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Gravity-driven collapses involving large amounts of dense granular material, such as landslides,
avalanches, or rockfalls, in a geophysical context, represent significant natural hazards. Understand-
ing their complex dynamics is hence a key concern for risk assessment. In the present work, we report
experiments on the collapse of quasi-two-dimensional dry granular columns under the effect of grav-
ity, where both the velocity at which the grains are released and the aspect ratio of the column
are varied to investigate the dynamics of the falling grains. At high release velocity, classical power
laws for the final deposit are recovered, meaning those are representative of a free-fall like regime.
For high enough aspect ratios, the top of the column undergoes an overall free-fall like motion. In
addition, for all experiments, the falling grains also spread horizontally in a free-fall like motion, and
the characteristic time of spreading is related to the horizontal extension reached by the deposit at
all altitudes. At low release velocity, a quasi-static state is observed, with scaling laws for the final
geometry identical to those of the viscous regime of granular-fluid flow. The velocity at which the
grains are released governs the collapse dynamics. Between these two asymptotic regimes, the higher
the release velocity, the smaller the impact on the collapse dynamics. The criterion V ≥ 0.4

√
gH0,

where H0 is the initial height of the column, is found for the mean release velocity V not to influence
the granular collapse.

I. INTRODUCTION

Geophysical gravity-driven flows such as landslides or
avalanches are as fascinating as complex due to their
inherent unsteadiness and the large deformation expe-
rienced by the flowing mass during its motion. Under-
standing these phenomena is of great interest as they
pose serious threats to human activity in mountainous
areas [1].
A common approach to characterize these flows, at the
laboratory scale, consists of using granular materials to
mimic the slumping mass. In particular, the collapse of
a column of grains is a simple but relevant configuration
for modeling landslides [2], so that it has been exten-
sively studied in the last two decades [3–31]. The aim of
these studies was to reach a better understanding of such
flows and describe the final morphology of the deposits.
The usual experimental configuration consists of a col-
umn of granular material of height H0 and initial width
L0 (two-dimensional setup [4]) or radius R0 (axisymmet-
ric setup [5]), initially at rest. When the column is re-
leased, the grains fall and spread over the ground. The
initial aspect ratio of the column, defined as a = H0/L0,
was found to govern the final geometry of the deposits.
The influence of a on the final height Hf and runout
length ∆Lf = Lf −L0 has been captured through power
laws both for the rectangular [4, 6] and the axisymmet-
ric [3, 5] geometries. For instance, Lajeunesse et al. [4]
found that for glass beads in a rectangular channel the
relative runout distance ∆Lf/L0 was proportional to a

when a . 3 and to a2/3 when a & 3, while the relative
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final height Hf/L0 was equal to a for a . 0.7 and pro-

portional to a1/3 at higher aspect ratios. In the axisym-
metric configuration, different scaling laws have been ob-
tained [3–5].
Numerical simulations reproduced these scalings for the
final geometry using Contact Dynamics algorithms [7],
shallow water equations [11], or continuum approaches
[16, 24] implementing pressure-dependent granular rhe-
ologies such as the µ(I) rheology introduced by Jop et
al. [32]. The numerical values of the prefactors, ex-
ponents, and critical aspect ratios of these power laws
slightly vary between authors [4, 6–8, 25, 27]. In par-
ticular, the exponents were shown to be independent of
the material properties, which only affect the numerical
prefactors [8, 12, 29]. However, despite extensive works,
no clear explanation exists to rationalize these scalings.
Experiments conducted by Mériaux [10] addressed the
case where inertia is negligible in the problem, i.e., when
the granular column is slowly released using a horizon-
tally moving gate. In this situation, different empiri-
cal scalings are obtained, which differ from those ob-
tained when the column is instantaneously released [7].
In a different context, the collapse of a liquid-immersed
granular column was investigated both experimentally
[17, 26, 30, 31] and numerically [19, 25, 31]. In this case,
the collapse dynamics depends not only on the aspect ra-
tio a of the column, but also on the density ratio between
the granular medium and the surrounding fluid, and the
Stokes number, which compares the grain inertia to the
viscous fluid forces. In particular, the viscous regime, at
low Stokes number, is characterized by the absence of
grain inertia [26].
Nevertheless, whereas extensive efforts were made to in-
vestigate the behavior of the runout distance at the base
of the column, there is a lack of experimental investiga-
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H0 (cm) L0 (cm) a V (m/s)
A [10 - 50] [2.5 - 20] [0.5 - 20] 1.2
B [6 - 45] [7.5 - 20] [0.3 - 6] 1.0× 10−2

C 15 20 0.75 [1.0× 10−3 - 1.2]
D 20 10 2 [1.0× 10−2 - 1.2]
E 37.5 7.5 5 [1.0× 10−3 - 1.2]

TABLE I. Experimental parameters considered in this study:
height H0, width L0, and aspect ratio a of the initial granular
column, and nominal release velocity V of the sliding gate.

tions focusing on the overall dynamics of the collapse.
In the present work, the granular slumping dynamics is
investigated in detail by varying the velocity at which
the grains are released for different aspect ratios of the
initial granular column. The experimental setup is first
described in section II. In section III, the different regimes
observed depending on the release velocity are character-
ized qualitatively. Quantitative results are discussed in
section IV, where we describe both the dynamics at high
and low release velocity as well as the transition between
these two asymptotic regimes.

II. EXPERIMENTAL SETUP

The experiments were conducted using the setup pre-
sented in figure 1. On the left side of a 2 m × 0.15 m ×
0.3 m parallelepipedic glass tank, a column of granular
material is initially retained by a sliding vertical gate,
located at a distance L0 from the left wall. The x-axis is
along the horizontal direction, while the z-axis is along
the vertical one. The origin is located at the bottom
left end of the experimental setup. A flat rough ground,
made with the same grains as the granular column, cov-
ers the bottom of the tank to ensure a no-slip boundary
condition. To avoid possible segregation effects due to
polydispersity [21], we used monodisperse glass beads of
diameter d ' 5 mm and density ρ ' 2.5 g/cm3, with a
measured packing fraction φ ' 0.64. Besides, the angle of
repose θr was measured at about 23.5±1.2◦, in agreement
with previous studies [4, 33]. The spanwise dimension of
the channel was chosen large enough to prevent confine-
ment effects [34]. It was indeed verified that a channel
width greater than 10 cm, corresponding to 20d, ensures
no significant influence of the sidewalls on the granular
collapse [35] [see figure 2.18 herein].
At t = 0, the gate is lifted using a brushless servomotor
so that the column collapses and spreads under the effect
of gravity. Using a motor allows controlling the nomi-
nal velocity V at which the column is released. Across
experiments, this release velocity was varied over three
decades, namely from 1 mm.s−1 to 1.2 m.s−1, for differ-
ent initial aspect ratios of the column.
The parameters considered in this study are reported in
Table I, and are divided into five series. The experiments
conducted at high release velocity (V = 1.2 m.s−1) are
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FIG. 1. Sketch of the experimental setup, showing the initial
rectangular granular column of height H0 and width L0, and
a schematic view of the final deposit of height Hf and runout
length Lf .

gathered in Series A, while experiments performed at a
low release velocity (V = 1 cm.s−1) are collected in Series
B. Finally, the transition between these two limits was in-
vestigated in series C, D and E, each corresponding to a
fixed aspect ratio a of 0.75, 2, and 5, respectively. The
corresponding values for H0 and L0 are also reported in
Table I.
The collapse dynamics is recorded from the sidewall of
the tank using a Nikon D3300 camera, operating at
50 Hz. Image sequences are then processed to obtain the
time evolution of the granular contour using a custom-
made MATLAB routine based on a thresholding method.

III. PHENOMENOLOGY

Different collapse dynamics and geometries of the final
deposit are observed when varying the release velocity.
Two asymptotic behaviors can be highlighted for high
and low values of V . In the first situation, correspond-
ing to the experiments conducted at high release velocity
(series A), the classical granular collapse is observed, as
previously reported in the literature [4, 6, 7]. The grains
quickly fall and spread over the ground with high iner-
tia, as illustrated in figure 2(a)-(f) for a column with a
high aspect ratio (a = 5) and, to a lesser extent, in fig-
ure 3(a)-(e) in the case of a low aspect ratio (a = 0.5).
While the bottom of the column mainly follows a hor-
izontal motion [figures 2(c) and 3(c)], its top seems to
undergo a vertical acceleration for high enough aspect
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ratios (a & 3) [top of the column in figures 2(b) and
2(c)]. This behavior was identified as the free-fall regime
by Staron and Hinch [7]. The overall motion presents
strong unsteadiness and leads to a final geometry that
exhibits a significant curvature of the deposit, especially
at large aspect ratio [figure 2(f)].
The experiments conducted at low release velocity (Series
B) show a very different behavior, as can be seen in fig-
ures 2(g)-(l) and 3(f)-(j). A quasi-static flow occurs, and
at all times the moving granular contour is roughly tri-
angular, with a foot angle close to the angle of repose θr
of the material. Only minor deviations from a triangular
shape are observed, especially at the onset of the gran-
ular slide, as illustrated by the slightly curved interface
in figures 2(h)-(j). In that respect, the final morphology
of the deposit has no significant curvature at the end of
the slide, and for large enough aspect ratios (a & 0.8) it
exhibits a triangular shape, as illustrated in figure 2(l).
At a given aspect ratio, the runout distance is system-
atically larger for experiments at large release velocity,
while the final height is higher for experiments at low re-
lease velocity. For low enough aspect ratios (a . 0.8), a
trapezoidal shape is observed for the final deposit as can
be seen in figure 3(j), since only a fraction of the initial
column collapses. In that case, the runout distance is
again larger for the experiments at large release velocity,
while the final height systematically coincides with the
initial one.
Between these two asymptotic situations of high and low
release velocity, a transition regime is observed: for a
given value of a, when the release velocity is increased,
the runout distance and the curvature of the final deposit
surface increase, while the final height decreases (when
a & 0.8) or stays constant (for a . 0.8).

IV. RESULTS AND DISCUSSION

A. Free-fall regime

The final height Hf and runout distance ∆Lf =
Lf − L0 of the deposit (with Hf and Lf defined as in
figure 1) are systematically determined for each experi-
ment. It should be pointed out that Lf is actually eval-
uated at z = d, i.e., at one grain diameter from the
bottom plate, to reduce measurement uncertainties. The
evolution of the relative final height Hf/L0 and runout
distance ∆Lf/L0 with the initial aspect ratio is presented
in figures 4(a) and 4(b), respectively, for the experiments
at large release velocity (F). In addition, the following
fits, inspired by Lajeunesse et al. [4], for the relative
runout distance,

∆Lf

L0
'

{
1.85 a

2.67 a2/3

for a . 3,

for a & 3,
(1)

and final height,

(a)

(b)

(c)

(d)

(g)

(h)

(i)

(j)

7.5 cm 0.00 s

0.18 s

0.36 s

0.54 s

0.00 s

2.00 s

4.00 s

6.00 s

(e)

(f)

(k)

(l)

0.72 s 8.00 s

1.30 s 14.6 s

FIG. 2. Image sequences of the collapse of a rectangular gran-
ular column with H0 = 37.5 cm and L0 = 7.5 cm (a = 5)
(a)-(f) for high release velocity (V = 1.2 m.s−1), and (g)-(l)
for low release velocity (V = 0.01 m.s−1). The red thick line
indicates the location of the sliding gate.

Hf

L0
'

{
a

0.93 a1/3

for a . 0.8,

for a & 0.8.
(2)

are also reported (black dashed lines). An excellent
agreement is observed between the experimental data ob-
tained at high release velocities and the scaling laws given
by (1) and (2).
To investigate in more detail the dynamics of the collapse,
we observe the time evolution of the height H(x, t) for
different values of x, between 0 and L0. In addition, the
time evolution of the spreading length L(z, t) is also ex-
tracted at different altitudes z, between 0 and Hf , for
all aspect ratios considered in this study. An example
of the time evolution of these parameters is reported in
figures 5(a)-(b), for an initial column with H0 = 37.5 cm
and L0 = 7.5 cm (a = 5). In figure 5(a), H(x, t) is plot-
ted as a function of t− t0z, where t0z corresponds to the
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(a)0.00 s

(b)0.14 s

(c)0.28 s

(d)0.42 s

(e)1.34 s

(f)0.00 s

(g)1.48 s

(h)2.96 s

(i)4.44 s

(j)7.32 s

20 cm

FIG. 3. Image sequences of the collapse of a rectangular gran-
ular column with H0 = 10 cm and L0 = 20 cm (a = 0.5)
(a)-(e) for high release velocity (V = 1.2 m.s−1), and (f)-(j)
for low release velocity (V = 0.01 m.s−1). The red thick line
indicates the location of the sliding gate.

time for which a vertical displacement greater than 1.5d
is detected. H(x, t) decreases from H0 to a final height
Hf (x), as presented in figure 5(a) for ten equally-spaced
values of x between 0 and L0. An acceleration phase,
followed by a deceleration stage, is observed. During the
acceleration period, all experimental data collapse on a
master curve, whose equation corresponds to a free-fall
like motion,

H(x, t) ' H0 −
1

2
αg (t− t0z)

2
, (3)

where α ' 0.56. As illustrated in figure 5(a), the different
curves depart from this law of motion when the decelera-
tion stage of the collapse occurs, here around 0.25 s. This
separation happens at a slightly different time for each
curve, and leads to different final heights depending on
the considered value of x.
In figure 5(b), the spreading length L(z, t) is plotted,
for ten equally-spaced altitudes between 0 and Hf , as
a function of t − t0x, where t0x is the time the bottom
of the sliding gate reaches z, which allows initiating the
spreading at this altitude. At each value of z, L(z, t) also
exhibits an acceleration phase, followed by a decelera-
tion. At the end of the deceleration stage, L(z, t) reaches
an asymptotic value Lf (z), after passing through a max-
imum value.
The acceleration phases at all altitudes also seem to col-
lapse on a master curve, which is found to be proportional

10
0

10
1

10
0

(a)

10
0

10
1

10
0

10
1

(b)

FIG. 4. Evolution of (a) the relative final height Hf/L0 and
(b) the relative runout distance ∆Lf/L0 of the deposits as a
function of the initial aspect ratio a of the column. (F) Data
from series A; (�) data from series B; ( ) power laws from
equations (1) and (2); ( ) equations (10a), (10b), (11a), and
(11b), with θr = 23.5◦; ( ) critical aspect ratios of the free-
fall regime (a) a ' 0.8 and (b) a ' 3 from equations (1) and
(2), respectively; ( ) critical aspect ratio of the quasi-static
regime acr ' 0.87, as defined in equation (12).

to a free-fall like motion,

L(z, t) ' L0 +
1

2
βg (t− t0x)

2
, (4)

with β ' 0.30. The experimental curves deviate from
equation (4) earlier at larger altitude, revealing that the
acceleration stage of the spreading is getting shorter for
increasing values of z.
The evolution of the coefficients α and β with the aspect
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0
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0.2

0.3

0.4

H
0

(a)

(b)

z=0

z=H
f

x=0

x=L
0

L
0

FIG. 5. Example of the time evolution of (a) the height
H(x, t) and (b) the spreading length L(z, t) of the collapse,
for an initial column of height H0 = 37.5 cm and width
L0 = 7.5 cm (a = 5). The different curves correspond to
ten equally-spaced values of (a) x between 0 and L0 (from
top to bottom) and (b) z between 0 and Hf (from top to bot-
tom); The thick lines show equation (3) in (a), and equation
(4) in (b).

ratio of the column a is reported in figure 6 for all ex-
periments at large release velocity, i.e., of series A. It is
important to note that there is no available values for
α as soon as a . 3, as it was not possible to distin-
guish experimentally a clear acceleration stage, such as
the one presented in figure 5(a), for these low aspect ra-
tios. This observation is in agreement with results from
previous numerical simulations [7, 25], which showed that

10
0

10
1

0

0.5

1

FIG. 6. Evolution of the coefficients (•) α and (�) β with
the aspect ratio a, at high release velocity. Mean values ( )
α = 0.53 and ( ) β = 0.30 are also indicated.

the free-fall of the top of the column only occurred when
a & 2.5. Despite some scatter of the data, the β val-
ues are significantly lower than the α values. There is
no significant influence of the aspect ratio on β, as all
experiments are close to a mean value β ' 0.30 ± 0.06.
For the coefficient α, it can be noticed that values when
a . 8 are slightly below those obtained at higher aspect
ratios, which saturates at a value close to 0.6. However,
at first order, all values are roughly distributed around
a mean value α ' 0.53 ± 0.12. This value, smaller than
one, slightly differs from past numerical results of Staron
and Hinch [7] and Jing et al. [25], but also from the ex-
perimental work of Balmforth and Kerswell [8]. It could
be an indication that the material properties as well as
the boundary conditions at the sidewalls may have a sig-
nificant influence on α and β.
These observations can be summarized briefly as follows:
the top of the column uniformly undergoes a free-fall like
motion at an acceleration of about 0.5g as soon as a & 3,
while the column spreads laterally, again in a “free-fall”
like motion at a typical acceleration of about 0.3g, for all
aspect ratios considered in this study.
To further confirm this free-fall like dynamics, two char-
acteristic times are systematically extracted from the
H(x, t) and L(z, t) curves: the characteristic times of ver-
tical fall τz(x) and of horizontal spreading τx(z) are taken
as the times at which H(x, t) and L(z, t) deviate by more
than 10% (i.e., out of the error range) from equations (3)
and (4), respectively.

For all experiments at large release velocity (series A),
figures 7(a)-(b) show these characteristic times τz(x)
and τx(z) as functions of the typical free-fall times



6

0 0.2 0.4

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6
0
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0.3
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(a)

(b)

FIG. 7. (a) Evolution of τz(x) with
√

2∆H(x, τz)/g. (F) All
experiments where a & 3, with different initial aspect ratios
a and at different positions x from the left wall. The solid
line ( ) is the best linear fit of slope 1.39. (b) Evolution of

τx(z) with
√

2∆L(z, τx)/g. (F) All experiments, for different
aspect ratios a and at different heights z from the bottom.
The solid line ( ) is the best linear fit of slope 1.86. The
inset shows the comparison between the final runout distance
∆Lf and the typical spreading length ∆L(0, τx) at the base
of the column at time τx(0), with ( ) the best linear fit of
slope 1.43.

√
2∆H(x, τz)/g, where ∆H(x, τz) = H0 −H(x, τz), and√
2∆L(z, τx)/g, where ∆L(z, τx) = L(z, τx)−L0, respec-

tively, at all values of x (resp. z) considered. The best
fit of the data from figure 7(a) leads to

10
0

10
1

1

1.5

2

2.5

3

3.5

4

FIG. 8. Evolution of the relative characteristic time of spread-
ing at the base of the column τx(0)

√
g/(2H0) as a function

of the aspect ratio a. (F, with error bars) experimental data;

( ): τx(0) = 2.3
√

2H0/g; ( ): τx(0) = 2.6a−1/6
√

2H0/g.

τz(x) ' 1.39
√

2∆H(x, τz)/g, (5)

where the prefactor is very close to 1/
√
α ' 1.37. This

confirms that for tall columns the time of collapse τz(x)
is proportional to the free-fall time over the typical vari-
ation in height ∆H(x, τz). We should emphasize again
that this free-fall like motion of the top of the column is
absent for low aspect ratios (a . 3). In addition, figure
7(b) shows that the relation

τx(z) ' 1.86
√

2∆L(z, τx)/g, (6)

fits well the data, with a prefactor again in agreement

with the value 1/
√
β ' 1.82, which means that the char-

acteristic time of spreading τx(z) at an altitude z is also
proportional to the free-fall like time over the correspond-
ing typical lateral extension ∆L(z, τx). Moreover, the
inset in figure 7(b) compares the final runout distance
∆Lf to the spreading length ∆L(0, τx) at the base of
the column at time τx(0). It should be pointed out that
here again ∆L(0, τx) and τx(0) are evaluated at z = d to
reduce measurement uncertainties. A linear relation of
slope 1.43 can be inferred between the two characteristic
lengths. Using this observation, we obtain from equation
(6) the following scaling for the time of collapse at the
base of the column:

τx(0) ∝
√

2∆Lf/g. (7)
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In addition, considering the expressions provided by
equation (1) for the runout length ∆Lf we obtain

τx(0) ∝


√

2H0/g

a−1/6
√

2H0/g

for a . 3,

for a & 3.
(8)

Hence, for low aspect ratios (a . 3), the characteristic
time of spreading should be proportional to the free-fall
time

√
2H0/g over the initial height H0, in agreement

with the findings of Lajeunesse et al. [4]. However, there
should also be a subtle influence of a on the spreading
time for high aspect ratios (a & 3), which could explain
the behavior reported by Lacaze et al. [14] [see figure (8)
therein].
The characteristic spreading time at the bottom of the
column, τx(0), normalized by

√
2H0/g, is shown as a

function of the aspect ratio in a log-log representation in
figure 8. A quite good agreement is observed with the
scalings of equation (8), despite some scattering. In par-
ticular, a plateau value of about 2.3 is obtained, for a
lower than a critical value comprised between 2 and 3,
while a slight decrease, beyond the error range, occurs
at larger values of a, which is compatible with a power
law of exponent −1/6. These observations highlight the
influence of the aspect ratio of the column on the char-
acteristic time of the granular spreading.

B. Quasi-static regime

For a low release velocity of the granular column, i.e.,
corresponding to the experiments of series B, the iner-
tia of the grains is negligible, so that the granular slide
exhibits a quasi-static evolution. In figures 4(a) and
4(b), the relative final height Hf/L0 and runout distance
∆Lf/L0 are shown for these experiments (�), with both
parameters presenting a strict growth with the initial as-
pect ratio of the column. In figure 4(a), the relative final
height is found to either coincide (when a . 0.9) or be
higher (for a & 0.9) than the values obtained at large
release velocity (series A). In figure 4(b), the runout dis-
tance obtained for experiments at low release velocity is
systematically lower than for experiments at large release
velocity. As already mentioned in section III, a triangular
shape with a straight slope is obtained experimentally for
high enough aspect ratios (a & 0.9), as observed in figure
2(l). Considering the conservation of mass, and that the
final geometry is described by the angle of repose θr of
the granular material leads to

H0L0 =
HfLf

2
, (9a)

Hf

Lf
= tan θr. (9b)

Solving equation (9) in terms of Hf and Lf leads to the
following expressions

Hf

L0
=

√
2a tan θr, (10a)

∆Lf

L0
=

√
2a

tan θr
− 1. (10b)

In contrast, for low enough aspect ratios, namely when
a . 0.9, a trapezoidal shape is obtained, as part of the
initial column remains at rest during the collapse [see
figure 3(j)]. Hence, using once again mass conservation
and the fact that in this case Hf = H0, we obtain the
following relations

Hf

L0
= a, (11a)

∆Lf

L0
=

a

2 tan θr
. (11b)

The critical aspect ratio ac, which separates the triangu-
lar shape regime from the trapezoidal one, is straightfor-
wardly derived from the equality of equations (10a) and
(11a):

ac = 2 tan θr. (12)

The predictions given by equations (10a), (10b), (11a),
and (11b) are reported in figure 4. An excellent agree-
ment is obtained between these scalings and experiments
made at low release velocity, for θr = 23.5◦. This value
of θr is consistent with the measured angle of repose of
the spherical glass beads used in the present study. It
also gives the following estimate for the critical aspect
ratio: ac ' 0.87, which corresponds quantitatively to the
observed transition between trapezoidal and triangular
shapes around 0.9.
It should be mentioned that these scalings for the quasi-
static regime are identical to those obtained by Rondon
et al. [17], or by Bougouin and Lacaze [26], for the col-
lapse of an initially dense granular column in a viscous
fluid. This is not surprising, as inertia is also negligible
in the viscous regime, so that here again the collapse is
quasi-static and the final morphology is governed by the
angle of repose of the material. It is also in very good
quantitative agreement with the results of Mériaux for
the geometry of the deposits [10]. Indeed, Mériaux stud-
ied the quasi-static collapse of a granular column when
the retaining wall is slowly removed horizontally. In the
case of glass beads with a diameter between 600 µm and
850 µm, the relative final height was found to be equal to
a when a . 2 and to a0.45 when a & 2, while the rescaled
runout distance ∆Lf/L0 was equal to a when a . 2 and
to 1.3 a0.7 when a & 2. These expressions give results
of the same level of accuracy as equations (10a), (10b),
(11a), and (11b) for the data at low release velocity, in
the range of explored aspect ratios.
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FIG. 9. (a) Time evolution of the runout of a column with
H0 = 37.5 cm , L0 = 7.5 cm (a = 5), with a release veloc-
ity of 0.2 m.s−1; ( ) estimation of the mean front velocity,
with a slope vf = 0.52 m.s−1 in this case. (b) Evolution of
the front velocity vf with the mean release velocity V , both
non-dimensionalized by Vf . (•) a = 0.75 ; (�) a = 2; (F)
a = 5; The horizontal dash-dotted line shows the plateau
value vf/Vf = 0.62; The continuous line corresponds to equa-
tion (15) with θr = 23.5◦; The vertical dashed lines highlight
the values V /Vf ' 0.2 marking the limit of the quasi-static
regime, and V /Vf ' 0.35 above which no significant influence
of the release velocity is observed.

C. Influence of the release velocity

The previous subsections characterized the two lim-
iting cases of the free-fall and the quasi-static regimes,

considering a high or low enough velocity of the sliding
gate, respectively. A transition is expected between these
two asymptotic behaviors, where the release velocity V
has still an impact on the collapse dynamics, and in par-
ticular on the velocity of the granular front vf at the base
of the column.
To finely study the influence of the sliding gate, we com-
pare the mean value of the release velocity V , integrated
over the time during which the gate is in contact with the
grains, to the mean velocity vf of the advancing granu-
lar front taken at the foot of the column, i.e., at z = d.
The value of vf is determined here as in Lajeunesse et al.
[4], i.e., by taking the tangent of the runout distance as
a function of time within the region of nearly constant
velocity, as illustrated in figure 9(a) for an intermedi-
ate release velocity (nominal value V = 0.2 m.s−1, mean
value V ' 0.19 m.s−1). Even though the acceleration
stage of the granular front at high release velocities was
found to be quadratic in time in section IV.A., this is not
the case for the quasi-static regime. Indeed, for low re-
lease velocities the advancing front is roughly triangular,
with a shape dictated by the angle of repose of the mate-
rial. Hence, the definition of the mean front velocity vf
gives a more general indication of the collapse dynamics
for the present discussion.
In figure 9(b), we report for all data of series C-E the evo-
lution of vf as a function of V , both normalized by the
typical advancing front velocity Vf of the free-fall regime,

Vf =

√
2βg∆Lf '

 0.74
√

2gH0

0.89 a−1/6
√

2gH0

for a . 3,

for a & 3,

(13)
where β ' 0.30. The release velocity was varied over
three decades in these experiments, for three represen-
tative initial aspect ratios of 0.75 (•), 2 (�) and 5 (F),
respectively.
All data collapse well onto a master curve, showing
the same behavior at all considered aspect ratios. For
V /Vf . 0.2, the velocity of the advancing granular front
vf is governed by the release velocity, and a quasi-static
evolution is observed for the granular slide. As discussed
in section III, in this case, the moving interface exhibits
at leading order a triangular shape dictated by the angle
of repose of the material. Hence, during the spreading of
the column, the runout distance, which can be approxi-
mated by ∆L(0, t) ' vf t as illustrated in figure 9(a), is

related to the distance zg(t) ' V t from the bottom plane
to the bottom of the gate through the relation

∆L(0, t) ' zg(t)

tan θr
, (14)

which, by taking the derivative of each terms, gives the
following relation between vf and V

vf '
V

tan θr
. (15)
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This relation is represented by the continuous line in
figure 9(b), which fits well the experiments at low re-
lease velocity (V /Vf . 0.2), with θr = 23.5◦. When

V /Vf & 0.35, vf/Vf saturates at a constant value of

about 0.62 ± 0.05. Therefore, the value of V does
not influence the granular collapse dynamics anymore,
which corresponds to the free-fall regime. Combining
this plateau value of 0.62 with equation (15), the tran-
sition between these two asymptotic regimes is expected
around V ' 0.62 tan θrVf ' 0.3 Vf . The saturation is

clearly observed when V /Vf & 0.35, which gives a con-
dition to prevent any significant effects of the release ve-
locity on the collapse dynamics. Indeed, for the material
used in the present study, namely spherical glass beads,
a conservative criterion using equation (13) would read

V ≥ γ
√
gH0. (16)

with γ ' 0.4. The coefficient γ may slightly depend
on the characteristics of the material considered, for in-
stance the angle of repose of the granular medium, but
is independent of the aspect ratio of the initial column.

V. CONCLUSION

In the present paper, we report experimental results
on the collapse of a dry granular column, where the ve-
locity at which the grains are released is controlled. The
aim was to get insights into the collapse dynamics and its
influence on classical parameters such as the final height
or the runout distance of the final deposit. The release
velocity was varied over three decades, for several initial
aspect ratios of the column. Different regimes for the col-
lapse were identified depending on the release velocity V .
For large values of V , classical power laws are recovered
for Hf and ∆Lf as a function of the initial aspect ratio a
[4]. In this regime, the deposits exhibit a significant cur-
vature. For high enough aspect ratios (a & 3), the top
of the granular column undergoes an overall free-fall like
motion at a typical acceleration smaller than gravity, of
about 0.5g, followed by a deceleration to the final state.
During the spreading of the collapsing column, the grains
moving horizontally also experience a “free-fall” like mo-
tion with a smaller acceleration, of about 0.3g, followed
by a deceleration stage leading to the final state of the
deposits. By focusing on the bottom of the column, the
duration of the granular collapse is found to either be
constant at a . 3 or to slightly depend on the aspect

ratio of the column when a & 3, through a power law
of exponent −1/6. This result explains the behavior re-
ported in [14].
At low release velocities, a quasi-static evolution for the
collapse is observed, where the motion is mainly con-
trolled by the angle of repose of the material. In this
case, the final shape of the deposits is triangular for high
enough aspect ratios (a & 0.9), and trapezoidal other-
wise (a . 0.9), as part of the column remains strictly
static. Based on these observations and using the con-
servation of mass, expressions for the final height Hf and
runout distance ∆Lf as a function of a are derived, and
the critical aspect ratio ac separating the triangular and
the trapezoidal shapes is found to depend only on the
angle of repose of the material. These scalings are found
to be identical to those obtained for the viscous regime
of the collapse of immersed granular columns [26], and
quantitatively match the empirical scalings of Mériaux
[10]. In that respect, they seem to be characteristic of
a quasi-static granular collapse, occurring once inertia is
negligible.
Between these two asymptotic regimes at high and low
release velocity, a transition exists, where an increasing
release velocity has a decreasing influence on the collapse
dynamics. In the present study, no more effect of the
mean release velocity V on the collapse dynamics is ob-
served as soon as V & 0.35 Vf , where Vf is the typical
advancing front velocity of the free-fall regime. This re-
lation gives a practical criterion that should be used to
ensure that the release process has no influence on the
collapse dynamics in future experimental works. For the
present investigation, in which glass beads were used, this
criterion is V ≥ 0.4

√
gH0.

In this study, we focused on quasi-two-dimensional gran-
ular collapses. However, it would be interesting to com-
pare these results to the axisymmetric case, where differ-
ent scalings govern the final morphology of the deposit
[3]. Besides, such a configuration is more realistic for de-
scribing large geophysical flows such as landslides, which
are a threat for human facilities both in mountainous and
coastal areas, as landslides entering into water are known
for their tsunamigenic potential [36–40].
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