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Abstract. The measurement of the absolute neutrino mass scale from cosmological large-
scale clustering data is one of the key science goals of the Euclid mission. Such a measurement
relies on precise modelling of the impact of neutrinos on structure formation, which can be
studied with N -body simulations. Here we present the results from a major code comparison
effort to establish the maturity and reliability of numerical methods for treating massive
neutrinos. The comparison includes eleven full N -body implementations (not all of them
independent), two N -body schemes with approximate time integration, and four additional
codes that directly predict or emulate the matter power spectrum. Using a common set of
initial data we quantify the relative agreement on the nonlinear power spectrum of cold dark
matter and baryons and, for theN -body codes, also the relative agreement on the bispectrum,
halo mass function, and halo bias. We find that the different numerical implementations
produce fully consistent results. We can therefore be confident that we can model the impact
of massive neutrinos at the sub-percent level in the most common summary statistics. We
also provide a code validation pipeline for future reference.

Keywords: cosmological neutrinos, cosmological simulations, neutrino masses from cosmol-
ogy, power spectrum

ArXiv ePrint: 2211.12457

https://arxiv.org/abs/2211.12457


J
C
A
P
0
6
(
2
0
2
3
)
0
3
5

Contents

1 Introduction 1

2 Neutrino physics 3

3 Numerical methods 4
3.1 Particle-based methods 4
3.2 Mesh-based methods 6
3.3 Approximations and other methods 7

3.3.1 COLA 8
3.3.2 PINOCCHIO 8
3.3.3 Newtonian motion gauge 10

3.4 Halo-model reaction 10
3.5 Power-spectrum emulation 12

4 Simulations 13
4.1 Initial conditions 14
4.2 Post-processing pipeline 15

4.2.1 Power spectra 15
4.2.2 Bispectra 16
4.2.3 Halo catalogues 16

5 Results 17
5.1 Power spectra 17

5.1.1 CDM and baryons 17
5.1.2 Convergence tests 21
5.1.3 Contributions from neutrinos 22
5.1.4 Total matter 23

5.2 Bispectra 23
5.3 Halo mass function 29
5.4 Halo bias 31

6 Discussion 34

1 Introduction

The upcoming Euclid mission [1] will provide very detailed observations of the large-scale
structure of our Universe, making it possible to probe physics related to dark energy and
neutrinos at an unprecedented level of precision. The analysis and interpretation of these
data require a very accurate modelling of the process of structure formation. This is of
particular relevance since a precise modelling of the mass-dependent effect neutrinos have on
various summary statistics will allow a cosmological measurement of the absolute neutrino
mass scale, which is one of the key science objectives of Euclid.

Here we focus on the treatment of massive neutrinos in cosmological N -body simulations
and investigate the convergence of a number of different codes over a variety of different scales

– 1 –
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and redshifts. Oscillation experiments have established a firm lower bound on the sum of
neutrino masses of around 0.06 eV. Using the well-known relation between neutrino mass and
cosmological energy density, ∑mν ≈ Ωνh

2× 94 eV, this lower bound on the sum of neutrino
masses corresponds to a lower bound of Ωνh

2 > 6× 10−4, or approximately 0.5% of the total
matter density. As usual, the cosmological density of any component X can be given in terms
of ΩX, which is its present-day energy density in units of the critical density, and physical
density parameters are then denoted as ωX = ΩXh

2, where h is the reduced Hubble parameter.
The sum of the neutrino masses is already constrained using information from the cosmic

microwave background (CMB) combined with observations of large-scale structure like baryon
acoustic oscillations [2], redshift-space distortions [3], and the Lyman-α forest [4]. While
currently providing only upper bounds, these constraints are expected to improve significantly
with upcoming surveys like Euclid which will be able to measure the neutrino mass fraction
even if it is close to the lower bound. The matter power spectrum is still affected at the level
of 4 % in this scenario, which is well within the sensitivity of the Euclid main probes.

For instance, the weak-lensing signal probed by Euclid is sensitive to the matter power
spectrum up to k ≈ 7hMpc−1 [5]. A linear model would be completely inadequate at such
short scales and we therefore need robust nonlinear models. The forecast for galaxy clus-
tering in Euclid typically assumes that the matter power spectrum and the galaxy bias is
well understood at least up to k ≈ 0.3hMpc−1 which also requires some nonlinear prescrip-
tion [6]. Many codes considered here are used in Euclid preparation papers and reference
simulations. For instance, PKDGRAV3 ran Euclid’s flagship simulations and the simulations
used by Knabenhans et al. [7, 8] to train the EuclidEmulator2; openGADGET3 was used to
calibrate the halo mass function for the Euclid cluster abundance analysis by Castro et al. [9],
and PINOCCHIO was used to create the synthetic catalogues for the validation of the covari-
ance matrix of cluster abundance and the clustering of clusters by Fumagalli et al. [10, 11].
Our objective is therefore to establish a reliable calibration baseline for the measurement of
the neutrino mass scale within the cosmological analysis of Euclid data. We expect that our
results are also relevant in the context of other so-called “stage IV surveys” like the Vera C.
Rubin Observatory or the Nancy Grace Roman Space Telescope.

Over the past decade, a variety of different methods have been employed to incor-
porate massive neutrinos in N -body simulations [12]. As discussed in more detail later,
they broadly fall into two categories which we may refer to as “particle based” and “mesh
based,” respectively. They follow different philosophies of keeping track of the evolving neu-
trino phase-space distribution function. Particle-based methods sample the six-dimensional
phase-space directly, see e.g. refs. [13–22]. Mesh-based methods, on the other hand, work
under the approximation that neutrino perturbations remain small and can be treated with
perturbation theory [23–26]. In the simplest case that is sufficient for low neutrino masses one
works with a linear realisation of the neutrino density field on a grid [23]. The linear theory
for neutrinos may also be solved using the full nonlinear gravitational potential calculated in
the simulation [24–26]. A different approach is to treat the massive neutrinos as a fluid and
then solve the corresponding fluid equations, employing some approximation scheme to close
the set of equations [27]. One can also attempt to integrate the Vlasov-Poisson equations on
a six-dimensional phase-space grid [28].

Generally speaking, the mesh-based schemes work best for relatively small neutrino
masses where neutrino perturbations remain linear or quasi-linear at all times. There are also
hybrid schemes that use elements from both approaches. For instance, one may use a linear
mesh-based representation at early times which is then converted to a particle representation
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at late time [29, 30]. The so-called “δf method” introduced in Elbers et al. [31] is another
hybrid approach that uses a particle ensemble to estimate perturbations δf to the smooth
background phase-space distribution function f . Finally, a coordinate (gauge) transformation
can be used to include linear neutrino perturbations without modifications to the N -body
simulation code [32]. Cosmology-rescaling algorithms that are applied in post-processing have
been shown to provide accurate results as well [33]. In this work, we aim to compare these
different numerical approaches by employing them to run cosmological N -body simulations
starting from the same initial conditions, and comparing the properties of the resulting matter
and halo distributions using a controlled post-processing pipeline.

This paper is structured as follows. We begin with a brief review of neutrino physics
and its impact on cosmology in section 2. In section 3, we describe the numerical methods
that can be used to account for the cosmological effects of neutrinos. Our simulations are
described in section 4 and in section 5 we present our numerical results. We conclude with
a discussion in section 6.

2 Neutrino physics

From oscillation experiments it is firmly established that at least two of the standard-model
neutrino mass states have non-zero mass, but the absolute mass scale is unknown and two
mass orderings remain possible: normal and inverted. The current best-fit values for the
mass-square differences measured in oscillation experiments are given by [34]

∆m2
21 = 7.42+0.21

−0.20 × 10−5 eV2, (2.1)
∆m2

31 = 2.517+0.026
−0.028 × 10−3 eV2 (NO), (2.2)

∆m2
32 = −2.498+0.028

−0.028 × 10−3 eV2 (IO), (2.3)

where “NO” denotes the normal mass ordering and “IO” the inverted one. This leads to
lower bounds on the sum of neutrino masses of ∑mν & 0.06 eV (NO) and ∑mν & 0.1 eV
(IO), respectively. The best current experimental upper bound on the neutrino masses comes
from the KATRIN experiment, which measures an incoherent sum of mass states using beta
decay of tritium [35, 36]. This bound approximately translates to ∑mν . 2.4 eV.

However, cosmology already provides much more stringent bounds, typically around∑
mν . 0.1− 0.2 eV. Assuming a minimal ΛCDM cosmology with massive neutrinos, a joint

analysis of cosmological probes currently obtains ∑mν < 0.09 eV at 95% confidence, already
putting pressure on the inverted mass ordering scenario [37]. These constraints are based
on several physical effects affecting the CMB and large-scale structure in different ways, see
Archidiacono et al. [38] for a review. Some of the effects are simply related to the change in the
expansion history, others to the explicit coupling of neutrinos to cosmological perturbations.
More specifically, massive neutrinos modify the shape of the matter power spectrum both
in the linear and the nonlinear regimes. First, as neutrinos behave like radiation in the
early Universe, they move the radiation-matter equality to slightly later times, therefore
shifting the peak of the power spectrum towards smaller wavenumbers. Second, after the
non-relativistic transition, they slow down the linear growth of perturbations at scales smaller
than the free-streaming length, leading to a scale-dependent growth rate. The small-scale
suppression in the linear power spectra of cold dark matter (CDM) and baryons, Pcb, or
total matter (which includes massive neutrinos), Pm, with respect to a model with massless
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neutrinos, can be quantified as [18, 39, 40]

∆Pcb
Pcb

≈ 6 fν ,
∆Pm
Pm

≈ 8 fν , (2.4)

respectively, where fν = Ων/Ωm is the neutrino mass fraction. In the nonlinear regime,
this suppression is even more prominent and exhibits a dip at k ≈ 1 h Mpc−1 for low
redshift, giving rise to the well-known “spoon-like” feature [41]. In the context of the halo
model, this feature appears at the transition region of the two-halo and the one-halo terms.
In particular, the dip is caused by the small-scale suppression of two-halo clustering that
is induced by free-streaming, while the subsequent rise reflects the fact that the number
of the most massive halos is rather independent of the neutrino masses. All these effects
can be accurately predicted by modelling the neutrino component in cosmological N -body
simulations. Assessing the relative accuracy and convergence of such modelling over a range
of different numerical methods and simulation codes is the main goal of this paper.

3 Numerical methods

In this section, we give an overview of the various methods that have been developed for
the treatment of massive neutrinos in N -body simulations and other numerical models. The
most accurate results are expected when the local density of neutrinos in configuration space
is accounted for within a simulation itself. This is technically challenging because of the large
phase-space volume that is populated by neutrino particles. The methods to deal with this
broadly fall into two categories that shall be discussed in turn: particle-based and mesh-based.
Hybrid methods that use concepts from both categories have also been developed. Apart
from full N -body simulations that may try to incorporate (as much as possible) the neutrino
physics, there also exist approximate methods to generate realisations of large-scale structure.
These can be augmented with recipes to account for the effect of massive neutrinos. Finally, if
one is only interested in summary statistics like the power spectrum, emulators are a powerful
tool that can be calibrated to include the sum of the neutrino masses as a free parameter.
An overview of the various numerical codes employed in this work is given in table 1.

3.1 Particle-based methods
Conceptually, the most straightforward method of accounting for cosmic neutrinos in a sim-
ulation is to represent them by a separate N -body ensemble. However, this method faces
several challenges that need to be addressed carefully.

The first challenge is posed by the aforementioned phase-space volume that needs to
be sampled. The phase-space distribution of neutrino particles typically has a very large
velocity dispersion that is orders of magnitude larger than the bulk velocity. Therefore,
representing the neutrinos with a small number ofN -body particles that simply track the bulk
velocities, which is essentially the method of choice for CDM or baryons, would completely
miss the fact that most neutrinos are unbound and easily free stream out of gravity wells.
Thus, the common practice is to sample the N -body particles from the true phase-space
distribution, effectively performing a Monte-Carlo integration of the evolution equations.
The main drawback of this method is that a poor sampling usually introduces significant
shot noise, while high sampling rates quickly become very expensive as both the memory
requirement and computations become completely dominated by the neutrino particle load.
This is undesirable since neutrinos are just a tiny fraction of the matter after all.

– 4 –



J
C
A
P
0
6
(
2
0
2
3
)
0
3
5

Code type neutrino method(s) reference(s)
GADGET-3 N -body (Tree-PM) particle [42, 43]
L-GADGET3 N -body (Tree-PM) mesh [43–45]
openGADGET3 N -body (Tree-PM) particle [46, 47]
GADGET-4 N -body (Tree-PM) particle [48]
NM-GADGET4 N -body (Tree-PM) Newtonian motion gauge [32, 49]
AREPO N -body (Tree-PM) particle [50, 51]
CONCEPT N -body (P3M) mesh [27, 52]
PKDGRAV3 N -body (Tree + FMM) mesh [53]
SWIFT N -body (PM + FMM) particle / δf [31, 54, 55]
ANUBIS N -body (PM + AMR) particle [56, 57]
gevolution N -body (uniform PM) particle / mesh [20, 58, 59]
COLA N -body surrogate mesh [60, 61]
PINOCCHIO N -body surrogate linear growth factor [62, 63]
ReACT P (k) prediction halo-model reaction [64, 65]
BACCOemulator P (k) prediction emulation [45]
EuclidEmulator2 P (k) prediction emulation [8]
Cosmic Emu P (k) prediction emulation [66, 67]

Table 1. Overview of the numerical codes employed in this code comparison. N -body codes typically
use a particle-mesh (PM) method coupled to some scheme to increase the force resolution in high-
density regions. Methods featured here include Tree-PM, adaptive mesh refinement (AMR), fast
multipole method (FMM), particle-particle/particle-mesh (P3M), and moving mesh. No adaptive
force computation is used in gevolution, COLA, and PINOCCHIO, which all work with a uniform mesh.

Shot noise affects all moments of the distribution function, and in particular the density.
This means that shot noise will also propagate into the gravitational field computed from
the neutrino perturbations. While this could in principle severely degrade the accuracy of
the gravitational evolution as a whole, the impact is actually mitigated by the fact that
neutrinos only account for a very small fraction of the total matter, and the gravitational
fields are therefore dominated by cold species. Nevertheless, some shot noise does propagate
into the other matter species, particularly on large scales where the contribution of neutrino
perturbations is largest. Various strategies have been developed to reduce the impact of
shot noise, e.g. by filtering small-scale fluctuations. One effective strategy is to implement a
statistical weighting of the neutrino particles, as is done in the δf method [31]. This method
works by decomposing the distribution function f into an analytical background component
f̄ and a perturbation δf computed from the particle ensemble. The weights are given at
each time step by requiring phase-space density conservation. These weights are typically
negligible, except for particles that are significantly perturbed, such as those captured by
halos. Shot noise is thereby minimised as particles only contribute to the gravitational
potential when needed. The δf method has been implemented in a number of codes, but
is only used by SWIFT in this comparison (see table 1). Other strategies aimed at reducing
shot noise while still using particles include alternate sampling of neutrino momenta [21] and
various hybrid methods [29, 30, 68].
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The second challenge pertains to the kinematics of neutrino N -body particles. If one
were to apply a similar time-stepping criterion as for cold matter species, the high velocities
would typically result in extremely small integration time steps, making the simulations
considerably more expensive. This is often solved by relaxing the time-stepping criterion
and allowing the neutrino particles to travel a larger distance in each integration step than
what would be considered “safe” for cold species. High-velocity neutrino particles then
respond poorly to small-scale fluctuations in the gravitational forces. Given that the neutrino
distribution at small scales is plagued by the shot-noise problem anyway, this additional
problem is often considered to be of little concern.

Still regarding kinematics, further issues arise due to the relativistic nature of neutrinos.
In the weak-field limit, the propagation of a collisionless massive particle is governed by the
Hamiltonian equations of motion [69]

v = pc√
p2 +m2c2a2 , (3.1)

p′ = − 2p2 +m2c2a2

c
√

p2 +m2c2a2∇Ψ , (3.2)

where v is the peculiar velocity, p is the canonical momentum, m is the particle’s rest-mass,
a is the scale factor, and Ψ is the gravitational potential, assuming as usual that gravitational
slip can be neglected, i.e. that non-relativistic and ultra-relativistic particles essentially see
the same potential. Here, a prime denotes the derivative with respect to conformal time
and c denotes the speed of light. The canonical momentum is conserved in the absence of a
gravitational force. For non-relativistic particles one usually considers the limit p2 � m2c2a2

in which the equations simplify to

v = p

ma
, (3.3)

p′ = −ma∇Ψ . (3.4)

This simpler set of equations has the advantage that it is easy to find integration methods that
are symplectic, i.e. that preserve the phase-space volume exactly as demanded by Hamiltonian
time evolution. Note also that, in the absence of a gravitational force, the peculiar velocity
scales exactly as ∝ a−1 in this case.

Even though the evolution of high-momentum particles suffers from severe errors, in-
cluding the breakdown of causality for p2 > m2c2a2, some implementations might still use
the simplified equations. The propagation of these errors into the clustering amplitude of
matter is limited by the fact that high-momentum particles barely contribute to clustering
in the first place. However, using the more accurate eqs. (3.1) and (3.2) is a more common
choice. The issue of symplectic time integration in this case is discussed e.g. in appendix A
of Adamek et al. [20] and appendix D of Elbers et al. [31].

3.2 Mesh-based methods
The main alternative to particle-based methods is to represent the distribution function on a
spatial mesh. Yoshikawa et al. [28] discretise the distribution function on a six-dimensional
mesh in phase-space, however, a brute-force approach like this is rather expensive and can-
not easily be applied to very large simulations where memory requirements are a particular
concern. A possible way out is to take moments of the distribution function (density, bulk ve-
locity, and so on) where the momentum coordinates are integrated out so that a discretisation
in the three spatial dimensions is sufficient.
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Experience from solving the hierarchy of moments (the so-called Boltzmann hierarchy)
in linear perturbation theory shows that a considerable number of moments must be taken
into account in order to reach good accuracy for the evolution of the lowest moments. This
concerns in particular the density that also affects the clustering of other matter components
through gravitational coupling. On the other hand, the numerical solutions are readily avail-
able in the linear regime where they can be expressed in terms of linear transfer functions.
Throughout this paper, we follow the convention from standard linear cosmological pertur-
bation theory where the transfer function TX of any perturbation variable X in Fourier space
is defined through the relation

X(k, z) = TX(k, z)ζ(k) , (3.5)

where ζ(k) is the comoving curvature perturbation of the mode k before it enters the horizon.
Those transfer functions provide a deterministic factor by which any given initial random
perturbation mode needs to be multiplied in order to obtain, for instance, the density per-
turbation at any given time. Using these transfer functions that can be calculated at the
outset, a simulation code can therefore construct the linear density field of neutrinos at any
point in time for any given realisation of the random initial conditions. This is precisely what
basic mesh-based methods do: they use the density field of neutrinos extrapolated from lin-
ear perturbation theory, which is often a reasonable approximation because neutrinos do not
cluster strongly. The method is free of shot noise and is by construction exact in the limit
of linear perturbations. However, it obviously lacks any response to nonlinear gravitational
potentials that develop in a simulation.

While the linear method produces results that are sufficiently accurate for many pur-
poses, some more advanced approaches have been developed in attempts to address the
shortcomings. Ali-Haïmoud & Bird [24] solve for the transfer function of the neutrino per-
turbations using the nonlinear matter power spectrum of the simulation to construct an
effective source term, assuming that the phase correlation between neutrino and matter per-
turbations remain largely intact even at nonlinear scales. Dakin et al. [27] employ the coupled
evolution equations for the lowest moments in their nonlinear form. Then, to avoid having
to calculate a large Boltzmann hierarchy for every wavevector represented in the simulation,
the hierarchy is truncated by assuming that a “scaling” holds approximately for ratios of
higher moments, where the scaling coefficients are taken from linear theory. This approxi-
mation is then used to close the system of equations using only a small number of nonlinear
moments. By construction this method agrees with the simpler method in the limit of linear
perturbations. While the resulting nonlinear neutrino density is somewhat more realistic,
the distribution function still has some residual errors that cannot easily be reduced without
including further moments in the nonlinear computation.

3.3 Approximations and other methods

For some purposes, such as the computation of covariance matrices for different cosmological
probes, it is useful to have methods for making cosmological predictions that are faster, al-
though less accurate, than the traditional N -body methods discussed so far. Here we present
two such methods that can be used as surrogates for N -body simulations: the COmoving
Lagrangian Acceleration (COLA) approach and the PINpointing Orbit-Crossing Collapsed HI-
erarchical Objects (PINOCCHIO) approach. In both cases, a speed-up is achieved by drastically
simplifying the time integration in the particle evolution. Finally, we also present a method
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that avoids the need to include any neutrino physics in the actual N -body simulation alto-
gether, apart from in the background solution. This method employs the so-called Newtonian
motion gauge and can be used with virtually any numerical scheme that solves the Newtonian
gravity problem.

3.3.1 COLA
The COLA approach by Tassev et al. [70] produces fast, approximate simulations of cosmolog-
ical structure formation. Essentially, instead of solving for a full particle trajectory x(t), in
this approach we solve for the deviations of the full trajectory about the trajectory predicted
by second-order Lagrangian perturbation theory (2LPT) δx(t) = x(t)− x2LPT(t). Since the
evolution of the particles on large scales will be very close to that predicted by 2LPT, we
can decrease the number of time steps of the simulation to trade accuracy at small scales for
overall simulation speed while maintaining good accuracy at large scales. For a large number
of time steps, the method effectively converges to a standard PM N -body method.

Adding massive neutrinos to the COLA method was described by Wright et al. [61],
which also included an implementation in the MG-PICOLA simulation code1 by Winther et
al. [60]. This implementation was carried over to the COLA solver within FML2 which succeeded
MG-PICOLA. It is this implementation of the COLA solver within FML that we use in this paper.
These implementations rely on the linear mesh-based method described above, i.e. we use
the density field of neutrinos extrapolated from linear perturbation theory on a mesh for the
PM part. For the 2LPT part of the COLA code, we make a further approximation to the
2LPT equation and use the ΛCDM kernel to speed up the computation.

To demonstrate the key advantage of COLA over traditionalN -body codes, we use only 50
time steps linearly distributed in scale factor for the COLA simulations in this paper. However,
the COLA method does not work well for simulations starting from high initial redshifts when
using a relatively small number of time steps; for a discussion on how to optimise initial
redshift and number of time steps in COLA simulations see sections 4.1 and 4.3 of Izard et
al. [71]. Therefore, we use a slightly modified3 version of FML’s built-in generator of initial
conditions to generate initial particle data at z = 19 instead of z = 127 as is described
in section 4.1 and used for the other methods in this paper. In addition, we use the CAMB
Boltzmann solver by Lewis et al. [72, 73] to generate the density transfer function for massive
neutrinos. Finally, we note that for all COLA simulations in this paper we use a force grid that
is a factor of three finer than the mean inter-particle distance; for a thorough investigation
of the impact of varying this factor in COLA simulations see section 4.4 of Izard et al. [71].

3.3.2 PINOCCHIO
The PINOCCHIO code4 [62, 74, 75] is an approximate method to generate halo catalogues in a
very small fraction (of the order of 1/1000) of the time taken by an equivalent N -body simu-
lation. Starting from a linear density field generated in Lagrangian space over a regular grid,
its main goal is to construct halo catalogues by predicting which particles will end up in dark
matter halos. To achieve this goal the algorithm first smoothes the linear density on a grid of

1https://github.com/HAWinther/MG-PICOLA-PUBLIC.
2https://github.com/HAWinther/FML/tree/master/FML/COLASolver.
3The modifications are to the order in which (pseudo-)random numbers are drawn for the phases and

amplitudes, such that we now do the same as the version of N-GenIC used for the other methods in this paper,
see section 4.1.

4https://github.com/pigimonaco/Pinocchio.
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smoothing radii, then uses ellipsoidal collapse to compute the collapse time of each particle.
In the second step, it proceeds to group the collapsed particles into halos, using an algorithm
that mimics their hierarchical clustering and distinguishes between halos and filaments.

As opposed to the other N -body methods employed in this work, PINOCCHIO does not
integrate particle orbits but places halos at their final position using a single 2LPT or 3LPT
displacement. Indeed, once the displacement fields are averaged over the multi-stream region
that corresponds to a dark matter halo, LPT is very effective in predicting halo positions [76].
Another difference is that PINOCCHIO does not start from a set of displaced particles but
generates the linear density field internally. Having implemented the same sequence for
populating modes in k-space as the N-GenIC code that is used for the purpose of generating
initial data in this work (see section 4.1), it can reproduce the same large-scale structure if
the same seed for random numbers is provided.

The extension of PINOCCHIO to massive neutrinos is presented by Rizzo et al. [63] and
is based on the result of Castorina et al. [18, 77] that the nonlinear clustering of massive
neutrinos is negligible. We use CAMB to compute linear power spectra in massive neutrino
cosmologies, and compute the scale-dependent growth rate of matter by taking ratios of
power spectra of CDM and baryons (i.e. without neutrinos) at different times. We also adapt
the code to incorporate a scale-dependent growth rate. With respect to the original imple-
mentation of Rizzo et al. [63], which was limited to 2LPT, we extend here the computation
to third order: as shown by Munari et al. [75] this results in a significant improvement at
mildly nonlinear scales.

Although the code has been conceived to predict the properties of dark matter halos,
it can produce a full nonlinear density field as follows: particles that do not belong to halos
are moved to their final position using 3LPT, halo particles are distributed around their halo
center of mass following a Navarro-Frenk-White (NFW) profile [78] with Maxwellian velocity
distributions. This allows us to construct snapshots like an N -body simulation, representing
density fields that are far more accurate than a straight LPT implementation. Because we
have only one type of particle, to compute the power spectrum of CDM and baryons needed
below (section 5) we subtract the linear neutrino contribution from the total matter power
spectrum obtained from the snapshot. To this end we also assume that the neutrino-matter
cross-power spectrum, Pν,m(k), can be approximated by Pν,m(k) =

√
PL
ν (k)Pm(k), where the

superscript “L” denotes a power spectrum from linear theory. This approximation is strictly
only true in the linear regime but we apply it at all scales.

We do not expect PINOCCHIO to be competitive with N -body codes in predicting the
matter power spectrum: taking it as a sophisticated implementation of 3LPT, we expect
it to lose power on scales smaller than k = 0.3hMpc−1 for the halo power spectrum and
k = 0.2hMpc−1 for the matter power spectrum. It will not be competitive with COLA as
well which, being a PM code, can converge to the solution (on scales larger than the mesh)
if a sufficient number of time steps is used. This better accuracy comes at a higher cost in
computing time, by approximately a factor of eight in the configuration used in this paper
(see also Blot et al. [79] for a similar benchmark), as well as in memory since our COLA runs
use a grid three times finer than the mean particle separation. The PINOCCHIO code is widely
used especially to characterise the covariance of galaxy clustering measurements, thanks to
its low computational cost and its ability to generate halo catalogues.
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3.3.3 Newtonian motion gauge

The Newtonian motion gauge approach for massive neutrinos was developed by Partmann
et al. [32] and Heuschling et al. [49]. It allows for a simulation of nonlinear CDM in an
ordinary Newtonian N -body simulation while accounting for the impact of linear neutrinos
via a modification of the dark matter initial conditions and by employing a dynamically
evolving coordinate system. The method is agnostic towards the implementation of the
N -body simulation and for this paper we choose to employ GADGET-4 [48]. However, any
method solving Newtonian nonlinear gravity is compatible, even methods other than N -
body simulations. We would like to stress that our method is exact in the weak-field limit
of general relativity (see Fidler et al. [80]) and therefore captures the full effect of linear
neutrino perturbations on the nonlinear matter clustering.

The Newtonian motion approach allows for a very simple inclusion of massive neutrinos,
requiring only three additional steps applied to a simulation without any neutrinos. First, we
start from a set of “back-scaled” initial conditions based on the present-day power spectrum
of CDM and baryons in the Newtonian motion coordinates, excluding neutrino perturbations.
In contrast to other neutrino methods presented in this paper, these initial conditions do not
assume a scale-dependent growth, i.e. the rescaling of the power spectrum is done using the
scale-independent growth factor D+. The residual effect of decaying modes due to neutrinos
is included in the construction of the present-day matter power spectrum in the Newtonian
motion coordinate system. This also has the added benefit that ordinary generators of
initial conditions can be used without modifications, provided that the correctly back-scaled
Newtonian motion gauge power spectrum is used. We then evolve the initial data with the
Newtonian solver, taking into account the impact of the massive neutrinos on the background
evolution via the Hubble rate. Finally, we obtain the output in the Newtonian motion gauge.
To make it comparable to the output of other methods, we need to transform the result to
the gauge employed therein (usually the “N -boisson” gauge [80]). This step is realised by a
displacement field acting on the particle positions that is implemented in a similar way to
how the initial conditions are set. The transformation accounts for the residual impact of
neutrinos and other relativistic effects on the evolution of the CDM and baryon particles.
However, by construction, the transformation vanishes exactly at z = 0 (or another chosen
target redshift) while it is in general very small at late times, for small neutrino masses and
on small scales. Therefore, it can often be neglected as it will only lead to small corrections
in which case the output of the simulation can be used as-is.

For this work, we include only the first two steps, while omitting the final particle
displacement. This leads to a small mismatch in the results shown for z = 1 at large scales
for the cases of the highest neutrino masses. By leaving this correction out, we demonstrate
that for most neutrino masses, box sizes, and redshifts the method is already sufficiently
accurate in its simplest form. For more details on the transformation we refer the reader to
the original work by Partmann et al. [32].

3.4 Halo-model reaction

The halo-model reaction approach provides the nonlinear corrections caused by massive neu-
trinos to a ΛCDM power spectrum through a ratio of halo-model predictions. Following
Cataneo et al. [81], the nonlinear power spectrum is then given by

PNL(k, z) = R(k, z)PNL
pseudo(k, z) , (3.6)
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where R(k, z) is the halo-model reaction and PNL
pseudo(k, z) is the nonlinear pseudo power

spectrum.
The pseudo spectrum is a nonlinear ΛCDM power spectrum but with the initial con-

ditions tuned such that its linear clustering exactly matches the linear clustering in the
non-standard cosmology at the target redshift. For example, if the non-standard physics
introduces a simple rescaling of the linear clustering amplitude, one could just rescale the
amplitude of any ΛCDM power spectrum to produce the pseudo spectrum. In the case of
scale-dependent modifications, this becomes a bit trickier in practice. We approximate this
quantity as in previous works by Cataneo et al. [64, 81] and pass the modified linear spec-
trum as produced by CAMB to HMcode developed by Mead et al. [82], with ΛCDM presets,
i.e. no baryonic feedback nor massive neutrinos. The benefit of using the pseudo rather than
ΛCDM cosmology is that it guarantees the mass functions in target and pseudo cosmologies
are similar as they have the same linear clustering. This produces a smoother transition
between the two-halo and one-halo terms. This transition was one of the previous issues in
calculating this nonlinear response using the halo model [83–85].

Following Cataneo et al. [64], the halo-model reaction for massive neutrinos is given by

R(k) =
(1− fν)2 PHM

cb (k) + 2fν (1− fν)PHM
ν,cb(k) + f2

νP
L
ν (k)

PL
m(k) + P 1h

pseudo(k)
, (3.7)

with “cb” denoting the CDM and baryon component and “ν” denoting massive neutrinos. We
include the effects of massive neutrinos at the linear level in the numerator via the weighted
sum of the nonlinear halo-model (cb) spectrum and the massive neutrino linear spectrum [15].
The components of the reaction are

PHM
ν,cb(k) ≈

√
PHM

cb (k)PL
ν (k) , (3.8)

PHM
cb (k) = PL

cb(k) + P 1h
cb (k) . (3.9)

Explicitly, the one-halo terms are given as integrals over the Fourier space halo density profile
u(k,M) and the halo mass function n(M),

P 1h
cb (k) =

∫
d lnM ncb(M)

(
M

ρ̄cb

)2
|ucb(k,M)|2 , (3.10)

P 1h
pseudo(k) =

∫
d lnM npseudo(M)

(
M

ρ̄m

)2
|upseudo(k,M)|2 , (3.11)

where ρ̄ is the background density for the specified matter species. The halo mass functions
are given as

ncb(M) = ρ̄cb
M

[ν ′f(ν ′)] d ln ν ′
d lnM , (3.12)

npseudo(M) = ρ̄m
M

[ν ′′f(ν ′′)] d ln ν ′′
d lnM . (3.13)

The peak heights are defined as ν ′ = δsc,cb(M)/σcb[Rcb(M)] and ν ′′ = δsc,m/σm[Rm(M)],
where the subscript “sc” indicates this quantity is calculated by solving the standard ΛCDM
spherical-collapse equations but with the indicated matter density. The mass fluctuation
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variances are given by

[σcb(R)]2 =
∫ d3k

(2π)3 |W̃ (kR)|2PL
cb(k), (3.14)

[σm(R)]2 =
∫ d3k

(2π)3 |W̃ (kR)|2PL
m(k). (3.15)

In all predictions from halo-model reaction, we employ a Sheth-Tormen halo mass func-
tion [86, 87], a power-law concentration-mass relation (see for example the work by Bullock
et al. [88]), and an NFW halo density profile [78]. The predictions are computed numerically
using the public code ReACT5 by Bose et al. [65, 89].

3.5 Power-spectrum emulation
Fast predictors of the matter power spectrum are an essential ingredient for many inference
pipelines in cosmology. Since numerical simulations are too costly to be directly applied in
this context, different approaches based on approximate methods or elaborate fitting tech-
niques have been used in the past. Apart from the halo-model reaction discussed in the
previous section, well-known examples are the halofit predictor developed by Smith et al. [90]
and later improved by Takahashi et al. [91], and the HMcode predictor by Mead et al. [82], the
latter being based on the halo model. In terms of the power-suppression signal of neutrinos,
fitting routines by Bird et al. [16] have been used in the past.

More recently, the emulation technique has become a popular alternative to obtain fast
predictions of the matter power spectrum within the cosmological parameter space. Broadly
speaking, emulators are interpolation routines based on a suite of numerical simulations
that sample the cosmological parameter space and act as a training set. There are different
surrogate techniques currently used for cosmological emulators, such as Gaussian process
regression [66, 92–94], polynomial chaos expansion [7, 8], or neural network approaches [95].

In addition to the predictions from halofit and HMcode mentioned above, we focus in this
paper on the Cosmic Emu [66], the EuclidEmulator2 [8], and the BACCOemulator [45]. These
emulators provide predictions of the matter power spectrum and include a free parameter
for the sum of the neutrino masses. We will now summarise the particularities of these three
emulators, specifically focusing on the neutrino implementation.

• The Cosmic Emu-2022 is built upon the Mira-Titan simulations [67, 96], a suite of 111
simulations run with the HACC code [97]. The simulations are distributed over an eight-
dimensional cosmological parameter space comprising (ωm, ωb, ων , σ8, h, ns, w0, wa),
where σ8 is the present-day amplitude of linear matter density fluctuations at the scale
of 8h−1 Mpc, ns is the scalar spectral index, and w0, wa parameterise the effective
equation of state of dark energy in terms of the first two coefficients of the Taylor series
expansion around a = 1. The emulator achieves an absolute precision of about four
percent for modes of k < 5hMpc−1 within the redshift range z ∈ [0, 2]. Neutrinos are
not incorporated in the simulations and are effectively treated as a smooth background
component. The power spectra are then corrected on large scales for enhanced growth
beyond the neutrino free-streaming scale using the scale-dependent linear growth factor.

• The EuclidEmulator2 is trained on 200 paired and fixed simulations that were run with
PKDGRAV3. It emulates the nonlinear boost factor that is then multiplied by the results

5https://github.com/nebblu/ReACT.

– 12 –

https://github.com/nebblu/ReACT


J
C
A
P
0
6
(
2
0
2
3
)
0
3
5

of a linear Boltzmann solver. The emulator covers eight cosmological parameters (Ωm,
Ωb,

∑
mν , As, h, ns, w0, wa), where As is the amplitude of primordial perturbations

at the scale kp = 0.05 Mpc−1, and includes redshifts of z ∈ [0, 3] and modes up to
k = 10hMpc−1. It claims an error of below one percent which is better than the other
emulators discussed here. Note, however, that the EuclidEmulator2 covers a somewhat
narrower parameter space motivated by the results of the Planck mission [98]. Within
the training set the neutrinos are modelled using the mesh-based method implemented
in PKDGRAV3.

• The BACCOemulator is trained on a very large suite of simulations based on the cos-
mology-rescaling technique [99]. More specifically, four high-resolution simulations with
judiciously chosen cosmologies are rescaled to more than 800 cosmologies at different
redshifts. Whenever the target cosmologies included massive neutrinos, their effect
is added following the extension of the cosmology-rescaling technique presented by
Zennaro et al. [33]. This emulator varies eight cosmological parameters (Ωcb, Ωb,∑
mν , σ8, h, ns, w0, wa) and covers a redshift range of z ∈ [0, 1.5] for modes up

to k = 5hMpc−1. The claimed precision is better than three percent.

We refer to the original references for more information about the emulators.

4 Simulations

To compare different numerical methods, we carry out a large suite of N -body simulations
where we employ different codes to run the same set of ten simulations summarised in table 2.
These ten simulations cover different choices of total neutrino mass ∑mν (including the
massless case), different box sizes Lbox, and different mass resolutions to check for numerical
convergence with respect to finite-volume and discretisation effects. Npart denotes the number
of particles used for CDM and baryons, as well as the number of particles for neutrinos if
a particle-based method is employed. For simplicity, we assume degenerate neutrino mass
eigenstates because cosmology is mainly sensitive to the total neutrino mass scale [100].
We keep the total matter density (at redshift zero) fixed at Ωm = 0.319 by adjusting the
CDM density parameter together with the neutrino mass. The baryon density is fixed at
Ωb = 0.049, and the remaining cosmological parameters are As = 2.215 × 10−9 at the pivot
scale kp = 0.05 Mpc−1, ns = 0.9619, and h = 0.67, which are based on the Euclid Flagship 2
simulation. Dark energy is modelled as a cosmological constant that provides a spatially flat
background solution, and the CMB temperature is set to 2.7255 K and the effect of radiation
is taken into account in the simulations at the linear level, either by using carefully tailored
initial conditions as detailed below or by including the radiation component on the mesh if
a mesh-based method is used.

Using identical initial data (see section 4.1 below for details) in each case, the ten
simulations are run with each of the thirteen N -body methods listed in table 1 to produce
particle snapshots at redshifts z = 1 and z = 0. For AREPO, due to resource constraints,
only the four simulations with Npart = 5123 are run, precluding the possibility of conducting
numerical convergence tests in this case. Therefore, a total of 248 individual snapshots are
analysed in this code comparison. In addition, nonlinear power spectra are predicted for each
distinct choice of neutrino masses using the remaining methods in table 1, as well as using
the HMcode and halofit fitting methods.
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Simulation Lbox Npart mass resolution ∑
mν

0.0eV 512 h−1 Mpc 5123 8.85×1010 h−1M� 0.0 eV
0.15eV 512 h−1 Mpc 5123 8.75×1010 h−1M� 0.15 eV
0.3eV 512 h−1 Mpc 5123 8.65×1010 h−1M� 0.3 eV
0.6eV 512 h−1 Mpc 5123 8.45×1010 h−1M� 0.6 eV
0.0eV_HR 512 h−1 Mpc 10243 1.11×1010 h−1M� 0.0 eV
0.15eV_HR 512 h−1 Mpc 10243 1.09×1010 h−1M� 0.15 eV
0.0eV_1024Mpc 1024 h−1 Mpc 10243 8.85×1010 h−1M� 0.0 eV
0.15eV_1024Mpc 1024 h−1 Mpc 10243 8.75×1010 h−1M� 0.15 eV
0.3eV_1024Mpc 1024 h−1 Mpc 10243 8.65×1010 h−1M� 0.3 eV
0.6eV_1024Mpc 1024 h−1 Mpc 10243 8.45×1010 h−1M� 0.6 eV

Table 2. Overview of the basic parameters used in our simulation suite. The cases with
∑
mν = 0 eV

and
∑
mν = 0.15 eV are the two main baselines for our comparison, but we include some cases with

larger masses, up to
∑
mν = 0.6 eV, to probe more “extreme” regions of parameter space.

4.1 Initial conditions
The initial conditions of all simulations are generated at redshift z = 127.6 The linear
matter power spectra and transfer functions are obtained by running either CAMB or the CLASS
Boltzmann code by Blas et al. [101]. These files are then used by the REPS7 code to compute
the rescaled power spectra and transfer functions at z = 127 by solving the multi-fluid linear
equations as outlined by Zennaro et al. [102]. This procedure, known as rescaling, guarantees
that the power spectrum of the output of the simulation on linear scales at low redshift will
match the correct linear power spectra. A realisation of initial data is then generated by
drawing random phases for all perturbation modes and fixing their amplitudes according to
the initial transfer functions. This approach of “fixing” the amplitudes effectively removes
cosmic variance at linear scales and has been shown to generally produce less noisy summary
statistics [103]. It introduces a specific type of non-Gaussianity that is not expected to affect
any of our results. Given the density field of CDM and baryons, the initial positions and
velocities of the N -body particles are computed from the Zeldovich approximation [104].
We employ a modified version of the N-GenIC code8 that accounts for the scale-dependence
present in both the growth rate and growth factor in cosmologies with massive neutrinos.

For neutrinos, the different implementations make use of distinct methods. For particle-
based implementations, the positions and velocities of the massive neutrino particles are gen-
erated in a similar fashion as CDM. This means we effectively make use of the Zeldovich
approximation to set the first two moments of the phase-space distribution function which
correspond to the density perturbation and bulk velocity, respectively. The initial veloci-
ties of neutrino particles are then offset by a random thermal component drawn from their
Fermi-Dirac distribution [105, 106]. We assume the standard Big Bang scenario where this
distribution is set in equilibrium before the weak interaction freezes out — when the Uni-
verse was about 1 second old — and after freeze-out simply redshifts as the Universe expands.
Note that this means that the typical thermal velocities are much larger than those of a dis-

6COLA exceptionally uses z = 19 as initial redshift (see section 3.3.1).
7https://github.com/matteozennaro/reps.
8https://github.com/franciscovillaescusa/N-GenIC_growth.
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tribution that is in thermal equilibrium at low redshift. For SWIFT, neutrino particles are
instead set up with the FastDF code,9 using geodesic integration from high redshift [20, 69],
to reproduce the full distribution function and to prevent the initial perturbations from being
erased by thermal motions [55]. For mesh-based implementations, on the other hand, the
density field of each neutrino species is directly computed using the phases from the random
field realisation of the linear initial conditions.

4.2 Post-processing pipeline

In order to quantify differences in our numerical schemes as precisely as possible, we analyse
the snapshots of all our N -body simulations in a common pipeline. We compute the power
spectra and bispectra of the CDM and baryon component, and produce halo catalogues from
which we measure the halo mass functions and halo bias. In cases where the simulations
provide a neutrino distribution, we also compute the cross-power spectra of neutrinos with
the CDM and baryon component, as well as the neutrino auto-power spectra.

4.2.1 Power spectra
The power spectra of the different snapshots have been estimated using Pylians3.10 The
routine first deposits particle masses into a regular 3D grid with N3 voxels using the cloud-
in-cell mass-assignment scheme. In this work, we always use a mesh with N3 = Npart such
that the Nyquist scales match between particles and mesh. Although using larger grids may
improve measurements on smaller scales, we recommend caution due to potential systematics
and advise against relying on results near or beyond the Nyquist scale set by the mean
particle separation. The constructed field is then Fourier transformed and the effects of the
mass-assignment scheme are corrected. Next, for each mode the square of its amplitude is
computed, |δ(k)|2. The modes are then binned in intervals of width equal to the fundamental
frequency kF = 2πL−1

box and the power spectrum is finally estimated as

P (ki) = 1
Ni

∑
k∈Bi

|δ(k)|2 , (4.1)

where Ni is the number of independent modes in the considered bin Bi = {k | i kF ≤ |k| <
(i+ 1)kF} and ki is computed as

ki = 1
Ni

∑
k∈Bi

|k| . (4.2)

To compute the cross-power spectrum of two fields instead, the estimator is generalised in
the most straightforward way,

PX,Y(ki) = 1
2Ni

∑
k∈Bi

[
δX(k)δ∗Y(k) + δ∗X(k)δY(k)

]
, (4.3)

where the subscripts “X” and “Y” denote the two different fields. When presenting the
results, we combine the measurements into larger bins logarithmically spaced in k. This
reduces the noise at large k and makes our plots more readable.

Some codes do not produce snapshots at exactly the desired redshift, but at redshifts
that deviate by less than± 0.01 from the target redshift. These differences can be visible when

9https://github.com/wullm/fastdf.
10https://pylians3.readthedocs.io.
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comparing power spectra on a sub-percent level. For those cases, we rescale the power spectra
by the square of the ratio of the linear growth factors at the respective redshift values. Such
a rescaling is applied to ANUBIS for all snapshots and to L-GADGET3 and PKDGRAV3 at z = 1.

4.2.2 Bispectra
We measure the bispectrum of CDM and baryons (ccc) using the estimator

B̂ccc(kl, km, kn) ≡ k3
F

Ntr(kl, km, kn)
∑

q1∈Bl

∑
q2∈Bm

∑
q3∈Bn

δK(q1 + q2 + q3) δ(q1) δ(q2) δ(q3), (4.4)

where Ntr is the number of “fundamental triangles”,

Ntr(kl, km, kn) ≡
∑

q1∈Bl

∑
q2∈Bm

∑
q3∈Bn

δK(q1 + q2 + q3) , (4.5)

formed by the vectors qi satisfying the triangle condition q1 + q2 + q3 = 0 that are included
within the “triangle bin” defined by the triplet of centers (kl, km, kn) and corresponding bins
Bl, Bm, Bn.

We use a Python code implementing the fourth-order density interpolation and the
interlacing scheme described by Sefusatti et al. [107]. In order to compare the large-volume
simulations (Lbox = 1024h−1 Mpc) more easily with the small-volume ones, we use the same
k-space binning in both cases, fixing the bin width to kF of the small box. Just like for
the power spectra, to account for inaccuracies in the redshift of some snapshots, we rescale
some of the resulting bispectra by the cube of the ratio of the linear growth factors at the
respective redshift values. Such a rescaling is applied to ANUBIS for all snapshots and to
L-GADGET3 and PKDGRAV3 at z = 1.

4.2.3 Halo catalogues
For the considered snapshots of the various simulations, we identify halos with the code
Denhf [108–111] which uses a “spherical overdensity” criterion. The algorithm does not
rely on any pre-identification method. Only CDM and baryon particles are considered in the
characterisation of halos; neutrino particles (if present at all in the simulation) are considered
as a background component [17, 77].

Denhf estimates the local density at the position of each N -body particle by calculating
the distance to its 10th-nearest neighbour d10, and assigning to each particle a density that is
proportional to d−3

10 . Centered on the particle with the highest density value, the algorithm
grows a sphere and stops when the mean density within the sphere falls below a desired
overdensity threshold, set to 200 times the background density of CDM and baryons for
the purpose of this work. All particles assigned to this spherical overdensity halo are then
removed from the global list of particles, and the algorithm proceeds recursively until none
of the remaining particles has a local density large enough to be the center of a 10-particle
halo. Particles not assigned to halos will be part of the field.

Only in the case of PINOCCHIO we use the halo catalogues as produced by the code
itself instead of Denhf. Because PINOCCHIO is calibrated on the friends-of-friends halo mass
function, we translate its masses to spherical overdensity ones by applying the rescaling of
halo masses that translates the halo mass function of Watson et al. [112], that has been used
to calibrate the code, to the one of Tinker et al. [113]. Such a rescaling has been used, e.g.,
by Fumagalli et al. [10] to force the halo mass function averaged over 1000 realisations to
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Figure 1. Power spectrum of CDM and baryons as measured from different codes, relative to
GADGET-3 at z = 0 and z = 1 for a neutrino mass of

∑
mν = 0.15eV in the simulation with Lbox =

512h−1 Mpc and Npart = 5123 CDM and baryon particles. The corresponding particle Nyquist
wavenumber is indicated by the grey dash-dotted line. The grey bands highlight the interval of ± 0.01.

follow a target one. We compute the rescaling only once, in the case of massless neutrinos,
and use it for all neutrino masses.

For the codes that do not produce snapshots at the exact values of the desired redshifts,
we apply no further corrections here. The error in the redshift is less than ± 0.01 while our
halo properties typically display disagreements larger than 1% between different codes. We
therefore assume that the error due to mismatching redshift values is subdominant.

5 Results

5.1 Power spectra

A key prediction from neutrino simulations is a suppression of the matter power spectrum
that exceeds the maximum linear theory prediction of ∆Pm/Pm ≈ 8fν . The matter power
spectrum can be decomposed as follows

Pm(k) = (1− fν)2Pcb(k) + 2fν(1− fν)Pν,cb(k) + f2
νPν(k) , (5.1)

where Pcb is the power spectrum of CDM and baryons, Pν,cb the cross-power spectrum of
neutrinos with CDM and baryons, and Pν the neutrino power spectrum. Various methods
treat these components differently or make predictions for only some of them, so we discuss
each component in turn. Finally, we will also compare the total Pm(k) with various power
spectrum emulators, including EuclidEmulator2 which only predicts this quantity.

5.1.1 CDM and baryons
The leading contribution to Pm(k) is Pcb(k), which is suppressed in massive neutrino models.
Figure 1 shows the ratio of Pcb(k) for models with a neutrino mass of∑mν = 0.15 eV relative
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Figure 2. Suppression of the power spectrum of CDM and baryons at z = 0 and z = 1 for three
different neutrino masses,

∑
mν ∈ {0.15, 0.3, 0.6} eV, when compared to the massless case. Results

are from the simulations with Lbox = 512h−1 Mpc and Npart = 5123. The corresponding particle
Nyquist wavenumber is indicated by the grey dash-dotted line.

to the GADGET-3 simulation which we arbitrarily pick as the reference. In all our figures,
results from codes where massive neutrinos are represented through an N -body ensemble are
plotted using solid lines, while other N -body methods, including surrogates, use dashed lines.
Any additional predictions use dotted lines. In figure 1, the linear prediction, computed with
CLASS, is shown by the rose dotted line that drops off sharply at k ≈ 0.1hMpc−1 beyond
which the error quickly exceeds 10%. At z = 0, on the largest scales, all codes deviate less
than 1% — the fluctuations seen in the dotted lines are largely due to the lack of cosmic
variance in the codes that predict Pcb(k) directly. On smaller scales, some of the codes
start to deviate from the GADGET-3 reference. PINOCCHIO is in agreement within 1% up to
k ≈ 0.1hMpc−1, ANUBIS up to k ≈ 0.3hMpc−1, gevolution up to k ≈ 0.5hMpc−1, and
COLA up to k ≈ 0.7hMpc−1. The other codes stay within a 1% deviation from GADGET-3 for
all scales down to the particle Nyquist scale of kNyq = πN

1/3
part L

−1
box ≈ 3hMpc−1. This scale is

indicated by a vertical dash-dotted line. The ReACT and BACCOemulator codes stay accurate
within 1% to 5% on all scales down to the Nyquist scale. At z = 1 the qualitative behaviour
is similar, but most notably the codes disagree more on large scales while still staying within
a 1% agreement. Here, PINOCCHIO is accurate up to k ≈ 0.2hMpc−1.

Figure 2 shows the ratio of Pcb(k) for models with massive neutrinos relative to the
massless case for ∑mν ∈ {0.15, 0.3, 0.6} eV. For later convenience, we denote this suppres-
sion ratio by Scb(k), or in general

SX(k) = P
(massive)
X (k)

P
(massless)
X (k)

, (5.2)

where the subscript “X” denotes any component in question, here X → cb. Linear calcula-
tions (taken from CLASS) predict that, on the largest scales, the growth of structure is mostly
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Figure 3. The suppression of the power spectrum of CDM and baryons relative to the one measured
in the GADGET-3 reference runs at z = 0 and z = 1 for

∑
mν = 0.15 eV for the simulations with

Lbox = 512h−1 Mpc and Npart = 5123. The corresponding particle Nyquist wavenumber is indicated
by the grey dash-dotted line. The grey bands highlight the interval of ± 0.01.

unaffected so that Scb(k) approaches unity, while on small scales Scb(k) reaches a plateau.
Compared to this linear expectation, all codes in the comparison predict slightly less suppres-
sion around k = 0.1hMpc−1 and a much greater suppression for k > 0.3hMpc−1, followed
by an upturn on nonlinear scales. This upturn has been repeatedly demonstrated and results
from the reduced sensitivity of the one-halo contribution [41, 114]. At z = 0, we obtain
excellent agreement between all simulations and most approximate methods up to the scale
of maximum suppression at kmax ≈ 1hMpc−1, where the suppression is 20% greater than
the linear prediction. At z = 1, the scale of maximum suppression shifts to kmax ≈ 2hMpc−1

and the differences are greater, both with the linear prediction and between the codes, with
the exception of PINOCCHIO11 which fares significantly better compared to z = 0.

To study these relative differences in greater detail, we show Scb(k) for the smallest
neutrino mass, ∑mν = 0.15 eV, relative to the GADGET-3 prediction for this quantity in fig-
ure 3. With the exception of PINOCCHIO and CLASS, all codes agree to better than 1% at
z = 0 up to the particle Nyquist scale. Near kNyq, the approximate COLA method and the
BACCOemulator differ by more than 1% from the bulk of the simulations, while gevolution
differs by slightly less than 1%. Beyond this scale, the predictions diverge and should be com-
pared to higher-resolution runs since our estimator of the power spectrum is computed on a
mesh with a matching Nyquist scale. The measured power spectra therefore cannot be used
beyond kNyq where they become strongly biased. This particularly affects the comparison
between simulations — where the power spectrum estimator is employed — and other meth-
ods to predict Pcb(k). At z = 1, nonlinearities are smaller and the agreement between the
simulations is better. Here the snapshot produced by PINOCCHIO achieves percent accuracy
to k ≈ 0.3hMpc−1. Some of the approximate methods fare slightly worse at this earlier time

11The reason for this disagreement is due to the fact that the accuracy of LPT-based PINOCCHIO depends
on the level of nonlinearity that varies with neutrino mass.
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Figure 4. The suppression of the power spectrum of CDM and baryons relative to the one measured
in the GADGET-3 reference runs at z = 0 for

∑
mν ∈ {0.3, 0.6} eV for the simulations with Lbox =

512h−1 Mpc and Npart = 5123. The corresponding particle Nyquist wavenumber is indicated by the
grey dash-dotted line. The grey bands highlight the interval of ± 0.01.

compared to z = 0, with the difference between CLASS and the simulations increasing by 50%
and COLA diverging beyond k = 2hMpc−1. The NM-GADGET4 method requires an additional
post-processing coordinate transformation at any redshift except z = 0. Because this addi-
tional step is omitted in this work for simplicity, a small error at low wavenumbers remains in
the z = 1 data. This explains why the error is larger at that redshift than at the final time.

ANUBIS notably drops off for k > 1hMpc−1 at z = 1 and also shows a small excess on
linear scales both at z = 0 and z = 1. This excess originates from the massless case and
is a result of ANUBIS being run with a coarser base grid than the other codes (5123 for all
simulations) due to limited resources. A finer base grid requires more memory but the lack
of it can be somewhat compensated by using a smaller time step. For the ANUBIS massive
neutrino runs, this is done automatically but for the massless case the time step has been
set to half of that originally calculated by the code. Tests indicate that further reducing the
time step or ideally using a finer base grid should lessen the excess at large scales, but finding
the optimal choice of code settings is not the aim of this work. The drop-off observed for
ANUBIS at z = 1 for k > 1hMpc−1 is due to differences in resolution between the various
simulations. As ANUBIS is an AMR-code, a modified version of the RAMSES code originally
written by Teyssier [56], the inclusion of massive neutrinos, which suppresses clustering on
small scales, also reduces the number of refinements reached in the simulation compared to
the massless case. This effect increases with the neutrino mass and is more noticeable for
higher redshifts where there is also less refinement due to less clustering. This can be solved
by a higher particle density which automatically leads to more refinement. Generally this is
also necessary to find a better agreement between ANUBIS and GADGET-3 for smaller scales, as
can be observed from the high-resolution runs and also in a previous comparison conducted
by Schneider et al. [115] between RAMSES, GADGET-3, and PKDGRAV3.

The observed differences are greater when the neutrino mass is increased, especially for
the approximate methods. Figure 4 shows Scb(k) relative to the GADGET-3 prediction for
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models with ∑mν = 0.3 eV (left panel) and ∑mν = 0.6 eV (right panel) at z = 0. While the
BACCOemulator agrees to better than 1% with GADGET-3 up to kNyq for 0.3 eV, it makes no
prediction for 0.6 eV because that value lies far outside the range covered by the training set
of the emulator. We deliberately include a case of such a large neutrino mass to exacerbate
the differences between the various numerical implementations. The reaction method differs
by slightly more than 1% and 2% at k = 0.7hMpc−1 for total neutrino masses of 0.3 eV and
0.6 eV, respectively. The differences with the linear prediction (CLASS) and with PINOCCHIO
are large, as noted above for 0.15 eV.

The agreement is excellent for the other codes, but some subtle differences can be dis-
cerned. On large scales, we observe that SWIFT, CONCEPT, COLA, gevolution, PKDGRAV3,
NM-GADGET4, and L-GADGET3 show the same coherent scatter relative to GADGET-3, especially
for a neutrino mass of 0.6 eV. This is due to the contamination from shot noise in the neu-
trino particle implementation used by the GADGET-3 run. The other mentioned codes have
implementations that do not suffer from shot noise or take measures to limit the contami-
nation. For instance, in gevolution the neutrino N -body ensemble is evolved throughout
the simulation, but it is only used as source of gravitational fields from redshift z = 7 and
below. At higher redshifts, the code uses the linear grid-based density instead. The reason-
ing behind this strategy is that shot noise is constant over time and hence more problematic
at high redshift where cosmological perturbations are smaller in comparison. On the other
hand, the linear prediction for neutrinos is expected to be very accurate at high redshift.
One can therefore reduce the total error by judiciously choosing the time at which the code
switches from linear to fully nonlinear neutrino treatment. It is nonetheless reassuring that
even without mitigating against shot noise the scatter remains far below 1%.

On small scales the differences are also larger. The lines for COLA and gevolution track
each other closely, but differ by more than 1% from the other codes for k > 1hMpc−1. SWIFT,
PKDGRAV3, and CONCEPT are low compared to GADGET-3 for k > 1hMpc−1, unlike what was
seen in figure 3. ANUBIS diverges from GADGET-3 by more than 1% for k > 1hMpc−1 for the
0.6 eV neutrino mass case. As mentioned earlier, this is due to the fact that the AMR scheme
has a lower effective resolution as the neutrino mass increases, simply because refinement
is triggered by clustering. Finally, NM-GADGET4 is slightly higher than GADGET-3. However,
these differences remain below 1% well beyond kNyq.

5.1.2 Convergence tests

To study the numerical convergence of our results, we consider the effects of finite box size
and resolution. Figure 5 shows the relative suppression for the runs with larger volume (left
panel) and higher resolution (right panel). When Lbox is doubled at fixed resolution, the
agreement remains excellent on linear scales and is sometimes even slightly better around
kNyq, providing an important consistency check for most codes. Increasing instead the mass
resolution by doubling kNyq, the agreement between the simulations improves significantly
on nonlinear scales. Including more scales in either direction, most codes remain within 1%
of the reference runs done with GADGET-3. The excess on large scales for the case of ANUBIS
persists as a result of the coarse base grid. For the runs with Npart = 10243, this base grid
is even less suited and the time-steppings for the massless cases are set to 0.1 and 0.15 times
the original time step for the larger-box and high-resolution runs, respectively.
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Figure 5. The suppression of the power spectrum of CDM and baryons relative to the one measured
in the GADGET-3 reference runs at z = 0 for

∑
mν = 0.15 eV for the simulations with a larger volume,

Lbox = 1024h−1 Mpc and Npart = 10243 (left panel), and at a higher resolution in the small volume,
Lbox = 512h−1 Mpc and Npart = 10243 (right panel). The respective particle Nyquist wavenumbers
are indicated by the grey dash-dotted lines. The grey bands highlight the interval of ± 0.01.

5.1.3 Contributions from neutrinos
The subdominant contributions to Pm(k) are the cross-power spectrum Pν,cb(k) between neu-
trinos and the CDM and baryon component, and the auto-power spectrum Pν(k) of neutrinos.
As can be seen from eq. (5.1), these are suppressed by the small factors fν and f2

ν , respec-
tively, and they are themselves additionally strongly suppressed with respect to Pcb(k) on
scales smaller than the neutrino free-streaming scale. While both of these contributions will
be exceedingly hard to constrain individually from observations, it is nonetheless interesting
to study them in the context of our code comparison in order to highlight some more subtle
differences in the numerical schemes. Figure 6 (left panel) shows Pν,cb(k) for various codes
relative to the result from the SWIFT code, for the smallest neutrino mass, ∑mν = 0.15 eV,
computed from the high-resolution simulations. We use SWIFT as the reference here because
it has a very low level of shot noise in the neutrino component, yet is able to track the non-
linear evolution of neutrinos very accurately. As is the case with CDM and baryons, linear
theory cannot describe neutrino clustering on nonlinear scales and therefore CLASS signifi-
cantly underestimates the cross-power spectrum for k > 0.1hMpc−1. Most other codes use
a particle implementation of neutrinos and scatter about the SWIFT prediction partially due
to shot noise. The results from CONCEPT have no shot noise, but depart from the other codes
for k > 0.2hMpc−1. The relative difference to SWIFT is 8% at k = 1hMpc−1. Much the
same applies to the neutrino auto-power spectrum, Pν(k), shown relative to the neutrino
auto-power spectrum of SWIFT in the right panel of figure 6. Here, for the codes with a
neutrino particle ensemble, the dominant contribution to the shot noise is removed. Except
for SWIFT this is done by subtracting the inverse of the average neutrino particle density,
n̄−1, from the measured power spectrum, where n̄−1 = 0.125h−3 Mpc3 in our high-resolution
simulations. For SWIFT the subtracted values are derived from the δf method. The difference
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Figure 6. Relative cross-power spectrum of neutrinos with CDM and baryons (left) and neutrino
auto-power spectrum (right) with respect to SWIFT at z = 0 for

∑
mν = 0.15 eV for the higher-

resolution simulation with Lbox = 512h−1 Mpc and Npart = 10243. The Nyquist wavenumber is
indicated by the grey dash-dotted line. The grey bands highlight the interval of ± 0.01.

between SWIFT and CONCEPT is 19% (off the chart) at k = 1hMpc−1 and the effects of shot
noise are even more evident in the other codes. The agreement between gevolution and
SWIFT is quite remarkable, and on the largest scales these results are also more consistent
with CONCEPT than with the other N -body codes.

5.1.4 Total matter
Some of the codes, in particular the EuclidEmulator2, only provide predictions for the
power spectrum of total matter, Pm(k). In figure 7, we show the relative agreement of
different emulators and other codes predicting Pm(k) to our high-resolution reference run
with GADGET-3. The left panel shows the result for the matter power spectrum itself, Pm(k),
at ∑mν = 0.15 eV. The correlated fluctuations on large scales are due to sample variance
which is only present in the reference simulation and not in the predicted spectra. We note
that emulators, HMcode, and the halo-model reaction method perform slightly better than the
fitting recipe of halofit. The results of the EuclidEmulator2 are marginally consistent with
the claimed accuracy of 1%, but the neutrino mass lies close to the boundary of parameter
space the emulator was trained for. The right panel of figure 7 shows corresponding results
for the power suppression factor, Sm(k), with respect to the massless scenario. Cosmic Emu
shows a disagreement larger than 1% around k ≈ 1hMpc−1 where the power suppression is
largest. Also halofit performs poorly, worse even than linear theory (CLASS). The other codes
remain within 1% of the GADGET-3 result up to the particle Nyquist scale. Overall our results
are in fair agreement with the detailed comparison carried out by Parimbelli et al. [116].

5.2 Bispectra

The nonlinear evolution of matter fluctuations generates a non-vanishing bispectrum, the
three-point correlation function of matter in Fourier space, even if non-Gaussianity is negli-
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Figure 7. Total matter power spectrum Pm(k) at z = 0 for
∑
mν = 0.15 eV from emulators and fitting

methods (left panel), and the respective suppression Sm(k) with respect to the massless case (right
panel), compared to the higher-resolution reference GADGET-3 simulation with Lbox = 512h−1 Mpc
and Npart = 10243. The corresponding particle Nyquist wavenumber of the GADGET-3 run is indicated
by the grey dash-dotted line and marks the limit beyond which the estimator of the power spectrum
becomes unreliable. Disagreements near and beyond this line are therefore not indicative of errors in
the emulators. The grey bands highlight the interval of ± 0.01.

gibly small in the initial conditions. This represents an opportunity for the measurement of
neutrino masses, as we expect that the suppression predicted by linear theory is enhanced
at the nonlinear level [117–120]. The total matter bispectrum in the presence of massive
neutrinos can be schematically defined as

Bmmm(k1, k2, k3) = (1− fν)3Bccc(k1, k2, k3) + fν (1− fν)2B(sym)
ccν (k1, k2, k3)

+ f2
ν (1− fν)B(sym)

cνν (k1, k2, k3) + f3
ν Bννν(k1, k2, k3), (5.3)

where “ccc” denotes the CDM and baryon bispectrum (we do not write “cb cb cb” to avoid
clutter) and we note the presence of cross cold-cold-neutrino “ccν” and cold-neutrino-neutrino
“cνν” terms that are symmetrised, as indicated by the superscript “(sym)”. In this work, we
focus on the bispectrum of CDM and baryons only, but cross terms have also been investigated
in the literature, e.g. by Ruggeri et al. [121]. As for the power spectrum case, the leading
term is the one of CDM and baryons.

Figure 8 shows a comparison of the bispectrum Bccc as measured at redshift z = 1 by all
simulation codes12 for all triangle configurations and all neutrino masses considered, for the
set of runs with Npart = 5123. Triangles are plotted as a function of kmax = max(k1, k2, k3).
The comparison shows the maximum percentage difference with respect to GADGET-3 of
all triangle configurations at each value of kmax. For L-GADGET3, openGADGET3, GADGET-4,
PKDGRAV3, CONCEPT, and NM-GADGET4, discrepancies are mostly within 5% for∑mν = 0.0 eV,
while steadily growing up to around 10% for massive neutrino cosmologies. Other simulation

12PINOCCHIO is not used in this test that is mostly focused on nonlinear scales beyond its range of validity.
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Figure 9. Squeezed bispectrum of CDM and baryons as measured from different codes, relative
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∑
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Lbox = 512h−1 Mpc and Npart = 5123 CDM and baryon particles. Results shown are for the squeezed
configuration where k1 = k2 ≡ k, k3 = 0.012hMpc−1. The grey bands highlight the interval of ± 0.01.

codes are within 10% already at ∑mν = 0.0 eV. ANUBIS and gevolution show some of the
strongest deviations at large kmax, but this is mainly a result of finite resolution as we find
much better agreement in the higher-resolution runs. At low kmax, strong fluctuations can
be observed where measurements can cross zero because of sampling variance, which in turn
leads to numerical issues when taking ratios.

In figure 9, we consider specifically a squeezed configuration for which k1 = k2 and k3 =
0.012hMpc−1 and show the agreement between different codes for a total neutrino mass of∑
mν = 0.15 eV at redshift z = 0 (left panel) and z = 1 (right panel). We use measurements

from our simulations with Lbox = 512h−1 Mpc and Npart = 5123. The relative agreement is
better at low redshift, partially due to the fact that the signal amplitude is larger there.

Figure 10 is a comparison of simulation codes for different triangle configurations, for
all choices of neutrino masses at redshift z = 1. We consider four triangle configuations:
squeezed, equilateral and two different scalene configurations. Squeezed configurations refer
to triangles where one of the side is much shorter than the other two (in Fourier space) which
corresponds to looking at the correlation of a distant point with two points close to each
other. Equilateral configurations, instead, refer to the correlation of three points at equal
distance. Scalene triangles do not have any specific symmetry. In detail, we consider

• squeezed configurations, for which k1 = k2 and k3 = 0.012hMpc−1, plotted as a
function of k1 as in figure 9;

• equilateral configurations, for which k1 = k2 = k3, plotted as a function of k1;

• scalene configurations A, for which k1 = 0.79hMpc−1, k2 = 0.56hMpc−1, plotted
as a function of k3;
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Figure 10. The four panels show bispectrum measurements at redshift z = 1 in the simulations with
Lbox = 512h−1 Mpc and Npart = 5123 for different triangle configurations: squeezed (top left panel),
equilateral (top right panel), and scalene configurations A and B (bottom panels). In each panel, the
top subpanel shows the suppression ratio of the bispectrum of CDM and baryons for three different
neutrino masses

∑
mν ∈ {0.15, 0.3, 0.6} eV with respect to the massless case, and the three bottom

subpanels show the respective relative differences of the various codes when compared to GADGET-3.
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• scalene configurations B, for which k1 = 0.39hMpc−1, k3 = 0.2hMpc−1, plotted
as a function of k2.

In each of the four panels of figure 10, the top subpanel shows the ratio between the CDM
and baryon bispectrum for massive neutrino cosmologies over massless ones, which we define
in analogy to the case of the power spectrum as

Tccc(k1, k2, k3) = B
(massive)
ccc (k1, k2, k3)

B
(massless)
ccc (k1, k2, k3)

. (5.4)

The three bottom subpanels show the relative differences of the measurements of the suppres-
sion ratio in the various codes with respect to GADGET-3 at each of the three neutrino masses,
i.e. ∑mν ∈ {0.15, 0.3, 0.6} eV (from top to bottom). For all configurations considered, dis-
crepancies fall broadly within the 5% range. As expected, massive neutrinos suppress the
bispectrum of CDM and baryons at all scales, with a stronger effect at smaller scales. For
comparison, we also show the tree-level prediction from perturbation theory, using

B(tree-level)
ccc (k1, k2, k3) = 2F2(k1,k2)PL

cb(k1)PL
cb(k2) + 2 permutations , (5.5)

where
F2(k1,k2) = 5

7 + 1
2

k1 · k2
k1k2

(
k1
k2

+ k2
k1

)
+ 2

7
(k1 · k2)2

k2
1k

2
2

, (5.6)

and PL
cb is the linear power spectrum of CDM and baryons generated by CLASS. We can see

in figure 10 that the suppression ratio is in good agreement with this prediction when all
the three scales k1, k2, k3 have a small wavenumber, and that the measured suppression is
generally stronger if some of the wavenumbers are large. This is in line with the results seen
in the power spectrum, where strong nonlinearities lead to additional suppression.

At the largest scales, i.e. when k1, k2, k3 . 0.1hMpc−1, a distinct feature can be dis-
cerned which is particularly prominent in the equilateral configuration and for larger neu-
trino masses: the measurements from the various codes separate into two groups, GADGET-3,
openGADGET3, GADGET-4, AREPO, and ANUBIS on the one side, and L-GADGET3, NM-GADGET4,
CONCEPT, PKDGRAV3, SWIFT, gevolution, and COLA on the other side. The latter group
includes all the codes that employ a mesh-based method, and all of them have means to
mitigate against shot noise. We therefore suspect that this dichotomy originates from shot
noise in the particle method. This could be tested, e.g. by increasing the number of neutrino
particles until convergence is achieved.

As with the case of the power spectrum, we conducted various checks concerning nu-
merical convergence with respect to finite-volume and resolution effects. These show a con-
sistent picture that is in line with what we discussed in section 5.1.2. As an example,
figure 11 presents the results for the case of the squeezed configuration in simulations with
Npart = 10243, with a larger volume (left panel) or a higher resolution (right panel) than our
simulations with Npart = 5123. In both cases, the agreement on smaller scales is improved:
for the larger volume this happens because more independent triangles contribute to each
measurement, while for the higher resolution this is due to the better numerical convergence
of the density field on small scales.

Overall we may conclude that the N -body methods which produce highly consistent
two-point statistics also tend to agree very well on the three-point statistics presented here.
NM-GADGET4 appears to be an outlier, showing considerable deviations for squeezed configura-
tions when the sum of the neutrino masses is large. This is however not unexpected since the
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Figure 11. The suppression of the squeezed bispectrum of CDM and baryons relative to the one
measured in the GADGET-3 reference runs at z = 1 for

∑
mν = 0.15 eV for the simulations with a larger

volume, Lbox = 1024h−1 Mpc and Npart = 10243 (left panel), and at a higher resolution in the small
volume, Lbox = 512h−1 Mpc and Npart = 10243 (right panel). Results shown are for the squeezed
configuration where k1 = k2 ≡ k, k3 = 0.012hMpc−1. The grey bands highlight the interval of ± 0.01.

final gauge transformation from Newtonian motion gauge has been neglected here. This trans-
formation mainly acts at large scales and would therefore affect the squeezed configurations.
At low neutrino mass, where the method works best, this effect is almost negligible though.
It also becomes minimal at redshift z = 0 which was set as the target redshift for this method.

5.3 Halo mass function

From the halo catalogues produced by Denhf, we estimate the halo mass functions (consider-
ing only the contribution from CDM and baryons) and compare them to the predictions by
Tinker et al. [113], hereafter Tinker10, as well as Despali et al. [111], hereafter Despali16. For
these predictions, we use the linear power spectra of CDM and baryons calculated by CLASS
for the respective neutrino cosmologies in the modelling of the theoretical halo mass func-
tions. It has been shown by Costanzi et al. [122] that this approach reproduces the halo mass
function well for neutrino cosmologies. Figure 12 shows the ratio of the halo mass functions
relative to the halo mass function of GADGET-3 at a neutrino mass of ∑mν = 0.15 eV for
the runs with Npart = 10243, in the large volume where Lbox = 1024h−1 Mpc (left panel), as
well as for the higher-resolution setup with Lbox = 512h−1 Mpc (right panel). At the high-
mass end, the agreement between different codes is generally very good, and fluctuations are
smaller in the larger volume due to better statistics. At low massesM200b < 1013 h−1M�, the
number density of halos is underestimated by COLA, gevolution, and ANUBIS by up to 50%
for the lower resolution. At higher resolution the agreement improves. The relatively poor
performance of gevolution in predicting the halo mass function can be understood from the
fact that the code uses a uniform mesh. This leads to a smoothing of small-scale structures
and generally to a mass estimate of halos that is poorly converged at the low-mass end. COLA
suffers from the same limitation, but the simulations used a mesh with significantly higher
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Figure 12. Halo mass functions relative to the one of GADGET-3, for Npart = 10243 at z = 0 and
neutrino mass

∑
mν = 0.15 eV. The result for the larger-volume runs with Lbox = 1024h−1 Mpc

is shown in the left panel while the right panel shows the result for the higher-resolution runs with
Lbox = 512h−1 Mpc.

resolution in this case. Specifically, in the runs with Npart = 10243, COLA used a mesh of
30723 grid points, while gevolution used a mesh of 20483 grid points.13

Figure 13 shows the suppression of the halo mass function due to neutrinos with masses∑
mν ∈ {0.15, 0.3, 0.6} eV at redshift z = 0 (left panel) and z = 1 (right panel). At low halo

masses, there is little suppression, while going to higher masses the number density of halos
is more and more suppressed. The higher the neutrino masses, and the higher the redshift,
the stronger the suppression: at z = 0 and ∑mν = 0.15 eV the suppression goes down to a
factor of 0.9 at halo masses of 1014 h−1M�, while at z = 1 and∑mν = 0.6 eV the suppression
goes down to 0.4 at the same halo mass. In analogy to the case of the power spectrum, we
define the suppression ratio with respect to the massless case as

R =
dn(massive)

d lnM
dn(massless)

d lnM
. (5.7)

Figure 14 shows this suppression ratio relative to the one measured from GADGET-3 for a
sum of neutrino masses of ∑mν = 0.15 eV. The different codes generally agree within 3% on
the suppression ratio, even in cases where the halo mass function was poorly converged in
figure 12. Our data show a trend that the suppression is about 1% stronger than predicted
by the models of Tinker10 and Despali16. The COLA results are a slight outlier, agreeing
more with these models than with the other simulations.

13Running gevolution on such a fine mesh, i.e. with less than one particle per cell on average, was not
supported in the public release of the code. In such a situation, the evolution would become unstable due to the
low order of the finite-difference gradients used in the particle update. A second-order gradient computation
was therefore implemented for this work, a feature that is made available in a recent patch of the code.
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Figure 13. The halo mass function for different neutrino masses, relative to the case with massless
neutrinos for each code, respectively. We show the results for the simulations with Lbox = 512h−1 Mpc
and Npart = 5123 at z = 0 (left panel) and at z = 1 (right panel).

5.4 Halo bias

Finally, we study the halo bias for a fixed selection of halos defined by a mass threshold of
M200b > 1013 h−1M�. However, since the halo mass function shows considerable differences
between the different simulations, sometimes due to the fact that the mass estimate is not well
converged at the low-mass end (certainly for gevolution, COLA, and ANUBIS), we apply the
halo selection as follows. First, we select the halos above the mass threshold in the reference
runs done with GADGET-3. We may call the size of the selected population Nh. Then, for each
other code, we generate the sample by selecting the Nh most massive halos. The reasoning for
this approach is that, while the estimated masses of individual halos may differ significantly
between different codes, we still expect there to be a tight correlation that largely preserves
the mass ordering. Another way to think about this is to consider a simple abundance
matching of Nh sources, assigned to the centers of the most massive halos. We compare the
bias measurements to the prediction by Tinker et al. [113] (Tinker10). Here the large-scale
bias is estimated from the mass-dependent peak height of halos in the linear density field.
Given the GADGET-3 halo masses, we model the peak heights using the linear power spectrum
of CDM and baryons calculated by CLASS for the respective neutrino cosmology. We then
take the average of all biases obtained for each halo mass to get the final prediction. Note
that the prediction of Tinker10 is only expected to work in the linear regime.

Figure 15 shows the bias measurements from the simulations with larger volume, Lbox =
1024h−1 Mpc. We define the scale-dependent halo bias b(k) as the ratio of the cross-power
spectrum of halos with CDM and baryons and the auto-power spectrum of CDM and baryons,
i.e.

b(k) = Ph,cb(k)
Pcb(k) . (5.8)
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Figure 14. Suppression of the halo mass functions relative to the one measured in GADGET-3 at
redshift z = 0 and for a total neutrino mass of

∑
mν = 0.15 eV. We show the results for the simulations

with Lbox = 1024h−1 Mpc and Npart = 10243 in the left panel, and Lbox = 512h−1 Mpc and Npart =
10243 in the right panel. The grey bands highlight the interval of ± 0.01.

It has been shown by Castorina et al. [77] that defining the bias factor with respect to
cold species gives closer-to-universal and less scale-dependent results than using the same
definition with respect to total matter. As can be seen in the left panel of figure 15, the bias
measurements agree reasonably well on large scales except for gevolution where the bias is
measured to be about 4% larger, and for PINOCCHIO where the bias is measured to be about
10% smaller. In analogy to the case of the power spectrum, we again define a bias ratio with
respect to the massless case, which in this situation will quantify the increase (rather than
suppression) of the bias in the presence of massive neutrinos,

Q(k) = b(massive)(k)
b(massless)(k)

. (5.9)

Results for this bias ratio are shown in the right panel of figure 15. Here the agreement
between different codes is excellent, well within 1% over almost the entire range of scales
probed. For PINOCCHIO the bias ratio is about 1% accurate up to k ' 0.3hMpc−1.

To study the robustness of our results with respect to the mass resolution of the
simulations we repeat the bias measurements in the runs with higher resolution, i.e. with
Lbox = 512h−1 Mpc and Npart = 10243. The smaller simulation volume leads to a higher
level of shot noise in the halo counts, which incurs somewhat larger fluctuations when com-
pared to the larger volume. As can be seen in figure 16, the agreement between the different
codes is improved significantly, in particular for codes that have difficulties in predicting the
halo mass function accurately (gevolution, COLA, and ANUBIS). The results for PINOCCHIO
do not improve significantly, as the discrepancy is mainly due to the approximate nature of
the method rather than lack of resolution.

It is worth pointing out that the bias ratio Q has a shape similar to the inverted power
spectrum ratio Scb. This is actually expected, and was recently discussed by Hassani et
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Figure 15. Halo bias with respect to CDM and baryons at z = 0 and neutrino mass
∑
mν =

0.15 eV for the simulations with Lbox = 1024h−1 Mpc and Npart = 10243. In the GADGET-3 reference
simulations, all halos with M200b > 1013 h−1M� are selected, providing a sample of size Nh. For the
other simulations, we then select the most massive Nh halos. The grey bands in the lower panels
highlight the interval of ± 0.01.

al. [123]. It means that the power spectrum of halos, when selected at fixed mass threshold,
is much less sensitive to the neutrino mass than the power spectrum of CDM and baryons.
On the other hand, synthetic catalogues are often created in such a way that the observed
abundance of a certain type of object is reproduced (abundance matching). In such a situa-
tion, it may be more appropriate to study the dependence of the bias on the neutrino mass
at fixed number count. We therefore repeat our measurements, but keeping the size of all
samples fixed at N (massless)

h , which is the number of halos with M200b > 1013 h−1M� in the
GADGET-3 reference simulation at zero neutrino mass. In other words, when selecting the
halo sample for non-zero neutrino mass, we still select the N (massless)

h most massive halos in
all simulations. This effectively reduces the mass threshold of the selection for the massive
neutrino case when compared to the previous procedure.

Figure 17 shows the results of the bias measurement obtained through this procedure,
using the higher-resolution simulations. We observe that the bias still increases with neutrino
mass, but not quite as much as in figure 16 where a fixed halo mass threshold was used. The
large-scale bias indicated by the dotted line (Tinker10) is about 0.01, or one percentage point,
lower so that the corresponding bias ratio Q drops by 0.7%. The largest effect in Q appears
around k ≈ 1hMpc−1 were the change can be as much as 2% due to the different halo
selection. The interplay between bias enhancement and the suppression of the matter power
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Figure 16. Halo bias with respect to CDM and baryons at z = 0 and neutrino mass
∑
mν = 0.15 eV

for the higher-resolution simulations with Lbox = 512h−1 Mpc and Npart = 10243. In the GADGET-3
reference simulations, all halos with M200b > 1013 h−1M� are selected, providing a sample of size Nh.
For the other simulations, we then select the most massive Nh halos. The grey bands in the lower
panels highlight the interval of ± 0.01.

spectrum has another layer of complexity due to the way in which the sample is selected.
This needs to be studied carefully in the context of the specific numerical recipes that are
employed in the production of synthetic catalogues.

6 Discussion

Accurate and reliable modelling of the signatures that the neutrino mass imprints on the ob-
servables used to test the cosmological model is an essential ingredient for the data analysis
of all upcoming galaxy surveys, and in particular for Euclid. Such modelling necessarily re-
quires a self-consistent description of the linear and possibly nonlinear clustering of neutrinos
along with the nonlinear evolution of dark matter and baryonic structures. By comparing
results across different implementations, including eleven full N -body implementations, two
N -body schemes with fast time integration based on Lagrangian perturbation theory, and
a further four codes that predict the nonlinear matter power spectra directly, we establish
that current numerical techniques are in sub-percent agreement with regards to modelling
the impact of massive neutrinos on the most common summary statistics of cosmological
large-scale structure. We identify several specific situations where larger modelling errors
can occur, but such shortfalls are generally well understood in terms of approximations or
other compromises that were made in these situations. Our results can therefore be used as
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Figure 17. Halo bias with respect to CDM and baryons at z = 0 and neutrino mass
∑
mν = 0.15 eV

for the higher-resolution simulations with Lbox = 512h−1 Mpc and Npart = 10243. In the GADGET-3
reference simulation for

∑
mν = 0 eV, all halos with M200b > 1013 h−1M� are selected, providing

a sample of size N
(massless)
h . We then select the most massive N

(massless)
h halos in all the other

simulations, even for those with non-zero neutrino mass. The grey bands in the lower panels highlight
the interval of ± 0.01.

a detailed guide for choosing the preferred modelling techniques for any application given its
requirements in terms of resources, accuracy, and quantities that need to be modelled. The
validation presented here is the crucial first step for building up confidence in the numerical
tools employed in the data analysis pipeline of Euclid. It is particularly vital when consid-
ering the actual measurement of the neutrino mass scale from the data, which is one of the
key science goals of the mission.

The fastest method of predicting simple summary statistics like the nonlinear matter
power spectrum are emulators, and they will therefore play a crucial role in the cosmological
likelihood analysis of Euclid and other large-scale structure surveys. They are of course
many orders of magnitude faster than simulations but tend to outperform even semi-analytic
models which often have some bottlenecks in their numerical evaluation. However, emulators
can only be as accurate as the simulations they are trained on, and it is therefore important
to understand the modelling errors of simulations too. We find that the current state of the
art for emulators yield an absolute precision on the power spectrum of total matter better
than 2% and can predict the relative change due to the neutrino mas to better than 1% on all
scales considered in this work. Interestingly, the best semi-analytic fitting methods available,
in particular ReACT and HMcode, can achieve similar performance.
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Overall our results demonstrate that we are in a fairly comfortable position, with sev-
eral independent numerical techniques at our disposal that produce consistent results at the
sub-percent level if we employ them diligently. The community has also implemented such
techniques in a large number of different N -body codes, such that there is no shortage in
choice of which code one wants to use. Moreover, our detailed comparison of particle-based
and mesh-based techniques shows that the assumption of linear neutrinos is clearly sufficient
to reach percent accuracy, even up to scales of the order of k ≈ 7hMpc−1 relevant for pre-
dicting the weak-lensing signal in Euclid. We note that some codes have inherent difficulties
reaching such levels of absolute accuracy due to effects of finite resolution. This is obvious in
the cases where a uniform mesh is employed in the computation of gravitational interactions
(gevolution and COLA), but AMR does not solve the issue entirely as the example of ANUBIS
illustrates. The relative impact of massive neutrinos can nonetheless be predicted very accu-
rately with those codes. Here we do of course not attempt to address the additional challenge
of modelling baryonic effects, i.e. astrophysical processes, down to such scales as this can be
treated separately, see e.g. Martinelli et al. [124] for a discussion. On mildly nonlinear scales
and in particular at redshifts z & 1 relevant for Euclid, a “sophisticated 3LPT” realisation
like the one produced with PINOCCHIO, based on a scale-dependent linear growth rate com-
puted from CAMB and propagated to second- and third-order LPT with standard techniques,
can be useful to produce a large number of halo catalogues in a limited amount of computing
time, see e.g. Fumagalli et al. [10].

The summary statistics considered in our analysis include auto- and cross-power spectra
of the CDM and baryon component and neutrinos, bispectra of the CDM and baryon com-
ponent, halo mass functions, and halo bias. We present results for redshifts z = 0 and z = 1,
relevant for galaxy surveys like Euclid. We do not consider redshift-space distortions or other
effects that occur due to taking observations on our past light cone, and leave a detailed in-
vestigation of these effects to future work. However, we expect that no big surprises would
appear given our level of confidence in the modelling of the summary statistics presented here.

In order to aid future code development, we make our reference simulations and analysis
pipelines available via a public repository (see data availability statement below). This
provides a reliable baseline against which further numerical methods can be validated, and
it showcases the current state-of-the-art in modelling massive neutrinos in cosmology.
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