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Sphere Refinement in Gap Safe Screening
Cássio F. Dantas, Emmanuel Soubies, Cédric Févotte, Fellow, IEEE

Abstract—The Gap safe screening technique is a powerful tool
to accelerate the convergence of sparse optimization solvers. Its
performance is largely based on the ability to determine the
smallest “sphere”, centered at a given feasible dual point, that
contains the dual solution. This can be achieved through an inner
sphere refinement loop, applied at each screening step. In this
work, we show that this refinement loop actually converges to the
solution of a fixed-point equation for which we derive a closed-
form expression for two common loss functions. This allows us to
develop an analytic (i.e., non iterative) and more elegant variant
of the sphere refinement step.

Index Terms—Sparse optimization, Safe screening, Kullback-
Leibler regression, Logistic regression.

I. INTRODUCTION

SPARSE optimization problems are encountered in fields
such as signal processing, inverse problems, statistics, and

machine learning. A very common formulation is given by

x? ∈ argmin
x∈C

Pλ(x) :=

m∑
i=1

fi([Ax]i) + λ‖x‖1 (1)

where A ∈ Rm×n, C ∈ {Rn,Rn≥0}, λ > 0, and each scalar
function fi : R→ R is proper, lower semi-continuous, convex,
and differentiable. As such, numerous algorithms have been
developed to tackle problems of the form (1). These include,
but are not limited to, proximal gradient [1]–[3], coordinate
descent [4], [5], and majorization-minimization [6] methods.

Within this context, the promise of safe screening is to
identify zero coordinates in x? so as to reduce the size of the
problem and, consequently, accelerate the convergence of the
solver. This identification can be performed before or within
the course of iterations, leading respectively to the so-called
static [7] and dynamic [8] screening approaches. Although
originally proposed for the Lasso problem [7] (i.e., fi(z) =
z2), safe screening techniques have then been extended to
a large variety of sparse-regularized problems [8]–[11]. The
case where the `1-norm in (1) is replaced by a generic group
separable norm has also been treated in [9], [12].

Safe Screening in a Nutshell: Safe screening techniques
rely on the first-order primal-dual optimality conditions of (1).
More precisely, we get the key property that [7], [12]

∀j ∈ [n], |φ(aTj θ
?)| < 1 =⇒ x?j = 0, (2)

where φ(x) = x if C = Rn or φ(x) = max(x, 0) if C = Rn≥0,
and θ∗ ∈ Rm is the solution of the dual problem

θ? = argmin
θ∈∆A

Dλ(θ) := −
m∑
i=1

f∗i (−λθi). (3)
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In the dual formulation (3), f∗i stands for the Fenchel-Legendre
conjugate of fi while ∆A = {θ ∈ Rm | ∀j ∈ [n], |φ(aTj θ)| ≤
1} ∩ dom(Dλ) corresponds to the dual feasible set, with
dom(Dλ) the domain of the dual function.

One sees from (2) that the knowledge of θ? allows us to
identify zero coordinates in x?. Yet, this is not practical as θ?

is unknown. The main task in safe screening is thus to define
a safe region S 3 θ? from which we can derive the following
safe screening rule for the jth component

max
θ∈S
|φ(aTj θ)| < 1 =⇒ |φ(aTj θ

?)| < 1 =⇒ x?j = 0. (4)

Clearly, in order to maximize screening performance, the safe
region S should be as small as possible (to increase the number
of screened variables) while allowing an efficient computation
of the screening test given by maxθ∈S |φ(aTj θ)| < 1 (to
minimize the computational overhead).

Among existing safe regions, the Gap safe sphere [9] leads
to state-of-the-art screening performance for a wide range of
problems. Given any primal-dual pair (x,θ) ∈ C×∆A, it reads
as S = B(θ,

√
2Gapλ(x,θ)/αRm), where Gapλ(x,θ) =

Pλ(x) −Dλ(θ) ≥ 0 and αRm > 0 corresponds to the strong
concavity constant of Dλ over Rm. Not only is its geometry
simple (allowing fast screening tests), but its radius vanishes
upon convergence of the primal-dual iterates when strong
duality holds (i.e., Gapλ(x?,θ?) = 0). Yet, it requires the dual
function Dλ to be globally strongly concave which precludes
its use for an important class of functions fi such as the β-
divergences with β ∈ [1, 2) [13].

In a previous work [12], we overcame this limitation by
computing local strong concavity bounds on well-chosen sub-
sets of the domain. Moreover, by re-evaluating the strong-
concavity bound on the current safe sphere, we proposed a
sphere refinement loop that improves screening performance.

Contributions: In this letter, we analyze the sphere re-
finement loop proposed in [12] and recalled in Section II. We
prove that it converges to the solution of a fixed-point equation
(Proposition 1). This allows us to derive a new algorithm that is
exempt of the inner loop, when the fixed-point equation admits
a closed-form solution (Alg. 2). We derive in Section IV such
closed-from expressions for two popular loss functions: the
Kullback-Leibler (KL) divergence and the logistic function.
Finally, numerical illustrations and comparisons are reported
in Section V.

Notations: Throughout the paper, we let [n]={1, . . . , n}.
For a vector x ∈ Rn, we denote xi its ith entry. Given a subset
of indices g ⊆ [n] with cardinality |g| = ng , xg ∈ Rng stands
for the restriction of x to its elements indexed by g. For a
matrix A, we denote aj the jth column and Ag the matrix
formed out of the columns of A indexed by g ⊆ [n]. The
complement of A ⊆ [n] is denoted Ac = [n] \ A. Given a
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Algorithm 1 GSS with iterative sphere refinement [12]

1: Inputs: x0 ∈ C, εgap > 0
2: A ← [n], k ← 1, S0 ← ∆A

3: repeat
4: . Primal and Dual updates
5: xkA ← PrimalUpdate(xk−1

A ,AA), xkAc ← 0
6: θk ← DualUpdate(xk) ∈ ∆A

7: . Safe region with iterative refinement
8: S̃ ← Sk−1

9: if θk /∈ S̃ then . Inflate previous safe region
10: S̃ ← B

(
θk−1, ‖θk − θk−1‖

)
11: end if
12: Sk ← B

(
θk,
√

2 Gapλ(xk,θk)
αS̃

)
. Init. safe region

13: if αSk > αS̃ then
14: repeat . Sphere refinement
15: Sk ← B

(
θk,
√

2 Gapλ(xk,θk)
αSk

)
16: until convergence
17: end if
18: . Screening
19: A ← {j∈A|max

θ∈Sk
|φ(aTj θ)| ≥ 1}

20: k ← k + 1
21: until Gapλ(xk,θk) ≤ εgap

subset S ⊂ Rm αS stands for the strong concavity constant
of Dλ over S (see [12, Proposition 11] for a formal definition).
Finally, we will use the acronym GSS for Gap safe screening.

II. GSS WITH ITERATIVE SPHERE REFINEMENT

The Gap safe screening with iterative sphere refinement
proposed in [12] is recalled in Alg. 1. There, PrimalUpdate
(resp., DualUpdate) refers to the update step of any iterative
primal (resp., dual) solver for (1) (resp., (3)). Then, the
construction of the safe region, starting at line 7, is made of
three steps.
• First, if the new dual point does not belong to the previous

safe region, the latter is inflated (Line 10).
• Second, as θk ∈ S̃, Theorem 5 in [12] can be invoked to

build a new safe region centered in θk (Line 12).
• Third, if the strong concavity constant over this new safe

region improves (Line 13), this safe region is iteratively
refined (lines 14–16). From [12, Proposition 7], this
refinement loop generates a sequence of nested Gap safe
spheres (i.e., with decreasing radius), all centered in θk.

Finally, the refined safe region is used at Line 19 to safely
screen out zero-coordinates of the solution vector x?.

III. GSS WITH ANALYTIC SPHERE REFINEMENT

The proposed Gap safe screening with analytic sphere
refinement is presented in Alg. 2. Its main novelties with
respect to Alg. 1 are outlined in the next three sections.

A. Tracking the Best Strong Concavity Constant

As opposed to Alg. 1, in Alg. 2 we keep track of the safe
region Sb over which the best (i.e., largest) constant αSb has

Algorithm 2 Proposed GSS with analytic sphere refinement

1: Inputs: x0 ∈ C, εgap > 0
2: A ← [n], k ← 1, Sb ← ∆A

3: repeat
4: . Primal and Dual updates
5: xkA ← PrimalUpdate(xk−1

A ,AA), xkAc ← 0
6: θ̃ ← DualUpdate(xk) ∈ ∆A

7: θk ← PSb(θ̃) . Projection on Sb

8: . Safe region with analytic refinement
9: Sk ← B

(
θk,
√

2 Gapλ(xk,θk)
αSb

)
. Init. safe region

10: if ‖θk − θSb‖ > rSk − rSb then
11: if ᾱk > αSb then . ᾱk fixed-point in (9)

12: Sk ← B
(
θk,

√
2 Gapλ(xk,θk)

ᾱk

)
13: Sb ← Sk . Track region with best α
14: end if
15: end if
16: . Screening
17: A ← {j∈A|max

θ∈Sk
|φ(aTj θ)| ≥ 1}

18: k ← k + 1
19: until Gapλ(xk,θk) ≤ εgap

been computed so far. As such, we ensure the construction of a
non-decreasing sequence of strong concavity constants. Then,
to ensure that the new dual point θk belongs to Sb, we replaced
the inflation step at Line 10 of Alg. 1 by the projection step at
Line 7 of Alg. 2. The benefit of this modification is twofold.
• It discards the need of recomputing the strong concavity

constant (on the inflated region) before refinement.
• It leads to improved dual points. Indeed, given that Sb is

convex and θ? ∈ Sb, we have for all θ̃ ∈ ∆A

‖PSb(θ̃)− θ?‖2 ≤ ‖θ̃ − θ?‖2. (5)

B. Avoiding Unnecessary Refinement Attempts

In Alg. 2, we added the test at Line 10 to avoid unnecessary
refinement attempts. Indeed, one can see that the refinement
step will improve the initial kth Gap safe sphere

Sk = B
(
θk, rk

)
with rk =

√
2 Gapλ(xk,θk)

αSb
, (6)

only if αSk > αSb (i.e., the strong concavity constant on the
new Sk is better than the best one αSb computed so far).
From the definition of strong concavity,1 we can thus derive
the following three situations (illustrated in Fig. 1 (a-c)),
• Improvement if Sk ⊆ Sb =⇒ αSk ≥ αSb
• No Improvement if Sk ⊇ Sb =⇒ αSk ≤ αSb
• Indecisive otherwise.
A typical situation of improvement arises when the duality

Gap (and thus the radius) decreases more than the displace-
ment of the dual point from one iteration to the next. Indeed,

1If a function f is α1-strongly concave on S1, then it is α2 ≥ α1 strongly
concave on any S2 ⊂ S1.
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(a) Improvement (b) Indecisive (c) No Improvement

(d) Refinement loop (α) (e) Refinement loop (sphere)

Fig. 1: Sphere refinement behavior. In case (a), computing
the fixed point ᾱk would improve over αSb . The refinement
loop would follow the green path in (d-e). On the contrary, in
case (c), computing the fixed point ᾱk would degrade w.r.t.
αSb . There, running the refinement loop would follow the
red path in (d-e). This situation is avoided in Alg. 1 (resp.
Alg. 2) by the test at Line 13 (resp. Lines 10-11). Finally, the
intermediate case (b) may lead to both mentioned behaviors.

Fig. 2: Illustration of the test at Line 10 of Alg. 2

let θSb ∈ ∆A and rSb > 0 denote respectively the center and
the radius of Sb, then Sk ⊆ Sb is equivalent to

‖θk − θSb‖ ≤ rSb − rk. (7)

Similarly, we get that Sk ⊇ Sb (i.e., no improvement case) is
equivalent to

‖θk − θSb‖ ≤ rk − rSb . (8)

Hence, the complement of (8) includes all improvement and
indecisive cases (see Fig. 2). It can be used as a test that
does not require to compute any strong concavity constant
to decide whether to perform the refinement step (Line 10 of
Alg. 2). Yet, a second test involving strong concavity constants
(Line 11 of Alg. 2) is required to deal with indecisive cases.

C. Dropping the Refinement Loop

In Proposition 1, we prove that the sequence of strong
concavity constants generated by the refinement loop at
lines 14–16 of Alg. 1 converges to the solution ᾱk of a fixed-
point equation. This is illustrated in Fig. 1 (d-e). As such,
provided that one has access to a closed-form expression for

ᾱk (see Section IV), the refinement is no longer iterative, as
implemented at Line 12 of Alg. 2.

Proposition 1 (Fixed point equation). Assume that Dλ is twice
differentiable and let (xk,θk) ∈ C ×∆A be the kth primal-
dual iterate pair and Gk := Gapλ(xk,θk). Moreover let h :
R≥0 → R≥0 be defined by

hk(α) = min
i∈[m]

inf
|θi−θki |≤

√
2Gk

α

λ2f∗i
′′ (−λθi) , (9)

where hk(0) corresponds to the unconstrained inf . Then, the
iterative refinement process (lines 14–16 in Alg. 1) converges
to the safe region Sk = B

(
θk,
√

2Gk/ᾱk
)

where ᾱk is an

attracting fixed point of hk.

Proof. See Supplementary Material.

IV. CLOSED-FORM EXPRESSIONS OF FIXED POINTS

The practical relevance of Alg. 2 depends on our ability to
derive closed-form expressions of fixed points of hk in (9). We
show that this is possible for two very common loss functions.

A. Kullback-Leibler Divergence

Here, the scalar data-fidelity functions fi and their convex
conjugates are given by:

fi(z) = yi log (yi/(z + ε)) + z + ε− yi, (10)
f∗i (u) = −yi log(1− u)− εu, (11)

where yi is the ith entry of the data vector y ∈ Rm≥0, ε > 0 is
a smoothing factor that avoids singularities around zero and
dom(f∗i ) = {u ∈ R | u ≤ 1}. Finally, in this case we have
C = Rn≥0 and A ∈ Rm×n≥0 .

Proposition 2. Assume that yi > 0 for all i ∈ [m]. Let
(xk,θk) ∈ Rn≥0 × ∆A and Gk := Gapλ(xk,θk). Then, hk

in (9) with f∗i in (11) has a unique attracting fixed-point

ᾱk = min
i∈[m]

ᾱki (12)

with ᾱki =


0 if Gk ≥ yi

2

λ2
(√

yi −
√

2Gk
)2

(1 + λθki )2
otherwise.

(13)

Proof. See Supplementary Material.

Remark 1. Following [12, Section 4.4.2], Proposition 2 can
be generalized to the situation where there exists i ∈ [m] such
that yi = 0. This is achieved by searching for the min in (12)
within I{0 rather than [m], where I0 = {i ∈ [m] | yi = 0}.

B. Logistic Function

For an input signal y ∈ Rm, the data-fidelity functions fi
and their convex conjugates f∗i are given by:

fi(z) = log (1 + ez)− yiz (14)
f∗i (u) = (yi + u) log(yi + u)

+ (1− yi − u) log(1− yi − u) (15)
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TABLE I: Proportion of times (%) where ᾱk ≤ αSb or ᾱk >
αSb for each case of Fig. 1. Bold numbers emphasize the most
critical case where ᾱk is computed but not used.

COD FOR LOGISTIC PROX. GRAD. FOR KL

ᾱk≤αSb ᾱk>αSb ᾱk≤αSb ᾱk>αSb

IMPROV. 0 89.8 0 44.5
NO-IMPROV. 8.1 0 52.2 0
INDEC. 1.4 0.7 2.2 1.1

with dom(f∗i ) = {u ∈ R | 0 ≤ u + yi ≤ 1} = [−yi, 1 − yi].
In this case, we have C = Rn.

Proposition 3. Let (xk,θk) ∈ Rn × ∆A and Gk :=
Gapλ(xk,θk). Then hk in (9) with f∗i in (15) has a unique
attracting fixed-point

ᾱk = min
i∈[m]

ᾱki (16)

with, for τi = |λθki − yi + 1
2 | ≤

1
2 ,

ᾱki =



4λ2 if Gk ≥ 2τ2
i

λ2(2Gk + 1)2

2Gk

if Gk < 2τ2
i

and τi = 1
2(

−4τiλ
√

2Gk+2λ
√

2Gk+1−4τ2
i

1−4τ2
i

)2 if Gk < 2τ2
i

and τi < 1
2

(17)

Proof. See Supplementary Material.

C. Complexity Analysis

The computation of the fixed point from the closed-form
expressions derived in propositions 2 and 3 is of the order
of O(m) (due to the min operations). This is about the
same complexity as for the evaluation of the strong concavity
constant on any ball [12, Table 1]. As such, denoting by
P the number of sphere refinement iterations in Alg. 1, the
analytic version of Alg. 2 allows for reducing the overall
sphere refinement complexity from O(Pm) to O(m).

V. NUMERICAL ILLUSTRATION

In this section, we illustrate the behavior of the sphere
refinement procedure with the following two examples:
• KL regression with a proximal gradient (PG) solver [3]

for for archetypal analysis on the NIPS papers
dataset [14]. The size of the problem is (m × n) =
(2483× 14035) and λ = 10−2.

• Logistic regression with a coordinate descent (CoD)
solver [15] for binary classification of the Leukemia
dataset [16]. The size of the problem is (m × n) =
(71× 7129) and λ = 10−1.

We report in Table I, for each of the three situations
described in Fig. 1, the distribution of times where ᾱk > αSb
and ᾱk ≤ αSb . An interesting observation is that, for both
experiments, the proportion of indecisive situations is very
low (2.1% for Logistic regression with CoD and 3.3% for
KL-regression with proximal gradient). In particular, the pro-
portion of times where the fixed point ᾱk has been computed

Fig. 3: Evolution of ᾱk and αSb (top) and the duality gap
Gk (bottom) as a function of the iteration number k. Green,
grey (very rare) and red backgrounds depict respectively the
improvement, indecisive, and no-improvement situations. The
initial white region correspond to a “burning” phase where
ᾱk < αSb = α∆A

. Indeed, here αSb has been initialized
with α∆A

which is known. The number of inner refinement
iterations performed by Alg. 1 is shown in orange.

without being used (bold values in Table I) is even smaller.
These observations show the efficiency of the simple test at
Line 10 of Alg. 2 in discriminating improvement from no-
improvement situations. Note that if, for a given problem, the
proportion of indecisive cases appears to be more important,
and that most of these indecisive cases lead to an useless
computation of ᾱk, it would be preferable to modify the test
in Line 10 so as to keep only the improvement cases (rather
than improvement plus indecisive cases as in Alg. 2).

To further illustrate the sphere refinement behavior, we
report in Fig. 3 the evolution of the best strong concavity
constant αSb , the kth fixed point ᾱk, and the duality gap
Gk = Gapλ(xk,θk) as a function of the iteration number k.
We observe that, in general, no-improvement situations (red
areas) are associated with a degradation of the duality gap.
The occurrence of this phenomenon is directly related to the
considered solver and dual update. Moreover, we see that
the fixed point ᾱk can be significantly degraded in such no-
improvement situations (blue curves). This shows the impor-
tance of updating the strong concavity constant only when it
improves over the current one αSb .

The number of refinement iterations performed by Alg. 1
is also reported in Fig. 3. In the coordinate descent (resp.
proximal gradient) case, a total of 37 (resp. 69) additional inner
iterations are avoided by the proposed approach, including 2
(resp. 33) due to the non-improvement condition.

VI. CONCLUSION

In this work, we made a theoretical analysis of the sphere
refinement loop proposed in [12]. Not only does it shed new
light on this refinement step, but it allows us to derive a non-
iterative version that is more elegant, more concise, and enjoys
a better computational complexity.
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SUPPLEMENTARY MATERIAL

A. Proof of Proposition 1

First of all, as Dλ is twice differentiable and separable, we
get from [12, Proposition 11] that

αB(θk,rk) = min
i∈[m]

inf
|θi−θki |≤rk

λ2f∗i
′′ (−λθi) . (18)

Then, we know from [12, Proposition 7] that the refinement
loop at lines 14–16 of Alg. 1 builds a sequence of nested Gap
Safe spheres (i.e., with decreasing radius), all centered in θk.
With (18), we get that the loop converges to ᾱk = αB with
B = B(θk,

√
2Gk

ᾱk
), that is an attractive fixed point of hk.

B. Proof of Propositions 2 and 3

Lemma 1. Let h ∈ C1 having a fixed point at ᾱ. Then ᾱ is
attracting if |h′(ᾱ)| < 1 and repelling if |h′(ᾱ)| > 1.

Lemma 2. For i ∈ [m], let hi : R≥0 → R≥0 be a continuous
function that has i) a unique attracting fixed point ᾱi ≥ 0 and
ii) potentially 0 as repelling fixed point. Then ᾱ = mini∈[m] ᾱi
is the unique attracting fixed point of h : α 7→ mini∈[m] hi(α).

Proof. By assumption on the hi, we have hi(ᾱi) = ᾱi and

hi(α) < α, ∀α ∈ (ᾱi,+∞) and hi(α) > α, ∀α ∈ (0, ᾱi).

Denoting i? = argmini∈[m] ᾱi, we get

h(α) ≤ hi?(α) < α, ∀α ∈ (ᾱi? ,+∞) (19)
h(α) > α, ∀α ∈ (0, ᾱi?), (20)

The continuity of hi and h completes the proof.

Define hki such that hk in (9) can be written as

hk(α) = min
i∈[m]

hki (α). (21)

Then, to prove Propositions 2 and 3, it suffices to show that
the corresponding hki fulfill the conditions of Lemma 2.

Proof of Proposition 2

We get from [12, Proposition 36] (with r =
√

2Gk/α) that

hki (α) :=
λ2yiα(√

α(1 + λθki ) + λ
√

2Gk
)2 ,

(hki )′(α) :=
λ3yi
√

2Gk(√
α(1 + λθki ) + λ

√
2Gk

)3 .

In order to invoke Lemma 2, let us analyze the fixed point
of hki . Clearly, we always have hki (0) = 0 showing that 0 is
a fixed point of hki . Moreover, from Lemma 1, it is attracting
iff (hki )′(0) = yi/(2G

k) < 1 ⇔ Gk > yi/2. Concerning
non-zero fixed points, they satisfy

α(1 + λθki )2 + 2
√
α(1 + λθki )λ

√
2Gk + λ2(2Gk − yi) = 0.

This is a quadratic equation in
√
α with solutions

√
α =

λ(−
√

2Gk ±√yi)
1 + λθki

. (22)

Because −
√

2Gk ≤ 0, only the “plus” solution is admissible
when Gk < yi/2. Moreover, we get from Lemma 1 that Gk <
yi/2 also implies that this non-zero fixed point is attracting.

Combining the previous results, we have that
• if Gk ≥ yi/2, then hki has a unique fixed point, ᾱi = 0,

which is attracting,
• if Gk < yi/2, then hki has two fixed points: 0 which is

repelling and ᾱi > 0 (in (22)), which is attracting.

Proof of Proposition 3

Let τi = |λθki −yi+ 1
2 | ≤ 1/2 (the upper bound comes from

dom(f∗i (−λ·)) = [(yi − 1)/λ, yi/λ]). Then we get from [12,
Proposition 23, see proof] (with r =

√
2Gk/α) that

hki (α) =


4λ2 if α ≤ 2λ2Gk

τ2
i

4λ2

1−4

(
τi−λ

√
2Gk

α

)2 if α ≥ 2λ2Gk

τ2
i

(hki )′(α) =


0 if α ≤ 2λ2Gk

τ2
i

16λ3
√

2Gk
(
τi−λ

√
2Gk

α

)
α

3
2

(
1−4

(
τi−λ

√
2Gk

α

)2)2 if α ≥ 2λ2Gk

τ2
i

Note that (hki )′ is continuous at 2λ2Gk

τ2
i

and thus hki ∈ C1.
Then, from the definition of hki , we distinguish two cases.
• ᾱi = 4λ2 is a fixed point of hki if

4λ2 ≤ 2λ2Gk/τ2
i ⇐⇒ Gk ≥ 2τ2

i .

Moreover it is attracting (Lemma 1 with (hki )′(ᾱi) = 0 < 1).
• Other fixed points of hki are solutions of

α(1− 4τ2
i ) +

√
α8τiλ

√
2Gk − 4λ2(2Gk + 1) = 0. (23)

– For τi = 1
2 , (23) is a linear equation with solution

√
ᾱi = λ(2Gk + 1)/

√
2Gk. (24)

Then, one can check that

ᾱi > 8λ2Gk ⇐⇒ Gk < 2τ2
i =

1

2

and (hki )′(ᾱi) = 1
2 −G

k < 1 (i.e., ᾱi is attracting).
– For τi < 1

2 , (23) is a quadratic equation in
√
α with solutions

√
α =

−4τiλ
√

2Gk ± 2λ
√

2Gk + 1− 4τ2
i

1− 4τ2
i

. (25)

As τi < 1
2 , we have 1−4τ2

i > 0 and 4τiλ
√

2Gk < 2λ
√

2Gk <

2λ
√

2Gk + 1− 4τ2
i , showing that the solution with the plus

sign is admissible. Denoting ᾱi this solution, we have

ᾱi > 2λ2Gk/τ2
i ⇐⇒ Gk < 2τ2

i .

Moreover, one can show that

(hki )′(ᾱi) =

√
2Gk(2τi

√
2Gk + 1− 4τ2

i −
√

2Gk)

1− 4τ2
i

. (26)

is bounded by 1
2 (1 −

√
1− 4τ2

i ) when Gk < 2τ2
i . Then,

with τi <
1
2 , we get that (hki )′(ᾱi) <

1
2 . This shows (with

Lemma 1) that ᾱi is attracting. Combining all these disjoint
cases complete the proof.
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