
1 Supplementary Material

This document contains supplementary technical content and experimental results for the fol-

lowing paper:

C. F. Dantas, E. Soubies, and C. Févotte, “Sphere Refinement in Gap Safe Screening,” IEEE

Signal Processing Letters, 2023.

1.1 Useful quantities and definitions

(Local) strong concavity

Definition 1. Let Dλ(θ) := −
∑m

i=1 f
∗
i (−λθi) be twice differentiable, then it is αS-strongly

concave on S ⊂ Rm if

0 < αS ≤ min
i∈[m]

inf
θ∈S∩dom f∗i (−λ·)

λ2f∗i
′′(−λθi), (1)

where −λ2(f∗i )′′(−λθi) is the i-th eigenvalue of the Hessian matrix ∇2Dλ(θ).

Projection over the best safe region (line 7 in Alg. 2)

For completeness, we provide the formula for the projection over the current best safe region Sb

performed at line 7 in Algorithm 2.

For Sb = B(θSb , rSb) an `2-ball we have:

PSb(θ̃) =

 θ̃ if ‖θ̃ − θSb‖2 ≤ rSb
θSb + rSb

(θ̃−θSb )

‖θ̃−θSb‖2
otherwise.

Note that when θ̃ ∈ Sb, no action is required (first case above).

Finally, when Sb = ∆A (at initial iterations), then the projection step is also unnecessary since

θ̃ ∈ ∆A (line 6 in Algorithm 2) i.e., θ̃ is dual feasible. In that case, we simply have PSb(θ̃) = θ̃.

1.2 Extended proof of Proposition 1

Definition 2 (Attracting and repelling fixed points). Let x̄ = f(x̄) be a fixed point of f : RN →
R and define the fixed-point iteration as fn = f ◦ f ◦ · · · ◦ f (n times). Then, x̄ is said to be

1. attracting if there is an open neighborhood X 3 x̄ such that ∀x0 ∈ X , fn(x0) →
n→∞

x̄

2. repelling if there is an open neighborhood X 3 x̄ such that, ∀x0 ∈ X , ∃n > 0, fn(x0) /∈ X .

These definitions can be found in references [15] and [16] of the main paper.

Below, we provide details on the three points of the proof of Proposition 1.

1. Link with fixed point iteration. Given the definition of the strong concavity bound in

eq. (1), the loop over j at lines 15-18 of Alg. 1 can be rewritten more explicitly as follows:

rj ←
√

2 Gapλ(xk,θk)/αj−1

αj ← min
i∈[m]

inf
θi∈B(θki ,rj)∩dom f∗i (−λ·)

λ2f∗i
′′ (−λθi) .
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By plugging the expression of rj in the update of α, we obtain

αj ← min
i∈[m]

inf

|θi−θki |≤
√

2Gapλ(x
k,θk)

αj−1

θi∈dom f∗i (−λ·)

λ2f∗i
′′ (−λθi)

(
:= hk(αj−1)

)

The right-hand side of the above expression corresponds precisely to our definition of the

function hk in Proposition 1 in the main paper. This shows the equivalence between the

loop in lines 15-18 and the fixed point iteration αj = hk(αj−1).

2. Convergence. We know from [12, Proposition 7] that the refinement loop at lines 15-

18 of Alg.1 builds a sequence of nested Gap Safe spheres (i.e., with decreasing radius),

all centered in θk. With the previous point, this means that the fixed point iteration

αj = hk(αj−1) converges and that the convergence point is a fixed point of hk. More

precisely, it satisfies ᾱk = αB with B = B(θk,
√

2Gk

ᾱk
).

3. Non repelling fact. Using again [12, Proposition 7] we get that the generated sequence

(αj)j satisfies α0 ≤ α1 ≤ · · · ≤ ᾱk. As such, defining X = (0, ᾱk), we have shown that

there is at least one point in X (i.e., α0) from which all the iterates generated by the fixed

point iteration αj = hk(αj−1) belongs to X . From Definition 2, this shows that ᾱk is non

repelling.

1.3 Properties and visualization of the fixed-point equation

In this section, we complete Proposition 1 of the main paper with some general properties of

the function hk, as well as some illustrative graphs.

Proposition 1. Some properties of the function hk can be inferred from its definition:

1. It takes only non-negative values.

2. It is non-decreasing.

3. It is continuous.

4. It has a horizontal asymptote, i.e. hk(α)→ C <∞ as α→∞ .

5. hk(0) = αRm, i.e. the value of hk(α) at α = 0 corresponds to the global strong-concavity

constant of the the dual function Dλ. In particular, we have hk(0) = 0 when Dλ is not

globally strongly concave.

Proof. We prove each statement independently.

1. Because the f∗i are convex functions, the f∗i
′′ take only non-negative values and, as a

direct consequence, so does hk.

2. hk is non-decreasing, since it is the inf of a family of function (f∗i
′′)i on a ball with radius√

2G/α. As α increases, the radius decreases and the inf can only increase.

3. First, note that the f∗i
′′ are continuous by assumption (Dλ twice differentiable). Then,

the continuity of hk stems from the fact that it is the inf of a family of continuous function

(f∗i
′′)i on a ball with radius varying continuously on α.
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4. This entails from the definition of hk, since hk reduces to mini∈[m] λ
2f∗i
′′(−λθi) when

α→∞ (i.e. when the radius tends to zero).

5. As α → 0, the radius r =
√

2G/α of the ball in which the strong concavity constant is

calculated tends to infinity.

Proposition 2. Under the working assumptions of the paper, hk always admits at least one

fixed point.

Proof. First of all, if hk(0) = 0 then 0 is a fixed point of hk. Now let hk(0) > 0 and assume that

hk does not admit a fixed point. From Proposition 1, this means that hk is a non-decreasing,

continuous, and non-negative function that is always above the identity line (i.e., hk(α) > α).

This contradicts the fact that hk has an horizontal assymptote. Hence hk always admits at

least one fixed point.

Illustrations for the Kullback-Leibler case: The function hk associated to the `1 reg-

ularized Kullback-Leibler regression is displayed in Figure 1 along with its derivatives. We

distinguish two relevant cases: 1) Gap < y/2 (top) and 2) Gap ≥ y/2 (bottom). In both cases

we have that h(0) = 0, which is expected since h(0) corresponds to the global strong concavity

bound (zero in the KL case). Note that in the latter case (bottom graph) the derivative at the

origin is smaller than 1 (h′(0) < 1) and keeps decreasing since the function is fully concave.

This implies that, in this case, the curves remain below the identity line and h(0) = 0 is the

unique fixed-point. In the former case (top graph), the derivative at the origin is greater than

1 (h′(0) > 1) but then keeps decreasing (as h′′(α) < 0,∀α > 0). It becomes quite clear that, in

this case, h(α) will eventually cross the identity line (shown in green) to produce an attractive

fixed point ᾱ with h′(ᾱ) < 1.

Figure 1: Visualizing the fixed-point equation for the `1-regularized logistic regression case.
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Illustrations for the Logistic case: The function hk associated to the `1 regularized logistic

regression is displayed in Figure 2. Note that the function starts with a constant portion with

value 4λ2, which corresponds to the global strong concavity bound αRm for the logistic function.

It then (potentially) has a brief convex portion shown in red, followed by a concave region. The

identity line is shown in dark red. The first derivative remain below 1 at all times, which is in

line with our analytical results proving the fixed-points to be attractive. We show the behavior

of the function h for different values of t := |λθki − yi + 1
2 | ≤ 1/2. As predicted by eq. (14)

in the paper, the fixed point equals 4λ2 (constant part of the function h) when t ≤
√

Gap/2

(≈ 0.22 in this example). For higher values of t (with the theoretical limit of t ≤ 1/2) we have

fixed-points necessarily with higher values than 4λ2.

Figure 2: Visualizing the fixed-point equation for the `1-regularized logistic regression case.

1.4 Omitted details on the proof of Proposition 2

Derivation of the expression of (hki )
′(ᾱi) in the case where Gk < 2τ2

i and τi <
1
2 :

In the case where Gk < 2τ2
i and τi <

1
2 , we want to show that

(hki )
′(ᾱi) =

√
2Gk(2τi

√
2Gk + 1− 4τ2

i −
√

2Gk)

1− 4τ2
i

. (2)

where ᾱi is given by the equation:

√
ᾱi =

−4τiλ
√

2Gk ± 2λ
√

2Gk + 1− 4τ2
i

1− 4τ2
i

. (3)

Proof. From (3) (dropping the dependencies in i and k), we get(
τ − λ

√
2G

α

)
=
τ
(

2�λ
√

2G+ 1− 4τ2 − 4τ�λ
√

2G
)
− (1− 4τ2)�λ

√
2G

2�λ
√

2G+ 1− 4τ2 − 4τ�λ
√

2G

=
2τ
√

2G+ 1− 4τ2�����
−4τ2

√
2G−

√
2G�����

+4τ2
√

2G

2
√

2G+ 1− 4τ2 − 4τ
√

2G

=
1

2

(
2τ
√

2G+ 1− 4τ2 −
√

2G√
2G+ 1− 4τ2 − 2τ

√
2G

)
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We can then derive

1− 4

(
τ − λ

√
2G

α

)2

=

(√
2G+ 1− 4τ2 − 2τ

√
2G
)2
−
(

2τ
√

2G+ 1− 4τ2 −
√

2G
)2

(√
2G+ 1− 4τ2 − 2τ

√
2G
)2

where one can see that the mixed products in the numerator will simplify, leading to

1− 4

(
τ − λ

√
2G

α

)2

=
��2G+ 1− 4τ2����+8τ2G− 4τ2(��2G+ 1− 4τ2)���−2G(√

2G+ 1− 4τ2 − 2τ
√

2G
)2

=
1− 4τ2 − 4τ2(1− 4τ2)(√
2G+ 1− 4τ2 − 2τ

√
2G
)2

=
(1− 4τ2)2(√

2G+ 1− 4τ2 − 2τ
√

2G
)2

We also get from (3) that

α
3
2 = (

√
α)3 =

(2λ
√

2G+ 1− 4τ2 − 4τλ
√

2G)3

(1− 4τ2)3
= 8λ3

(
(
√

2G+ 1− 4τ2 − 2τ
√

2G)3

(1− 4τ2)3

)
.

Combining these equation we can obtain both the numerator and the denominator of h′(α).

Num = 8λ3
√

2G

(
2τ
√

2G+ 1− 4τ2 −
√

2G√
2G+ 1− 4τ2 − 2τ

√
2G

)

Den = 8λ3

(
(
√

2G+ 1− 4τ2 − 2τ
√

2G)3

(1− 4τ2)3

)
(1− 4τ2)4(√

2G+ 1− 4τ2 − 2τ
√

2G
)4

=
8λ3(1− 4τ2)(√

2G+ 1− 4τ2 − 2τ
√

2G
)

Finally,

h′(α) =
Num

Den
=

√
2G(2τ

√
2G+ 1− 4τ2 −

√
2G)

1− 4τ2
(4)

which concludes the proof

Proof that (hki )
′(ᾱi) is bounded by 1

2(1−
√

1− 4τ2
i ) < 1

2 over [0, 2τ2
i ]:

Proof. To do so, let us study (hki )
′ in (4) as a function of G. We define,

f(G) =

√
2G(2τ

√
2G+ 1− 4τ2 −

√
2G)

1− 4τ2

from which we get

f ′(G) =
1

1− 4τ2

(
8τG+ 2τ(1− 4τ2)− 2

√
2G
√

2G+ 1− 4τ2

√
2G
√

2G+ 1− 4τ2

)
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The sign if this derivative is governed by the numerator. Then,

4τG+ τ(1− 4τ2)−
√

2G
√

2G+ 1− 4τ2 = 0

⇐⇒ (4τG+ τ(1− 4τ2))2 = 2G(2G+ 1− 4τ2)

⇐⇒ 16τ2G2 + 8τ2(1− 4τ2)G+ τ2(1− 4τ2)2 = 4G2 + 2(1− 4τ2)G

⇐⇒ 4(1− 4τ2)G2 + 2(1− 4τ2)2G− τ2(1− 4τ2)2 = 0

This is a quadratic equation whose positive solution is given by

Gmax =

√
1− 4τ2 − (1− 4τ2)

4

Hence, we get that f is increasing over [0, Gmax] and decreasing over [Gmax, 2τ
2]. In order to

find an upper-bound of h′(α) above, we thus have to bound f(Gmax):

f(Gmax) =

2τ√
2

√√
1− 4τ2 − (1− 4τ2) 1√

2

√√
1− 4τ2 − (1− 4τ2) + 2(1− 4τ2)

1− 4τ2
−
√

1− 4τ2

2(1− 4τ2)
+

1

2

=
τ
√√

1− 4τ2 − (1− 4τ2)
√√

1− 4τ2 + (1− 4τ2)

1− 4τ2
−
√

1− 4τ2

2(1− 4τ2)
+

1

2

=
τ
√

(1− 4τ2)− (1− 4τ2)2

1− 4τ2
−
√

1− 4τ2

2(1− 4τ2)
+

1

2

=
τ
√

4τ2(1− 4τ2)

1− 4τ2
−
√

1− 4τ2

2(1− 4τ2)
+

1

2

=

√
1− 4τ2

(1− 4τ2)

(
2τ2 − 1

2

)
+

1

2

=
1

2

(
1−

√
1− 4τ2

)
<

1

2

where we used the fact that τ < 1
2 to obtain the last inequality.

1.5 Execution times comparison

Execution time results reported in Table 1 show accelerations of about 5, 6 and 13 times for

coordinate descent, proximal gradient and majorize-minimization solvers respectively. Also

note that Alg. 2 allows significantly reduce the time consecrated to the screening tests when

compared to the iterative approach in Alg. 1. However, these screening times remain quite

small compared to the overall execution times.

1.6 Number of refinement iterations

In Figure 3 we show the number of refinement iterations per solver iteration for the same

scenarios shown in Table 1. Results for the logistic regression case are given in Figure 4.

One can see that the number of refinement iterations revolves around 5 or 10 (respectively for

εr = 10−3 or 10−5) before it stabilizes to 2 or 1. Nevertheless, the total accumulated number

of refinement iterations remain considerable in most cases.

Effect of poor initialization

A higher number of refinement iterations tends to occur when, for some reason, there is a big

margin of improvement for the current value of α. To simulate one such scenario, we purposely
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Table 1: Execution times for KL-L1 regression on TasteProfile data, with λ/λmax = 10−3. Here,

τ denotes the screening frequency (e.g. τ = 10 means that screening tests are performed every

10 solver iterations). The number of refinement iterations avoided by Alg. 2 is also reported.

Total time [s] Screening time [s] Refinement it.

εr τ No screen. Alg. 1 Alg. 2 Alg. 1 Alg. 2 Total

C
o
or

d
D

es
c.

10−3 1 27.23 5.93 5.92 1.64e-2 1.08e-2 113

10 29.23 4.06 4.03 9.27e-3 4.75e-3 17

10−5 1 27.30 6.04 5.95 1.97e-2 1.03e-2 192

10 27.09 4.15 4.11 1.06e-2 4.64e-3 27

P
ro

x
.

G
ra

d
.

10−3 1 15.97 2.23 2.22 3.82e-2 3.11e-2 475

10 15.70 2.50 2.44 6.41e-3 4.54e-3 66

10−5 1 16.24 2.26 2.20 3.90e-2 3.14e-2 576

10 10.89 2.31 2.30 6.99e-3 4.93e-3 89

M
a

j.
M

in
.

10−3 1 13.97 1.11 1.00 8.97e-2 6.08e-2 314

10 12.92 0.74 0.66 1.85e-2 1.08e-2 135

10−5 1 13.11 1.11 1.02 1.18e-1 6.20e-2 3593

10 13.08 0.78 0.69 2.15e-2 1.19e-2 578

initialize α with a smaller value in Figure 5 (in the right graph, α initialization is divided

by a factor of 100). One can verify that the number of refinement iterations indeed goes up

considerably (about an order of magnitude). In such cases, the proposed analytic approach

becomes particularly interesting.

Remark 1. It is important to emphasize that, contrarily to the iterative variant, the analytic

approach does not require the initialization of the strong concavity bound α. This can be decisive

in some cases where a global bound (or a bound over the feasible set) is not readily available.

Inversely, when a closed-form solution of the refinement fixed-point equation is not available,

the iterative variant can be used. When neither is available (global initialization or closed-form

solution) then the iterative variant can be deployed with a very low initialization for α, but then

the number of required refinement iterations will typically be very high.

Warm start

When a full regularization path is being solved sequentially, starting with a high regularization

and gradually reducing its value, the next problem instance can be initialized with the previous

solution for a warm start. In such cases, the primal and dual estimates can be already quite

accurate in initial iterations, while α has to be reset to its pessimistic global bound. One would

expect a large number of refinement steps to be necessary in the initial solver iterations until

α estimates catch-up. This hypothesis was indeed verified empirically, as reported in Table 2.

Note that the number of refinement iterations increases with a finer grid and so does the time

saved by the analytic approach. Indeed, a finer grid implies that the warm start initialization

is more accurate and, therefore, the α initialization is comparatively worse.
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Figure 3: Number of refinement iterations in Alg. 1 per solver iteration in the KL-L1 regression

problem with λ/λmax = 10−3 and εr ∈ {10−3, 10−5}, τ ∈ {1, 10} (same as in Table 1).

Table 2: Screening times and refinement iterations for a KL-L1 regularization path with warm

start and λ/λmax ∈ [10−3, 1) at different grid resolutions (i.e. the number of regularization

values taken logarithmically-spaced in the grid) with εr = 103 and τ = 1.

Screening time [s] Refinement it.

Grid resolution Alg. 1 Alg. 2 Ratio (2/1) Total Per λ

C
o
or

d

D
es

c. 20 2.5e-2 1.5e-2 0.60 237 11.9

100 13.3e-2 6.9e-2 0.52 1521 15.2

P
ro

x
.

G
ra

d
. 20 1.9e-2 1.4e-2 0.74 319 15.9

100 7.9e-2 5.4e-2 0.68 1792 17.9
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Figure 4: Number of refinement iterations in Alg. 1 per solver iteration in the Logistic-L1

regression problem with λ/λmax = 10−3 and εr ∈ {10−3, 10−5}, τ ∈ {1, 10}.

Figure 5: Effect of a poor initialization of α in the number of refinement iterations. Left:

standard initialization. Right: degraded initialization (by a factor of 100).

1.7 Cases (improvement, indecisive, no improvement) distribution

Sensitivity to regularization

In Tables 3 and 4 we show the proportion of occurrence of each of three possible cases (im-

provement, indecisive and no improvement) at three different regularization regimes λ/λmax ∈
{10−1, 10−2, 10−3}.

Table 3: Cases distribution (Improvement; No improvement; Indecisive) for KL-L1 regression

on NIPSpapers data, with regularization λ/λmax ∈ {10−1, 10−2, 10−3}.

λ/λmax = 10−1 λ/λmax = 10−2 λ/λmax = 10−3

ᾱk≤αSb ᾱk>αSb ᾱk≤αSb ᾱk>αSb ᾱk≤αSb ᾱk>αSb

C
o
o
r
d
.

D
e
sc

. Improv. 0 44.5 0 49.6 0 48.6

No-Improv. 52.2 0 49.6 0 51.4 0

Indec. 2.2 1.1 0.8 0 0 0

P
r
o
x
.

G
r
a
d
. Improv. 0 98.5 0 100 0 92.5

No-Improv. 1.5 0 0 0 0 0

Indec. 0 0 0 0 7.5 0

Because the results are quite robust to the regularization parameter, from this point on (and in

the paper) we report average results on 100 different regularizations on a grid λ/λmax ∈ [10−3, 1).
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Table 4: Cases distribution for Logistic-L1 regression on Leukemia data.

λ/λmax = 10−1 λ/λmax = 10−2 λ/λmax = 10−3

ᾱk≤αSb ᾱk>αSb ᾱk≤αSb ᾱk>αSb ᾱk≤αSb ᾱk>αSb

C
o
o
r
d
.

D
e
sc

. Improv. 0 86.8 0 89.8 0 92.9

No-Improv. 10.6 0 8.2 0 5.3 0

Indec. 1.3 1.3 1.4 0.7 1.3 0.5

Sensitivity to data matrix

Results with TasteProfile and 20newsgrous datasets are shown in Table 5 (to be compared with

NIPSpapers results in Table 1 in the paper).

Table 5: KL-L1 regression on different datasets.

Proximal Gradient Coordinate Descent

Taste Profile 20 News Groups Taste Profile 20 News Groups

ᾱk≤αSb
ᾱk>αSb

ᾱk≤αSb
ᾱk>αSb

ᾱk≤αSb
ᾱk>αSb

ᾱk≤αSb
ᾱk>αSb

Improv. 0 38.7 (5.6) 0 47.5 (7.1) 0 98.4 (3.7) 0 99.2 (2.5)

No-Imp. 60.2 (5.6) 0 48.8 (5.9) 0 1.4 (3.5) 0 0.3 (1.2) 0

Indec. 0.5 (0.9) 0.6 (1.1) 1.8 (2.3) 1.9 (2.2) 0.1 (0.4) 0.1 (0.6) 0.3 (0.8) 0.2 (0.8)

Sensitivity to input vector

In Table 6 we show the results for different input vectors y, which, in the this archetypal analysis

setup, is a randomly select sample extracted from the data matrix. All realizations shown below

are different from the ones used in Table 1 in the paper.1

Table 6: KL-L1 regression with different input vectors.

Proximal Gradient Coordinate Descent

Realization 1 Realization 2 Realization 1 Realization 2

ᾱk≤αSb
ᾱk>αSb

ᾱk≤αSb
ᾱk>αSb

ᾱk≤αSb
ᾱk>αSb

ᾱk≤αSb
ᾱk>αSb

Improv. 0 46.1 (6.7) 0 47.8 (9.8) 0 88.7 (8.5) 0 81.1 (9.3)

No-Imp. 52.5 (6.7) 0 51.1 (9.3) 0 11.1 (9.3) 0 18.6 (9.2) 0

Indec. 0.8 (1.5) 0.6 (1.0) 0.5 (1.2) 0.6 (1.2) 0 0.2 (0.9) 0.1 (0.5) 0.2 (0.6)

1This experiment doesn’t make sense for the Logistic Regression case, in which the input vector is fixed and

corresponds to the classification labels.
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