross-shear experiments, it seems that the present mo-787

del may not conveniently describe �ows such that 1/γ̇788

‖DÊ/Dt‖ � 1, i.e. when the reduced strain rate tensor789

as seen by a rotating �uid volume undergoes important790

variations in the time required for this volume to undergo 791

a unit deformation. This is the case when the relative angu- 792

lar velocity is much stronger than the strain rate or when 793

the strain tensor type, de�ned by the principal values ξ̂i of 794

Ê, rapidly changes at the scale of a unit strain. Physical ar- 795

guments may suggest that the stresses would lag the strain 796

rate, due to the strain required for the microstructure to 797

reorganize. However, de�nitive conclusions are di�cult to 798

draw concerning such �ows, due to the lack of experimen- 799

tal or numerical data. We �nally recall that shear-reversal 800

or cross shear experiments fall into this category, since the 801

reduced shear-rate tensor is instantaneously modi�ed. In 802

that case, obviously, the stresses do not obey the steady 803

constitutive law, due to the �nite strain required for the 804

microstructure to reorganize. We also note that the same 805

seems to apply in pressure-imposed experiments, when the 806

particle pressure is abruptly modi�ed. In such a case, the 807

transient stress seems not to be well accounted for using 808

the steady constitutive law, and a Reynolds-like dilatancy 809

contribution has to be taken into account. The typical 810

strain scale necessary to recover the steady constitutive 811

law is again of order 1 [71]. 812

Finally, even though the present model presumably suf- 813

fers imperfections in the regime 1/γ̇ ‖DÊ/Dt‖ � 1 or 814

concerning shear-reversal, it reproduces well the suspen- 815

sion rheological behaviour as measured in rheometrical 816

�ows, in particular anisotropic normal stresses, or exten- 817

sional viscosity. In addition, it is very simply implemen- 818

ted in 3D Computational Fluid Dynamics (CFD) software, 819

since it does not require explicit computing of the relative 820

angular velocity ∆Ω. 821

3. Numerical implementation 822

The model is numerically solved making use of the open 823

source software package OpenFOAM (Open Field Opera- 824

tion and Manipulation). OpenFOAM is a C++ Computa- 825

tional Fluid Dynamics (CFD) toolbox that uses the �nite 826

volume method on a colocalized grid for the discretization 827
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of systems of partial di�erential equations. The choice of828

this implementation is motivated by the facility of using829

OpenFOAM, the free access to its numerous tools and the830

simplicity of solver creation as its language is close to the831

mathematical language. In this paragraph, we will present832

a brief description of the discretization and resolution al-833

gorithm. For more details, one may refer to [72, 73, 74, 75].834

3.1. Discretization and Resolution algorithm835

We write the governing equations as they are imple-836

mented in OpenFOAM :837

∇.u = 0 (77a)

∂ρmu

∂t
+∇.(ρmu⊗ u)−∇ · (ηfηs(∇u +∇uT )) =

−∇p+∇.(ηfηsγ̇Σ̂∗) + ρmg (77b)

∂φ

∂t
+∇.(φu) +∇.(φused) = −∇.J (77c)

where Σ̂∗ is the di�erence between the normalized total838

stress deviator and the shear stress :839

Σ̂∗ = 4
(N̂1 + 2N̂2)

2

(
Ê.Ê− tr(Ê.Ê)

3
I

)
− N̂1

1

γ̇

DÊ

Dt
(78)

used the sedimentation velocity :840

used =
2a2f(φ)

9ηf
× (ρp − ρf )

[
g − Du

Dt

]
(79)

J the particles �ux due to the migration :841

J =
2a2f(φ)

9ηf
×
(
∇.(ηfηsγ̇Σ̂c)

)
(80)

with Σ̂c the normalized contact stress842

Σ̂c = Σ̂c
33I + 2

ηc
ηs

E + 4

(
(Σ̂c

11 + Σ̂c
22)

2
− Σ̂c

33

)
Ê.Ê

− (Σ̂c
11 − Σ̂c

22)
1

γ̇

DÊ

Dt
(81)

The unsteady terms is discretized using a Euler semi- 843

implicit time scheme. Divergence terms, which include convec-844

tive and non-convective terms, are discretized using the 845

Gauss integration with linear interpolation for non-convective846

terms and upwind interpolation for convective terms. The 847

laplacian term use the Gauss integration with a linear in- 848

terpolation scheme for the di�usion coe�cient and a cor- 849

rected scheme for the surface normal gradient. For more 850

details about interpolation schemes, one can refer to the 851

OpenFOAM user guide. 852

The equations are solved by the PIMPLE pressure- 853

velocity coupling algorithm. This algorithm is a combi- 854

nation of the PISO (Pressure Implicit Split Operator) and 855

SIMPLE (Semi-Implicit Method for Pressure-Linked Equa- 856

tions) algorithms, adapted to transient problems [74, 75]. 857

The principle is that at each time step, the solution is com- 858

puted by solving the system of equations several times, 859

i.e., by performing several iterations to ensure that the ex- 860

plicit terms of the equations converge. Once the criteria 861

for convergence or maximum number of iterations (de�- 862

ned at the beginning of the calculation) are reached, the 863

algorithm proceeds to the next time step. This allows to 864

ignore the stability conditions (CFL condition) introduced 865

by the explicit terms and thus be �exible in our choice of 866

the time step. 867

The resolution algorithm is summarized as follow : 868

1. Solve the volume fraction equation 869

2. Update all variables depending on φ 870

3. Prediction step : solve the momentum equation to 871

compute an intermediate velocity �eld. 872

4. Correction step : 873

(a) Solve the pressure equation 874

(b) Correct the velocity using the new pressure 875

5. Repeat the correction step nCorrectors times (nCor- 876

rectors = 2 is su�cient) 877

6. Repeat steps 1− 5 if there is no convergence, or the 878
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number of iterations is less than the maximum num-879

ber of iterations880

7. Move to next time step881

The stability of this algorithm is improved by applying882

under-relaxation.883

3.2. Boundary conditions884

OpenFoam built-in boundary conditions are used. For885

wall type boundary, we apply no-slip condition for the ve-886

locity and the �xedFluxPressure condition that adjusts the887

pressure gradient such that the �ux is consistent with the888

velocity boundary condition. To ensure the conservation of889

the total volume of the particles, we impose no migration890

and sedimentation �ux normal to the wall (slip boundary891

conditions in OpenFOAM) together with zero concentra-892

tion gradient.893

When needed in the following, other types of boundary894

conditions for open boundaries will be explained.895

3.3. Regularization896

The e�ective viscosity ηs (see Eq.26) diverges when897

φ→ φm. A regularization is then necessary to avoid a di-898

vision by zero. We then propose the following expression :899

ηs =

(
1 +

5
4φ

max(1− φ
φm
, 0.01)

)2

(82)

In order to ensure that particle migration or sedimen-900

tation stops when the volume fraction φ approaches φm, a901

regularization of the hindered settling function (Eq.11) is902

necessary. Two methods can be used for this. The �rst one903

consists in cancelling the hindrance function in φm. We904

can, for example, recall the expression proposed by Miller905

& Morris [76] :906

f(φ) = (1− φ

φm
)(1− φ)α−1 (83)

with α = 2− 4.907

Using this function the �ux stops when φ reaches φm. Ho-908

wever, this expression yields values quite di�erent from909

the function given in Eq. (11) over the whole volume frac- 910

tion range. The second method consists in not modifying 911

the hindrance function but adding an elastic pressure in 912

the contact stress which becomes very large when φ ap- 913

proaches φm to counter the migration or sedimentation 914

�ux. However, this method is costly in terms of computa- 915

tion time. We thus propose to keep the expression in Eq. 916

(11) while canceling the particles �ux J when φ = φm. 917

Finally, another regularization is necessary when there 918

is a division by γ̇, as for example in Ê = E/γ̇ or in the term 919

associated to the Jaumann derivative −N̂1/γ̇ DÊ/Dt. The 920

term 1/γ̇ is then replaced by 1/(γ̇+ γ̇ε) with γ̇ε = 10−8γ̇c. 921

γ̇c is the characteristic shear rate of the �ow. 922

4. Benchmarking 923

In this section, we validate our modeling and nume- 924

rical resolution on several migration case studies. Three 925

rheometrical �ows will be considered �rst, before a more 926

complex �ow will be studied. As usual, the evolution of 927

the volume fraction is a lot slower than the �ow develop- 928

ment, allowing to consider quasi-steady state �ows. As a 929

consequence, explicit time di�erentiation of the normali- 930

zed strain rate tensor (�rst term of the RHS of Eq. (33)) 931

is removed. It should be however noted that the terms in 932

the expression of the stresses that involve the Jaumann 933

time-derivative will not vanish in general due to spatial 934

variations of the �ow. Finally,to keep the paper reasona- 935

bly short only the �nal state is studied for each case. 936

Concerning rheometrical �ows, as pointed out in 2.2.3, the 937

frame-invariant model yields stresses equivalent to those 938

found in simple shear �ow. Thus, for these �ows, the frame- 939

invariant model di�ers from the "Suspension Balance Mo- 940

del" [1, 2, 3, 4] only in the choice of material functions. The 941

proposed simulations provide the opportunity to check the 942

relevance of the material functions that we propose with 943

respect to migration problems, as well as to validate the 944

numerical solution against analytical solutions. 945
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Finally, the �ow through sudden expansion at low Rey-946

nolds numbers will be considered. This �ow presents shear,947

extension or rigid-body motion regions, and cannot be ta-948

ckled using the simpli�ed (shear-�ow) constitutive law for949

stress.950

It should be noted that throughout the present section,951

only neutrally-buoyant particles will be considered, so that952

neither the gravity force nor the particle inertia plays a role953

in the transport of the particles (see Eqs.(77) and (79)).954

4.1. Concentric Couette �ow955

The suspension is bounded by two concentric cylin-956

ders, where the inner cylinder rotates at an angular velo-957

city ω, while the outer cylinder is at rest (see Fig.2). In958

its initial state, the suspension is uniform throughout the959

Couette. During �ow, the particles migrate towards the960

outer cylinder, where the shear rate is the lowest, until961

reaching a stationary non-uniform concentration pro�le.962

In order to assess our numerical resolution, we calculate a963

semi-analytical concentration pro�le at steady state φ(r)964

and then compare it to the numerical data. This semi-965

analytical solution is calculated following the same proce-966

dure as Morris & Boulay [3].967

In the cylindrical coordinate system (r, θ, z), the velo-968

city is assumed here to be expressed as u = uθ(r)eθ and969

volume fraction as φ = φ(r). At steady state, and recalling970

that ρp = ρf , the volume fraction balance equation (77c)971

and the orthoradial component of the momentum equation972

(77b) may be integrated, yielding :973

(∇.Σc) .er = 0 (84a)

1

r2

d
(
r2ηfηsγ̇

)
dr

= 0 (84b)

i.e. :

dΣcrr
dr

=
Σcθθ − Σcrr

r
(85a)

γ̇ =
C

r2ηfηs
(85b)

where C is the constant of integration. In this �ow, the 974

basis vectors eθ and er correspond respectively to the di- 975

rection of the �ow and the velocity gradient (Fig.1). With 976

the notations introduced in part 2.2, the equation (85a) 977

writes : 978

d
(
ηfηsγ̇Σ̂c22

)
dr

=
(Σ̂c11 − Σ̂c22)ηfηsγ̇

r
(86)

Using (85b), we get then the following dimensionless ex- 979

pression : 980

dΣ̂c22

dr̂
=

Σ̂c11 + Σ̂c22

r̂
(87)

where r̂ = r
Rout

. Which may be written as an ordinary 981

di�erential equation (ODE) : 982

dφ

dr̂
=

Σ̂c11 + Σ̂c22

r̂
dΣ̂c22
dφ

(88)

Eq.(88) is solved using a fourth order Runge-kutta me- 983

thod while imposing the constraint : 984

2π

∫ 1

Rin
Rout

φ(r̂)r̂dr̂ = φbulkπ

(
1−

(
Rin
Rout

)2
)

(89)

This constraint imposes indeed the volume conservation of 985

the particles. 986

Although the migration dynamics can be in�uenced by 987

viscosity, particle size or shear rate (see Eq.(80)), Eqs.(88) 988

and (89) show that the stationary solution only depends 989

on the initial concentration φbulk and the ratio Rin/Rout. 990

The solution of Eqs.(88) and (89) is obtained for the para- 991

meters Rin/Rout = 2/3 and φbulk = 0.40. It is compared 992

to the output of our numerical method in Figs. 9. 993

In the latter, the geometry is 2D with 90 elements in the 994

radial direction and 140 elements in the azimuthal direc- 995

tion (Fig.8a). Boundary conditions must only be imposed 996

at the wall, as explained in section 3.2. The volume frac- 997

tion distribution across the gap is displayed in Figs. 8b 998

and 9. 999
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(a) (b)

Figure 8: Couette �ow simulation : (a) 2D Couette mesh (b) Nu-

merical volume fraction distribution at steady state.

Figure 9: Radial concentration pro�le at the steady state for a

concentric Couette �ow : comparison between the semi-analytical

solution and the numerical solution for φbulk = 0.40.

As shown in Fig.9, the numerical and semi-analytical1000

results are in good agreement, con�rming that Eqs. (77a)-1001

(81) are conveniently tackled by the present numerical me-1002

thod.1003

We will then compare the data from our model to1004

the recent experimental measurements of Sarabian et al.1005

[77]. The dimension of the Couette is Rout = 60 mm and1006

Rin/Rout = 2/3 as before. Particles are rigid Polymethyl-1007

metacrylate (PMMA) spheres with a radius of a = 0.791008

mm and a density of ρp = ρf = 1190 kg.m3. The suspen-1009

ding �uid is a viscous mixture composed of Triton X-100,1010

zinc chloride, water and hydrochloric acid with a viscosity1011

of ηf = 4.64 Pa.s. The experiment was carried out for dif-1012

ferent initial concentrations φbulk (0.2, 0.3, 0.35, 0.4, 0.45,1013

0.5) .1014

1015

Figure 10: Radial concentration pro�le at the steady state for dif-

ferent initial concentrations (φbulk = 0.2, 0.3, 0.35, 0.4, 0.45, 0.5) :

comparison with the experimental results of Sarabian et al.[77] 1016

As shown in Figure 10, the model results are consistent 1017

with the experimental measurements of Sarabian et al. 1018

[77]. The signi�cant oscillations in the experimental mea- 1019

surements are caused by the particle partial ordering of 1020

the suspension close to the boundaries. Obviously, this 1021

layering cannot occur in the continuous medium modeling 1022

that is considered in the present paper. In spite of this, the 1023

steady volume fraction pro�les from the experiments and 1024

from the numerical computation are in quite satisfactory 1025

agreement. 1026

4.2. Pipe �ow 1027

The suspension now �ows under the action of an axial 1028

pressure drop applied to the extremities of a cylindrical 1029

tube of radius R, the axis direction of which is denoted by 1030

ez. None of the quantities, except for the pressure, is sup- 1031

posed to depend on the z-coordinate. In its initial state, 1032

the suspension is uniform throughout the tube section. Du- 1033

ring �ow, shear-induced particle migration occurs towards 1034

the axis of the tube where the shear rate is zero. As in the 1035

previous section, we want to validate the numerical reso- 1036

lution by comparing to a semi-analytical solution. In the 1037

cylindrical coordinate system (r, θ, z), the steady solution 1038

is to be sought in the form u = u(r)ez for the velocity 1039

and φ = φ(r) for the volume fraction. The �ow is locally 1040

a simple shear �ow in the usual meaning, and er and eθ 1041

correspond respectively to the direction of the velocity gra- 1042

dient and the vorticity. Eq. (77c) and the z-component of 1043
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Eq.(77b) reduce to :1044

d
(
ηfηsγ̇Σ̂c22

)
dr

=
(Σ̂c33 − Σ̂c22)ηfηsγ̇

r
(90a)

γ̇ =
−∇Pz
2ηfηs

r (90b)

∇Pz is the axial pressure gradient. Eqs.(90a) and (90b)1045

yield the following dimensionless expression :1046

dΣ̂c22

dr̂
=

Σ̂c33 − 2Σ̂c22

r̂
(91)

where r̂ = r
R . Eq.(91) may be written as an ODE :1047

dφ

dr̂
=

Σ̂c33 − 2Σ̂c22

r̂
dΣ̂c22
dφ

(92)

Furthermore, we can observe that this equation has a sin-1048

gularity due to the factor 1/r̂ in the RHS. Since the ex-1049

pression (Σ̂c33 − 2Σ̂c22)/
dΣ̂c22
dφ does not vanish as the volume1050

fraction tends to the jamming volume fraction φm, dφ/dr̂1051

diverges as r̂ tends to zero. Actually, the value φ = φm1052

is not associated with any speci�c property of the men-1053

tioned function, so that nothing prevents φ to exceed φm.1054

A simple mathematical analysis shows that φ reaches φm1055

for a value r̂J ∈]0, 1] no matter how low the value of φ1056

at r̂ = 1 (see also ref. [78] for the same statement with1057

di�erent material functions). For this reason, in our two-1058

dimensional numerical solution, the �ux at one face is set1059

to zero when it tends to increase the volume fraction of1060

the adjacent cell if it is equal to φm (see section 3.3). The1061

equivalent here for the semi-analytical resolution method1062

corresponds to de�ning a radius Rj separating the �ow re-1063

gion from the jamming. Thus, in the region of radius Rj ,1064

the concentration is φm while for the region between Rj1065

and R, the concentration veri�es the Eq.(92). The value1066

of Rj is determined by satisfying the conservation of the1067

total particle volume, i.e. :1068

2π

∫ 1

Rj
R

φ(r̂)r̂dr̂ + φmπ

(
Rj
R

)2

= φbulkπ (93)

Eq.(92) is solved using fourth order Runge-kutta me-1069

thod and we compare the output data to our numerical1070

solution for φbulk = 0.40. The governing equations are sol- 1071

ved over a disc, one mesh element wide in the axial direc- 1072

tion. An axial pressure gradient is added to the momentum 1073

equation, that drives the �ow, and cyclic (i.e. periodic) 1074

conditions are imposed at input and output boundaries. 1075

The boundary conditions on the outer wall have been dis- 1076

cussed in section 3.2. The radial mesh size is not uniform 1077

(see Fig.11a) : in the region r < 0.3R, where the solution 1078

is sti�, we de�ne a space step of ∆r = 6.5 10−3R and then 1079

from r = 0.3R, this radial step increases with an ampli�- 1080

cation rate of 1.02 up to ∆r = 2.0 10−2R. 1081

1082

(a) (b)

Figure 11: Pipe �ow simulation : (a) 2D pipe mesh (b) Numerical

volume fraction distribution at the steady state.

Figure 12 shows a good agreement between the concen- 1083

tration pro�les from the 2D computation and the 1D semi- 1084

analytical solution. 1085

1086

Figure 12: Radial concentration pro�le at the steady state for a

pipe �ow : comparison between the semi-analytical solution and the

numerical solution for φbulk = 0.40. 1087

We now compare our model to the experimental measu- 1088

rements of Snook et al. [78]. The particles used are PMMA 1089
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spheres with a diameter of 2a = 2.01 mm and a density1090

of ρp = 1190 kg.m−3. The suspending �uid, composed1091

of ZnCl2, water and Triton X-100, is chosen so that its1092

density is equal to the density of the particles. The ex-1093

perimental device is a glass tube of length 46.8 cm and1094

diameter 2R = 1.65 cm. The comparison is carried out for1095

two initial concentrations φbulk = 0.3 and φbulk = 0.4.

(a) φbulk = 0.3

(b) φbulk = 0.4

Figure 13: Radial concentration pro�le at the steady state for : (a)

φbulk = 0.3 and (b) φbulk = 0.4. Comparison with the experimental

results of Snook et al.[78].

1096

The results (Fig.13) are overall in good agreement. Ac-1097

cording to Snook et al.[78], the oscillations that can be1098

observed on the experimental measurements, in particular1099

for φbulk = 0.4, are the layers of particles due to the high1100

level of con�nement. These oscillations cannot be observed1101

with the present model since it is a continuous medium mo-1102

del.1103

Then, we are interested in the discrete numerical simula-1104

tions of Yeo et al. [79]. The device is an in�nite channel of1105

half gap h. The simulations were performed for ratios of1106

h
a = 9, ha = 12 and initial concentrations of φbulk = 0.3, 1107

φbulk = 0.4. In Figure 14, the results of Yeo et al. are com- 1108

pared to those of the present model at the steady state. 1109

As can be seen, the results are in good agreement. Again, 1110

contrary to the present model, the discrete simulations 1111

show the in�uence of con�nement at the boundary. We 1112

can also note a di�erence for φbulk = 0.3, where contrary 1113

to this model, the experimental measurements of Snook 1114

et al.[78] and the discrete simulations of Yeo et al.[79] do 1115

not reach the jamming (φm = 0.583). Indeed, the "Sus- 1116

pension Balance Model" from which our model is inspired 1117

predicts jamming of the suspension because of the above 1118

mentioned singularity whatever the bulk volume fraction. 1119

It is a important limitation of the Suspension Balance Mo- 1120

del. This can be avoided by introducing a non-local shear 1121

rate [5][78] [76], but at the cost of a non physical cusp- 1122

like shape at the center r = 0. However, this issue requires 1123

further investigation which is out of scope of this article.

(a) φbulk = 0.3

(b) φbulk = 0.4

Figure 14: Radial concentration pro�le at the steady state for : (a)

φbulk = 0.3, h
a

= 9 and (b) φbulk = 0.4, h
a

= 12. Comparison with

the discrete simulations of Yeo et al. [79].
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4.3. Torsional parallel plate �ow1124

In this part, we study a suspension �ow between two1125

parallel discs of radius R separated by a distance h. The1126

upper disc rotates with an angular velocity ω, while the1127

lower disc is held �xed (see Fig.3). In the initial state, the1128

suspension is uniform throughout the geometry. The radial1129

particles migration of this �ow remains an open problem.1130

Indeed, studies (modeling or experiments) diverge on this1131

subject. Some describe an absence of migration, others an1132

outward migration or even an inward migration. This ques-1133

tion is not yet settled. The reader may refer to [80] [81] for1134

more details on this topic. We will see later that the mo-1135

del presented here predicts outward or inward migration1136

depending on the initial concentration.1137

We determine the semi-analytical solution. We consider1138

the natural cylindrical basis (er, eθ, ez). In a Newtonian1139

�uid, inertia causes secondary �ows in the r-z plane as1140

soon as the Reynolds number Re = ρfωh
2/ηf is non-zero1141

[82, 83]. In the following, for the calculation of the semi-1142

analytical solution, we assume Re = 0, so that recircu-1143

lation �ows are absent, i.e. the velocity �eld is torsional1144

u = ωrz
h eθ. The shear rate expression can then be deter-1145

mined (see Sect.2.2.3) :1146

γ̇ =
ωr

h
(94)

As can be seen, the shear rate here depends only on r,1147

therefore the migration can only be radial : φ = φ(r).1148

By noting that eθ and er correspond here respectively to1149

the directions of velocity and vorticity (directions 1 and1150

3 in Fig. 1), the particle volume conservation equation1151

(Eq.(77c)) reduces in steady state to :1152

d
(
ηfηsγ̇Σ̂c33

)
dr

=
(Σ̂c11 − Σ̂c33)ηfηsγ̇

r
(95)

Using the shear rate expression (Eq.(94)) , we derive in1153

dimensionless form (r̂ = r/R) the following ODE :1154

dφ

dr̂
=

(
Σ̂c11 − 2Σ̂c33

)
ηs

r̂
dηsΣ̂c33
dφ

(96)

We can note that contrary to the case of the Poiseuille �ow 1155

where a treatment of the singularity was necessary, here, 1156

in spite of the presence of the factor 1/r̂, the right-hand 1157

side member of the Eq.(96) always converges to 0 when 1158

φ approaches 0 or φm (see the expressions of the mate- 1159

rial functions Sect.2.2.1). Thus, the volume fraction will 1160

remain between its boundary values 0 and φm. The ODE 1161

(96) is solved by considering the conservation of particle 1162

volume : 1163

2π

∫ 1

0

φ(r̂)r̂dr̂ = φbulkπ (97)

This semi-analytical solution is then compared to the nu- 1164

merical solution for the parameters φbulk = 0.3, h/R = 1165

0.08 and Re = 0.026 . The mesh is here 3D and non- 1166

uniform (Fig.15a) : in the region r < 0.28R, we de�ne 1167

a radial space step of ∆r = 4.68 10−3R and then from 1168

r = 0.28R, this radial step increases with an ampli�cation 1169

rate of 1.02 up to ∆r = 1.88 10−2R. The vertical space 1170

step in the gap is ∆z = 5.33 10−3R. For the velocity �eld 1171

boundary conditions, the upper disk is rotating around its 1172

axis while the lower disk is immobile. For the outer wall, a 1173

slip condition is applied (see section 3.2 for the boundary 1174

conditions of the other variables).

(a) (b)

Figure 15: Torsional �ow simulation : (a) Disk mesh (b) Numerical

volume fraction distribution at the steady state.

1175
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1176

Figure 16: Radial steady-state concentration pro�le for a torsional

�ow : comparison between the semi-analytical solution and the nu-

merical solution for φbulk = 0.3.1177

As shown in �gure 16, the solutions obtained are in1178

good agreement. Also, we can observe that the result of1179

this 3D simulation with a φbulk = 0.3 (Fig.15b , Fig.16)1180

shows us an outward migration with a particles-free re-1181

gion in the center. As noted previously, this model pre-1182

dicts outward or inward migration depending on the initial1183

concentration. Indeed, as we can see from equation (96),1184

the migration depends on the sign of (Σ̂c11−2Σ̂c33) since all1185

normalized contact stresses Σ̂cii are negative and increasing1186

in absolute value with φ (see AnnexeA). Thus, if
Σ̂c33
Σ̂c11

< 1
2 ,1187

the migration is outward while for
Σ̂c33
Σ̂c11

> 1
2 , the migration1188

is inward. For
Σ̂c33
Σ̂c11

= 1
2 , there is no migration, which hap-1189

pens in the present model for a concentration near 0.39. In1190

Figure 17, we plot the radial concentration pro�les of the1191

present model for di�erent initial concentrations. Thus, it1192

can be observed that for low concentrations, there is out-1193

ward migration with a particles-free region in the center.1194

While for high concentrations, there is no migration or1195

little inward migration.1196

It is di�cult to compare our numerical simulations with1197

experimental measurements since few quantitative measu-1198

rements have been made for this �ow. But, we can quote1199

the experiments of Kim et al. [84] where he studies the1200

migration between two disks of radius 25 mm for initial1201

concentrations φbulk = 0.1, 0.15, 0.2, 0.25. They then ob-1202

serve an outward migration with a particles-free region in1203

the center. Also concerning large concentrations, we can1204

quote the experiments of Chapman [85] and Chow et al.[16] 1205

which show that the migration is weak or zero. All these 1206

experiments are in qualitative agreement with our results 1207

of �gure 17. Thus, as a conclusion of this section, we can 1208

consider that our model is fully adequate to handle 3D 1209

torsional �ows. 1210

1211

Figure 17: Radial steady-state concentration pro�les of the present

model for di�erent initial concentrations. 1212

4.4. Suspension �ow through an abrupt expansion 1213

As a last validation, a �ow through an abrupt expan- 1214

sion is considered (Fig.18). This �ow is more complex than 1215

those treated previously : a recirculation zone appears, and 1216

the intensity of the relative angular velocity Ω−ΩE

γ̇ varies 1217

from a position to another, so that there are at the same 1218

time zones of simple shear, elongational �ow, and rigid 1219

body motion. As a consequence, this �ow is well suited to 1220

the validation of general �ow modelling. The same type of 1221

�ow was tackled by Miller et al. [35] with the same pur- 1222

pose in planar geometry while we deal with axisymmetric 1223

geometry. 1224

1225

Figure 18: Sketch of �ow geometry with the boundary conditions 1226

The result of our numerical simulations will be compared 1227

to the experimental measurements of Moraczewski et al. 1228

[86]. Their experiment consists of a �ow of a concentrated 1229

25



suspension undergoing steady �ow in an abrupt axisymme-1230

tric 1 : 4 expansion, i.e R2

R1
= 4. The upstream tube has a1231

radius of R1 = 0.238 cm and a length of L1 = 61 cm while1232

the downstream tube has a radius of R2 = 0.955 cm and1233

a length of L2 = 1.52 m. In order to reduce the calcula-1234

tion time, we work on a wedge geometry (2D axisymmetric1235

geometry) and reduce the length of the downstream tube.1236

The geometry contains 25680 meshes and Fig.19 presents1237

the mesh near the expansion. For the boundary conditions1238

(see Fig.18), at the inlet, we impose a parabolic pro�le for1239

the velocity, the concentration is �xed at φbulk while the1240

pressure is set to zerogradient. At the outlet, we impose a1241

zero pressure and a zerogradient condition for the velocity1242

and the concentration. The boundary conditions on the1243

outer wall have been discussed in section 3.2.1244

This �ow requires several regularizations already pre-1245

sented in section 3.3. The regularisation of γ̇ deserves a1246

special attention. In the vicinity of the tube axes where γ̇1247

tends to zero, 1/γ̇ must be replaced by 1/(γ̇+γ̇ε). Too small1248

a γ̇ε increases the (u.∇)Ê term (Eq.(33)), introducing nu-1249

merical oscillations. We have chosen to take γ̇ε = 0.03γ̇c1250

with γ̇c = U1/R1 for the upstream tube and U2/R2 for the1251

downstream tube. U1 and U2 are the average velocities in1252

the upstream and downstream tubes. The discontinuity of1253

γ̇ε at the expansion point does not raise any particular1254

problem : the shear rate does not vanish there due to the1255

extensional �ow that develops at this position.1256

1257

Figure 19: Computational mesh for a expansion geometry : The

vertical space step is ∆y = 8.38 10−3 R2. Between x = 63.77 R2

and x = 63.98 R2, the horizontal space step is ∆x = 3.45 10−3 R2.

Then, it increases with a ratio of 1.04 (for x > 63.98 R2) and 1.1 (for

x < 63.77 R2).1258

First, before comparing our results with those of Mo-1259

raczewski et al., we will describe the kinematics of this 1260

�ow. Indeed, in this �ow, the suspension can be subjected 1261

to pure extension, simple shear or even solid-body rota- 1262

tion. The classi�cation of the type of �ow will be done 1263

using the criterion introduced by Ryssel and Brunn [87] 1264

[35] : 1265

χ =
2‖∆Ω‖

γ̇
2 + ‖∆Ω‖

(98)

with ∆Ω = ΩF −Ω, the relative angular velocity. It must 1266

be recalled that the model studied here does not require 1267

the calculation of the angular velocity ΩF . However, we 1268

need it for the description of the kinematics (Eq.(98)). We 1269

will therefore calculate it using the method proposed by 1270

Zhong-Heng et al. [88]. Thus, χ→ 0 would correspond to 1271

a pure extension, χ → 1 to a simple shear and χ → 2 1272

(i.e. γ̇ � ‖∆Ω‖) to a solid-body rotation. We represent 1273

on Fig.20 this criterion for volume fractions of φbulk = 0, 1274

φbulk = 0.4 and for a Reynolds number of Re = 1.1. The 1275

Reynolds number is based on the �ow in the downstream 1276

tube : Re = ρR2U2

ηfηs(φbulk) .

(a) φbulk = 0

(b) φbulk = 0.4

Figure 20: Flow classi�cation with the χ criterion for a Reynolds

number Re = 1.1. The inlet concentration is 0 for (a) and 0.4 for (b).

1277

Thus, it can be observed (Fig.20) that the �ow is essen- 1278

tially a simple shear �ow (χ→ 1), except near the expan- 1279

sion. Indeed, just after the expansion, near the symmetry 1280

axis, we observe a pure extension zone (χ → 0) corres- 1281

ponding to the deceleration of the incoming suspension in 1282

the large tube. Upstream and downstream of this zone ap- 1283
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(a)

(b)

Figure 21: Log-scale normalized (by γ̇c = U2
R2

) shear-rate (a) and

concentration distribution (b) near the expansion for φbulk = 0.4

and Re = 1.1.

pear solid-body rotation zones (χ→ 2) where the rotation1284

rate is larger than the strain rate. Indeed, near the axis1285

in the shear zones, the extensional (resp. compressional)1286

principal strain rate axis is oriented with respect to the1287

tube axis at an angle of π
4 (resp.−π4 ), why it is oriented1288

perpendicular (resp. parallel) to it in the expansion zone.1289

The regions where χ → 2 near the axis therefore corres-1290

pond to the rotation of the eigenbasis of Ê when moving1291

from one region to the other. Finally, in the corner, where1292

the recirculation is located, there is a mixture of pure ex-1293

tension and solid-body rotation zones. Also, it should be1294

noted that all non simple shear zones are larger in a sus-1295

pension (Fig.20b) than in a Newtonian �uid (Fig.20a). In1296

Fig.21, we present the volume fraction and shear rate car-1297

tography near the expansion. We then observe that the1298

volume fraction is roughly the image of the shear rate dis-1299

tribution. The highly concentrated areas correspond to the1300

areas with the lowest shear rate. On the other hand, the1301

migration is more important in the small tube where the1302

shear rate gradient is higher.1303

Moraczewski et al. [86] measured the recirculation length1304

xr located after the expansion for di�erent Reynolds num-1305

bers, particle radius of a = 42.5 µm and volume fraction of1306

0.4. Their results are compared with those of the present1307

model in Fig.22. In this �gure, the recirculation length for1308

a Newtonian �uid is also represented and compared to the1309

Figure 22: Normalized recirculation length xr
h

as a function of the

Reynolds number Re, with h = R2−R1. Comparison to P.J. Oliveira

et al. [89] results (for φbulk = 0) and Moraczewski et al. results [86]

(for φbulk = 0.4)

numerical simulations of P.J. Oliveira et al. [89]. As it can 1310

be seen, the results are in good agreement. This validates 1311

the present model in a general �ow. 1312

Returning to the assumption of "slowly varying �ow", 1313

we measured the 1
γ̇ ‖
DÊ
Dt ‖ term and found it to be high 1314

(/ 25) in regions where χ ' 2, which is consistent with 1315

what was discussed in Section 2.2.5 about the limitations 1316

of the model. Questions then arise about the relevance of 1317

this component of the constraint. While it is di�cult to 1318

estimate the quantitative in�uence of the assumed error, 1319

there are arguments that the in�uence of these terms in 1320

the stresses have a limited impact on the suspension �ow 1321

and particle migration in this case. In the recirculation 1322

zone, the χ intensity distributions in the pure liquid and 1323

suspension cases are very similar, suggesting that the �ow 1324

structure is the same in both cases. Furthermore, no rapid 1325

variation in concentration is observed at the spatial scale 1326

of χ variation. In the vicinity of the axis, again, the distri- 1327

bution of χ in the pure liquid is similar to that observed in 1328

the suspension, although the corresponding zone is larger 1329

in the latter case. However, other important factors may be 1330

responsible for this discrepancy, in particular the heteroge- 1331

neous distribution of volume fraction and thus of viscosity 1332

in the case of the suspension. Concerning migration, there 1333

is also no abrupt change in volume fraction correlated with 1334

high χ values. Therefore, even though some regions of the 1335
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�ow have values of 1
γ̇ ‖
DÊ
Dt ‖ signi�cantly larger than 1, it1336

is likely that its in�uence remains small in the considered1337

�ow.1338

5. Conclusion1339

In this paper, rheological modeling of non-Brownian1340

suspensions is proposed, that is well suited to general �ows,1341

including those that signi�cantly di�er from simple-shear1342

�ow. Balance equations are derived from the two-phase1343

modelling. Assuming that the relative velocity of the two1344

phases may be neglected compared to the average velo-1345

city in all inertial terms allows us to simplify the system,1346

and to describe the suspension as a single incompressible1347

continuous phase. Particle transport with respect to the1348

mean suspension �ow is driven by a drift velocity, which is1349

expressed, in particular, as a function of the particle phase1350

stress. Overall, the �nal governing equations are quite si-1351

milar to the Suspension Balance Model [49, 4]. The main1352

assumption regarding inertia has been checked for all �ows1353

presented in the article, making of the present mixture mo-1354

del a physically sound and computationally e�ective mo-1355

del.1356

Regarding the stress modeling, a frame-invariant for-1357

mulation is proposed, that is inspired by the second-order1358

�uid in polymer rheology. The expression of the suspen-1359

sion and contact stresses only involve the particle volume1360

fraction, the generalized shear rate of the suspension �ow,1361

its reduced strain rate tensor and the Jaumann derivative1362

of the latter. The proposed modeling is consistent with1363

the simpli�ed behaviour of non-Brownian suspension in1364

steady �ows : neglecting rate-dependence in simple-shear1365

�ow, it still accounts for the anisotropic normal stresses.1366

Only four parameters for the contact stress, and three for1367

the suspension stress, all depending only on the particle1368

volume fraction, have to be determined. This is readily1369

done using correlation laws from particle scale simulation1370

of non-Brownian suspensions in simple shear �ow. The mo-1371

deling is shown to be consistent with the standard �ow1372

aligned modeling of non-Brownian suspension in various 1373

rheometrical shear or pressure-driven �ows, and in good 1374

agreement with particle scale simulations of steady exten- 1375

sional �ows. 1376

The numerical implementation is performed by the �- 1377

nite volume method using the open-source toolbox Open- 1378

FOAM. It is validated, as well as the chosen material func- 1379

tions, against computation of suspension steady �ow, in- 1380

cluding particle migration, in various standard geometries. 1381

The steady velocity and volume fraction pro�les are in 1382

close agreement to semi-analytical solutions, and compare 1383

well with available experimental measurements and par- 1384

ticle scale simulations from the literature. Finally, the case 1385

of the abrupt expansion of a planar pressure-driven �ow 1386

is considered, and some outputs of the model are compa- 1387

red to experimental measurements. The �ow turns out to 1388

be very complex, showing di�erent �ow type depending 1389

on location, from purely extensional �ow to nearly rigid 1390

body motion, and it is properly tackled by the numerical 1391

method. 1392

Several important limitations of the proposed model- 1393

ling may be noted. Firstly, the model is expected to per- 1394

form worse in cases where the Jaumann derivative of the 1395

reduced strain-rate tensor is large compared to the shear- 1396

rate, meaning that the moving and rotating �uid particle 1397

feels time-variation of this tensor faster that deformation. 1398

Since the reduced strain-rate tensor determines the steady 1399

micro-structure, and that the strain required for the micro- 1400

structure to adapt to new �ow conditions is typically one, 1401

it means that the model cannot tackle important varia- 1402

tion of the micro-structure over a strain smaller than ty- 1403

pically one. This is the case in shear-reversal experiments, 1404

excluded from the present study, and for which the redu- 1405

ced shear-rate is instantaneously modi�ed. This should be 1406

also the case for nearly rigid body motion of the suspen- 1407

sion, where the relative rotation-rate is large compared to 1408

the shear-rate, and more generally for heterogeneous �ows 1409

along which the reduced strain rate tensor rapidly evolves. 1410
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A second limitation may be observed. The accent has1411

been put on the frame-invariant generalization of the stan-1412

dard constitutive functions broadly used in the di�erent1413

versions of the Suspension Balance Model. In particular,1414

the stresses are proportional to the shear-rate, so that the1415

well known drawbacks of such a modeling are to be found1416

in the present work. More speci�cally, in the pressure-1417

driven �ow, the volume fraction is allowed to exceed the1418

jamming volume fraction φm at the vicinity of the tube1419

axis, which is observed no matter how low the average vo-1420

lume fraction in the tube. We chose the simplest expedient1421

to keep the volume fraction lower than φm, i.e. arti�cially1422

canceling the �uxes. Such an expedient has been recently1423

used in a more rigorous computational way in the frame of1424

two-phase �ows using a particle phase pressure that acts1425

as a Lagrange multiplier �eld [90], or in the context of a1426

similar mixture model based on the µ-rheology [91]. We1427

note that in the latter article, a re�nement of the mo-1428

del allows further compression of the jammed plug, inline1429

with some recent experimental measurements [92]. Such1430

upgrades are only partly satisfactory though, since the vo-1431

lume fraction is still allowed to reach the jamming volume1432

fraction no matter how low the mean volume fraction in1433

the tube, contrary to what is observed in experiments. It1434

has often been proposed to add a non-local term in the1435

particle stress [1, 93, 76, 94, 95] to correct the latter dis-1436

crepancy. Although not implemented in the present paper,1437

the mentioned re�nements may be easily included in the1438

proposed modeling.1439

Finally, despite the mentioned limitations, among which1440

some may be easily corrected, the proposed model seems1441

a powerful generalization to general �ows of the standard1442

Suspension Balance Model. It involves a smaller number of1443

unknown �elds as in the primary two-phase model, which1444

implies limited computational cost. The frame invariant1445

constitutive law involves a small number of free parame-1446

ters, all of which are found from shear-�ow simulations. In1447

addition, it is easily included in �ow computation codes.1448
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