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Abstract

Rapid advances in deep learning have brought not only a myriad of powerful neural networks, but also
breakthroughs that benefit established scientific research. In particular, automatic differentiation (AD) tools and
computational accelerators like GPUs have facilitated forward modeling of the Universe with differentiable
simulations. Based on analytic or automatic backpropagation, current differentiable cosmological simulations are
limited by memory, and thus are subject to a trade-off between time and space/mass resolution, usually sacrificing
both. We present a new approach free of such constraints, using the adjoint method and reverse time integration. It
enables larger and more accurate forward modeling at the field level, and will improve gradient-based optimization
and inference. We implement it in an open-source particle-mesh (PM) N-body library pmwd (PM with
derivatives). Based on the powerful AD system JAX, pmwd is fully differentiable, and is highly performant
on GPUs.

Unified Astronomy Thesaurus concepts: Cosmology (343); Large-scale structure of the universe (902); N-body
simulations (1083); Astronomy software (1855); Computational methods (1965); Algorithms (1883)

1. Introduction

Current established workflows of statistical inference from
cosmological data sets involve reducing cleaned data to
summary statistics, such as the power spectrum, and predicting
these statistics using perturbation theories, semianalytic models,
or simulation-calibrated emulators. These can be suboptimal due
to the limited model fidelity and the risk of information loss
in data compression. Cosmological simulations (Hockney &
Eastwood 1988; Angulo & Hahn 2022) can accurately predict
structure formation even in the nonlinear regime at the level of
the fields. Using simulations as forward models also naturally
accounts for the cross-correlation of different observables, and
can easily incorporate systematic errors. This approach has been
intractable due to the large computational costs of conventional
CPU clusters, but rapid advances in accelerator technology such
as GPUs open the possibility of simulation-based modeling and
inference (Cranmer et al. 2020). Furthermore, model differentia-
bility enabled by automatic differentiation (AD) libraries can
accelerate parameter constraints with gradient-based optim-
ization and inference. A differentiable field-level forward
model combining these two features is able to constrain
physical parameters together with the initial conditions of the
Universe.

The first differentiable cosmological simulations, such as
BORG, ELUCID, and BORG-PM (Jasche & Wandelt 2013;
Wang et al. 2014; Jasche & Lavaux 2019), were developed before
the advent of modern AD systems, and were based on the analytic

derivatives, which involve first convolution derivation by hand
using the chain rule (see, e.g., Seljak et al. 2017, AppendixD)
before implementing them in code. Later codes including FastPM
and FlowPM (Feng et al. 2016; Seljak et al. 2017; Modi et al.
2021) compute gradients using the AD engines, namely vmad9

(written by the same authors) and TensorFlow, respectively.
The AD frameworks automatically apply the chain rule to the
primitive operations that comprise the whole simulation,
relieving the burden of derivation and implementation of the
derivatives. Both analytic differentiation and AD backpropa-
gate the gradients through the whole history, which requires
saving the states at all time steps in memory. Therefore, they
are subject to a trade-off between time and space/mass
resolution, usually sacrificing both. As a result, they lose
accuracy on small scales and in dense regions where the time
resolution is important, e.g., in weak lensing (Böhm et al.
2021).
Alternatively, the adjoint method provides systematic ways of

deriving the gradients of an objective function under constraints
(Pontryagin 1962), such as those imposed by the N-body equations
of motion in a simulated Universe. It identifies a set of adjoint
variables λ, dual to the state variables z of the model, and carrying
the gradient information of the objective function with respect to
the model state ¶ ¶z . For time-dependent problems, the adjoint
variables evolve backward in time by a set of equations dual to that
of the forward evolution, known as the adjoint equations. For
continuous time, the adjoint equations are a set of differential
equations, while in the discrete case, they become difference
equations which are practically a systematic way to structure the
chain rule or backpropagation. Their initial conditions are set by
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the explicit dependence of the objective on the simulation state,
e.g.,l = ¶ ¶zn n if is a function of the final state zn. Solving
the adjoint equations can help us propagate the gradient
information via the adjoint variables to the input parameters θ,
to compute the objective gradients qd d . And we will see later
that the propagated and accumulated gradients on parameters come
naturally from multiple origins, each reflecting a θ-dependence at
one stage of the modeling in Figure 1(a).

The backward adjoint evolutions depend on the states in the
forward run, which we can resimulate with reverse time integration
if the dynamics are reversible, thereby dramatically reducing the
memory cost (Chen et al. 2018). Furthermore, we derive the
discrete adjoint equations dual to the discrete forward time
integration, known as the discretize-then-optimize approach (e.g.,
Gholaminejad et al. 2019), to ensure gradients propagate backward
along the same trajectory as taken by the forward time integration.
This is in contrast with the optimize-then-discretize approach,
which numerically integrates the continuous adjoint equations, and
is prone to larger deviations between the forward and the backward
trajectories, due to different discretizations (Lanzieri et al. 2022). In
brief, to compute the gradient we only need to evolve a simulation
forward, and then backward jointly with its dual adjoint equations.
We introduce the adjoint method first for generic time-dependent
problems in both the continuous and discrete cases in Section 3,
and then present its application on cosmological simulation in
Section 3.6.

We implement the adjoint method with reverse time
integration in a new differentiable particle-mesh (PM) library
pmwd using JAX (Li et al. 2022). pmwd is memory efficient at
gradient computation with a space complexity independent of
the number of time steps, and is computation efficient when
running on GPUs.

2. Forward Simulation

We first review and formulate all components of the N-body
simulation-based forward model of the cosmological structure
formation.

2.1. Initial Conditions and Perturbation Theories

N-body particles discretize the uniform distribution of matter
at the beginning of cosmic history (scale factor a(t)→ 0) at
their Lagrangian positions q, typically on a Cartesian grid, from
which they then evolve by displacements s to their later
positions, i.e.,

= +x q s q . 1( ) ( )

To account for the cosmic background that expands globally,
while x is the comoving position relative to this background,
the physical position grows with the expansion scale factor,
i.e., ax. The expansion rate is described by the Hubble
parameter H d a dtln .
The initial conditions of particles can be set perturbatively

when |∇ · s|, the linear approximation of the density fluctua-
tion, is much less than 1. We compute the initial displacements
and momenta using the second-order Lagrangian perturbation
theory (2LPT; Bouchet et al. 1995):

= +
= = = ¢ + ¢

s s s

p x s s s

D D

a a a H D D

,

, 2
1

1
2

2

2 2 2
1

1
2

2  ( ) ( )

( ) ( )

( ) ( )

where p is the canonical momentum10 for canonical coordinate
x. The temporal and spatial dependences separate at each order:

Figure 1. Simulation-based forward model of the Universe. (a) Shows the overall model structure. Single arrows from the cosmological parameters θ and white noise
modes ω indicate dependence on θ only, while double arrows imply dependence on both. The time integration loop in (b) expands the solid box in (a), and a single
time step in (c) further expands the dashed box in (b). We describe different operators in Section 2: Boltzmann solver (“Boltz”) and initial condition generator by the
Lagrangian perturbation theory (“LPT”) in Section 2.1; force solver (F) in Section 2.2; time integration (“Integ”), kick (K ), and drift (D) in Section 2.3; observation
(“Obs” and O) and objective (“Obj”) in Section 2.4. Gradients flow backward with all arrows reversed (Section 3.6).

10 We omit the particle mass m in the canonical momentum =p xma2 
throughout for brevity.
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the ith order growth factor Di is only a function of the scale
factor a (or time t), and the ith order displacement field s(i)

depends only on q. We have also used two types of time
derivatives, d dt   and ¢ d d aln  , related
by = ¢H  .

Both the first- and second-order displacements are potential
flows,

f f = - = -s s, , 3q s q s
1 1 2 2 ( )( ) ( ) ( ) ( )

with the scalar potentials sourced by

f d

f f f f f

 =

 = å -<

q ,

, 4

q s

q s s s s si j ii jj ij ji

2 1 1

2 2
,
1

,
1

,
1

,
1

( )
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( ) ( ) ( ) ( ) ( )

where fs,ij@ ∂2fs/∂qi∂qj, and δ(1) is the linear order of the
overdensity field, δ, related to the density field ρ and mean
matter density r̄ by d r r - 1 ¯ .

The linear overdensity δ(1), which sources the 2LPT particle
initial conditions, is a homogeneous and isotropic Gaussian
random field in the consensus cosmology, with its Fourier
transform δ(1)(k)= ∫dqδ(1)(q)e− i k· q characterized by the linear
matter power spectrum Plin,

d d p d
d

á ¢ ñ = + ¢

+ ¢

k k k k

k k

P k

VP k

2

. 5

1 1 3 D
lin

K
lin

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

The angle bracket takes the ensemble average of all possible
realizations. Homogeneity demands that different wavevectors
are uncorrelated, thus the Dirac delta δD in the first equality.
And with isotropy, Plin does not depend on the direction of the
wavevector k, but only on its magnitude, the wavenumber k@
|k|. In a periodic box of volume V, where k is discrete, δD is
replaced by the Kronecker delta δK in the second equality.
Numerically, we can easily generate a δ(1) realization by
sampling each Fourier mode independently,

d w=k kP kV , 61
lin( ) ( ) ( ) ( )( )

with ω(k) being any Hermitian white noise, i.e., Fourier
transform of a real white noise field ω(q).

Cosmological perturbation theory gives the linear power
spectrum as11

p
=

W
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where the shape of Plin is determined by the transfer function T,
solution to the linearized Einstein–Boltzmann equations (Lewis
& Challinor 2011; Blas et al. 2011). T depends on the
cosmological parameters

q = W WA n h, , , , , ,m bs s ( )

some of which already appear in Equation (7): As is the
amplitude of the primordial power spectrum defined at some
fixed scale kpivot; ns describes the shape of the primordial power
spectrum; Ωm is the total matter density parameter; Ωb is the
baryonic matter density parameter; and H0 is the Hubble
constant, often parameterized by the dimensionless h as
H0= 100 h km s−1 Mpc−1. Other parameters may enter in

extensions of the standard Λ cold dark matter (ΛCDM)
cosmology.
In summary, other than the discretized white noise modes ω,

to generate initial conditions we need the growth functions D
and the transfer function T, both of which depend on the
cosmological parameters θ. We compute D by solving the
ordinary differential equations (ODEs) given in Appendix, and
employ the fitting formula for T from Eisenstein & Hu (1998).
We illustrate these dependencies in the upper left triangle of
Figure 1(a).
At early times and/or lower space/mass resolution, LPT can

be accurate enough to directly compare to the observational
data. However, a more expensive integration of the N-body
dynamics is necessary in the nonlinear regime. During LPT and
the time integration we can observe the simulation predictions
by interpolating on the past light cone of a chosen observer.
These form the upper right square of Figure 1(a).

2.2. Force Evaluation

The core of gravitational N-body simulation is the gravity
solver. The gravitational potential sourced by matter density
fluctuation satisfies the Poisson equation

f d =
W

x x
H

a

3

2
, 8m2 0

2

( ) ( ) ( )

where ∇2 is the Laplacian with respect to x. We separate the
time dependence by defining j@ af, so j satisfies

j d = Wx xH
3

2
, 9m

2
0
2( ) ( ) ( )

which only depends on the matter overdensity δ.
While our adjoint method is general, we employ the PM

solver in pmwd for efficiency, and leave the implementation of
short-range forces to future development. With the PM method,
we evaluate δ(x) on an auxiliary mesh by scattering particle
masses to the nearest grid points. We use the usual cloud-in-
cell, or trilinear, interpolation (Hockney & Eastwood 1988), to
compute the fractions of a particle at ¢x going to a grid point at
x,

¢ = -
- ¢

=

x xW
x x

l
, max 1 , 0 , 10

i

i i

1

3

( ) ∣ ∣ ( )⎛
⎝

⎞
⎠

where l is the mesh cell size.
The gravitational field, −∇j, can then be readily computed

on the mesh with the fast Fourier transform (FFT), as the above
partial differential equation becomes an algebraic one in
Fourier space:

j d- = Wk kk H
3

2
. 11m

2
0
2( ) ( ) ( )

In Fourier space, −∇j(x) is just −ikj(k), each component of
which can be transformed back to obtain the force field. With
four (one forward and three inverse) FFTs, we can obtain −∇j
(x) from δ(x), with both on the mesh, efficiently.
Finally, we interpolate the particle accelerations by gather-

ing −∇j from the same grid points with the same weights, as
given in Equation (10).

11 Here the time dependence of the linear power, =P k a P k D a,lin lin 1
2( ) ( ) ( ),

has been left to Equation (2).
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2.3. Time Integration

N-body particles move by the following equations of motion:

f
j 

=

=- = -

x
p

p

a

a

,

. 12

2


 ( )

We use the FastPM time stepping (Feng et al. 2016), designed
to reproduce in the linear regime the linear Lagrangian
perturbation theory, i.e., the 1LPT as the first order in
Equation (2), also known as the Zel’dovich approximation
(hereafter ZA). We present a simplified derivation below.

N-body simulations integrate Equation (12) in discrete steps
(Figure 1(b)), typically with a symplectic integrator that
updates x and p alternately. From ta to tb,

ò
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( ) ( )

which are the drift and kick operators, respectively. In the
second equalities of each equation, we have introduced two
time-dependent functions GD and GK. As approximations, they
have been taken out of the integrals together with p and ∇j at
some intermediate representative time tc. We can make the
approximation more accurate by choosing GD to have a time
dependence closer to that of p, likewise for ∇j and GK.
However, in most codes GD and GK are simply set to 1 (Quinn
et al. 1997), lowering the accuracy when the number of time
steps is limited.

FastPM chooses GD and GK according to the ZA growth
history, thereby improving the accuracy on large scales and at
early times. In ZA, the displacements are proportional to the
linear growth factor, s∝D1, which determines the time
dependences of the momenta and the accelerations by (12).
Therefore, we can set GD and GK in Equation (13) to

G a D

G aG

,

. 14
D

K D

2
1


≔
≔ ( )

These are functions of D1 and its derivatives, as given by
Equation (A7). With these choices, the drift and kick factors,
defined in Equation (13), then become

=
-

=
-

D t t t
D t D t
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While these operators are generally applicable in any
symplectic integrator, we use them in the second-order kick-
drift-kick leapfrog, or velocity Verlet, integration scheme
(Quinn et al. 1997). From ti−1 to ti, the particles’ state (x, p) is

updated in the following order:
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The left column names the operators as shown in Figure 1(c).
The force operator F on the third line computes the
accelerations as described in Section 2.2. It caches the results
in a, so that they can be used again by the first K in the next
step. Note that we need to initialize a0 with F0 before the first
time step.

2.4. Observation and Objective

Because all observables live on our past light cone, we
model observations on the fly by interpolating the jth particle’s
state =z x p,j j jˆ ( ˆ ˆ ) when they cross the light cone at tĵ. Given
z= (x, p) at ti−1 and ti, we can parameterize intermediate
particle trajectories with cubic Hermite splines. Combined with
the θ-dependent propagation of the light front, we can solve for
the intersections, at which we can record the observed ẑ. The
solution can even be analytic if the light propagation is also
approximated cubically. Note that we only observe the dark
matter phase space here, and leave more realistic observables to
future works, including the forward modeling of real observa-
tional effects. Figure 1(c) illustrates the observation operator O
and its dependencies on the previous and the current time step.
We can compare the simulated observables to the observa-

tional data, either at the level of the fields or the summary
statistics, by some objective function in case of optimization, or
by a posterior probability for Bayesian inference. We refer to
both cases by objective and denote it by  throughout. Note
that in general, it can also depend on θ and ω, in the form of
regularization or prior probability.
Formally, we can combine the observation and objective

operators as

q w q q w=z z z z, , , , , , , , 17n0  (ˆ ) (ˆ ( ) ) ( )

as illustrated in the lower right triangle in Figure 1(a). Note this
form also captures the conventional simulation snapshots at the
end of a time step or those interpolated between two
consecutive steps, so we model all these cases as observations
in pmwd.

3. Backward Differentiation—the Adjoint Method

We first introduce the adjoint method for generic time-
dependent ODEs, and derive the adjoint equations following a
pedagogical tutorial by Andrew Bradley.12 We then adopt the
discretize-then-optimize approach, and derive the discrete
adjoint equations, which is more suitable for the N-body
symplectic time integration. Finally, we apply them to derive
the adjoint equations and the gradients for cosmological
simulations described in Section 2, and couple them with the
reverse time integration to reduce the space complexity.

12 https://cs.stanford.edu/~ambrad/adjoint_tutorial.pdf
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3.1. Variational (Tangent) and Adjoint Equations

Consider a vector state z(t) subject to the following ODEs
and initial conditions

q q= =z f z z zt t, , , , 180 0 ( ) ( ) ( ) ( )

for t ä [t0, t1]. Here the initial conditions can depend on the
parameters θ.

A perturbation in the initial conditions propagates forward in
time. For z(t, t0, z0), the Jacobian of state variables describing
this,

D =
¶
¶

z
z

, 19
0

( )

evolves from identity Δ0= I by

D D=
¶
¶

f
z

, 20 · ( )

following from Equation (18). Equation (20) is known as the
variational or tangent equation.

The backward version of Δ,

L =
¶
¶
z
z

, 211 ( )

evolves backward in time from identity Λ1= I by

L L= -
¶
¶

f
z

. 22 · ( )

Equation (22) is called the adjoint equation, for the right-hand
side is (∂f/∂z)Λ. It can be derived from the time invariance of
Λ ·Δ:

L D L D L D+ = =
¶
¶

¶
¶

=
¶
¶

=

23

z
z

z
z

z
z

d

dt

d
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0

1
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 

( )

· · ( · ) ·⎜ ⎟
⎛
⎝

⎞
⎠

Alternatively, the adjoint equation can be derived from
the variational equation, using the facts that =-Md dt1

- - -M M M1 1 for any invertible matrix M, and ¶ ¶ =-z z 1( ˜)
¶ ¶z z˜ . Like Equations (20) and (22)

¶
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¶
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= -
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z
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d
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, . 24

˜
·

˜
˜ ˜ · ( )

As we can see next, the adjoint equation takes a similar form
when one optimizes an objective function of the state.

3.2. Objective on the Final State

In the simplest case, the objective function depends only on
the final state, e.g., the last snapshot of a simulation, and
possibly the parameters too in the form of regularization or
prior information, i.e., qz ,1( ). To optimize the objective
under the constraint given by the ODEs, we can introduce a

time-dependent function λ(t) as the Lagrange multiplier:

òq l q= - -z z f zt t dt, , , . 25
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Note the minus sign we have introduced in front of λ for later
convenience.
Its total derivative with respect to θ is
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Integrating the first term of the integrand by parts
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and plugging it back

Now we are free to choose

l l l= -
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f
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, , 291
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which allows us to avoid all ∂z/∂θ terms in the final objective
gradient:
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in which the first two terms come from the regularization and
initial conditions, respectively. Equation (29) is the adjoint
equation for the objective qz ,1( ). With the initial conditions
set at the final time, we can integrate it backward in time to
obtain λ(t), which enters the above equation and yields qd d .
Note that Equation (29) has the same form as Equation (22),

and their solutions are related by

l l L= =
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And like Λ ·Δ, λ ·Δ is time invariant:
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Computing λ1 ·Δ1 directly is expensive, but solving
Equation (29) backward for λ0 is cheap. This is related to
the fact that the reverse-mode AD or backpropagation is
cheaper than the forward mode for optimization.

3.3. Objective on the State History

The adjoint method applies to more complex cases too. Let
us consider an objective as a functional of the evolution history
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with some regularization  on θ

òq q= + zg t dt, , . 33
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The derivation is similar:
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has the gradient

The adjoint equation becomes
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with the objective gradient
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The time invariant is now
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3.4. Objective on the Observables

Now let us consider an objective that depends on different
state components at different times, e.g., in the Universe where
further objects intersected our past light cone earlier. It falls
between the previous two scenarios, and we can derive its
adjoint equation similarly.

We denote the observables by ẑ, with different components
zĵ affecting the objective qz ,(ˆ ) at different times tĵ, i.e.,
z z tj j jˆ (ˆ ). The Lagrangian becomes

òåq ql= - -z zt z f t dt, , , , 40
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constraining only the parts of trajectories inside the light cone.
Its gradient is
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where we have defined l̂ similarly with components
l l tj j jˆ (ˆ ). In the first equality, we have also dropped a

vanishing term qlå - ¶ ¶z f t tj j j j j jˆ [ (ˆ )] ˆ , i.e., q¶ ¶tĵ does not
directly enter the gradient.
Now we find the adjoint equation

l l l= -
¶
¶

=
¶
¶

f
z z

, , 42
 · ˆ
ˆ

( )

which has the same form as Equation (29), with a slightly
different initial condition given at the respective observation
time of each component. The objective gradient is also similar
to the previous cases:
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Note that even though λj(t) for >t tĵ does not affect the final
gradient, they can enter the right-hand side of the adjoint
equation, and affect those λk with <t tk̂, i.e., inside the light
cone. Physically, however, ∂fj/∂zk should vanish for spacelike
separated pairs of zj and zk, even though the Newtonian
approximation we adopt introduces some small deviation.
Therefore, we can set λj(t) to 0 for >t tĵ, and bump it to
¶ ¶zj ˆ at tĵ.

3.5. Discretize Then Optimize

In practice, the time integration of Equation (18) is discrete.
Consider the explicit methods,

q= + = -+z z F z i n, , 0, , 1, 44i i i i1 ( ) ( )

which include the leapfrog integrator commonly used for
Hamiltonian dynamics. We want to propagate the gradients
backward along the same discrete trajectory as taken by the
forward integration. Therefore, instead of the continuous
adjoint equations derived above, we need the adjoint method
for the discrete integrator.
Without loss of generality, we derive the adjoint equation for

an objective depending on the state at all time steps, which can
be easily specialized to the three cases discussed above with
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only slight modifications. The discretized Lagrangian is now
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+ +z z z z F z, , , , ,
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whose gradient is

So the discrete adjoint equation is
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We can iterate it backward in time to compute the final
objective gradient:
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These equations are readily adaptable to simulated observables.
For snapshots at tn or interpolated between tn−1 and tn, all
¶ ¶zi vanish except for the last one or two, respectively. For

light cones, as discussed in Section 3.4, each component of ẑ is
interpolated at different times; thus, all ¶ ¶zi vanish except
for those times relevant for its interpolation, and the
corresponding λi can be set to zero for i greater than the
intersection time.
At the ith iteration, the adjoint variable requires the vector-

Jacobian product (VJP) λi · ∂Fi−1/∂zi−1 and the partial
objective derivative ¶ ¶ -zi 1 at the next time step, which
can be easily computed by AD if the whole forward history of
Equation (44) has been saved. However, this can be extremely
costly in memory, which can be alleviated by checkpointing
algorithms such as Revolve and its successors (Griewank &
Walther 2000). Alternatively, if a solution to Equation (18) is
unique, we can integrate it backward and recover the history,
which is easy for reversible Hamiltonian dynamics and with
reversible integrators such as leapfrog. When the N-body
dynamics become too chaotic, one can use more precise
floating-point numbers and/or save multiple checkpoints13

during the forward evolution, from which the backward
evolution can be resumed piecewise.

3.6. Application to Simulation

The adjoint method provides systematic ways of deriving the
objective gradient under constraints (Pontryagin 1962), here
imposed by the N-body equations of motion. We have
introduced above the adjoint method for generic time-
dependent problems in both continuous and discrete cases.
The continuous case is easier to understand and has
pedagogical values, while the discrete case is the useful one
in our application, for we want to propagate numerically the

gradients backward along the same path as that of the forward
time integration.
For the N-body particles, the state variable14 is z= (x, p).

Their adjoint variables help to accumulate the objective
gradient while evolving backward in time by the adjoint
equation. Let us denote them by λ= (ξ, π). We can compare
each step of Equations (16)–(44), and write down its adjoint
equation following Equation (47). Taking -Di

i
1 for example, we

Figure 2. Relative matter density field, 1 + δ, at a = 1, projected from an
8 Mpc h−1 thick slab in a pmwd simulation, that has evolved 5123 particles
with single precision and a 10243 mesh in a -h512 Mpc 1 3( ) box for 63 time
steps. The simulation takes only 13 s to finish on an NVIDIA H100 PCIe GPU.
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13 This is different from the checkpointing in the Revolve algorithm, which
needs to rerun the forward iterations.
14 State and adjoint vectors in the adjoint equations include enumeration of
particles, e.g., ∇j includes the ∇j of each particle.
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can write it explicitly as
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in the form of Equation (44). By Equation (47), its adjoint
equation is
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where we have used the fact that D(tc, ta, tb)=−D(tc, tb, ta),
and left the ¶ ¶zi term, the explicit dependence of the
objective on the intermediate states (from, e.g., observables on
the light cone), to the observation operator O below. This also
naturally determines the subscripts of ξ and π.

Repeating the derivation for K and O, and flipping the arrow
of time, we present the adjoint equation time stepping for
Equation (16) from ti to ti−1:

x x a

p p x
j

a p
j

z p
j
q

x x a

x x

p p






= +

= -

= +

= -

= -

-
¶
¶

-
¶

¶
= +

= -

= +
¶
¶

= +
¶
¶

-
- -

- -

-
- - - -

- - - -

- - -

- -
-

-

- -
-

-
-

- - - - - -

- - - - - -

-
- -

-

- -
-

p p a

x x p

a x

x

p p a

x

p

K K t t t

K t t t

D D t t t

D t t t

F

K K t t t

K t t t

O

: , , ,

, , ,

: , , ,

, , ,

: ,

,

,

: , , ,

, , ,

: : ,

: .

49

i
i

i i i i i i

i i i i i i

i
i

i i i i i i

i i i i i i

i i i

i i
i

i

i i
i

i
i

i i i i i i

i i i i i i

i
i

i i
i

i i
i

1 2
1 2 1 2

1 2 1 2

1
1 1 2 1 2 1

1 1 2 1 2 1

1 1 1

1 1
1

1

1 1
1

1 2
1

1 1 2 1 1 1 2 1

1 1 2 1 1 1 2 1

1
1 1

1

1 1
1









( )
( )

( )
( )

( )

·

·

( )
( )

( )

Like a, we have introduced α and ζ to cache the vector-
Jacobian products on their right-hand sides, for the next time
step in the kick operator and the objective gradient (see below),
respectively. Note that in the reverse order, the F operator is at
ti−1 instead of ti as in Equation (16), and we need to initialize
an, αn, and ζn with Fn before stepping from tn to tn−1.
Likewise, the gradient of -On

n 1 at tn is absent in Equation (49)
but enters via the initial conditions following (47). Explicitly,
the initial conditions of Equation (49) are
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The VJPs in F and the ¶ ¶z ʼs in O can be computed by
AD if the whole forward integration and observation history of
Equations (16) and (17) has been saved. However, this can be
too costly spatially for GPUs, whose memories are much
smaller than those of CPUs. Alternatively, we take advantage

of the reversibility of the N-body dynamics and the leapfrog
integrator, and recover the history by reverse time integration,
which we have already included on the first lines of the K and
D operators in Equation (49). We can integrate the leapfrog and
the adjoint equations jointly backward in time, and still benefit
from the convenience of AD in computing VJPs and ¶ ¶z ʼs.
In practice, the numerical reversibility suffers from the finite
precision and the chaotic N-body dynamics, which we find is
generally not a concern for our applications in the results
section.
Finally, during the reverse time integration, we can

accumulate the objective gradient following Equation (48):
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where the latter backpropagates from fewer sources than the
former as shown in Figure 1(a). To implement Equations (49)–(51)
in pmwd with JAX, we only need to write custom VJP rules for
the high-level N-body integration-observation loop, while the
derivatives and VJPs of the remaining parts, including regulariza-
tion/prior, the observation, the initial conditions, the kick and
drift factors, the growth and transfer functions, etc., can all be
conveniently computed by AD.
Other than that, we also implement custom VJPs for the

scatter and gather operations in Section 2.2 following https://
web.archive.org/web/20230529030440/https:/bids.berkeley.
edu/news/automatic-differentiation-and-cosmology-simulation,
and these further save memory in gradient computations of those
nonlinear functions.

4. Results

We implement the forward simulation and backward adjoint
method in the PM code pmwd. All results assume a simple
ΛCDM cosmology: θ= (As= 2× 10−9, ns= 0.96, Ωm= 0.3,
Ωb= 0.05, h= 0.7), and use an NVIDIA H100 PCIe GPU with
80 GB memory.
As in FastPM, the choice of time steps is flexible, and in

fact, with pmwd it can even be optimized in non-parametric
ways to improve simulation accuracy at fixed computation cost.
Here we use time steps linearly spaced in scale factor a, and
leave such optimization to follow-up work.

4.1. Simulation

We first test the forward simulations of pmwd. Figure 2
shows the cosmic web in the final snapshot of a fairly large
simulation for the size of GPU memories.
Because GPUs are inherently parallel devices, they can

output different results for identical inputs. To test the
reproducibility, in Table 1 we compare the rms deviations
(RMSDs) of particle displacements and velocities between two
runs, relative to their respective standard deviations, with
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different floating-point precisions, mesh sizes, particle masses,
and numbers of time steps. Other than the precision, mesh size
is the most important factor because a finer mesh can better
resolve the most nonlinear and dense structures, which can
affect reproducibility as the order of many operations can
change easily. The particle mass plays a similar role and less
massive particles generally take part in nonlinear motions at
earlier times. The number of time steps has a very small impact
except in the most nonlinear cases. And interestingly, more
time steps improve the reproducibility most of the time.

4.2. Differentiation

Model differentiation evolves the adjoint equations back-
ward in time. To save memory, the trajectory of the model state
in the forward run is not saved, but resimulated together with
the adjoint equations. Even though in principle the N-body
systems are reversible, in practice, the reconstructed trajectory
can differ from the forward one due to the finite numerical
precision and exacerbated by the chaotic dynamics. Better
reversibility means the gradients propagate backward along a

Table 1
pmwd Reproducibility on a GPU

Precision Cell/ptcl ptcl Mass [1010Me] Time Steps Disp. Rel. Diff. Vel. Rel. Diff.

Single 8 1 63 1.6 × 10−6 4.8 × 10−5

Single 8 1 126 5.1 × 10−7 1.3 × 10−5

Single 8 8 63 3.1 × 10−7 2.4 × 10−6

Single 8 8 126 3.1 × 10−7 2.3 × 10−6

Single 1 1 63 1.4 × 10−7 1.5 × 10−6

Single 1 1 126 1.3 × 10−7 1.4 × 10−6

Single 1 8 63 1.1 × 10−7 4.5 × 10−7

Single 1 8 126 9.9 × 10−8 4.4 × 10−7

Double 8 1 63 1.4 × 10−15 3.6 × 10−14

Double 8 1 126 8.3 × 10−16 1.7 × 10−14

Double 8 8 63 5.4 × 10−16 4.1 × 10−15

Double 8 8 126 5.9 × 10−16 4.3 × 10−15

Double 1 1 63 2.4 × 10−16 2.3 × 10−15

Double 1 1 126 2.3 × 10−16 2.3 × 10−15

Double 1 8 63 1.9 × 10−16 7.9 × 10−16

Double 1 8 126 1.8 × 10−16 7.8 × 10−16

Note. GPUs can output different results for identical inputs. We simulate 3843 particles from a = 1/64 to a = 1, with two floating-point precisions, two mesh sizes,
two particle masses (with box sizes of 192 and 384 Mpc h−1), and two time step sizes. We take the RMSDs of particle displacements and velocities between two runs
at a = 1, and quote their ratios to the respective standard deviations, about 6 Mpc h−1 and 3 × 102 km s−1. In general, the factors on the left of the left four columns
affect the reproducibility more than those on the right, and lower rows are more reproducible than the upper ones.

Table 2
pmwd Reversibility on a GPU

Precision Cell/ptcl ptcl Mass [1010Me] Time Steps Disp. Rel. Diff. Vel. Rel. Diff.

Single 8 1 63 5.2 × 10−2 7.1 × 10−2

Single 8 1 126 2.1 × 10−2 3.6 × 10−2

Single 8 8 63 3.3 × 10−3 7.6 × 10−3

Single 8 8 126 3.7 × 10−3 7.0 × 10−3

Single 1 1 63 1.4 × 10−3 2.2 × 10−3

Single 1 1 126 1.3 × 10−3 1.7 × 10−3

Single 1 8 63 4.3 × 10−4 7.3 × 10−4

Single 1 8 126 4.4 × 10−4 6.3 × 10−4

Double 8 1 63 5.4 × 10−11 1.3 × 10−10

Double 8 1 126 3.5 × 10−11 7.0 × 10−11

Double 8 8 63 5.8 × 10−12 1.4 × 10−11

Double 8 8 126 6.4 × 10−12 1.2 × 10−11

Double 1 1 63 2.2 × 10−12 3.4 × 10−12

Double 1 1 126 2.1 × 10−12 2.9 × 10−12

Double 1 8 63 7.2 × 10−13 1.2 × 10−12

Double 1 8 126 6.9 × 10−13 9.4 × 10−13

Note. Our adjoint method reduces memory cost by reconstructing the forward evolution with reverse time integration. We test the numerical reversibility by
comparing the displacements and velocities of particles that have evolved to a = 1 and then reversed to a = 1/64, to those of the LPT initial conditions at a = 1/64, in
RMSDs. We take their ratios to the respective standard deviations, about 0.1 Mpc h−1 and 0.7 km s−1. Their smallness is the main reason that the quoted relative
differences here are orders of magnitude greater than those in Table 1 (see Figure 3 where the reversibility is a few times more important than the reproducibility in
their impacts on the gradients). With the same setup as that in Table 1, we see the same general trend—the left factors are more important than the right ones, and the
lower rows are more reversible than the upper ones.
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trajectory closer to the forward path, and thus would be more
accurate. To test this, in Table 2 we compare the RMSDs of the
forward-then-reverse particle displacements and velocities from
the LPT initial conditions, relative to their respective standard
deviations, which are very small at the initial time. As before,
we vary the floating-point precision, the mesh size, the particle
mass, and the number of time steps. The order of factor
importance and their effects are the same as in the
reproducibility test. This is because more nonlinear structures
are more difficult to reverse. One way to improve reversibility
is to use higher-order LPT to initialize the N-body simulations
at later times (Michaux et al. 2021), when the displacements
and velocities are not as small. We leave this for future
development.

Next, we want to verify that our adjoint method yields the
same gradients as those computed by AD. As explained in
Section 3.6, pmwd already utilizes AD on most of the
differentiation tasks. To get the AD gradients we disable our

custom VJP implementations on the N-body time integration,
and the scatter and gather operations. In Figure 3, we compare
the adjoint and AD gradients on a smaller problem because AD
already runs out of memory if we double the number of time
steps or increase the space/mass resolution by 23× from the
listed specifications in the caption. For better statistics, we
repeat both the adjoint and AD runs 64 times, with the same
cosmology and white noise modes, and compare their results
by an asymmetric difference of Xi− Yj, where 1 � j < i �64.
First, we set X and Y to the adjoint and AD gradients,
respectively, and find they agree very well on the real white
noise (so do their gradients on cosmological parameters not
shown here; see https://github.com/eelregit/pmwd/tree/
master/docs/papers/adjoint/grads.txt). In addition, we can
set both X and Y to either adjoint or AD to check their
respective reproducibility. We find both gradients are con-
sistent among different runs of themselves, with AD being a lot
more reproducible without uncertainty from the reverse time

Figure 3. Adjoint gradients of a 128 × 128 slice of the real white noise field wd d (top panel), in a pmwd simulation of 1283 particles in a -h128 Mpc 1 3( ) box, with
a 2563 mesh, 15 time steps, and single precision. We choose a mean squared error (MSE) objective between two realizations with the same cosmology but different
initial modes, on their density fields on the 2563 mesh at a = 1, and then compute the gradients with respect to one realization, while holding the other fixed. We
compare the adjoint gradients to those by AD, for which we have disabled the custom gradient implementation on the scatter, gather, and N-body time stepping
operators. The adjoint and AD gradients agree as expected, with a RMSD of ≈4 × 10−5, 3 orders of magnitude smaller than the standard deviation of the gradients
itself, ≈0.015. It is also comparable to the difference between two different adjoint gradients, with a RMSD ≈5 × 10−5. Different AD gradients are more consistent,
with a tighter RMSD of ≈1 × 10−5, due to the absence of uncertainty from reverse time integration.
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integration but only that from the GPU reproducibility. This
implies that we can ignore the reproducibility errors (Table 1)
when the reversibility ones dominate (Table 2). Though this
statement should be verified again in the future when we reduce
the reversibility errors using, e.g., 3LPT.

Our last test on the adjoint gradients uses them in a toy
optimization problem in Figure 4. We use the Adam optimizer
(Kingma & Ba 2014) with a learning rate of 0.1 and the default
values for other hyperparameters. Holding the cosmological
parameters fixed, we can optimize the real white noise modes
to source initial particles to evolve into our target pattern, in
hundreds to thousands of iterations. Interestingly, we find that
the variance of the modes becomes bigger than 1 (that of the
standard normal white noise) after the optimization, and the
optimized modes show some level of spatial correlation not
present in the white noise fields, suggesting that the optimized
initial conditions are probably no longer Gaussian.

4.3. Performance

pmwd benefits from GPU accelerations and efficient
CUDA implementations of scatter and gather operations. In
Figure 5, we present a performance test of pmwd, and find
both the LPT and the N-body parts scale well except for very
small problems. The growth function solution has a constant
cost, and generally does not affect problems of moderate
sizes. However, for a small number of particles and few time
steps, it can dominate the computation, in which case one can
accelerate the growth computation with an emulator (Kwan
et al. 2022).

5. Conclusions

In this work, we develop the adjoint method for memory-
efficient differentiable cosmological simulations, exploiting the
reversible nature of N-body Hamiltonian dynamics, and

Figure 4. A toy problem where we optimize the initial conditions by gradient descent to make some interesting patterns after projection. The particles originally fill a
16 × 27 × 16 grid, and then evolve from a = 1/64 to a = 1 for 63 time steps with single precision and a 32 × 54 × 32 mesh in a 160 × 270 × 160 Mpc3 h−3 box.
We compute their projected density in 64 × 108 pixels and compare that to the target image at the same resolution with an MSE objective. We use the adjoint method
and reverse time integration, assuming the latter can reconstruct the forward evolution history accurately. We validate this by demonstrating that the particles evolve
backward to align on the initial grid. The optimized initial conditions successfully evolve into the target pattern, which improves with more iterations. Also, see the
animated reverse time evolution at https://youtu.be/Epsgh6vr0qs and initial condition optimization at https://youtu.be/vD6lbjHP3SY on YouTube.
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implement it with JAX in a new PM library, pmwd. We have
validated the numerical reversibility and the accuracy of the
adjoint gradients.

pmwd is both computation and memory efficient, enabling
larger and more accurate cosmological dark matter simulations.
The next step involves modeling cosmological observables
such as galaxies. One can achieve this with analytic,
semianalytic, and deep learning components running based
on or in parallel with pmwd. In the future, it can also facilitate
the simultaneous modeling of multiple observables and the
understanding of the astrophysics at play.

pmwd will benefit all the forward-modeling approaches in
cosmology, and will improve gradient-based optimization and
field-level inference to simultaneously constrain the cosmolo-
gical parameters and the initial conditions of the Universe. The
efficiency of pmwd also makes it a promising route to generate
the large amount of training data needed by the likelihood-free
inference frameworks (Alsing et al. 2019; Cranmer et al. 2020).

Currently, these applications require more development,
including distributed parallel capability on multiple GPUs
(Modi et al. 2021), more accurate time integration beyond
FastPM (List & Hahn 2023), optimization of spatiotemporal
resolution of the PM solvers (Dai & Seljak 2021; Lanzieri et al.
2022; Y. Zhang et al. 2023, in preparation), short-range
supplement by direct summation of the particle–particle forces
on GPUs (Habib et al. 2016; Potter et al. 2017; Garrison et al.
2021), differentiable models for observables, etc. We plan to
pursue these in the future.
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Appendix
Growth Equations

The 2LPT growth functions follow the following ODEs:
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Figure 5. Performance of pmwd. Both the 2LPT and N-body components scale
well from 5123 particles to 643 particles, below which they become overhead
dominated. Solving the growth ODEs takes a constant time, and can dominate
the cost for small numbers of particles and few time steps, but generally does
not affect problems with more than 1283 particles.

15 https://kicp-workshops.uchicago.edu/compcosmology2013/
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with initial conditions
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We solve the growth equations in Gm instead of Dm, with the
JAX adaptive ODE integrator implementing the adjoint method
in the optimize-then-discretize approach. This is because the
former can be integrated backward in time more accurately for
early times, which can improve the adjoint gradients.

We can then evaluate the FastPM time integration factors in
Equation (14) by
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