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ABSTRACT

Aims. We validate a semi-analytical model for the covariance of the real-space two-point correlation function of galaxy clusters.
Methods. Using 1000 PINOCCHIO light cones mimicking the expected Euclid sample of galaxy clusters, we calibrated a simple model to
accurately describe the clustering covariance. Then, we used this model to quantify the likelihood-analysis response to variations in the covariance,
and we investigated the impact of a cosmology-dependent matrix at the level of statistics expected for the Euclid survey of galaxy clusters.
Results. We find that a Gaussian model with Poissonian shot-noise does not correctly predict the covariance of the two-point correlation function
of galaxy clusters. By introducing a few additional parameters fitted from simulations, the proposed model reproduces the numerical covariance
with an accuracy of 10%, with differences of about 5% on the figure of merit of the cosmological parameters Ωm and σ8. We also find that
the covariance contains additional valuable information that is not present in the mean value, and the constraining power of cluster clustering
can improve significantly when its cosmology dependence is accounted for. Finally, we find that the cosmological figure of merit can be further
improved when mass binning is taken into account. Our results have significant implications for the derivation of cosmological constraints from
the two-point clustering statistics of the Euclid survey of galaxy clusters.
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1. Introduction

The clustering of galaxy clusters is an increasingly powerful
tool for extracting cosmological information because it is sen-
sitive to the geometry and to the evolution of the large-scale
structure of the Universe (Borgani et al. 1999; Moscardini et al.
2000; Estrada et al. 2009; Marulli et al. 2018, 2021). Cluster
clustering is still poorly constraining when considered alone
because of the small statistics. It is especially useful, how-
ever, when it is combined with other probes, such as number
counts or weak gravitational lensing, for two main reasons. First,
its cosmology dependence is different, which enables breaking
the degeneracies on parameters and improving the constraining
power of these observables (Schuecker et al. 2003; Sereno et al.
2015; Sartoris et al. 2016). Second, one of the main limitations
in the cosmological exploitation of galaxy clusters lies in the
fact that cluster masses have to be inferred indirectly through
observable properties, such as the cluster richness, the velocity
dispersion, the X-ray temperature, or Sunyaev–Zeldovich sig-
nal. The calibration of such mass-observable scaling relations
is affected by systematic biases and observational uncertain-
ties (e.g. Kravtsov & Borgani 2012; Pratt et al. 2019). Cluster
clustering presents different degeneracies on parameters than
cluster number counts. It can therefore help to calibrate these
relations and reduce the uncertainties in the mass estimation.
It can furthermore improve the constraints on cosmological
parameters (Majumdar & Mohr 2004; Mana et al. 2013; To et al.
2021a; Lesci et al. 2022). The correlation function of galaxy
clusters has also been used to identify baryonic acoustic oscil-
lations (BAOs) independently of the cosmic microwave back-
ground (CMB, Miller et al. 2001; Angulo et al. 2005; Huetsi
2010; Veropalumbo et al. 2014; Moresco et al. 2021).

The clustering of clusters presents some advantages with
respect to the clustering of galaxies. Rising from the highest den-
sity peaks of the density field, galaxy clusters are a highly biased
tracer of the large-scale structure, that is, the stronger clustering
signal is easily detectable at large scales as well. Cluster cluster-
ing can be observed on large scales, where linear theory is still
suitable for describing its properties (i.e., k . 0.05 h−1 Mpc or
r & 30 h−1 Mpc). Moreover, bias is primarily a function of the
halo mass and can be calibrated using multiwavelength observa-
tions. Moreover, cosmology enters the relation between bias and
mass and redshift and increases the constraining power of clus-
ter clustering (Mo & White 1996; Tinker et al. 2010). Finally,
Castro et al. (2020) showed that the net effect of baryons is to
change the mass of clusters with negligible impact on the clus-
tering of matched objects in dark matter and hydro simulations.
Thus, we can identify the clustering of clusters as the cluster-
ing of dark matter halos. For this reason, the terms “cluster” and
“halo” are used as synonyms.

The clustering of clusters is expected to become an impor-
tant source of information within a few years, when upcoming
and future surveys will provide cluster samples over sizable por-
tions of the sky. They include the European Space Agency (ESA)
mission Euclid1, planned for 2023, which will map ∼15 000 deg2

of the extragalactic sky in optical and near-infrared bands, with
the aim of investigating the nature of dark energy, dark matter,
and gravity (Laureijs et al. 2011; Euclid Collaboration 2022).
Galaxy clusters are one of the cosmological probes to be used
by Euclid, for which the mission is expected to yield a sam-
ple of ∼105 clusters up to redshift z ∼ 2. Sartoris et al. (2016)
showed that the constraints on cosmological parameters from
cluster number counts are significantly improved when the clus-
1 http://www.euclid-ec.org

ter clustering information is included in the analysis of a Euclid-
like survey.

A fundamental ingredient in deriving precise and accurate
constraints on cosmological parameters from these catalogs is
the correct description of the uncertainties affecting the observ-
ables. The uncertainties are given in the form of covariance
matrices. The simplest but a computationally expensive way to
compute a covariance matrix is from measurements in a large set
of simulations. The computational cost can be reduced by gener-
ating mocks with approximate methods instead of full N-body
simulations (Monaco 2016) or with mixed methods, such as
the shrinkage technique (Pope & Szapudi 2008). However, the
resulting matrix will still be noisy unless a large number of mock
realizations are generated. If the covariance is considered to be
cosmology dependent, the cost will inevitably increase as many
more simulations are required to explore the high-dimensional
space of cosmological parameters with these simulations. An
alternative approach is to estimate covariances from the data
themselves by means of bootstrap or jackknife techniques: These
methods have the advantage of providing matrices that are eval-
uated at the true cosmology of the Universe, but the resampling
methods tend to overestimate the true covariance, especially
for two-point statistics (Norberg et al. 2009; Friedrich et al.
2016; Lacasa & Kunz 2017; Mohammad & Percival 2022). A
third method consists of the analytic calculation of the covari-
ance matrix (e.g. Feldman et al. 1994; Scoccimarro et al. 1999;
Meiksin & White 1999; Hu & Kravtsov 2003; Takada & Hu
2013), which provides noise-free, cosmology-dependent matri-
ces without requiring expensive computational resources. The
limitation of this method lies in the difficulty of analytically
describing all the contributions to the covariance (e.g. nonlin-
earities and non-Gaussianities). Moreover, it is straightforward
to include a treatment of systematic errors by imposing a realis-
tic selection function to mock catalogs, while in the case of an
analytical model, this is more challenging and likely to require
significant approximations. Therefore, these models have to be
validated against simulations to determine which contributions
are relevant at the required level of statistics. Moreover, in some
cases, this validation process may indicate that an analytical
description is not sufficient to correctly describe the covariance
matrix, and it is thus necessary to calibrate model parameters
that cannot be determined from first principles (Xu et al. 2012;
O’Connell et al. 2016; Fumagalli et al. 2022).

The covariance of two-point correlation functions is non-
trivial to model because it depends on high-order statistics and
on the survey geometry (Bernstein 1994; Li et al. 2019). Sev-
eral works have developed models for the covariance of galaxy
correlation functions, both in configuration and Fourier space
(see, for instance, Scoccimarro et al. 1999; Meiksin & White
1999; Takada & Hu 2013; Wadekar & Scoccimarro 2020;
Philcox & Eisenstein 2019; Li et al. 2019). Galaxy clustering is
characterized by a Gaussian covariance, representing the main
contribution at large scales, plus a non-Gaussian term arising
from nonlinear gravitational instability, galaxy/halo bias, and
redshift-space distortions. This term dominates at small scales.
In addition, the coupling between short-wavelength modes with
perturbations larger than the survey size, also induced by non-
Gaussianities, namely supersample covariance, contributes to
the error budget on small scales. Last, the shape of the observed
volume can also affect the covariance, requiring a convolution
of the power spectrum with the window function of the sur-
vey. For cluster clustering, the situation is simpler in principle
because the scales involved are larger and mostly linear. This
feature means that highly nonlinear effects, such as super-sample
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covariance, can be excluded because it dominates the non-
Gaussian errors in the weakly or deeply nonlinear regime
(Takada & Hu 2013). However, the lower densities character-
izing these objects produce a different weight of the various
contributions (e.g. shot noise, Paech et al. 2017) to the covari-
ance, compared to the case of galaxies, which could make non-
Gaussian terms relevant even in the linear regime. Up to now, the
analytical covariance for cluster clustering has rarely been stud-
ied (Valageas et al. 2011; To et al. 2021b), and numerical meth-
ods or internal estimates were preferred instead.

This work represents a second paper in a series, follow-
ing Euclid Collaboration (2021). We validate a semi-analytical
model for the covariance of the two-point correlation function
(2PCF hereafter) of clusters by comparison with a numerical
matrix. Because the final purpose is to apply this model covari-
ance in the analysis of photometric data, we simply consider
the real-space clustering. The redshift-space distortions of the
monopole of the 2PCF are negligible with respect to the distor-
tion produced by the photo-z uncertainties (Veropalumbo et al.
2014; Sereno et al. 2015; Lesci et al. 2022). We test the valid-
ity of a Gaussian model, with the addition of a low-order non-
Gaussian term. We are interested in understanding whether this
simple model is suitable to describe the covariance for the future
survey of galaxy clusters to be extracted from the Euclid photo-
metric survey by estimating the impact of the missing high-order
terms and of the shot noise. Then, we focus our attention on the
study of the cosmology dependence of the covariance to deter-
mine whether this dependence can help us obtain a more precise
estimate of the cosmological parameters. Last, we test the impact
of mass binning on the cosmological constraints. We perform the
validation of the covariance for a Vanilla ΛCDM cosmological
model by studying the effect of the covariance on the cosmolog-
ical constraints of the parameters Ωm and σ8.

The paper is structured as follows: In Sect. 2 we introduce
the analytical formalism for describing the 2PCF and its covari-
ance, as well as the formalism for the likelihood analysis and
the estimation of the posteriors accuracy. In Sect. 3 we describe
the simulated data: in Sect. 3.1 we present the simulations we
used to measure the numerical matrix and the cosmological fore-
casts, and in Sect. 3.2 we describe the measurements of the
2PCF and the associated numerical covariance. In Sect. 4 we
present the results of our analysis: In Sect. 4.1 we define the
best binning in spatial separation and redshift to extract the cos-
mological information, and in Sect. 4.2 we compare the ana-
lytical and numerical matrices. We introduce additional param-
eters to improve the agreement between the two covariances.
Further motivations for introducing these additional parameters
are discussed in Appendix B, and the result of the fit of these
parameters is detailed presented in Appendix C. In Sect. 4.3
we study the impact of the non-Gaussian term, and in Sect. 4.4
we investigate the effect of the cosmology-dependent matrix.
More considerations about the cosmology-dependence are pre-
sented in Appendices D and E. In Sect. 4.5 we evaluate the
impact of the mass binning. Finally, in Sect. 5 we discuss our
conclusions.

2. Theoretical background

In this section, we introduce the real-space 2PCF of halos and
its covariance matrix model. We also describe the likelihood we
adopted for the parameter inference and the method for assessing
the accuracy of the results.

2.1. Two-point correlation function

We quantified the clustering of clusters with the real-space 2PCF,
describing the excess number of pairs with respect to a random
distribution, as a function of radial separation and redshift. This
function is defined as the Fourier transform of the halo power
spectrum,

ξh(r, z |M) = b
2
(z |M)

∫
dk k2

2π2 Pm(k, z) j0(kr), (1)

where Pm(k, z) is the matter power spectrum, j0(kr) is the zero-
order spherical Bessel function, r is the comoving radial sepa-
ration, and b(z |M) is the effective linear bias, that is, the linear
halo bias integrated above the mass threshold M,

b(z |M) =
1

n(z |M)

∫ ∞

M
dM′

dn
dM

(M′, z) b(M′, z), (2)

where dn/dM is the halo mass function, and n(z |M) is the mean
number density of objects above a mass threshold

n(z |M) =

∫ ∞

M
dM′

dn
dM

(M′, z). (3)

In the following, we adopt the Despali et al. (2016) model to
describe the halo mass function (Eq. (7) in the paper) and the
Tinker et al. (2010) model for the halo bias (Eq. (6) in the paper).

For the sake of simplicity, we validated our model consider-
ing halos with a mass above a fixed threshold; subsequently, in
Sect. 2.3, we extend the discussion to the case with mass bin-
ning.

Although we worked in linear theory, around the BAO scale
rBAO ' 110 h−1 Mpc (Eisenstein et al. 2005; Cole et al. 2005)
we account for the smoothing of the acoustic features induced
by a large-scale coherent flow. This produces a broadening
and a shift of the BAO peak in the 2PCF (Eisenstein et al.
2007), which can be modeled by the infrared resummation
(Senatore & Zaldarriaga 2015; Baldauf et al. 2015). At the low-
est order, the matter power spectrum is corrected as

Pm(k, z) ' Pnw(k, z) + e−k2Σ2(z)Pw(k, z), (4)

where Pw and Pnw are the wiggle and smooth parts of the linear
power spectrum, respectively, and

Σ2(z) =

∫ ks

0

dq
6π2 Pnw(q, z)

[
1 − j0 (q rBAO) + 2 j2 (q rBAO)

]
. (5)

The final expression for the real-space 2PCF of halos to be
compared with observations is obtained by averaging Eq. (1)
over the ath redshift bin and ith separation bin,

ξ ai
h =

∫
dk k2

2π2

〈
b

√
Pm(k)

〉2

a
Wi(k), (6)

where 〈 〉a indicates the average over the redshift bin,〈
b

√
Pm(k)

〉
a

=

∫
∆za

dz dV
dz n(z) b(z)

√
Pm(k, z)∫

∆za
dz dV

dz n(z)
, (7)

where dV/dz = Ωsky dV/dΩ dz is the comoving volume per unit
redshift, and Ωsky is the survey area in steradians2. Wi(k) repre-
sents the spherical shell window function, given by

Wi(k) =

∫
d3r
Vi

j0(kr) =
r3

i,+Wth(kri,+) − r3
i,−Wth(kri,−)

r3
i,+ − r3

i,−

, (8)

2 This expression is valid for a conical geometry survey; in more
generic cases, the integral over the lightcone volume must take into
account the geometry of the survey.
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where Wth(kr) is the top-hat window function, Vi is the volume
of the ith spherical shell, and ri,−, ri,+ are the extremes of the
separation bin.

2.2. Covariance model

The 2PCF covariance can be obtained as the Fourier transform
of the power spectrum covariance. The latter is defined as

CP(k1,k2) =
〈[

P̂h(k1) − 〈P̂h(k1)〉
] [

P̂h(k2) − 〈P̂h(k2)〉
]〉
, (9)

where

P̂h(k1) = V |δ(k1)|2 −
1
n

(10)

is the estimator for the halo power spectrum, such that
〈P̂h(k1)〉 = Ph(k1). Here, V is the observed volume and 1/n is
the (Poissonian) shot-noise correction for the halo power spec-
trum Ph.

Substituting the power spectrum estimator in Eq. (9),
we obtain the expression of the power spectrum covariance
(Meiksin & White 1999; Scoccimarro et al. 1999)

CP(k1,k2) =
(2π)3

V

[
Ph(k) +

1
n

]2 [
δK(k1 − k2) + δK(k1 + k2)

]
+

1

V n2

[
Ph(|k1 − k2|) + Ph(|k1 + k2|) + 2Ph(k) + 2Ph(k2)

]
+

1
V n

[
Bh(k1,−k1, 0) + Bh(k2,−k2, 0) + Bh(k1,k2)

+ Bh(k1,−k2) + Bh(−k1,k2) + Bh(−k1,−k2)
]

+
1
V

Th(k1,−k,k2,−k2) +
1

V n3 ,

(11)

where Bh and Th are the bispectrum and the trispectrum of halos,
respectively, that is, the three- and four-point correlation func-
tions in Fourier space. The first line represents the Gaussian
covariance, and the other lines represent the non-Gaussian com-
ponent. As explained in Sect. 1, we did not consider the super-
sample covariance.

By Fourier transforming Eq. (11) and integrating over sepa-
ration and redshift bins (Cohn 2006), we obtain a model for the
2PCF covariance in the light cone,

Cai j =
2

Va

∫
dk k2

2π2

[〈
b

2
Pm(k)

〉
a

+

〈
1
n

〉
a

]2

Wi(k) W j(k)

+
2

VaVi

∫
dk k2

2π2

〈
b

2
Pm(k)

〉
a

〈
1
n

〉2

a
W j(k) δi j,

(12)

where i, j states for the two separation bins, while the a index is
for the average over the redshift bin, and Va is the volume of the
redshift slice. The model in Eq. (12) clearly is a simplification
of the full covariance matrix based on the following approxima-
tions:

– By considering large redshift slices (∆z & 0.2), we assumed
that the cross-correlation between redshift bins is negligi-
ble, as verified from the numerical matrix, computed with
Eq. (22). The comparison is shown in Fig. 4 (upper versus
lower triangle).

– We neglect the contribution from higher-order correlation
functions and only include the lowest-order shot-noise con-
tributions of the non-Gaussian covariance in addition to the
Gaussian part.

– We do not include the terms that only contribute at zero sep-
aration (∝δD(ri), δD(r j)) because we consider larger scales.

– We do not account for the survey footprint, but consider a
simplistic window function described by a fixed-size open-
ing angle.

2.3. Mass binning

We now extend the formalism to take the mass binning instead
of a simple mass threshold into account to quantify the amount
of information that is contained in the mass dependence of the
halo bias.

We rewrote Eq. (1) as

ξh(r, z |M,M′) = b(z |M) b(z |M′)
∫

dk k2

2π2 Pm(k, z) j0(kr), (13)

and all the equations derived in Sect. 2 were modified accord-
ing to this change. We obtained the binned 2PCF by integrat-
ing Eq. (13) over the ith separation bin, the ath redshift bin, and
between Ath and Bth mass bins. The integrals over mass (Eqs. (2)
and (3)) were now performed between the edges of each mass
bin. The final binned 2PCF takes both the autocorrelation inside
a single mass interval and the cross-correlation between halos
belonging to two different mass bins into account,

ξ AB
h,ai =

∫
dk k2

2π2

〈
bA

√
Pm(k)

〉
a

〈
bB

√
Pm(k)

〉
a

Wi(k). (14)

Consequently, the covariance matrix was adapted to account
for four terms: for the autocorrelation between auto-2PCFs
(CAAAA), for the autocorrelation between cross-2PCFs (CABAB),
for the crosscorrelation between auto-2PCFs (CAABB), and for
the cross correlation between cross-2PCFs (CABCD). The covari-
ance model between different mass bins can be treated as the
covariance between multiprobes (Smith 2009; Hu & Jain 2004;
Krause & Eifler 2017), that is,

CABCD ∝ ξAC ξBD + ξAD ξBC . (15)

Following the demonstration reported in Appendix A, the cross
covariance between different mass, redshift, and radial bins is
given by

CABCD
ai j =

1
Va

∫
dk k2

2π2

[〈
bA bC Pm(k)

〉
a

+

〈
δAC

nA

〉
a

]
×

[〈
bB bD Pm(k)

〉
a

+

〈
δBD

nB

〉
a

]
Wi W j

+
1

Va

∫
dk k2

2π2

〈
bA bB Pm(k)

〉
a

〈
δAC

nA

〉
a

〈
δBD

nB

〉
a

W j

Vi
δi j

+ (C ←→ D).
(16)

2.4. Likelihood function

We studied the effect of the covariance on cosmological con-
straints by performing a Bayesian inference on mock cluster
surveys extracted from simulations. We explored the poste-
rior distribution with a Monte Carlo Markov chain (MCMC)
approach by using a python wrapper for the nested sampling
PyMultiNest (Buchner et al. 2014).
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We adopted a Gaussian likelihood,

L(d |m(θ), C) =
exp

{
− 1

2 [d − m(θ)]T C−1[d − m(θ)]
}

√
(2π)N |C|

, (17)

where d is the data vector, m(θ) is the prediction as a function
of a set of cosmological parameters θ, and C is the covariance
matrix, which may also depend on cosmological parameters.

Unless otherwise specified, we inferred the cosmological
parameters by maximizing the log-likelihood function averaged
over all the NS simulated catalogs used in this work to remove
the effect of cosmic variance that affects the single realization of
the Universe,

lnLtot =
1

NS

NS∑
a=1

lnL(a). (18)

With this step, we were able to individuate possible systematic
effects in the analysis that could introduce small but sizable shifts
in the cosmological posteriors with respect to the input parame-
ter values.

We quantified the accuracy of our covariance (error) esti-
mates in terms of the effect on the figure of merit (FoM,
Albrecht et al. 2006) for two parameters θ1 and θ2, defined as

FoM(θ1, θ2) = |C(θ1, θ2) |−1/2, (19)

where C(θ1, θ2) is the parameter covariance computed from the
sampled posteriors. The FoM is proportional to the inverse of
the area enclosed by the ellipse representing the 68% confidence
level. In general, a higher FoM therefore indicates a more pre-
cise evaluation of the parameters. For the covariance compari-
son, however, a larger FoM could indicate an underestimation of
the posteriors amplitude, resulting from an incorrect estimation
of the uncertainties on the statistical quantities entering the like-
lihood. We therefore point out that we are not interested in the
absolute value of the FoM, but rather in the difference between
the various cases.

3. Simulated data

We describe in this section the simulations we used and the pro-
cedure with which we measured the 2PCF and its numerical
covariance.

3.1. Simulations

Following Euclid Collaboration (2021), we validated our model
by comparing it with a reference covariance, computed numer-
ically from simulations. The use of a large set of simulations is
a fundamental requirement for the accurate estimation of covari-
ance matrices. The dimension of this set depends on the size
of the data vector (i.e., the total number of bins) and the desired
accuracy. Typically, the required number of catalogs is about 103

or even more (Taylor et al. 2013; Dodelson & Schneider 2013).
For this purpose, catalogs generated with N-body simulations
can hardly be obtained because the computational cost is too
high. Instead, large sets of mock data can be produced in a sim-
pler and faster way by using approximate methods based on per-
turbative theories. Although less accurate than full N-body simu-
lations in reproducing the observables, these methods are able to
accurately estimate covariances and require fewer resources and
far less computational time (Sahni & Coles 1995; Monaco 2016;
Lippich et al. 2019; Blot et al. 2019; Colavincenzo et al. 2019).

We used a set of mock catalogs produced with the
PINOCCHIO (PINpointing Orbit-Crossing Collapsed HIerar-
chical Objects, Monaco et al. 2002; Munari et al. 2017) algo-
rithm. PINOCCHIO generates dark matter halo catalogs using
Lagrangian perturbation theory (LPT, Moutarde et al. 1991;
Buchert 1992; Bouchet et al. 1995) up to third order and the
ellipsoidal collapse (Bond & Myers 1996; Eisenstein & Loeb
1995). The code generates an initial density field on a regular
grid with periodic boundary conditions and computes the col-
lapse time of each particle. Then, by means of LPT, it displaces
particles to form halos, which are finally moved to their final
positions by again applying LPT. In this way, the code is able
to simulate large cubic boxes that are used to build the past-
light cones. The latter are generated by replicating the periodic
boxes through an on-the-fly process, in which only the halos
are selected that are causally connected with an observer at the
present time.

Our data set consisted of 1000 past-light cones3 each cov-
ering an area of 10 313 deg2 and redshift range z = 0−2.5.4
The light cones contain halos with virial masses above 3.61 ×
1013 M�, sampled with more than 50 particles. The cosmol-
ogy used in the simulations is the flat ΛCDM cosmology with
parameters fixed according to Planck Collaboration XVI (2014)
(Table 5, “Planck+WP+highL+BAO” case): Ωm = 0.30711 for
the total matter density parameter, Ωb = 0.048254 for the corre-
sponding contribution from baryons, h = 0.6777 for the Hubble
parameter expressed in units of 100 km s−1 Mpc−1, ns = 0.96 for
the primordial spectral index, As = 2.21 × 10−9 for the power
spectrum normalization, and σ8 = 0.8288 for the present-day
RMS of the linear density field filtered with a top-hat sphere of
8 h−1 Mpc radius.

To avoid complications linked to modeling the halo mass
function, we used a version of these catalogs in which the masses
were rescaled according to the Despali et al. (2016) mass func-
tion. The rescaling process was performed by matching the aver-
age mass distribution with the predicted halo mass function,
maintaining all the fluctuations due to shot noise and sample
variance in each catalog. Moreover, the Tinker et al. (2010) pre-
diction for the halo bias was verified to agree within 10% with
our final catalogs, down to 5% at low masses. More details about
this rescaling can be found in Euclid Collaboration (2021). The
final light cones contained ∼105 halos, each with a virial mass
Mvir ≥ 1014 M� and a redshift range z = 0−2. In this first step,
we did not include any selection function or mass-observable
relation. These quantities were added in the next stages of the
analysis.

3.2. Measurements

We considered radial separations in the range r =
20−130 h−1 Mpc. This interval includes linear scales, where
the bias is almost constant (Manera et al. 2010), plus the BAO
peak. We considered all the halos above the mass threshold
Mvir = 1014 M�, but it is straightforward to generalize the
measurement formalism for the mass-binning case.

3 The light cones can be obtained on request. The list of the available
mocks can be found at http://adlibitum.oats.inaf.it/monaco/
mocks.html; the light cones we analyzed are labeled “NewCluster-
Mocks”.
4 Our light cones cover slightly smaller areas than the expected Euclid
catalogs (∼10 000 vs. ∼15 000 deg2); the survey will also cover two sep-
arate patches of the sky. For the purpose of this work, we expect that
these differences impact the results in a negligible way.
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Fig. 1. 2PCF of the halos. Top panel: measured (colored dots) and pre-
dicted (black lines) 2PCF as a function of the radial separation for dif-
ferent redshift bins. Bottom panel: percent residuals of the model with
respect to the numerical function.

To measure the 2PCF from simulations, we used the
Landy & Szalay (1993) estimator,

ξ̂ ai
h =

DDai − 2DRai + RRai

RRai
, (20)

where DDai, DRai, and RRai are the number of pairs in the data-
data, data-random, and random-random catalogs, respectively,
within the ath redshift bin and ith separation bin, normalized
for the number of objects in the data and random catalogs, nD
and nR (see, e.g., Kerscher et al. 2000). The random catalog was
built by randomly extracting a subset of objects (nD/100) from
each one of the 1000 mocks by randomly shuffling their coor-
dinates and stacking them together to obtain a single catalog
with nR = 10 nD objects randomly distributed inside the light
cone volume. The correlation function was measured with the
CosmoBolognaLib package (Marulli et al. 2016).

In Fig. 1 we show the measured 2PCF in different redshift
bins as a function of the radial separation, averaged over the 1000
mocks and compared with the analytical prediction of Eq. (6).
We associate an uncertainty with the average measured quanti-
ties that is given by the standard error on the mean, which is
extremely small and thus not visible in the figure. The predicted
2PCF agrees within 10% with the numerical one at almost all
the separations and redshifts. The differences between the vari-
ous redshift bins are ascribed to the imperfect description of the
halo bias, which is underestimated at high redshift and overes-
timated at low redshift. This difference shifts the cosmological
posteriors with respect to the fiducial cosmology, indicating that
an accurate description of the halo bias is fundamental to obtain
unbiased constraints from the cluster clustering. Because the cal-
ibration of the halo bias is beyond the purpose of this paper, we
simply compensated for this inaccuracy by correcting the pre-

Fig. 2. Numerical (upper triangle) and analytical (lower triangle) corre-
lation matrices. The color bar is shown on the right.

diction for the 2PCF in the likelihood analysis with

ξ′h(θ) = ξh(θ)
〈 ξ̂h 〉

ξh(θinput)
, (21)

where 〈 ξ̂h 〉 is the measured 2PCF averaged over the 1000 sim-
ulations, and θinput are the input parameters of the simulations.
In this way, we provide an unbiased description of the 2PCF by
construction that contains the correct cosmology dependence.

Figure 1 also shows a smaller additional difference both at
small separations and around the BAO scale. This difference is
due to some nonlinear effects. This confirms that the choice of
the radial range is correct. The range cannot be further extended
to avoid introducing errors that are due to the limitations of a
linear model.

To compute the numerical covariance matrix, we used the
estimator

Ĉabi j =
1

NS − 1

NS∑
s=1

(
ξ̂ (s)

ia − 〈 ξ̂ 〉ia
) (
ξ̂ (s)

jb − 〈 ξ̂ 〉 jb

)
, (22)

where NS is the number of catalogs, ξ̂ (s)
ia is the 2PCF in the ath

redshift bin and ith radial bin measured from the sth mock, and
〈 ξ̂ 〉ia is the corresponding average value. The uncertainty on the
numerical covariance is given by (see, e.g., Taylor et al. 2013)

σ2(Ĉabi j) =
1

NS − 1

(
Ĉ2

abi j + Ĉaaii Ĉbb j j

)
. (23)

In the upper triangle of Fig. 2, we show the numerical corre-
lation matrix, namely the covariance of Eq. (22) normalized by
the diagonal elements

Rabi j =
Cabi j√

Cabii Cab j j
· (24)

The result confirms the validity of the assumption of negligi-
ble cross correlation between redshift bins because the off-block
diagonal terms of the matrix are only populated by noise consis-
tent with zero signal. In contrast, inside each redshift bin there is
a significant nondiagonal correlation, especially at low redshift.
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As a result of the inaccuracy arising from the finite number
of simulations, the inverse of this matrix must be corrected as
(Anderson 2003; Hartlap et al. 2007)

Ĉ−1
unbiased =

NS − ND − 2
NS − 1

Ĉ−1, (25)

where ND is the dimension of the data vector. As detailed in
Sect. 4.1, our baseline analysis considered five redshift bins and
30 radial bins, that is, ND = 150, which with NS = 1000 gives a
correction to the inverse matrix by a factor of ∼0.85.

While this correction removes the bias in the numeri-
cal covariance, sampling noise propagates to the parameter
covariance, inducing an increase in the error bars by a factor
(Taylor et al. 2013; Dodelson & Schneider 2013)

f = 1 +
(NS − ND − 2)

(NS − ND − 1)(NS − ND − 4)
(ND − NP), (26)

where NP is the number of (cosmological + nuisance) parame-
ters, which we took here to be NP = 2. We obtain f = 1.17,
implying an increase of 17% in the parameter error bars due
to sampling noise. To reduce this impact to below 10%, the
number of mocks must be almost doubled. NS = 2000 would
give f = 1.08. This constraint on the number of mocks does
not apply when the numerical covariance is fit with a model
(Fumagalli et al. 2022), as described in Sect. 4.2. This correction
results from a frequentist-style approach concerned with results
after repeated trials; for corrections suitable for a Bayesian
analysis, the proper approach is described by the works of
Sellentin & Heavens (2016), Percival et al. (2022). However, we
simply attenuated the propagation of the sampling noise on the
parameter constraints by manually setting the cross correlation
between redshift bins in the numerical covariance to zero, being
dominated entirely by noise. This reduced the number of noise-
affected bins in the matrix to ND ∼ Nr = 30, where Nr is the num-
ber of radial bins, providing a correction factor for the inverse
covariance of ∼0.97 and a negligible increase in the parameter
error bars ( f ∼ 1.03), allowing us to take the numerical results
as reference for the model comparison.

4. Results

In this section we present the results of the covariance compar-
ison and the effect that different covariance configurations have
on the cosmological posteriors. In Sect. 4.1 we analyze the red-
shift and radial binning schemes to determine the configuration
that better extracts the information in the likelihood analysis. We
then use this configuration for the covariance model validation.
In Sect. 4.2, we validate the analytical model, and in Sect. 4.3
we study the impact of the non-Gaussian term on the covari-
ance. Last, in Sect. 4.4 we study the cosmology dependence of
the covariance, and in Sect. 4.5 we evaluate the impact of the
mass binning.

For the likelihood analysis, we considered the cosmologi-
cal parameters to which the cluster clustering is more sensitive,
that is, Ωm and σ8, or equivalently, As. We assumed flat uninfor-
mative priors Ωm ∈ [0.2, 0.4] and log10As ∈ [−9.0, −8.0], and
then we derived the value of σ8 through the relation Pm(k) =
As kns T 2(k), where T (k) is the transfer function, and the defini-
tion of variance σ2(R). We are interested in evaluating the vari-
ations in the FoM in the Ωm–σ8 plane and the possible biases in
the posteriors with respect to the input cosmology.

Fig. 3. Merit in the Ωm−σ8 plane for different numbers of radial bins
as a function of the redshift bin width. A small horizontal displacement
has been applied for clarity.

4.1. Radial and redshift binning

Before starting the model validation, we defined the best bin-
ning scheme to properly extract the cosmological information.
For this purpose, we performed the likelihood analysis with dif-
ferent combinations of radial and redshift bin widths. For this
test, we considered only the covariance matrix extracted from
numerical simulations, which is the reference covariance.

We divided the separation range into different numbers of
bins: Nr = 20, 25, 30, and 35 log-spaced, plus Nr = 25 linearly
spaced, to test the effect of a different spacing. For the redshift
binning, we tested three bin widths, ∆z = 0.2, 0.4, and 0.5, which
properly divide the whole redshift range. We did not consider
thinner bins to avoid including non-negligible border effects in
the pair-count procedure.

In Fig. 3 we show the FoM for the different numbers of
radial bins as a function of the redshift bin width. To take the
uncertainty in the inference process into account, we considered
the average and the standard error computed over five realiza-
tions for each case. We did not observe a significant difference
between the various ∆z because all the cases agree statistically.
About the radial binning, the FoM increases as the number of
bins increases, suggesting a more efficient extraction of the infor-
mation, and it stabilizes around Nr = 30, meaning that no more
information can be extracted by increasing the number of radial
bins further.

In the following analyses, we adopt the values ∆z = 0.4
and Nr = 30 log-spaced as our baseline redshift and radial bin
choice.

4.2. Covariance comparison

In this section, we validate the analytical model of Eq. (12)
through the comparison with the numerical matrix. The two cor-
relation matrices are represented in the lower and upper triangle
of Fig. 2. For a better comparison, we show in Fig. 4 the diag-
onal and two off-diagonal terms of the matrices as a function
of the radial separation in three redshift bins. The model (solid
lines) correctly reproduces the reference values (shaded areas)
only at low redshift, while at intermediate and high redshift, it
underestimates the numerical matrix by about 30% on the diag-
onal and by about 50% on the off-diagonal terms. We ascribe this
difference to three factors that we list below.
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Fig. 4. Numerical (shaded areas), analytical (solid lines), and analytical with fitted parameters (dashed lines) covariance matrices as a function
of the radial separation in three redshift bins (from left to right: z = 0.0−0.4, z = 0.8−1.2, z = 1.6−2.0). The different colors represent different
components of the matrix. The diagonal elements are plotted in blue, the first off-diagonal elements are shown in red, and the second off-diagonal
elements are shown in green. The subpanels show the percent residuals of the model covariance with respect to the numerical matrix.

– Non-Poissonian shot noise: The Poissonian prediction does
not describe the shot-noise affecting the halo power spectrum
correctly (see Appendix B for further discussion).

– Inaccurate halo bias: the inaccuracy of the halo bias predic-
tion propagates in the covariance model5;

– Lack of higher-order terms: The contribution of three- and
four-point functions is not negligible. This effect especially
regards the terms weighted by 1/n, which would contribute
significantly at high redshift, where the shot noise increases.

We corrected the inaccuracy of the predicted covariance by includ-
ing some parameters in the model. More specifically, we modified
Eq. (12) by adding three free parameters {α, β, γ},

Cai j =
2

Va

∫
dk k2

2π2

[〈
(β b )2Pm(k)

〉
a

+

〈
1 + α

n

〉
a

]2

Wi(k) W j(k)

+
2

VaVi

∫
dk k2

2π2

〈
(β b )2Pm(k)

〉
a

〈
1 + γ

n

〉2

a
W j(k) δi j,

(27)

where β corrects for the halo bias inaccuracy, and α and γ cor-
rect for the non-Poissonian nature of the shot-noise in the main
and secondary term, respectively. The different weighting of the
shot-noise correction should also account for the effect of higher-
order terms. We fit these parameters from simulations in each
redshift bin, assuming a constant value with scale and redshift in
each slice. We adopted the method described in Fumagalli et al.
(2022) to fit the free parameters α, β, and γ. In short, we con-
strained the covariance by maximizing a Gaussian likelihood
evaluated at the fiducial cosmology, with free covariance param-
eters. The best-fit covariance thus obtained follows a χ2 dis-
tribution best with respect to the observed data (we refer to
the original paper and to Appendix C for more details of the

5 The correction of Eq. (21) does not apply to the covariance predic-
tion. However, this does not affect the following results because we
treated the bias in the 2PCF and the bias in the covariance model as
two different quantities.

method). In Table 1 we show the best-fit values of the param-
eters in each redshift slice6: In most of the cases, the best fit
disagrees with the reference values. The correction of the halo
bias is in line with the expectation (i.e., β < 1 at low redshift
to correct for an overestimated bias, and β > 1 at high red-
shift to correct for an underestimated bias). At redshift z & 1,
the values of β overestimate the 2PCF correction of Eq. (21)
by a factor of 5 to 30% depending on redshift. The shot-noise
corrections also show contradictory results: The Gaussian term
of the covariance seems to prefer a super-Poissonian shot-noise
(α > 0), while the non-Gaussian term is characterized by a sub-
Poissonian shot-noise (γ < 0). These contrasts suggest that the
parameters absorb the effect of the incorrect or missing terms of
the covariance instead of simply describing the halo bias correc-
tion or the deviation from the Poissonian prediction of the shot
noise.

The dashed lines in Fig. 4 show the predictions of the
model modified by the introduction of the additional parameters.
Now, the analytical covariance correctly describes the numerical
results at all redshifts, with an accuracy of about 10%.

In Fig. 5 we show the posterior distributions resulting from
the likelihood analysis with three different covariance configura-
tions: numerical, model of Eq. (12) and model of Eq. (27) with
the best-fit parameters shown in Table 1. As expected, the under-
estimated level of the covariance provided by the original model
translates into tighter posteriors with respect to the numerical
case. In contrast, the model corrected for the additional param-
eters recovers the result of the numerical matrix well. The FoM
obtained from these posteriors and the percent difference with
respect to the numerical case are shown in Table 2: The addition
of the parameters decreases the deviation in the FoM from ∼40%
to only ∼5%.

6 We show the value of best-fit parameters for general considerations.
However, the value of these parameters is not universal, but depends on
the properties of the survey and must be fit for each specific case.
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Fig. 5. Contour plots at 68 and 95% of the confidence level for the
numerical (blue), analytical (model; orange), and analytical with fitted
parameters (model+fit; black) matrices. The dotted gray lines represent
the fiducial cosmology.

Table 1. Best-fit values for the covariance model parameters introduced
in Eq. (27).

Redshift α β γ

0.0–0.4 0.111± 0.008 0.979± 0.008 −0.027± 0.047
0.4–0.8 0.109± 0.008 1.055± 0.009 −0.083± 0.037
0.8–1.2 0.134± 0.008 1.181± 0.013 −0.129± 0.027
1.2–1.6 0.157± 0.008 1.270± 0.022 −0.199± 0.024
1.6–2.0 0.188± 0.008 1.460± 0.045 −0.263± 0.026
Reference 0 1 0

4.3. Non-Gaussian term

We tested the effect of the low-order non-Gaussian term (i.e.,
the second line in Eq. (12)) to evaluate its impact with respect
to the Gaussian covariance. In Fig. 6 we compare the numeri-
cal matrix with the analytical model, with parameters fitted both
from the full model (dashed lines), and from the Gaussian model,
that is, setting the non-Gaussian term to zero and fitting α and β
(solid lines). Because this term only contributes on the diago-
nal elements, we compare the variance in three different redshift
bins. The figure clearly shows that the Gaussian model is unable
to properly describe the numerical covariance for two reasons:
First, the non-Gaussian term contributes significantly at small
scales, especially at high redshift, and neglecting this term leads
to an underestimation of the diagonal terms by a factor up to
50%. Second, the Gaussian model does not have enough degrees
of freedom to provide a good fit and is not able to absorb the
effect of the missing terms, thus producing an incorrect fit at
larger scales as well.

The differences observed in the Gaussian fit impact the cos-
mological posteriors, with deviations in the FoM of about 20%
with respect to the numerical covariance case (see Table 2).

Table 2. Merit for the different covariance cases.

Case FoM ∆FoM/FoMnum

Numerical 32 681± 514 –
Model 45 510± 413 +39%
Model + fit 34 307± 623 +5%
Model + fit, Gauss 38 855± 437 +19%
Cosmo-dependent 86 155± 670 +151%

Notes. The third column lists the percent difference with respect to the
numerical case.

Fig. 6. Variance as a function of the radial separation for three red-
shift bins for the numerical matrix (shaded area), the Gaussian ana-
lytical matrix (model+fit, gauss; solid lines), and the full analytical
matrix (model+fit, all; dashed lines, corresponding to the dashed lines
of Fig. 4).

The importance of this term is mainly driven by the factor
n−2, which grows with decreasing number of objects. We there-
fore expect that the impact of this term increases at higher red-
shifts as well as higher mass-limits. The same trend would apply
to the bispectrum terms due to the factor n−1, while the trispec-
tum contribution should be less relevant, given the absence of
this factor.

4.4. Cosmology dependence

The impact of the cosmology dependence of the covari-
ance on the likelihood analysis has been discussed in
literature. Several works (e.g. Krause & Eifler 2017;
Eifler et al. 2009; Morrison & Schneider 2013; Blot et al.
2020; Euclid Collaboration 2021) have demonstrated that
evaluating the covariance matrix at an incorrect cosmology
would lead to an incorrect estimation of the cosmological
posteriors. To avoid this, the correct way to perform the
parameter inference from a Gaussian likelihood is to use a
cosmology-dependent covariance, that is, to recompute the
matrix at each step of the MCMC process. The situation
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Fig. 7. Comparison of 100 light cones analyzed individually with the cosmology-dependent and the fixed-cosmology covariance matrices. Left and
middle panels: contour plots at 68 and 95% of the confidence level for input-cosmology covariance (blue) and the cosmology-dependent covariance
(orange) obtained from the mean likelihood (Eq. (18)). The dots show the best-fit values from 100 single light cones. The gray lines represent the
input parameters. Right panel: ∆DIC distribution of the 100 light cones. The associated mean and the error on the mean are highlighted as solid
and dashed black lines. The colored regions represent the Jeffery scale used to interpret the results.

becomes more complicated when the Gaussian likelihood is just
an approximation of the true distribution of the data, as for the
2PCF. As pointed out by Carron (2013), in this case, the use
of a cosmology-dependent covariance may lead to an incorrect
estimation of the posterior amplitude. To avoid this, the iterative
approach can be used, which consists of running the MCMC
with a fixed covariance computed at some fiducial cosmology
and then using the best-fit parameters to construct a new
covariance matrix and repeating the MCMC process. This can
be iterated until convergence of the cosmological posteriors. It
should be noted that in the case of approximate likelihood, even
this second method may not estimate the posterior amplitude
correctly.

Based on this premise, we performed the following test
to establish the most correct method for extracting the cos-
mological information from the 2PCF, with the likelihood and
the covariance model proposed in this work. We analyzed 100
light cones in two different ways: (i) We applied the iterative
method starting with a fiducial cosmology of Ωm = 0.30 and
σ8 = 0.77 and verified that a single step is sufficient to achieve
convergence. (ii) We used a cosmology-dependent covariance.
For this test, we did not apply Eq. (18) to remove cosmic vari-
ance, but analyzed each light cone separately. The left and mid-
dle panels of Fig. 7 represent the result of the two analysis:
Dots are the best-fit values for each light cone, compared to
the mean contours obtained through Eq. (18). The two cases
exhibit a different best-fit distribution: The analysis of the light
cones with the cosmology-dependent covariance yields values
that are more concentrated around the input cosmology than in
the fixed covariance case, which instead presents a more scat-
tered distribution. In both cases, the individual values agree
with the mean contours, making it difficult to determine which
of the two analyses is more correct. Thus, for a better com-
parison, we computed the deviance information criterion (DIC,
Spiegelhalter et al. 2002), treating the problem as a model selec-
tion problem. The DIC is defined as

DIC(mi) = 〈χ2〉 + pD, (28)

with

pD = 〈χ2〉 − χ2(θmaxL). (29)

Here, χ2 = −2 lnL(d|mi(θ),C) estimates the goodness of the
fit, and pD is the Bayesian complexity, measuring the effective
complexity of the model. The average was performed over the
posterior, and θmaxL represents the maximum likelihood point.
Given two models m1(θ) and m2(θ), the difference ∆DIC =
DIC(m2) − DIC(m1) is interpreted using the Jeffrey scale pre-
sented in Grandis et al. (2016): ∆DIC = 0 means that none of the
two models is preferred, −2 < ∆DIC < 0 means that there is “no
significant” preference for m2, −5 < ∆DIC < −2 means a “posi-
tive” preference for m2, −10 < ∆DIC < −5 means a “strong”
preference for m2, and ∆DIC < −10 indicates a “decisive”
preference for m2. By defining ∆DIC = DICcosmo − DICbestfit
for each of the 100 simulations, we obtained the distribution
shown in the right panel of Fig. 7, characterized by a mean
value 〈∆DIC〉sims = −6.3 ± 0.9. The analysis of the ∆DIC indi-
cates that the model with a cosmology-dependent covariance is
statistically strongly preferred over the iterative method. Further
considerations are presented in Appendix D.

After verifying that the use of the cosmology-dependence
covariance from a statistical point of view is the most correct
way to analyze the data, we studied the impact on the (average)
cosmological posteriors of an incorrect-cosmology covariance
and a cosmology-dependent covariance with respect to the input
covariance case. In Fig. 8 we show the posteriors obtained by
fixing the covariance matrix at three different cosmologies. More
specifically, we compare the input-parameter case (Ωm = 0.307,
σ8 = 0.829) with two choices of parameter combinations, that
is, Ωm = 0.320, σ8 = 0.775 and Ωm = 0.295, σ8 = 0.871,
located approximately at the extremes of the 2σ contours of the
input-cosmology posteriors along the degeneracy direction (indi-
cated by dots in the figure, with respect to the orange contours).
These deviations from the fiducial cosmology are comparable
with the 2σ values from Planck Collaboration VI (2020), which
represent the most recent cosmological constraints. A covari-
ance matrix computed at an incorrect cosmology has a strong
effect on the cosmological posteriors, with variations in the FoM
of ∼30−40%. We note that the recovered posterior distributions
differ even when the two adopted cosmologies lie along the
Ωm−σ8 degeneracies. This result suggests that the cosmologi-
cal dependence of the covariance matrix is different from that of
the 2PCF.
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Fig. 8. Contour plots at 68 and 95% of the confidence level for the
covariance matrix at the input cosmology (orange), compared with two
incorrect-cosmology cases: (A) Ωm = 0.320, σ8 = 0.775 in blue, and
(B) Ωm = 0.295, σ8 = 0.871 in green. The colored dots indicate the
position of the incorrect parameters. The dotted gray lines represent the
fiducial cosmology.

To test this hypothesis, we compared the derived posterior
distribution on the cosmological parameters for the following
three analyses:
(i) We computed the covariance at the input cosmology and

evaluated the expected 2PCF as a function of cosmological
parameters. This case corresponds to the standard likelihood
analysis with fixed covariance, where all the cosmological
information is encapsulated in the expected value of ξ(r, z).

(ii) We evaluated the expected 2PCF at the fixed input cosmol-
ogy, but let the covariance matrix vary as a function of cos-
mological parameters. In this way, we evaluated the cosmol-
ogy dependence of the covariance alone.

(iii) We compared the measured and expected clustering signal
where both the mean value and its covariance matrix varied
as a function of cosmological parameters. This case corre-
sponds to the full forward-modeling approach.

When adopting a cosmology-dependent covariance, we assumed
the fitted parameters α, β, and γ to be cosmology independent.
This limitation arises because we only have simulations for one
cosmology on which the fit can be performed. The impact of this
dependence will be verified in detail in future analyses. However,
we expect that neglecting the cosmology dependence of these
parameters would introduce a negligible error with respect to the
error that we would introduce when these parameters were not
included at all.

Figure 9 clearly highlights a tilted degeneracy direction
between Ωm andσ8 posteriors of cases (i) and (ii), indicating that
covariance and 2PCF have different cosmological dependences
(blue versus orange contours). As a result, varying the cosmolog-
ical parameters in both the quantities returns tighter constraints,
with a FoM improved by about 150% with respect to the numer-
ical case, which reflects the standard case (i) likelihood analysis
(see Table 2).

Fig. 9. Contour plots at 68 and 95% of the confidence level for three
cases: A cosmology-dependent matrix and a fixed mean value (blue), a
fixed covariance and a cosmology-dependent mean value (correspond-
ing to the standard analysis; orange), and a cosmology-dependent mean
value and a covariance (corresponding to the full cosmology-dependent
analysis; black). The dotted gray lines represent the fiducial cosmology.

This different dependence on cosmology can be explained
by noting that unlike the mean value, the covariance of the 2PCF
depends on the shot noise, which is proportional to the inverse
of the integrated mass function. Letting the cosmology vary in
the covariance thus enables us to extract all the information con-
tained in the clustering of the clusters, that is, in addition to the
average value of the 2PCF, also the amplitude of its fluctuations
provides information. Further considerations about the cosmol-
ogy dependence of the covariance are presented in Appendices F
and E.

4.5. Mass binning

We performed this analysis considering redshift bins of width
∆z = 0.5,to allow for more highly populated mass bins. We con-
sidered the case of two mass bins with cuts at log10 M/M� =
{14.00, 14.15, 16.00}, three mass bins with cuts at log10 M/M� =
{14.00, 14.05, 14.15, 16.00}, and four mass bins with cuts at
log10 M/M� = {14.00, 14.05, 14.10, 14.20, 16.00}, chosen in
order to have at least 4000 objects in each mass and redshift bin.

We show in Fig. 10 the posterior distribution from the three
cases with mass binning, compared to the mass threshold case,
while in Table 3 we report the corresponding FoMs. We observe
an improvement in the FoM when considering the mass bin-
ning with respect to the mass-threshold case, indicating that
the information included in the halo bias can be exploited in
order to obtain tighter constraints on cosmological parameters.
However, increasing the number of mass bins does not signifi-
cantly improve the contours: this can be attributed to the close-
ness of the bins, characterized by a similar bias relation. On the
other hand, selecting more distant bins implies having less pop-
ulated intervals and therefore noisier quantities.
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Fig. 10. Contour plots at 68 and 95% of the confidence level for three
cases: no mass binning (blue), two mass bins (orange), and three mass
bins (black). In all the cases, the covariance is given by the numerical
matrix. The dotted gray lines represent the fiducial cosmology.

Table 3. Merit for the different mass binning cases.

Case FoM ∆FoM/FoMnum

Mass threshold 29 759± 554 –
2 mass bins 36 555± 349 +23%
3 mass bins 35 243± 308 +18%
4 mass bins 37 160± 497 +25%
Model 48 500± 738 +33%
Model + fit 37 980± 543 +4%
Cosmo-dependent 121921± 615 +230%

Notes. The third column lists the percent difference with respect to the
mass threshold’ case in the upper part, and to the two-mass bins numer-
ical case in the lower part.

After we established the advantage of considering mass bin-
ning, we validated the corresponding covariance model pre-
sented in Eq. (16). For greater clarity, we considered the simplest
two-mass bins case; the cases with more mass bins are analo-
gous. In Fig. 11 we show the diagonal components of the analyti-
cal matrix (solid lines) compared to the corresponding numerical
terms (shaded areas). As in the mass threshold case, the model
underestimates the expected covariance with a difference in the
FoM of about 30% (see Table 3).

Again, we corrected for this discrepancy by adding some
covariance parameters, fitted for each mass and redshift bin,
according to Eq. (27). When we added the parameters fitted from
simulations, the discrepancy between numerical and analytical
matrix dropped lower than 5% on the FoM.

Finally, we tested the effect of the cosmology-dependent
covariance following the analyses described in Sect. 4.4. In this
case, the improvement in the cosmological posteriors was even
higher than the mass threshold case. It reached a difference in the
FoM of ∼230%. This is due the mass-dependence of the shot-

noise, which makes the covariance more constraining than the
single-mass threshold case.

5. Discussion and conclusions

We validated a covariance model for the real-space two-point
correlation function of galaxy clusters in a survey that is compa-
rable to that expected from the Euclid survey in terms of mass
selection, sky coverage, and depth. As this represents a first step
in a more complex analysis, we did not account for the effect of
selection functions and mass-observable relations.

We considered a Gaussian model plus the low-order non-
Gaussian contribution, neglecting high-order terms. This choice
was made because we expect the non-Gaussian terms to be minor
corrections to the main Gaussian covariance. Great efforts to
analytically calculate these complicated terms are therefore not
justified computationally. With this premise, we were interested
in evaluating the impact of the approximations we made to com-
pute this simple model, that is, the absence of three- and four-
point correlation functions, at the level of accuracy required for
the future Euclid cluster catalogs.

We validated the covariance model by a comparison with a
numerical matrix, estimated by means of 1000 Euclid-like light
cones generated with the PINOCCHIO algorithm.

We measured the 2PCF from the light cones with the
Landy & Szalay (1993) estimator and compared the result with
the theoretical prediction of Eq. (6) in the redshift range z = 0−2
and radial range r = 20−130 h−1 Mpc. In the first place, we con-
sidered halos more massive than Mth = 1014 M�. We quanti-
fied the differences between covariance matrices by performing a
likelihood analysis with different covariance configurations, and
evaluating their effect on the cosmological posteriors. To cor-
rect for the halo bias inaccuracy in the likelihood analysis, we
rescaled the predicted 2PCF to the mean measured 2PCF, plus
the cosmology dependence from theory (see Eq. (21)). We con-
strained the parameters Ωm and σ8, to which the cluster cluster-
ing is more strongly sensitive.

The main results of our analysis can be summarized as fol-
lows.

– In Sect. 4.1,we tested different binning schemes to prop-
erly extract the cosmological information. We find negligible
differences when we varied the width of redshift bins. We
also observe a slight increase in the extracted information
when the number of radial bins was increased to Nr ' 30.
We selected the redshift bin width ∆z = 0.4 and a num-
ber of radial log-spaced bins Nr = 30, corresponding to
∆log10(r/h−1 Mpc) = 0.028.

– In Sect. 4.2 we compared the analytical model of Eq. (12)
with the numerical matrix. The former underestimates the
covariance at intermediate and high redshift by ∼30% on the
diagonal and &50% on the off-diagonal terms. We ascribe
this difference to the absence of high-order non-Gaussian
terms and to the inaccuracy of the Poissonian shot-noise
assumption, as well as to the residual inaccuracy of the
assumed model for the halo bias.

– We improved the model by adding three parameters {α, β, γ}
to correct for non-Poissonian shot-noise and halo bias pre-
diction, as well as to absorb the effect of the missing high-
order terms. The parameters were fit from simulations. We
obtained an agreement within 10% with the numerical matrix
at all the redshifts. Even when the missing terms were added
analytically and a perfect description of the halo bias was
provided, the exact value of the shot noise could not be
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Fig. 11. Numerical (shaded areas), analytical (solid lines), and analytical with fitted parameters (dashed lines) covariance matrices as a function of
the radial separation in the redshift bin z ∈ [1.0, 1.5]. The different colors represent the diagonal elements of different auto- and cross-correlation
components of the matrix.

predicted. Correcting the model with these fitted parameters
is therefore a well-motivated procedure.

– From the likelihood analysis, we find that using the ana-
lytical covariance model produces a difference of ∼40%
on the cosmological FoM with respect to the numerical
covariance. This difference drops to ∼5% when the fit-
ted parameters are added to the model. This difference
is considered to be negligible in more complete analyses
(e.g., richness-selected catalogs), where it is most likely
to be absorbed by the broadening of the cosmological
posteriors.

– In Sect. 4.3 we assessed the relevance of the low-order non-
Gaussian term, which was non-negligible at small scales,
especially at high redshift.

– In Sect. 4.4 we find that in this analysis, the likelihood
with cosmology-dependent covariance is statistically pre-
ferred over the iterative method. We also find that evaluating
the covariance at a fixed incorrect cosmology can lead to an
under/overestimated posterior amplitude. Moreover, neglect-
ing the cosmology dependence of the covariance means los-
ing the information contained in the shot-noise term. This
information is not contained directly in the 2PCF, but is
nevertheless information that characterizes the clustering of
clusters.

– In Sect. 4.5 we assessed the cosmological information
encoded in the shape of the halo bias by splitting our sam-
ple into mass bins, finding a significant improvement in the
FoM compared to the mass-threshold case. This improve-
ment is expected to be even stronger for richness-selected
halos, where this dependence can help us to constrain the
mass-observable relation parameters in addition to the cos-
mological ones.

Two main results emerge from this analysis. First, a pure Gaus-
sian model is not sufficient for cluster clustering to correctly
describe the covariance. This is due to the low number densities

that characterize the spatial distribution of these objects, mak-
ing non-Gaussian terms more important as the redshift and the
mass threshold increase. Despite this, a simple semi-analytical
model with parameters fitted from simulations permits us to cor-
rect the inaccuracy of the model and gives an accurate estimate
of the errors associated with the 2PCF. Although this model still
requires the use of simulations to fit the covariance parameters,
the number of simulations is considerably lower than the num-
ber required to compute a good numerical matrix, i.e., approx-
imately O(102) instead of O(103). Furthermore, the resulting
matrix is completely noise free and accounts for the dependence
on cosmological parameters.

Second, the covariance of the 2PCF contains cosmological
information that is not present in the mean value. Therefore, both
quantities should be taken into account in constraining cosmo-
logical parameters to correctly extract the information enclosed
in the cluster clustering, especially when the mass binning is
included. This may require some care when performing a com-
bined analysis of cluster number counts and cluster clustering
because the cosmological information contained in the 2PCF
covariance is also contained in the number counts. We reserve
an examination of this issue in detail for a future dedicated
work.

We showed that a simple semi-analytical model can be used
to accurately describe the cluster-clustering covariance matrix.
However, the calibration of this model is not universal, but
depends on the specific properties of the survey, such as the
geometry or the mass and redshift range. The fit of the covari-
ance parameters must then be performed for each survey in
appropriate simulations. Moreover, these parameters may con-
tain a non-negligible dependence on cosmology, whose impact
is still to be quantified.

Finally, we note that in a cluster-clustering analysis of
observed cluster samples, the uncertainties on the calibration
of the mass-observable relations represent a major (and often
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dominant) systematic. The comprehensive characterization of
the model presented in this work together with the a self-
consistent treatment of the mass calibration and calibration of
the selection function will be presented in a forthcoming paper.
Moreover, the calibration described in this work only holds for a
ΛCDM Universe; further analysis is thus required to validate the
model in nonstandard cosmological models. When a complete
description of the 2PCF and its covariance are obtained, it will
be possible to exploit the clustering of galaxy clusters to obtain
cosmological constraints and to assess its impact on the com-
bined analysis with other cosmological observables at the level
of accuracy that will be achieved by Euclid.
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Appendix A: Cross-correlation covariance

We generalize here the expression for the covariance of the
cross-power spectrum of different tracers proposed by Smith
(2009, Section 3, and Equation 43 specifically), accounting for
the cross correlation of four tracers (mass bins in our case) A, B,
C, and D. Similarly to Eq. (9), we define the covariance of the
cross-power spectrum as

CABCD(k1,k2) =
〈[

P̂AB(k1) − 〈P̂AB(k1)〉
] [

P̂CD(k2) − 〈P̂CD(k2)〉
]〉
.

(A.1)

Substituting the definition of the estimator for the halo cross-
power spectrum,

P̂AB(k1) = V 〈δA(k1) δB(−k1)〉 −
1
n
, (A.2)

we obtain

CABCD(k1,k2) = V2 〈
δA(k1) δB(−k1) δC(k2) δD(−k2)

〉
−

PAB(k1) +
δK

AB

nA

 PCD(k2) +
δK

CD

nC

 . (A.3)

The first term is the cross trispectrum,

V2 〈
δA(k1) δB(−k1) δC(k2) δD(−k2)

〉
=

V2

NANBNC ND

∑
i jkl

eik1·ri−ik1·r j+ik2·rk−ik2·rl

×

〈(
NAi − 〈NAi〉

) (
NB j − 〈NB j〉

) (
NCk − 〈NCk〉

) (
NDl − 〈NDl〉

)〉
,

(A.4)

where NAi is the number of A-type halos (or halos in the Ath
mass bin) at position vector ri.

Performing the calculations analogously to those shown in
Sect. 3 of Smith (2009), we obtain the final expression for the
cross-power spectrum covariance,

CABCD(k1,k2) =
1
V

TABCD(k1,−k1,k2,−k2)

+

PAC +
δK

AC

nA

 PBD +
δK

BD

nB

 δK(k1 + k2)

+

PAD +
δK

AD

nA

 PBC +
δK

BC

nB

 δK(k1 − k2)

+
δK

AC

nA V
BBDA(k1,k2) +

δK
AD

nA V
BBCA(k1,−k2)

+
δK

BC

nB V
BADB(k1,−k2) +

δK
BD

nB V
BACB(k1,k2)

+
δK

CD

nC V
BABC(k1,−k1, 0) +

δK
AB

nA V
BCDA(k2,−k2, 0)

+
δK

AC δ
K
BD

nA nB V
PAB(k1 + k2) +

δK
AD δ

K
BC

nA nB V
PAB(k1 − k2)

+
δK

AB δ
K
CD

nA nC V
PAC(0) +

1

n3
A V

δK
AB δ

K
BC δ

K
CD

+
1

n2
A V

[
δK

AB δ
K
BC PAC(k2) + δK

AB δ
K
BD PAC(k2)

+ δK
AC δ

K
CD PAB(k1) + δK

BC δ
K
CD PAB(k1)

]
.

(A.5)

In case of a single tracer (A = B = C = D), the above expression
recovers the standard covariance given by Eq. (11).

By Fourier transforming Eq. (A.5), integrating over separa-
tion and redshift bins, and neglecting the high-order terms, we
obtain the expression for the cross-2PCF covariance of different
tracers (Eq. 16).

Appendix B: Non-Poissonian shot noise

Fig. B.1. Halo power spectrum. Top panel: Measured (solid black lines),
predicted (dashed darker lines), and fitted (dotted lighter lines) halo
power spectrum for boxes at three different redshifts. Bottom panel:
Percent residuals of the predictions with respect to the measured resid-
uals.

Table B.1. Best-fit parameters for the power spectrum parameters.

Redshift α β

0.5 0.012± 0.010 0.987± 0.002
1.0 0.114± 0.004 1.006± 0.002
1.5 0.104± 0.002 1.013± 0.002
Reference 0 1

To better assess the impact of shot-noise and its deviation
from the Poissonian prediction, we studied the power spectrum,
that is, the quantity that is directly affected by this correction. To
avoid complications due to the redshift integration and the geom-
etry of the survey, we measured the power spectrum from 1000
cubical boxes of size L = 3870 h−1 Mpc with the same proper-
ties and cosmology of the light cones described in Sect. 3.1. We
considered three redshifts z = 0.5, 1.0, and 1.5.

We computed the analytical total halo power spectrum as

Ph,tot(k) = b
2

Pm(k) +
1
n
, (B.1)
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where the matter power spectrum wads calculated by means of
the CAMB code (Lewis et al. 2000). We compared this quantity
with the measured total power spectrum averaged over the 1000
boxes for the three redshift values.

In Fig. B.1 we show the comparison of the measured and pre-
dicted power spectra (to facilitate comparison, we show the halo
power spectrum, i.e., the total spectrum minus the shot noise):
while at low redshift the two quantities agree on almost all the
scales, they clearly deviate between the observed and predicted
spectra, which increase with redshift to more than 20%. We
tried to correct these discrepancies by fitting the two parame-
ters {α, β}, which account for the correction to shot noise and
halo bias, respectively, directly from the power spectrum; the
best fits are shown in Table B.1 and the resulting power spec-
tra are shown in Fig. B.1 (dotted lines). We obtain an agreement
of the fitted power spectra within the 5% level at all the linear
scales at all redshifts. Nevertheless, the values deviate by several
σ from the best-fit parameters found from the covariance fit in
the corresponding redshift intervals (see Table 1). This confirms
that the parameters in the covariance, in addition to correct for
the incorrect prediction of bias and shot noise, also absorb the
effect of the missing higher-order terms in the model.

Appendix C: Covariance parameter fit

Fig. C.1. χ2 distribution for the numerical, analytical, and analytical
with fitted parameters covariance matrices. The reference distribution is
plotted in black.

We show here the results of the covariance parameters fit,
following the method proposed in Fumagalli et al. (2022). In
Fig. C.1 we show the χ2 distributions computed with respect to
the measurements from the 1000 light cones for the three covari-
ance matrices. In Table C.1 we report the mean and standard
deviation for each distribution, with the corresponding 1σ uncer-
tainties computed with the bootstrap technique. By construction,
we expect the numerical matrix to perfectly follow the refer-
ence distribution. While this is true for the mean value, the vari-
ance differs by ∼4σ from the expected value; this discrepancy
is ascribed to the noise in the numerical matrix that tightens the
distribution. Because the errors are quite small, this distribution

Table C.1. χ2distribution test values.

mean variance

Numerical 149.0± 0.5 255.0± 11.7
Model 195.0± 0.7 494.0± 22.8
Model + fit 152.0± 0.6 302.0± 13.9
Reference 150 300

can be considered to agree well with the expected one. Instead,
the model of Eq. (12) produces a distribution that is several σ
different from the expectation, confirming that this model is not
suitable for describing the covariance of the data. Finally, the
fitted matrix agrees well with the reference distribution for the
mean value and the variance. This proves the goodness of our fit
and ensures that the resulting model is able to correctly describe
the covariance as well as if not better than the numerical matrix.
The fitting process provides consistent results when the fit is per-
formed with only 100 simulations.

Appendix D: Cosmology-dependent matrix

To further explore the comparison between the fully cosmology-
dependent likelihood analysis and the iterative method, we gen-
erated 100 synthetic light cones starting from a Gaussian dis-
tribution, with the amplitude given by the covariance model at
the input cosmology. In this way, we ensured that the Gaus-
sian distribution was the true likelihood describing the data
and not just an approximation. We repeated the analysis of
the 100 light cones described in Sect. 4.4, finding a mean
value 〈∆DIC〉synth = −8.4 ± 1.7, to be compared with the value
from the analysis of the 100 PINOCCHIO mocks, that is,
〈∆DIC〉sims = −6.3 ± 0.9. Moreover, by comparing the FoM of
the cosmology-dependent covariance and the iterative method,
we obtain a mean variation of 〈∆FoM〉synth = 176 ± 38% for the
synthetic catalogs and 〈∆FoM〉sims = 142± 33% for the PINOC-
CHIO mocks. Both the DIC and the FoM analyses indicate that
the two analysis are fully consistent. Although this result still
does not define which posteriors are correct when the true like-
lihood is unknown, it shows that at least for this particular anal-
ysis, the narrowing of the posteriors does not primarily depend
on some incorrect approximation of the likelihood function. In
other words, when a Gaussian likelihood is assumed, it is pos-
sible to extract information from the cosmology dependence of
the covariance.

Appendix E: Cosmology dependence of the number
count covariance

We discuss here some additional considerations about the cos-
mology dependence of the covariance, using as an exam-
ple the cluster number counts. It has been shown in
Euclid Collaboration (2021) that the use of a fixed covariance
in the likelihood analysis can bring an under/overestimation of
the FoM by more than 40%, if the cosmology at which the
covariance is evaluated deviates from the fiducial values of an
amount of 2σ from Planck Collaboration VI (2020). Instead, the
input and varying covariance cases do not vary significantly. We
performed the same test on the cosmology dependence of the
covariance described in Sect. 4.4, obtaining the posteriors shown
in Fig. E.1. Unlike for the clustering case, for the number counts,
the mean value is much more constraining than its covariance,
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Fig. E.1. Same as Fig. 9 for cluster number counts.

making the degeneracy direction of the latter totally irrelevant. In
this case, the covariance thus only contributes as an estimation of
the uncertainty, without adding further independent information.

Appendix F: Mass dependence of the covariance

In Fig. F.1 we show the different diagonal contribution to the
covariance, composing the model of Eq. (12). The components
of the model show a different dependence on the mass threshold,
which drastically changes the impact of the various contributions.
While at the high-mass threshold, the number density is low, mak-
ing the shot-noise terms dominant, at low-mass cuts, this contri-
bution is much lower than that from the halo power spectrum.

This mass dependence has an important consequence when
considering the cosmology dependence of the covariance:
Because the additional information extracted from the covari-
ance is mainly given by the shot-noise term, we expect the
impact of the cosmology-dependent covariance to be negligible
when considering low-mass objects. In other words, the results
shown in this work only hold for cluster clustering, while they
would not have any substantial impact on galaxy clustering.
Moreover, the results shown here consider the ideal case of a
simple mass cut; this may vary in real surveys, where selection
functions set a mass- and redshift-dependent richness threshold.
The study of the impact of the covariance in real observable con-
ditions is left for a future work.

Fig. F.1. Diagonal contributions to the covariance matrix composing
the model of Eq. (12). The red, green, and blue lines represent the
three terms of the Gaussian covariance, and the yellow line is the non-
Gaussian term. The comparison is shown for two different mass thresh-
olds: a low-mass threshold Mth = 1 × 1013 M� in the top panel, and a
high-mass threshold Mth = 1 × 1014 M� in the bottom panel. The terms
are obtained by evaluating the covariance model at the input cosmology
in the redshift bin z = 0.8 − 1.2.

A253, page 19 of 19


	Introduction
	Theoretical background
	Two-point correlation function
	Covariance model
	Mass binning
	Likelihood function

	Simulated data
	Simulations
	Measurements

	Results
	Radial and redshift binning
	Covariance comparison
	Non-Gaussian term
	Cosmology dependence
	Mass binning

	Discussion and conclusions
	References
	Cross-correlation covariance
	Non-Poissonian shot noise
	Covariance parameter fit
	Cosmology-dependent matrix
	Cosmology dependence of the number count covariance
	Mass dependence of the covariance

