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Diffusion and robustness of boundary feedback stabilization
of hyperbolic systems

À notre maitre et ami Eduardo

Georges Bastin∗ , Jean-Michel Coron† and Amaury Hayat‡

Abstract

We consider the problem of boundary feedback control of single-input-single-output (SISO)
one-dimensional linear hyperbolic systems when sensing and actuation are anti-located. The
main issue of the output feedback stabilization is that it requires dynamic control laws that
include delayed values of the output (directly or through state observers) which may not
be robust to infinitesimal uncertainties on the characteristic velocities. The purpose of this
paper is to highlight some features of this problem by addressing the feedback stabilization
of an unstable open-loop system which is made up of two interconnected transport equations
and provided with anti-located boundary sensing and actuation. The main contribution is to
show that the robustness of the control against delay uncertainties is recovered as soon as an
arbitrary small diffusion is present in the system. Our analysis also reveals that the effect of
diffusion on stability is far from being an obvious issue by exhibiting an alternative simple
example where the presence of diffusion has a destabilizing effect instead.

1 Introduction
The output feedback stabilization of single-input-single-output (SISO) one-dimensional linear
hyperbolic systems is a subject that has been widely studied in the scientific literature since
the nineties when both actuation and sensing are located at the boundaries. In the case where
the control input and the measured output are co-located at the same boundary, the problem is
now relatively well understood and has given rise to numerous publications, both in the linear
case [1, 3] and in the nonlinear case [5, 13], in particular in fluid mechanics for Saint-Venant
equations [10, 5, 16] or Euler equations [14], to name just a few of the many publications on
the subject.

In contrast, when the actuator acts through one boundary, whereas the sensor is placed
at the other boundary, the output feedback stabilization problem can become much more
complicated and remains largely unexplored in the literature. As Krstic et al. pointed out
in [18], the difficulty arises from the fact that “the input-output operator is no longer passive
(...) which precludes the application of simple controllers”. Anti-located sensing and actuation
requires to use dynamic compensators that include delayed values of the output (directly or
through state observers). A meaningful example is the output feedback stabilization of a simple
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unstable wave equation addressed in [18] using a separation principle that combines a state
feedback control with a state observer. This approach is extended to the adaptive stabilization
of more general linear hyperbolic systems with unknown parameters in [2] and [7]. Recently,
an experimental application to the control of hydraulic waves is reported in [23], where the
actuation is provided by a moving boundary while the water level is measured at the other
boundary.

We can also mention references [4, 17] which deal with MIMO systems with anti-located
multivariable sensors and actuators for n× n linear hyperbolic systems expressed in a charac-
teristic form having a very specific input/output structure.

It is important to note that the use of control laws containing delayed output feedback or
state observers can however prove to be problematic because it can be strongly sensitive to
uncertainties on the characteristic velocities of the plant model [20, 12, 8]. This happens when
the control design relies on a (supposed) exact knowledge of some characteristic velocities that
must be exactly compensated in the control law such that the stability can be destroyed by
arbitrarily small modelling uncertainties.

In this paper, our purpose is to highlight some features of this problem by addressing the
feedback stabilization of an unstable open-loop system which is made up of two interconnected
transport equations and provided with anti-located boundary sensing and actuation.

Our paper is organized as follows. The control problem is described in Section 2. It is first
shown that the considered control system is open loop unstable and cannot be stabilized by a
simple proportional output feedback. Then, it is shown that the system can be stabilized by
a dynamic controller that involves a delayed output feedback. However, this control turns out
not to be robust with respect to delay uncertainties precisely because the control requires a
(utopian) exact knowledge of the transport velocity.

The main contribution of this paper is to show that the robustness of the control against
delay uncertainties is recovered as soon as an arbitrary small diffusion is present in the system.
For that purpose, in Section 3, it is first assumed that the considered plant is subject to a slight
phenomenon of diffusion, interpreted as a viscosity and the corresponding (unstable) input-
output transfer function is computed. Then in Sections 4 and 5, we show that the dynamic
output (non robust) feedback designed for the inviscid case also stabilizes exponentially the
viscous system when the (unknown) diffusion is small, and that, in this case, the control proves
to be perfectly robust, even if the diffusion is almost negligible. Interestingly, an upper bound
on the decay rate appears when adding a small viscosity, and this upper bound is uniform with
respect to the diffusion parameter η when it is small, while for the unperturbed system with
η = 0 the decay rate is infinite (the system is finite-time stable).

Our analysis in Sections 4 and 5 also reveals that the effect of diffusion on stability is far
from being an obvious issue, contrary to what one might expect. It is indeed well known that,
in hyperbolic systems, the presence of diffusion (or friction) can have a destabilizing as well as
a stabilizing effect (see for instance the references [11, 22]). This issue is further discussed in
Section 6 where we present an example of another simple hyperbolic system which simplifies
the previous case and for which, however, the same diffusion term destroys the stability instead
of strengthening it.

Some final conclusions are given in Section 7.

2 Description of the control problem
We consider the open loop control system represented in Figure 1. The system is made up of
the positive feedback interconnection of two identical transport systems. The system dynamics
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are described in the time domain by the following equations:

∂ty1(t, x) + υ∂xy1(t, x) = 0, (1a)

∂ty2(t, x) + υ∂xy2(t, x) = 0, (1b)

y1(t, 0) = y2(t, 1) + U(t), (1c)

y2(t, 0) = y1(t, 1), (1d)

Y (t) = y1(t, 1). (1e)

where U(t) is the control input and Y (t) is the measurable output. In the classical pure
transport equations (1a) and (1b), the parameter υ > 0 denotes the transport velocity.

+
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Figure 1. The structure of the open loop control system considered in this paper.

In the frequency domain, it is well known that the transfer function of the transport systems
(1a) and (1b) is

fo(s) = e−sτ with the time delay τ = 1
υ
, (2)

where s denotes the Laplace complex variable.
It follows that the overall input-output transfer function of the open loop system (1) is

G(s) = Y(s)
U(s) = fo(s)

1− f2
o (s) = esτ

e2sτ − 1 , (3)

where Y(s) and U(s) denote the Laplace transforms of the output Y (t) and the input U(t)
respectively.

The poles of the system are the roots of the characteristic equation

e2sτ − 1 = 0. (4)

This open loop control system is clearly not asymptotically stable since all the poles are located
on the imaginary axis.

In order to illustrate the challenge that arises when actuation and sensing are anti-located,
we shall first show that, despite its apparent simplicity, this unstable system cannot be stabi-
lized with a simple proportional output feedback, i.e. with a static proportional controller of
the form

U(t) = −2kpY (t) (5)

where kp 6= 0 is a control tuning parameter.
In the frequency domain, for the system (3) with the control law (5) the characteristic

equation of the closed loop system is:

e2sτ + 2kpesτ − 1 = 0. (6)

Solving this equation for esτ , we get

esτ = −kp ±
√

1 + k2
p. (7)
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Then for any kp 6= 0 there is an infinity of system poles σ+ iω lying on two vertical lines with
real parts:

σ = υ ln
(√

1 + k2
p + |kp|

)
> 0 and σ = υ ln

(√
1 + k2

p − |kp|
)
< 0. (8)

It follows that the unstable system (3) cannot be stabilized with the static controller (5).
Let us now show that the system can actually be stabilized by a dynamic controller that

involves a delayed output feedback.
From (3), it follows that the input-output dynamics of the system (1) in the time domain

can alternatively be represented by the delay-difference equation

Y (t)− Y (t− 2τ) = U(t− τ). (9)

A simple and natural candidate for a stabilizing feedback control law is then

U(t) = −2k1Y (t)− k2Y (t− τ) (10)

where k1 and k2 are control tuning parameters. With this control law, the closed loop dynamics
are

Y (t) + 2k1Y (t− τ) + (k2 − 1)Y (t− 2τ) = 0. (11)

Clearly, we can conclude that the controller (10) exponentially stabilizes the system (1) if the
tuning parameters k1 and k2 are selected such that the roots of the polynomial

w2 + 2k1w + (k2 − 1) (12)

are located inside the unit circle. However, this should be considered with caution because it
is well known that boundary feedback stabilization of hyperbolic systems with delayed control
may be sensitive to delay modeling errors (see e.g. [20]). To clarify this point we consider the
time domain representation of the dynamical control law (10) defined as

∂tŷ2(t, x) + υ∂xŷ2(t, x) = 0,
ŷ2(t, 0) = y1(t, 1),

(13)

U(t) = −2k1y1(t, 1)− k2ŷ2(t, 1), (14)

where the transport equation (13) with transport velocity υ = 1/τ is equivalent to the time
delay τ of the control law (10). With this definition, the closed loop system (1), (13), (14) is
then represented as follows:

∂ty1(t, x) + υ∂xy1(t, x) = 0, (15a)

∂ty2(t, x) + υ∂xy2(t, x) = 0, (15b)

∂tŷ2(t, x) + υ∂xŷ2(t, x) = 0, (15c)
y1(t, 0)

y2(t, 0)

ŷ2(t, 0)

 =


−2k1 1 −k2

1 0 0

1 0 0


︸ ︷︷ ︸

K


y1(t, 1)

y2(t, 1)

ŷ2(t, 1)

 . (15d)

Now, as proved in Appendix A, for the matrix K defined in (15d), it can be shown that

ρ̄(K) = |k1|+
√

1 + k2
1 + |k2| > 1 for all (k1, k2) ∈ R2, (16)

where ρ̄(K) is defined as follows:

ρ̄(K) := max{ρ(diag
{
e−iθ1 , e−iθ2 , e−iθ3

}
K); (θ1, θ2, θ3)T ∈ R3}, (17)
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ρ(M) denoting the spectral radius of the matrix M . By [21] (see also [15, Chapter 9, Theorem
6.1] and [5, Chapter 3]), we know that ρ̄(K) < 1 is a necessary (and sufficient) condition
to have a stability which is robust against small uncertainties in the characteristic velocities.
Although the ideal closed loop system (15) is exponentially stable (with all the poles strictly
located in the left half complex plane provided k1 and k2 are chosen accordingly), the stability
can be destroyed by an arbitrarily small difference in characteristic velocities between the plant
equations (15a), (15b) and the controller equation (15c). More precisely, if we assume that
the physical transport velocities are υ+ ε1, υ+ ε2 with ε1, ε2 representing uncertainties in the
plant equations (15a), (15b) rewritten as follows:

∂ty1(t, x) + (υ + ε1)∂xy1(t, x) = 0, (18a)

∂ty2(t, x) + (υ + ε2)∂xy2(t, x) = 0, (18b)

then the closed loop system (15) with (15a), (15b) replaced by (18a), (18b) may become
unstable, with poles moving to the right half complex plane even for arbitrarily small εi
perturbations.

Should this necessarily mean that the control law (10) with delayed feedback could not be
applied in practice? Our objective, in this paper, is exactly to prove the opposite! Indeed, our
main contribution will be to show that, even with the simple control law (10), the robustness
of the output feedback stabilization against delay uncertainties can be recovered as soon as an
arbitrary small diffusion is present in the system. Our analysis will also reveal, however, that
the effect on stability of adding an arbitrarily small diffusion is far from obvious, contrary to
what one might expect. Indeed, while diffusion strengthens the robustness of the exponential
stability for the 2× 2 problem (18), it can also destroy the stability of similar simpler systems
as we will see in Section 6.

We shall consider the special case of a dead beat control where k1 = 0 and k2 = 1. In
that case the characteristic equation of the closed loop inviscid system reduces to e2sτ = 0,
meaning that all the poles of the system have negative real parts that are moved off to infinity.
However, for that system we have

ρ̄(K) =
√

2 (19)

showing a strict lack of robustness of the control w.r.t. delay inaccuracy.

3 The open loop control system with diffusion
We consider again a control system as represented in Figure 1. However, we assume here that
the two transport systems are subject to a slight phenomenon of diffusion. The system is
therefore made up of the feedback interconnection of two identical transport systems that are
perturbed by a diffusion term which can be interpreted for example as a viscosity in the case
of a fluid. For simplicity and without loss of generality, we assume a unit nominal transport
velocity υ = 1. The dynamics of the open loop control system are therefore described in the
time domain by the following equations:

∂ty1(t, x) + ∂xy1(t, x)− η∂2
xxy1(t, x) = 0, (20a)

∂ty2(t, x) + ∂xy2(t, x)− η∂2
xxy2(t, x) = 0, (20b)

y1(t, 0) = y2(t, 1) + U(t), (20c)

y2(t, 0) = y1(t, 1), (20d)

∂xy1(t, 1) = ∂xy2(t, 1) = 0 (20e)

Y (t) = y1(t, 1). (20f)

5



As above U(t) is the control input and Y (t) is the measurable output while η > 0 is the
viscosity coefficient.

In the frequency domain, with y1(s, x) and y2(s, x) denoting the Laplace transforms of
y1(t, x) and y2(t, x), the system is written

sy1(s, x) + ∂xy1(s, x)− η∂2
xxy1(s, x) = 0, (21a)

sy2(s, x) + ∂xy2(s, x)− η∂2
xxy2(s, x) = 0, (21b)

y1(s, 0) = y2(s, 1) + U(s), (21c)

y2(s, 0) = y1(s, 1), (21d)

∂xy1(s, 1) = ∂xy2(s, 1) = 0 (21e)

Y(s) = y1(s, 1). (21f)

For any value of s, the solutions of the differential equations (21a), (21b) are written

yi(s, x) = Ai(s)eλ1(s)x +Bi(s)eλ2(s)x, i = 1, 2, (22)

where λ1(s), λ2(s) are the roots of the polynomial

ηλ2 − λ− s = 0, (23)

which implies that

λ1(s) = 1 +
√

1 + 4ηs
2η , λ2(s) = 1−

√
1 + 4ηs
2η . (24)

In (24) and in the following
√
· denotes the principal value of the square root, which is well

defined except when 1 + 4ηs ∈ R−; however this particular case implies that s is real and
s ≤ −1/4η and therefore is negative and converges to −∞ when η → 0+. We will see later
on that this case can be considered separately. Using the solution (22) and the boundary
condition (21e), we have for each i = 1, 2,

Ai(s) +Bi(s) = yi(s, 0), (25)

λ1(s)Ai(s)eλ1(s) + λ2(s)Bi(s)eλ2(s) = 0, (26)

yi(s, 1) = Ai(s)eλ1(s) +Bi(s)eλ2(s). (27)

Eliminating Ai(s) and Bi(s) between these three equations, we get the transfer function fη(s)
of each viscous transport system:

fη(s) = yi(s, 1)
yi(s, 0) = λ1(s)− λ2(s)

λ1(s)e−λ2(s) − λ2(s)e−λ1(s) . (28)

Remark that in the notation fη, we use a subscript to emphasize the dependency on the
viscosity parameter η. Remark also that in the limit, in the absence of a viscosity term (i.e.
η = 0), we recover the transfer function (2): fo(s) = e−sτ .

It follows that the system (21) is equivalent to:

y1(s, 1) = fη(s)y1(s, 0), (29a)

y2(s, 1) = fη(s)y2(s, 0), (29b)

y1(s, 0) = y2(s, 1) + U(s), (29c)

y2(s, 0) = y1(s, 1), (29d)

Y(s) = y1(s, 1). (29e)
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Tableau 1

a b sigma omega omega omega omega

0,659 0,000 -1,414 0,000

0,891 0,354 -0,829 1,577

1,195 0,830 -0,652 4,959

1,419 1,311 -1,763 9,302

1,640 1,684 -2,866 13,809

1,852 1,992 -3,845 18,446

2,060 2,270 -4,773 23,381

0,0 0,0 -2,500 0,000

0,0 1,147 -5,789 0,000

0,0 1,676 -9,522 0,000

0,891 -0,354 -0,829 -1,577

1,195 -0,83 -0,652 -4,959

1,419 -1,311 -1,763 -9,302

1,640 -1,684 -2,866 -13,809

1,852 -1,992 -3,845 -18,446

2,060 -2,270 -4,773 -23,381

0,0 -1,147 -5,789 0,000

0,0 -1,676 -9,522 0,000

0,0 0,0 -5,000 0,000

0,8268 0,0 -1,582 0,000

0,9229 0,1862 -0,915 0,172

1,031 0,4625 -0,755 0,477

1,135 0,7427 -1,317 0,843

1,231 0,987 -2,294 1,215

1,347 1,211 -3,261 1,631

1,459 1,407 -4,255 2,053

1,568 1,592 -5,379 2,496

1,78 1,916 -7,513 3,410

0,1662 0,8509 -8,482 0,141

0,0 1,183 -11,997 0,000

0,0 1,475 -15,878 0,000

0,0 1,776 -20,771 0,000

0,9229 -0,1862 -0,915 -0,172

1,031 -0,4625 -0,755 -0,477

1,135 -0,7427 -1,317 -0,843

1,231 -0,987 -2,294 -1,215

1,347 -1,211 -3,261 -1,631

1,459 -1,407 -4,255 -2,053

1,568 -1,592 -5,379 -2,496

1,78 -1,916 -7,513 -3,410

0,1662 -0,8509 -8,482 -0,141

0,0 -1,183 -11,997 0,000

0,0 -1,475 -15,878 0,000

0,0 -1,776 -20,771 0,000

0,884 0,000 -0,546 0,000

0,868 0,358 -0,937 1,554

1,244 0,818 -0,304 5,088

1,469 1,289 -1,259 9,468

1,684 1,644 -2,167 13,842

1,884 1,974 -3,368 18,595

2,085 2,250 -4,288 23,456

0,868 -0,358 -0,937 -1,554

1,244 -0,818 -0,304 -5,088

1,469 -1,289 -1,259 -9,468

1,684 -1,644 -2,167 -13,842

1,884 -1,974 -3,368 -18,595

0,0 0,0 -2,500 0,000

0,0 1,154 -5,829 0,000

0,0 1,664 -9,422 0,000

0,0 -1,154 -5,829 0,000

0,0 -1,664 -9,422 0,000

2,085 -2,250 -4,288 -23,456

-1,091 1,161

-0,538 4,244

-0,246 7,608

-0,018 10,95

0,082 14,35

0,210 17,78

0,270 21,19

-1,091 -1,161

-0,538 -4,244

-0,246 -7,608

-0,018 -10,95

0,082 -14,35

0,210 -17,78

0,270 -21,19
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-2,5 0,0
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-4,0 7,0

-4,0 -7,0

-9,0 10,6

-9,0 -10,6

-16,0 14,2

-16,0 -14,2

-30

-15

0

15

30

-8 -6 -4 -2 0 2

-20

-15

-10

-5

0

5

10

15

20

25

-30 -24 -18 -12 -6 0 6

eta=0.1 eps=0 eta= eta=0 eps=0.1 eta=0.1 eps=0.1

-30,000

-22,500

-15,000

-7,500

0,000

7,500

15,000

22,500

30,000

-30,000 -22,500 -15,000 -7,500 0,000

omega omega

-15

-10

-5

0

5

10

15

-16 -12 -8 -4 0 4

 1

Re

Im

Figure 2. The spectrum of the open loop system with viscosity η = 0.1.

Eliminating yi(s, 0), yi(s, 1), (i = 1, 2), between these equations, we get that the overall input-
output transfer function of the open loop system (20) is

G(s) = Y(s)
U(s) = fη(s)

1− f2
η (s) . (30)

The poles of the system are the roots of the characteristic equation

f2
η (s)− 1 = 0. (31)

In particular, it can be checked that fη(0) = 1 for all η 6= 0, which means that there is a pole at
the origin. Therefore, as in the inviscid case, the open loop system (20) is not asymptotically
stable whatever the value of the viscosity η. As a matter of illustration, in Figure 2, we present
the spectrum of the system for η = 0.1.

In the next section, we shall show that the system can be stabilized by output feedback
when the (unknown) viscosity is small and even almost negligible.

4 Output feedback stabilization of the viscous sys-
tem
We now assume that the open loop control system (20) is closed with a dead beat output
feedback controller

U(t) = −Y (t− 1). (32)

Note that this corresponds to the special case of the controller (10) where k1 = 0, k2 = 1 and
τ = 1/υ = 1. We know from Section 2 that, in this case, the inviscid system is exponentially
stable but the stability is not robust to small perturbations in the propagation speeds. We
shall show here that the exponential stability remains in the viscous system and we shall check
in Section 5 that, in addition, the exponential stability is robust with small variations in the
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Figure 3. The spectrum Sη of the closed loop system for η = 0.1.

propagation speeds. In the frequency domain, the closed loop system (20), (32) is then:

y1(s, 1) = fη(s)y1(s, 0), (33a)

y2(s, 1) = fη(s)y2(s, 0), (33b)

ŷ2(s, 1) = e−sŷ2(s, 0) (33c)

y1(s, 0) = y2(s, 1)− ŷ2(s, 1), (33d)

y2(s, 0) = y1(s, 1), (33e)

ŷ2(s, 0) = y1(s, 1), (33f)

From these equations, it follows that the characteristic equation of the closed loop system is:

f2
η (s)− fη(s)e−s − 1 = 0. (34)

Our purpose is now to address the stability of this closed loop system. For a given value
of the viscosity η, the spectrum Sη of the closed loop system is the set of the poles which are
the roots of the characteristic equation (34):

Sη = {s : f2
η (s)− fη(s)e−s − 1 = 0}. (35)

Moreover, the maximal spectral abscissa is defined as the supremum of the real parts of the
spectrum and denoted as follows:

ση = sup{Re(s) : s ∈ Sη}. (36)

As a matter of illustration, we present in Figure 3 the spectrum of the closed loop system
for η = 0.1.

The stability of the closed loop system (33) can be deduced using the spectral mapping
theorem. See [15, Chapter 9, Theorem 3.5] and [19] in the case η = 0, and reference [6] for the
case η 6= 0. In particular the system is exponentially stable if (and only if) ση < 0.

Then, one of the main results of this paper is given in the following stability theorem.
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Theorem 1. For any δ > 0, there exists η1 > 0 such that, for all η ∈ (0, η1), the maximal
spectral abscissa satisfies

ση 6 − ln(2) + δ. (37)

Conjecture 1. The bound ln(2) on the decay rate is optimal. More precisely, for any δ > 0
and η1 > 0 there exists η ∈ (0, η1) such that the maximal abscissa satisfies

− ln(2)− δ 6 ση 6 − ln(2) + δ. (38)

Remark 1 (Loss of continuity of the spectral abscissa). Conjecture 1 seems to be verified when
looking at the spectrum numerically (see Figure 4). This would imply a loss of continuity in
the sense that any decay rate is achievable when η = 0. However there is a bound ln(2) as
soon as η > 0, even if η is arbitrarily small.

In order to prove Theorem 1, it is useful to define the complex variable

z =
√

1 + 4ηs, (39)

where we recall that
√
· is the principal value of the square root. The functions λ1 and λ2

become
λ1 = (1 + z)

2η and λ2 = (1− z)
2η . (40)

Then, defining the function

Xη(z) = 1 + z

2 e−(1−z)/2η − 1− z
2 e−(1+z)/2η, (41)

we get, using (28), that the characteristic equation (34) is equivalent to

X2
η (z) + ze−(z2−1)/4ηXη(z)− z2 = 0. (42)

Let us now observe that Xη(0) = 0. Consequently z = 0 is a root of equation (42) for all
η. This implies obviously that s = −1/4η ∈ Sη is a pole of the system (i.e. a root of the
characteristic equation (34)). Note that this pole tends to −∞ as η → 0+ so this is a very
stable pole for small (positive) η.

Let Zη denote the set of non-zero roots of equation (42). Then, using definition (41) and
solving equation (42) with respect to Xη, we have that every z ∈ Zη satisfies the equation

(1 + z)
z

e−(1−z)/2η − (1− z)
z

e−(1+z)/2η = −e−(z2−1)/4η ±
√
e−(z2−1)/2η + 4. (43)

We now consider a sequence

(ηn)n∈N with 0 < ηn ∈ R, ∀n ∈ N and lim
n→+∞

ηn = 0+, (44)

and an associated sequence

(sn)n∈N such that sn ∈ Sηn ,∀n ∈ N. (45)

In order to prove Theorem 1, we will look to the adherent points of the sequences (sn)n∈N
when n→ +∞ (i.e. when ηn → 0+). By definition, we know that s̄ is an adherent point of a
sequence (sn)n∈N if and only if there exists a subsequence which converges to s̄. With a slight
abuse of notation, we will write

sn −→ s̄ or lim
n→+∞

sn = s̄ (46)

to signify that s̄ is an adherent point of a sequence (sn)n∈N but it is implied that the convergence
in fact only relies on the adequate subsequence. This holds also for all other sequences that
are introduced later in this article.

The proof of Theorem 1 is built from the two following lemmas.
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Lemma 1. Let (ηn)n∈N be a sequence of the form (44) and (zn)n∈N be any associated sequence
of elements of Zη. Let z̄ be an adherent point of the sequence (zn)n∈N. Then

a) Re(z̄2) 6 1
(
precisely: Re(z̄2) ∈ [−∞, 1]

)
; (47)

b) if Re(z̄2) = 1 then (Re(z̄))2 = 1 and Im(z̄) = 0. (48)

Proof. The proof of this lemma is given in Appendix B.

Lemma 2. Let (ηn)n∈N be a sequence of the form (44) and (sn)n∈N be any associated sequence
of the form (45). Let s̄ be an adherent point of (sn)n∈N. Then

Re(s̄) 6 − ln(2)
(
precisely: Re(s̄) ∈ [−∞,− ln(2)]

)
. (49)

Proof. Let s̄ be an adherence point of the considered sequence (sn)n∈N. We restrict to a
subsequence (still denoted (sn)n∈N) such that (sn)n∈N converges to s̄. Consider the sequence

(zn)n∈N such that zn =
√

1 + 4ηsn,∀n ∈ N. (50)

By definition zn ∈ Zη for any n ∈ N. Let z̄ be an adherence value of this sequence (zn)n∈N
and let us again restrict to a subsequence (still denoted (zn)n∈N) that converges to z̄. Note
that since it is a subsequence, we still have sn → s̄. From Lemma 1, we know that necessarily
Re(z̄2) ∈ [−∞, 1].

Let us first assume that Re(z̄2) is strictly smaller than 1, i.e. Re(z̄2) ∈ [−∞, 1). In that
case, from the definition of sn in (45), we have

Re(s̄) = lim
n→+∞

Re(sn) = lim
n→+∞

Re(z2
n)− 1

4ηn
= limn→+∞Re(z2

n)− 1
limn→+∞ 4ηn

= Re(z̄2)− 1
limn→+∞ 4ηn

. (51)

Since, by the definition (44), we know that limn→+∞ 4ηn = 0+, we can conclude

Re(s̄) = −∞ (52)

and the lemma is proved.
Let us now assume that Re(z̄2) = 1. From Lemma 1 we know that, if Re(z̄2) = 1, then

necessarily Re(z̄) = ±1 and Im(z̄) = 0; hence z̄ = ±1. We address the case where z̄ = 1 (the
reader can easily handle the case z̄ = −1 by symmetry) and we introduce the notations

yn = zn − 1, an = Re(yn), bn = Im(yn). (53)

With these notations we have

Re(sn) = Re(z2
n)− 1

4ηn
= Re((yn + 1)2)− 1

4ηn
= a2

n − b2n
4ηn

+ an
2ηn

. (54)

Here the determination of adherent points of the sequence (Re(sn))n∈N, induced by the limit
Re(zn) → 1 is clearly more delicate because it cannot be directly derived from formula (54)
and requires a development which is detailed hereafter.

With the notation (53), the function Xη defined in (41) becomes

Xη = (1 + yn
2 )eyn/2ηn + yn

2 e
−1/ηn−yn/2ηn , (55)

such that the characteristic equation (42) is written

((1 + yn
2 )eyn/2ηn + yn

2 e
−1/ηn−yn/2ηn)2

+ (1 + yn)e−yn/2ηn−y2
n/4ηn [(1 + yn

2 )eyn/2ηn + yn
2 e
−1/4ηn−yn/2ηn ] = (1 + yn)2.

(56)
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Now, because ηn → 0+ and yn → 0 (since zn → z̄), we have

(1 + yn
2 )2eyn/ηn + o(e−1/ηn)

+ (1 + yn)(1 + yn
2 )e−y2

n/4ηn + o(e−1/4ηn−yn/ηn−y2
n/4ηn) = (1 + yn)2. (57)

This implies that, for n→ +∞,

eyn/ηn + 1 + yn
1 + yn

2
e−y

2
n/4ηn −→ 1. (58)

With (54), (58) becomes

ean/ηneibn/ηn + (1 + an + ibn)(1 + an/2− ibn/2)
|1 + yn

2 |2
e−a

2
n/4ηneb

2
n/4ηne−ianbn/2ηn → 1, (59)

or, separating the real and imaginary parts,

ean/ηn cos( bnηn ) + e−a
2
n/4ηneb

2
n/4ηn

[(
1 + 3an+a2

n+b2
n

2

)
cos(anbn2ηn ) + bn

2 sin(anbn2ηn )
] 1
|1 + yn

2 |2
→ 1,

(60)

ean/ηn sin( bnηn ) + e−a
2
n/4ηneb

2
n/4ηn

[
−
(
1 + 3an+a2

n+b2
n

2

)
sin(anbn2ηn ) + bn

2 cos(anbn2ηn )
] 1
|1 + yn

2 |2
→ 0.

(61)

Let us now denote ā an adherence point of the sequence (an/2ηn)n∈N. We shall discuss suc-
cessively the three cases : ā = −∞, ā ∈ (−∞,+∞) and ā = +∞.

The case ā = −∞.
In this case the lemma is trivial because, since an → 0 and an/2ηn → ā = −∞, then
a2
n/4ηn + an/2ηn → −∞ and therefore, from (54), Re(s̄) = −∞.

The case ā ∈ (−∞,+∞).
In this case a2

n/2ηn → 0 and anbn/2ηn → 0 because an + ibn = yn → 0 while an/2ηn → ā ∈
R. Then from (60), we have

ean/ηn cos( bnηn ) + eb
2
n/4ηn(1 + o(1)) −→ 1. (62)

Let us now denote c̄ ∈ [0,+∞] an adherence point of the sequence (b2n/4ηn)n∈N and κ̄ ∈ [−1, 1]
an adherent point of the sequence (cos( bnηn ))n∈N. Then, taking the limit1, we have from (62)

e2āκ̄+ ec̄ = 1. (63)

Because eā is bounded and eā > 0, and b2n/4ηn ≥ 0 for any n ∈ N, this implies necessarily that

c̄ ∈ [0,+∞) and ec̄ > 1 and κ̄ ∈ [−1, 0]. (64)

Then it means in particular that b2n/ηn is bounded when ηn → 0+, and from (61) we deduce
that

ean/ηn sin( bnηn ) + o(1) −→ 0 (65)

which implies that sin( bnηn ) → 0 and therefore that the only possible adherence points for
cos( bnηn ) are κ̄ = ±1. Since κ̄ ∈ [−1, 0], we deduce that κ̄ = −1. Therefore, from (63),

ec̄ = 1 + e2ā. (66)
1This can be done by restricting to a subsequence where both (b2

n/4ηn)n∈N and (cos( bn

ηn
))n∈N converge, using a

diagonal argument.
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Let us now consider the function e−Re(sn) with Re(sn) given by (54):

e−Re(sn) = e(b2
n−a2

n)/4ηn−an/2ηn −→ ec̄e−ā = e−ā + eā = 2 cosh(ā) > 2. (67)

It follows directly that
Re(s̄) 6 − ln(2) (68)

and the lemma is proved.

The case ā = +∞.
In this case we first observe that e(a2

n−b2
n)/4ηn−an/2ηn → 0. Then multiplying both sides of

(60) by this quantity, we get:

e(a2
n−b2

n)/4ηn+an/2ηn cos( bnηn ) + e−an/2ηn
[
(1 + 3an+a2

n+b2
n

2 ) cos(anbn2ηn ) + bn
2 sin(anbn2ηn )

] 1
|1 + yn

2 |2

− e(a2
n−b2

n)/4ηn−an/2ηn → 0, (69)

From this expression, we deduce that

e(a2
n−b2

n)/4ηn+an/2ηn cos( bnηn ) −→ 0. (70)

A similar manipulation of (61) gives

e(a2
n−b2

n)/4ηn+an/2ηn sin( bnηn ) −→ 0. (71)

Combining (70) and (71) we obtain

e(a2
n−b2

n)/2ηn+an/ηn = e2Re(sn) −→ 0 (72)

which implies that Re(sn)→ −∞ and the lemma is proved.

Based on Lemma 2, we can now give the following proof of Theorem 1.

Proof of Theorem 1.
We assume by contradiction that the theorem does not hold:

For any δ > 0, @ η1 > 0 such that ση 6 − ln(2) + δ ∀η ∈ (0, η1). (73)

This implies that

For all η > 0, ∃η1 ∈ (0, η) and ∃s ∈ Sη1 such that Re(s) > − ln(2) + δ. (74)

It follows that we can build a sequence (ηn)n∈N of the form (44) and an associated sequence
(sn)n∈N with sn ∈ Sηn . For this sequence we deduce from (74) that necessarily Re(s̄) >
− ln(2) + δ, which is in contradiction with Lemma 2.

The theorem is illustrated in Figure 4 where the spectrum is represented for the values η
= 0.02 and 0.2, and where the effectiveness of the stability margin − ln(2) can be appreciated.

5 Robustness analysis
We consider again the control problem of the previous section. However, because we want
to explicitly account for the sensitivity to delay uncertainties, we introduce an additional
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Figure 4. The spectrum Sη of the closed loop system for η = 0.02 • and η = 0.2 •.

perturbation ε to the nominal transport velocity υ = 1. The open loop system is therefore
written in the time domain as follows:

∂ty1(t, x) + (1 + ε)∂xy1(t, x)− η∂2
xxy1(t, x) = 0, (75a)

∂ty2(t, x) + (1 + ε)∂xy2(t, x)− η∂2
xxy2(t, x) = 0, (75b)

y1(t, 0) = y2(t, 1) + U(t), (75c)

y2(t, 0) = y1(t, 1), (75d)

∂xy1(t, 1) = ∂xy2(t, 1) = 0 (75e)

Y (t) = y1(t, 1), (75f)

We suppose, as before, that the system is closed with the dead beat output feedback controller

U(t) = −Y (t− 1). (76)

Remark that this control law depends on the theoretical delay (τ = 1), ignoring the uncertainty
represented by ε.

Remark also that for simplicity we assume here that we have the same uncertainty ε on
both physical subsystems represented by transport equations (75a) and (75b). This may seem
like a simplification but, actually, it can be shown that this single perturbation, even if it is
arbitrarily small, is sufficient to destroy the closed loop stability when η = 0 (see Figure 5
hereafter).

In this case the transfer functions of the two transport subsystems become

fη,ε(s) = λ1(s)− λ2(s)
λ1(s)e−λ2(s) − λ2(s)e−λ1(s) . (77)

with the function fη,ε now depending on both η and ε because the functions λ1 and λ2 are
modified as follows:

λ1(s) = (1 + ε) +
√

(1 + ε)2 + 4ηs
2η , λ2(s) = (1 + ε)−

√
(1 + ε)2 + 4ηs
2η . (78)
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With this definition, the characteristic equation of the closed loop system is now

f2
η,ε(s)− fη,ε(s)e−s − 1 = 0. (79)

As in the previous section, we introduce the spectrum Sη,ε and the maximal abscissa ση,ε
defined by

Sη,ε = {s ∈ C : s is solution of (79)}, (80)

ση,ε = sup{Re(s) : s ∈ Sη,ε}. (81)

We remark that, by definition, we have

Sη,0 = Sη and ση,0 = ση. (82)

We then have the following robustness theorem.

Theorem 2. Let δ > 0 and η > 0 be such that Theorem 1 holds, i.e.

ση,0 6 −ln(2) + δ. (83)

Then there exists ε1 > 0 such that for any ε ∈ (−ε1, ε1) the maximal spectral abscissa ση,ε
satisfies

ση,ε 6 −ln(2) + 2δ (84)

Proof. We proceed by contradiction and we assume that Theorem 2 does not hold. This
implies that for any ε1 > 0 there exists ε ∈ (−ε1, ε1) such that

ση,ε > −ln(2) + 2δ, (85)

and therefore that there exists s ∈ Sη,ε such that

Re(s) > −ln(2) + 2δ. (86)

Hence we can define a sequence

(εn)n∈N with lim
n→+∞

εn = 0, (87)

and an associated sequence (sn)n∈N such that

Re(sn) > −ln(2) + 2δ, with sn ∈ Sη,εn ∀n ∈ N. (88)

• If the sequence (sn)n∈N is bounded, then we can extract a subsequence that converges to
a limit s̄ ∈ C. We still denote this subsequence by (sn)n∈N. As εn → 0 we can pass to
the limit in (79) and deduce that s̄ ∈ Sη,0 = Sη and therefore, from the assumption on δ
and η, that

Re(s̄) 6 −ln(2) + δ. (89)

On the other hand, again passing to the limit, we deduce from (88) that

Re(s̄) > −ln(2) + 2δ > −ln(2) + δ, (90)

which is in contradiction with (89).
• If the sequence (sn)n∈N is unbounded, then we can extract a subsequence such that
|sn| → +∞. We still denote this subsequence by (sn)n∈N. We denote sn = rne

iθn , with
rn ∈ R+ and θn ∈ [−π, π), for n ∈ N. Since rn = |sn| → +∞ and (88) holds, we deduce
that for n sufficiently large θn ∈ (−5π/8, 5π/8). Denoting (1 + εn) + 4ηsn = r1

ne
iθ1
n with
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r1
n ∈ R+ and θ1

n ∈ [−π, π) we deduce that for n sufficiently large (depending on η),
r1
n → +∞ and θ1

n ∈ (−3π/4, 3π/4). Thus√
(1 + εn) + 4ηsn =

√
r1
ne
iθ1
n/2, (91)

where θ1
n/2 ∈ (−3π/8, 3π/8), which implies that Re(

√
1 + 4ηsn) → +∞. From the

definition of λ1 and λ2, we deduce that

Re(λ1(sn))→ +∞, Re(λ2(sn))→ −∞, (92)

and

fη,εn = 2
[
( (1 + εn)√

(1 + εn) + 4ηsn
+ 1)e−λ2(sn) + ( (1 + εn)√

(1 + εn) + 4ηsn
− 1)e−λ1(sn)

]−1

. (93)

Using (92) and observing that ( (1+εn)√
(1+εn)+4ηsn

+ 1)→ 1, we obtain that fη,εn → 0. More-

over, from (88), e−sn is bounded. Hence, we deduce that

f2
η,εn(sn)− fη,εn(sn)e−sn − 1 −→ −1 (94)

and, from (79), we obtain again a contradiction.
In both cases we obtain a contradiction, which means that there exists ε1 > 0 such that (84)
holds for any ε ∈ (−ε1, ε1). This concludes the proof of Theorem 2.
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Figure 5. The spectrum Sη,ε of the closed loop system: influence of viscosity on stability
in case of delay uncertainty.

The theorem is illustrated in Figure 5. In this figure, we can see what happens in the
situation where there is no diffusion (η = 0) but a slight uncertainty (ε = 0.1) of the transport
velocity: υ = 1 + ε = 1.1 instead of υ = 1. Although the ideal system (without modelling
uncertainty) should be exponentially stable, it appears that it becomes unstable with poles
(represented by green dots in Figure 5) moving to the right-half complex plane.

In contrast, when there is some diffusion (η = 0.1) and no uncertainty (ε = 0), we know
from Theorem 1 that the closed loop system must be stable as it can be seen with the spectrum
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of blue dots (actually reprinted from Figure 3) which is entirely strictly located in the left half
plane.

Then, illustrating Theorem 2, the robustness of the control in presence of diffusion is clearly
evidenced by the spectrum made up of red dots which results from a small shift of the initial
blue spectrum but remains entirely in the left half plane.

6 Comparison with a simpler system
In this section, we consider the case of a system which is very close to the previous one but
slightly simpler. Somewhat surprisingly, we will see that in this case the addition of a diffusion
term does not seem to strengthen the system stability but instead destroys the stability.

We start with an ideal system without diffusion nor modelling uncertainty which is clearly a
simplified form of the physical system (15) that we have considered in Section 2 and is written
as follows:

∂ty(t, x) + ∂xy(t, x) = 0, (95a)

∂tŷ(t, x) + ∂xŷ(t, x) = 0, (95b)(
y(t, 0)

ŷ(t, 0)

)
=
(

1 −1

1 −1

)
︸ ︷︷ ︸

K

(
y(t, 1)

ŷ(t, 1)

)
. (95c)

In the frequency domain, the characteristic equation reduces to e2s = 0, meaning that the
system is exponentially stable (for any decay rate). In fact one can observe easily that the
system is finite time stable: for any time t ≥ 1, ŷ(t, ·) = y(t, ·) on [0, 1], thus from the boundary
condition at x = 0, y(t, 0) = 0, which means that y(t, ·) ≡ 0 for t ≥ 2. However, in this case
also, the exponential stability is not robust w.r.t. to delay inaccuracy because ρ̄(K) =

√
2.

On the basis of our previous results in this paper, it seems natural to conjecture that the
addition of a diffusion term in equation (95a) should allow to strengthen the system stability.
To address this issue, the system dynamics (95) are modified with an additional diffusion
parameter η as follows:

∂ty(t, x) + ∂xy(t, x)− η∂xxy(t, x) = 0, (96a)

∂tŷ(t, x) + ∂xŷ(t, x) = 0, (96b)

y(t, 0) = y(t, 1)− ŷ(t, 1), (96c)

ŷ(t, 0) = y(t, 0), (96d)

∂xy(t, 1) = 0. (96e)

For this system in the frequency domain, after calculations similar to those in Sections 3 and
4, it can be shown that the characteristic equation is

Fη(s)− 1 = 0 with Fη(s) =

(
λ1(s)eλ1(s) − λ2(s)eλ2(s)

)
(1 + e−s)

(λ1(s)− λ2(s))eλ1(s)+λ2(s) , (97)

where λ1(s) and λ2(s) are given by (24) and repeated here for convenience:

λ1(s) = 1 +
√

1 + 4ηs
2η , λ2(s) = 1−

√
1 + 4ηs
2η . (98)
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For a given value of η, as in Section 4, we use the following notations for the spectrum and
the maximal spectral abscissa:

Sη = {s ∈ C : Fη(s)− 1 = 0}, (99)

ση = sup{Re(s) : s ∈ Sη}. (100)

We then have the surprising observation that a slight diffusion in the system has, in this case,
a clear destabilizing effect. This is graphically illustrated in Figure 6 and leads to the following
conjecture.

Conjecture 2. For all ε > 0, there exists η1 > 0 such that for all η ∈ (0, η1) the maximal
spectral abscissa satisfies the inequality ση > −ε.

Re

Im

Figure 6. The spectrum Sη of the system (96) with η = 0.1.

7 Conclusion
We have discussed the output feedback stabilization of an unstable open loop system which is
made up of two interconnected transport equations and provided with anti-located boundary
sensing and actuation. We have shown that the system can be stabilized by a dynamic con-
troller that involves a delayed output feedback which turns out to be non-robust with respect
to delay uncertainties. Then we have shown that the designed control law can however stabilize
the system in a robust way when there is a small unknown diffusion in the plant.

Our work in progress on this topic [6] will be focused on the output feedback stabilization
of the motion of a viscous fluid represented by 2× 2 hyperbolic PDEs when the control input
is the flow rate at one boundary while the measurable output is the fluid density at the other
boundary. There is, in this case, an important difference which lies in how viscosity affects the
model, inducing a distributed internal coupling between the two partial differential equations.
This implies that the system can no longer be considered as a feedback interconnection of
two independent scalar transport equations which may lead to additional difficulties for the
stability analysis.
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A Computation of ρ̄(K) > 1.
In this appendix we consider the matrix K defined in equation (15d) as follows:

K =


−2k1 1 −k2

1 0 0

1 0 0

 . (101)

From [9, Proposition 3.7] and [5, Theorem 3.12], we have

ρ̄(K) = ρ2(K) (102)

with

ρ2(K) := inf{‖DKD−1‖2;D is a positive diagonal matrix} (103)

= inf
{√

λmax
[(
DKD−1)T (DKD−1)];D is a positive diagonal matrix

}
. (104)

With the (normalized) matrix

D =

1 0 0
0 θ2 0
0 0 θ3

 , θ2 > 0, θ3 > 0, (105)

we have

M =
(
DKD−1)T (DKD−1) =


4k2

1 + θ2
2 + θ2

3 −2k1θ
−1
2 2k1k2θ

−1
3

−2k1θ
−1
2 θ−2

2 −k2θ
−1
2 θ−1

3

2k1k2θ
−1
3 −k2θ

−1
2 θ−1

3 k2
2θ
−2
3

 . (106)

Then we have
det

(
λI3 −M

)
= λ(λ2 − βλ+ γ) (107)

with

β = 4k2
1 + (θ2

2 + θ−2
2 ) + (θ2

3 + k2
2θ
−2
3 ), (108)

γ = 1 + θ−2
2 θ2

3 + k2
2 + k2

2θ
2
2θ
−2
3 . (109)
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From (107) we see that the eigenvalues of the matrixM are

λ = 0 and λ = β ±
√
β2 − 4γ
2 . (110)

From (108) we know that β > 0. Moreover, β2 − 4γ > 0 because the matrixM is symmetric.
It follows that

ρ2(K) = inf
θ2,θ3

√
β +

√
β2 − 4γ
2 . (111)

From (108) and (109), after some computations, we get

β2 − 4γ = 16 k4
1 + 8k2

1(θ2
2 + θ−2

2 ) + 8k2
1(θ2

3 + k2
2θ
−2
3 ) + (θ4

2 + θ−4
2 ) + (θ4

3 + k4
2θ
−4
3 )

+ 2(θ2
2θ

2
3 + k2

2θ
−2
2 θ−2

3 )− 2− 2k2
2 − 2(θ−2

2 θ2
3 + k2

2θ
2
2θ
−2
3 ). (112)

From (108) and this latter expression it can be verified that β +
√
β2 − 4γ is minimal if and

only if
θ2

2 = 1 and θ2
3 = |k2|. (113)

With these values we then have

ρ2(K) = inf
θ2,θ3

√
β +

√
β2 − 4γ
2 (114)

= |k1|+
√

1 + k2
1 + |k2| > 1 for all (k1, k2). (115)

B Proof of Lemma 1.
Part a)

Assume by contradiction that Re(z̄2) ∈ (1,+∞]. Then

e−(Re(z2
n)−1)/4ηn −→ 0 (116)

and it follows that the right-hand side of (43) converges to ±2. Then, denoting an = Re(zn)
and bn = Im(zn), (43) implies

1
2

((
an − ibn
a2
n + b2n

+ 1
)
e−(1−an−ibn)/2ηn −

(
an − ibn
a2
n + b2n

− 1
)
e−(1+an+ibn)/2ηn

)
→ ±1. (117)

Since Re(z̄2) ∈ (1,+∞] by assumption, it follows that there exists a positive constant c such
that a2

n > c+ 1 + b2n for n sufficiently large, and in particular that |Re(z̄)| > 1. Let us consider
successively the two possibilities Re(z̄) > 1 and Re(z̄) < −1.

The case Re(z̄) > 1.
In this case, if n is sufficiently large, we have

Re
(
an − ibn
a2
n + b2n

+ 1
)
≥ 1 and e(an−1)/2ηn −→ +∞. (118)

Thus ∣∣∣∣12
(
an − ibn
a2
n + b2n

+ 1
)
e(an−1)/2ηn

∣∣∣∣ −→ +∞, (119)

while
1
2

(
an − ibn
a2
n + b2n

− 1
)
e(−an−1)/2ηne−ibn/2ηn −→ 0. (120)
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This implies∣∣∣∣12
(
an − ibn
a2
n + b2n

+ 1
)
e(an−1)/2ηneibn/2ηn − 1

2

(
an − ibn
a2
n + b2n

− 1
)
e−(1+an+ibn)/2ηn

∣∣∣∣ −→ +∞, (121)

which is in contradiction with (117).

The case Re(z̄) < −1.
Similarly in this case we have

e(−an−1)/2ηn −→ +∞ and
∣∣∣∣(an − ibna2

n + b2n
− 1

)
e(−an−1)/2ηne−ibn/2ηn

∣∣∣∣ −→ +∞, (122)

while ∣∣∣∣12
(
an − ibn
a2
n + b2n

+ 1
)
e(an−1)/2ηneibn/2ηn

∣∣∣∣ −→ 0. (123)

So we get again (121) and a contradiction with (117). This concludes the proof of Lemma 1,
Part a).

Part b)
We assume that

Re(z̄2) = 1. (124)

We have
Re(z̄2) =

(
Re(z̄)

)2 − (Im(z̄)
)2
. (125)

From this expression and (124), either |Re(z̄)| = 1 and Im(z̄) = 0, or |Re(z̄)| > 1.
We shall show by contradiction that |Re(z̄)| > 1 is actually not possible. Let us thus

assume that Re(z̄) > 1 (the case Re(z̄) < −1 can be easily handled by symmetry). In that
case, using again the notations an = Re(zn) and bn = Im(zn) and multiplying both sides of
(43) by e(1−an)/4ηn , we obtain:(

an − ibn
a2
n + b2n

+ 1
)
e(an−1)/4ηn+ibn/2ηn −

(
an − ibn
a2
n + b2n

− 1
)
e−(1+3an+2ibn)/4ηn

= −e(2−a2
n+b2

n−an−2ianbn)/4ηn ±
√
e(2−a2

n+b2
n−an−2ianbn)/2ηn + 4e(1−an)/2ηn .

(126)

Since
1− an → 1− Re(z̄) < 0 (127)

and, by (124), 2− a2
n + b2n − an → 1− Re(z̄) < 0, the right-hand side of (126) converges to 0

when ηn → 0+. This implies that the left-hand side of (126) also converges to 0, namely(
an − ibn
a2
n + b2n

+ 1
)
e(an−1)/4ηn+ibn/2ηn −

(
an − ibn
a2
n + b2n

− 1
)
e−(1+3an+2ibn)/4ηn → 0. (128)

Then, since the e−(1+3an+ibn)/2ηn → 0, we should have∣∣∣∣(an − ibna2
n + b2n

+ 1
)∣∣∣∣ e(an−1)/4ηn → 0, (129)

but it can be shown that this is impossible. Indeed, by (127), we know that an > 0 if n is
large enough, which implies that∣∣∣∣(an − ibna2

n + b2n
+ 1

)∣∣∣∣ e(an−1)/4ηn > e(an−1)/4ηn . (130)

From (127), e
(an−1)

4η → +∞ which leads to a contradiction with (129) and (130).

This concludes the proof of Lemma 1.
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