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Sphere Refinement in Gap Safe Screening
Cássio F. Dantas, Emmanuel Soubies, Cédric Févotte, Fellow, IEEE

Abstract—The Gap safe screening technique is a powerful tool
to accelerate the convergence of sparse optimization solvers. Its
performance is largely based on the ability to determine the
smallest “sphere”, centered at a given feasible dual point, that
contains the dual solution. This can be achieved through an
inner sphere refinement loop, applied at each screening step. In
this work, we show that this refinement loop actually converges
to the solution of a fixed-point equation for which we derive
a closed-form expression for two common loss functions. This
allows us to develop an analytic (i.e., non iterative), more concise
and theoretically-grounded variant of the sphere refinement step.

Index Terms—Sparse optimization, Safe screening, Kullback-
Leibler regression, Logistic regression.

I. INTRODUCTION

SPARSE optimization problems are encountered in fields
such as signal processing, inverse problems, statistics, and

machine learning. A very common formulation is given by

x? ∈ argmin
x∈C

Pλ(x) :=

m∑
i=1

fi([Ax]i) + λ‖x‖1 (1)

where A ∈ Rm×n, C ∈ {Rn,Rn≥0}, λ > 0, and each
scalar function fi : R → R ∪ {+∞} is proper convex,
and differentiable. As such, numerous algorithms have been
developed to tackle problems of the form (1). These include,
but are not limited to, proximal gradient [1]–[3], coordinate
descent [4], [5], and majorization-minimization [6] methods.

Within this context, the promise of safe screening is to
identify zero coordinates in x? so as to reduce the size of
the problem and, consequently, accelerate the convergence of
the solver. This identification can be performed before or
within the course of iterations, leading respectively to the
so-called static [7] and dynamic [8] screening approaches.
Although originally proposed for the Lasso problem [7] (i.e.,
fi(z) = (yi − z)2 where yi is the ith entry of a data vector
y ∈ Rm), safe screening techniques have then been extended
to a large variety of sparse-regularized problems [8]–[11]. The
case where the `1-norm in (1) is replaced by a generic group
separable norm has also been treated in [9], [12].

Notations: We let [n]={1, . . . , n}. For a vector x ∈ Rn,
we denote xi its ith entry. Given a subset of indices g ⊆ [n]
with cardinality |g| = ng , xg ∈ Rng is the restriction of x to
its elements indexed by g. For a matrix A, we similarly define
the restrictions aj and Ag with respect to the columns of A.
The complement of A ⊆ [n] is denoted Ac = [n] \ A.
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Safe Screening in a Nutshell: Safe screening techniques
rely on the first-order primal-dual optimality conditions of (1).
More precisely, we get the key property that [7], [12]

∀j ∈ [n], |φ(aTj θ
?)| < 1 =⇒ x?j = 0, (2)

where φ(x) = x if C = Rn or φ(x) = max(x, 0) if C = Rn≥0,
and θ∗ ∈ Rm is the solution of the dual problem

θ? = argmin
θ∈∆A

Dλ(θ) := −
∑m
i=1 f

∗
i (−λθi). (3)

In the dual formulation (3), f∗i stands for the Fenchel-Legendre
conjugate of fi while ∆A := {θ ∈ Rm | ∀j ∈ [n], |φ(aTj θ)| ≤
1} ∩ dom(Dλ) corresponds to the dual feasible set, with
dom(Dλ) denoting the domain of the dual function.

One sees from (2) that the knowledge of θ? allows us to
identify zero coordinates in x?. Yet, this is not practical as θ?

is unknown. The main task in safe screening is thus to define
a safe region S 3 θ? from which we can derive the following
safe screening rule for the jth component

max
θ∈S
|φ(aTj θ)| < 1 =⇒ |φ(aTj θ

?)| < 1 =⇒ x?j = 0. (4)

Clearly, in order to maximize screening performance, the safe
region S should be as small as possible (to increase the number
of screened variables) while allowing an efficient computation
of the screening test given by maxθ∈S |φ(aTj θ)| < 1 (to
minimize the computational overhead).

Among existing safe regions, the Gap safe sphere [9] leads
to state-of-the-art screening performance. Given any primal-
dual pair (x,θ), it reads as S = B(θ,

√
2Gapλ(x,θ)/αRm),

where Gapλ(x,θ) = Pλ(x) − Dλ(θ) ≥ 0 and αRm > 0
corresponds to the strong concavity constant of Dλ over Rm.
Not only is its geometry simple (allowing fast screening tests),
but its radius vanishes upon convergence of the primal-dual
iterates when strong duality holds (i.e., Gapλ(x?,θ?) = 0).
Yet, it requires the dual function Dλ to be globally strongly
concave which precludes its use for an important class of
functions fi such as the β-divergences with β ∈ [1, 2) [13].

In a previous work [12], we overcame this limitation by
computing local strong concavity bounds on well-chosen sub-
sets of the domain. Moreover, by re-evaluating the strong-
concavity bound on the current safe sphere, we proposed a
sphere refinement loop that improves screening performance.

Contributions: In this letter, we scrutinize the sphere
refinement loop proposed in [12] and recalled in Sec. II. We
prove that it converges to the solution of a fixed-point equation
(Proposition 1). This allows us to derive a new algorithm that is
exempt of the inner loop, when the fixed-point equation admits
a closed-form solution (Alg. 2). We derive in Sec. IV such
closed-from expressions for two popular loss functions: the
Kullback-Leibler (KL) divergence and the logistic function.
Numerical evaluations are reported in Sec. V. Finally, all proof
are deferred to the Supplementary Material.
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Algorithm 1 GSS with iterative sphere refinement [12]

1: Inputs: x0 ∈ C, εgap > 0
2: A ← [n], S0 ← ∆A, εr ← 10−3

3: repeat (loop over k)
4: . Primal and Dual updates
5: xkA ← PrimalUpdate(xk−1

A ,AA), xkAc ← 0
6: θk ← DualUpdate(xk) ∈ ∆A

7: . Safe region with iterative refinement
8: S̃ ← Sk−1

9: if θk /∈ S̃ then . Inflate previous safe region
10: S̃ ← B

(
θk−1, ‖θk − θk−1‖

)
11: end if
12: Sk ← B

(
θk,
√

2 Gapλ(xk,θk)
αS̃

)
. Init. safe region

13: if αSk > αS̃ then
14: α0 ← αSk
15: repeat (loop over j) . Sphere refinement
16: rj ←

√
2 Gapλ(xk, θk)/αj−1

17: αj ← αB(θk,rj)

18: until |rj − rj−1| < εr · rj−1

19: Sk ← B(θk, rj)
20: end if
21: . Screening
22: A ← {j∈A|max

θ∈Sk
|φ(aTj θ)| ≥ 1}

23: until Gapλ(xk,θk) ≤ εgap

II. GSS WITH ITERATIVE SPHERE REFINEMENT

The Gap safe screening (GSS) with iterative sphere re-
finement proposed in [12] is recalled in Alg. 1. There,
PrimalUpdate (resp., DualUpdate) refers to the update step
of any iterative primal (resp., dual) solver for (1) (resp., (3)).
Given a subset S ⊂ Rm, αS stands for the strong concavity
constant of Dλ over S, i.e., a lower bound on f∗i

′′ over S and
∀i∈ [m] (c.f. [14], [12, Proposition 11]). Then, the construction
of the safe region, starting at line 7, is made of three steps.
• First, if the new dual point does not belong to the previous

safe region, the latter is inflated (Line 10) to make the
next step possible with θk ∈ S̃.

• Second, as θk ∈ S̃, Theorem 5 in [12] can be invoked to
build a new safe region centered at θk using αS̃ (Line 12).

• Third, if the strong concavity constant over this new safe
region improves (Line 13), this safe region is iteratively
refined (lines 15–18). From [12, Proposition 7], this
refinement loop generates a sequence of nested Gap safe
spheres (i.e., with decreasing radius), all centered in θk.

Finally, the refined safe region is used at Line 22 to safely
screen out zero-coordinates of the solution vector x?.

III. GSS WITH ANALYTIC SPHERE REFINEMENT

The proposed Gap safe screening with analytic sphere
refinement is presented in Alg. 2. Its main novelties with
respect to Alg. 1 are outlined in the next three sections.

A. Tracking the Best Strong Concavity Constant

As opposed to Alg. 1, in Alg. 2 we keep track of the safe
region Sb over which the best (i.e., largest) constant αSb has

Algorithm 2 Proposed GSS with analytic sphere refinement

1: Inputs: x0 ∈ C, εgap > 0
2: A ← [n], Sb ← ∆A

3: repeat (loop over k)
4: . Primal and Dual updates
5: xkA ← PrimalUpdate(xk−1

A ,AA), xkAc ← 0
6: θ̃ ← DualUpdate(xk) ∈ ∆A

7: θk ← PSb(θ̃) . Projection onto Sb (c.f. [14])
8: . Safe region with analytic refinement
9: Sk ← B

(
θk,
√

2 Gapλ(xk,θk)
αSb

)
. Init. safe region

10: if ‖θk − θSb‖ > rSk − rSb then
11: if ᾱk > αSb then . ᾱk fixed-point of (8)

12: Sk ← B
(
θk,

√
2 Gapλ(xk,θk)

ᾱk

)
13: Sb ← Sk . Track region with best α
14: end if
15: end if
16: . Screening
17: A ← {j∈A|max

θ∈Sk
|φ(aTj θ)| ≥ 1}

18: until Gapλ(xk,θk) ≤ εgap

been computed so far. As such, we ensure the construction of a
non-decreasing sequence of strong concavity constants. Then,
to ensure that the new dual point θk belongs to Sb, we replaced
the inflation step at Line 10 of Alg. 1 by the projection step at
Line 7 of Alg. 2. The benefit of this modification is twofold.
• It discards the need of recomputing the strong concavity

constant (on the inflated region) before refinement.
• It leads to improved dual points. Indeed, given that Sb is

convex and θ? ∈ Sb, we have for all θ̃ ∈ ∆A ‖PSb(θ̃)−
θ?‖2 ≤ ‖θ̃ − θ?‖2.

B. Avoiding Unnecessary Refinement Attempts

In Alg. 2, we added the test at Line 10 to avoid unnecessary
refinement attempts. Indeed, one can see that the refinement
step will improve the initial kth Gap safe sphere

Sk = B
(
θk, rk

)
with rk =

√
2 Gapλ(xk,θk)

αSb
, (5)

only if αSk > αSb (i.e., the strong concavity constant on the
new Sk is better than the best one αSb computed so far).
From the definition of strong concavity,1 we can thus derive
the following three situations (illustrated in Fig. 1 (a-c)),
• Improvement if Sk ⊆ Sb =⇒ αSk ≥ αSb
• No Improvement if Sk ⊇ Sb =⇒ αSk ≤ αSb
• Indecisive otherwise.
A typical situation of improvement arises when the duality

Gap (and thus the radius) decreases more than the displace-
ment of the dual point from one iteration to the next. Indeed,
let θSb ∈ ∆A and rSb > 0 denote respectively the center and
the radius of Sb, then Sk ⊆ Sb is equivalent to (see Fig. 1-a)

‖θk − θSb‖ ≤ rSb − rk. (6)

1If a function f is α1-strongly concave on S1, then it is α2 ≥ α1 strongly
concave on any S2 ⊂ S1.
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(a) Improvement (b) Indecisive (c) No Improvement

(d) Refinement loop (α) (e) Refinement loop (sphere)

Fig. 1: Sphere refinement behavior. In case (a), computing
the fixed point ᾱk would improve over αSb . The refinement
loop would follow the green path in (d-e). On the contrary, in
case (c), computing the fixed point ᾱk would degrade w.r.t.
αSb . There, running the refinement loop would follow the
red path in (d-e). This situation is avoided in Alg. 1 (resp.
Alg. 2) by the test at Line 13 (resp. Lines 10-11). Finally, the
intermediate case (b) may lead to both mentioned behaviors.

Fig. 2: Illustration of the test at Line 10 of Alg. 2

Similarly, we get that Sk ⊇ Sb (i.e., no improvement case) is
equivalent to

‖θk − θSb‖ ≤ rk − rSb . (7)

Hence, the complement of (7) includes all improvement and
indecisive cases (see Fig. 2). It can be used as a test that
does not require to compute any strong concavity constant
to decide whether to perform the refinement step (Line 10 of
Alg. 2). Yet, a second test involving strong concavity constants
(Line 11 of Alg. 2) is required to deal with indecisive cases.

C. Dropping the Refinement Loop

In Proposition 1, we prove that the sequence of strong con-
cavity constants generated by the refinement loop at lines 15–
18 of Alg. 1 converges to the solution ᾱk of a fixed-point
equation. This is illustrated in Fig. 1 (d-e). As such, provided
that one has access to a closed-form expression for ᾱk (see
Sec. IV), the refinement is no longer iterative, as implemented
at Line 12 of Alg. 2.

Proposition 1 (Fixed point equation). Assume that Dλ is twice
differentiable and let (xk,θk) ∈ C ×∆A be the kth primal-
dual iterate pair and Gk := Gapλ(xk,θk). Define

hk(α) = min
i∈[m]

inf
θi∈B(θki ,

√
2Gk

α )∩dom f∗i (−λ·)
λ2f∗i

′′ (−λθi) (8)

with unconstrained inf when α = 0. Then, the refinement loop
(lines 15–18 in Alg. 1) converges to the safe region Sk =

B
(
θk,
√

2Gk/ᾱk
)

with ᾱk a non-repelling2 fixed point of hk.

IV. CLOSED-FORM EXPRESSIONS OF FIXED POINTS

The practical relevance of Alg. 2 depends on our ability to
derive closed-form expressions of fixed points of hk in (8). We
show that this is possible for two very common loss functions.
More general properties of hk are given in [14, Sec. 1.3].

A. Kullback-Leibler Divergence

Here, the scalar data-fidelity functions fi and their convex
conjugates are given by:

fi(z) = yi log (yi/(z + ε)) + z + ε− yi, (9)
f∗i (u) = −yi log(1− u)− εu, (10)

where yi is the ith entry of the data vector y ∈ Rm≥0, ε > 0 is
a smoothing factor that avoids singularities around zero and
dom(f∗i ) = {u ∈ R | u ≤ 1}. Finally, in this case we have
C = Rn≥0, and A ∈ Rm×n≥0 .

Proposition 2. Assume that yi > 0 for all i ∈ [m]. Let
(xk,θk) ∈ Rn≥0 × ∆A and Gk := Gapλ(xk,θk). Then, hk

in (8) with f∗i in (10) has a unique attracting fixed-point

ᾱk = min
i∈[m]

ᾱki (11)

with ᾱki =


0 if Gk ≥ yi

2

λ2
(√

yi −
√

2Gk
)2

(1 + λθki )2
otherwise.

(12)

Remark 1. Following [12, Sec. 4.2.2], Proposition 2 can be
generalized to the situation where there exists i ∈ [m] such
that yi = 0. This is achieved by searching for the min in (11)
within I{0 rather than [m], where I0 = {i ∈ [m] | yi = 0}.

B. Logistic Function

For an input signal y ∈ Rm, the data-fidelity functions fi
and their convex conjugates f∗i are given by:

fi(z) = log (1 + ez)− yiz (13)
f∗i (u) = (yi+u) log(yi+u) + (1−yi−u) log(1−yi−u)

with dom(f∗i ) = {u ∈ R | 0 ≤ u + yi ≤ 1} = [−yi, 1 − yi].
In this case, we have C = Rn.

Proposition 3. Let (xk,θk) ∈ Rn × ∆A and Gk :=
Gapλ(xk,θk). Then hk in (8) with f∗i in (13) has a unique

2See [15, Definitions 1.3 and 1.4] or [16, Definitions 6.5 and 6.8] for a
definition of attracting and repelling fixed points.
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TABLE I: Proportion of times (%) where ᾱk ≤ αSb or
ᾱk > αSb for each case of Fig. 1. Results are averaged over a
regularization grid of 100 points λ/λmax ∈ [10−3, 1) (standard
deviation is shown in parentheses). Bold numbers emphasize
the most critical case where ᾱk is computed but not used.

COD FOR LOGISTIC PROX. GRAD. FOR KL

ᾱk≤αSb ᾱk>αSb ᾱk≤αSb ᾱk>αSb

IMPROV. 0 92.2 (5.3) 0 45.6 (6.1)
NO-IMPROV. 5.9 (4.6) 0 53.2 (6.4) 0
INDEC. 1.0 (0.7) 0.9 (0.7) 0.6 (1.1) 0.6 (1.2)

attracting fixed-point ᾱk = mini∈[m] ᾱ
k
i with, for τi =

|λθki − yi + 1
2 | ≤

1
2 ,

ᾱki =



4λ2 if Gk ≥ 2τ2
i

λ2(2Gk + 1)2

2Gk

if Gk < 2τ2
i

and τi = 1
2(

−4τiλ
√

2Gk+2λ
√

2Gk+1−4τ2
i

1−4τ2
i

)2 if Gk < 2τ2
i

and τi < 1
2

(14)

C. Complexity Analysis

The computation of the fixed point from the closed-form
expressions derived in propositions 2 and 3 is of the order
of O(m) (due to the min operations). This is about the
same complexity as for the evaluation of the strong concavity
constant on any ball [12, Table 1]. As such, denoting by
P the number of sphere refinement iterations in Alg. 1, the
analytic version of Alg. 2 allows for reducing the overall
sphere refinement complexity from O(Pm) to O(m).

V. NUMERICAL ILLUSTRATION

In this section, we illustrate the behavior of the sphere
refinement procedure with the following two examples:
• KL regression with a proximal gradient (PG) solver [3]

for archetypal analysis on the NIPS papers dataset [17].
The size of the problem is (m×n) = (2483×14035) and
λ/λmax = 10−1 (λmax being the regularization above
which the zero vector is a solution of (1) [12, Sec. 4.1.2]).

• Logistic regression with a coordinate descent (CoD)
solver [18] for binary classification of the Leukemia
dataset [19]. The size of the problem is (m × n) =
(71× 7129) and λ/λmax = 10−2.

We report in Table I, for each of the three situations
described in Fig. 1, the distribution of times where ᾱk > αSb
and ᾱk ≤ αSb . The reported distributions have been experi-
mentally observed to depend mostly on the underlying solver
rather than other parameters like regularization and problem
instance. Therefore, the reported scenarios in Table I are quite
representative of CoD and PG solver typical behaviors [14].
An interesting observation is that, for both experiments, the
proportion of indecisive situations is very low (1.9% for
Logistic regression with CoD and 1.2% for KL-regression with
proximal gradient). In particular, the proportion of times where
the fixed point ᾱk has been computed without being used

Fig. 3: Evolution of ᾱk and αSb (top), the duality gap Gk

(middle), and the number of inner refinement iterations per-
formed by Alg. 1 (bottom), as a function of the outer iteration
number k. Green, grey (very rare) and red backgrounds depict
respectively the improvement, indecisive, and no-improvement
situations. The initial white region corresponds to a “burn-in”
phase where ᾱk < αSb = α∆A

. Indeed, here αSb has been
initialized with α∆A

which is known.

(bold values in Table I) is even smaller. These observations
show the efficiency of the simple test at Line 10 of Alg. 2 in
discriminating improvement from no-improvement situations.
If, for a given problem, indecisive cases are more abundant,
often leading to useless computations of ᾱk, one can modify
the test in Line 10 so as to exclude such indecisive cases.

To further illustrate the sphere refinement behavior, we
report in Fig. 3 the evolution of the best strong concavity
constant αSb , the kth fixed point ᾱk, and the duality gap
Gk = Gapλ(xk,θk) as a function of the iteration number k.
We observe that, in general, no-improvement situations (red
areas) occur at iterations where the duality gap increased. This
behavior can be more frequent for some solvers (e.g., PG)
than others (e.g., CoD). Moreover, we see that the fixed point
ᾱk (blue curves) can be significantly degraded in such no-
improvement situations. This shows the importance of updating
the strong concavity constant only when it improves over the
current one (αSb ).

The number of refinement iterations performed by Alg. 1
is also reported in Fig. 3. We see that, in the coordinate
descent (resp. proximal gradient) case, a total of 37 (resp. 69)
inner iterations are avoided by the proposed approach (more
extensive experiments are available in [14]).

VI. CONCLUSION

In this work, we made a detailed theoretical analysis of the
sphere refinement loop proposed in [12], by reformulating it as
fixed point iterations and characterizing its convergence point.
Not only does it shed new light on this refinement step, but it
allows us to derive a non-iterative version that is more elegant,
more concise, and enjoys a better computational complexity.
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SUPPLEMENTARY MATERIAL

A. Proof sketch of Proposition 1

From the definition of hk in (8), we get that the refinement
loop at lines 15–18 of Alg. 1 amounts to the fixed-point
iteration αj = hk(αj−1). Moreover, we know from [12,
Proposition 7] that this refinement loop builds a sequence of
nested Gap Safe spheres (i.e., with decreasing radius). Hence,
the sequence (αj)j converges and its limit point ᾱk is a fixed-
point of hk. Moreover, it is non-repelling as it can be reached
with the fixed-point iteration at least from one initial point. A
detailed proof of Proposition 1 is provided in [14, Sec. 1.2].

B. Proof of Propositions 2 and 3

Lemma 1. [15, Theorem 2.1] Let h ∈ C1 having a fixed
point at ᾱ. Then ᾱ is attracting if |h′(ᾱ)| < 1 and repelling
if |h′(ᾱ)| > 1.

Lemma 2. For i ∈ [m], let hi : R≥0 → R≥0 be a continuous
function that has i) a unique attracting fixed point ᾱi ≥ 0 and
ii) potentially 0 as repelling fixed point. Then ᾱ = mini∈[m] ᾱi
is the unique attracting fixed point of h : α 7→ mini∈[m] hi(α).

Proof. By assumption on the hi, we have hi(ᾱi) = ᾱi and

hi(α) < α, ∀α ∈ (ᾱi,+∞) and hi(α) > α, ∀α ∈ (0, ᾱi).

Denoting i? = argmini∈[m] ᾱi, we get

h(α) ≤ hi?(α) < α, ∀α ∈ (ᾱi? ,+∞) (15)
h(α) > α, ∀α ∈ (0, ᾱi?), (16)

The continuity of hi and h completes the proof.

Define hki such that hk in (8) can be written as

hk(α) = min
i∈[m]

hki (α). (17)

Then, to prove Propositions 2 and 3, it suffices to show that
the corresponding hki fulfill the conditions of Lemma 2.

Proof of Proposition 2

We get from [12, Proposition 36] (with r =
√

2Gk/α) that

hki (α) :=
λ2yiα(√

α(1 + λθki ) + λ
√

2Gk
)2 ,

(hki )′(α) :=
λ3yi
√

2Gk(√
α(1 + λθki ) + λ

√
2Gk

)3 .

In order to invoke Lemma 2, let us analyze the fixed point
of hki . Clearly, we always have hki (0) = 0 showing that 0 is
a fixed point of hki . Moreover, from Lemma 1, it is attracting
iff (hki )′(0) = yi/(2G

k) < 1 ⇔ Gk > yi/2. Concerning
non-zero fixed points, they satisfy

α(1 + λθki )2 + 2
√
α(1 + λθki )λ

√
2Gk + λ2(2Gk − yi) = 0.

This is a quadratic equation in
√
α with solutions

√
α =

λ(−
√

2Gk ±√yi)
1 + λθki

. (18)

Because −
√

2Gk ≤ 0, only the “plus” solution is admissible
when Gk < yi/2. Moreover, we get from Lemma 1 that Gk <
yi/2 also implies that this non-zero fixed point is attracting.

Combining the previous results, we have that
• if Gk ≥ yi/2, then hki has a unique fixed point, ᾱi = 0,

which is attracting,3

• if Gk < yi/2, then hki has two fixed points: 0 which is
repelling and ᾱi > 0 (in (18)), which is attracting.

Proof of Proposition 3
Let τi = |λθki −yi+ 1

2 | ≤ 1/2 (the upper bound comes from
dom(f∗i (−λ·)) = [(yi − 1)/λ, yi/λ]). Then we get from [12,
Proposition 23, see proof] (with r =

√
2Gk/α) that

hki (α) =


4λ2 if α ≤ 2λ2Gk

τ2
i

4λ2

1−4

(
τi−λ

√
2Gk

α

)2 if α ≥ 2λ2Gk

τ2
i

(hki )′(α) =


0 if α ≤ 2λ2Gk

τ2
i

16λ3
√

2Gk
(
τi−λ

√
2Gk

α

)
α

3
2

(
1−4

(
τi−λ

√
2Gk

α

)2)2 if α ≥ 2λ2Gk

τ2
i

Note that (hki )′ is continuous at 2λ2Gk

τ2
i

and thus hki ∈ C1.
Then, from the definition of hki , we distinguish two cases.
• ᾱi = 4λ2 is a fixed point of hki if

4λ2 ≤ 2λ2Gk/τ2
i ⇐⇒ Gk ≥ 2τ2

i .

Moreover it is attracting (Lemma 1 with (hki )′(ᾱi) = 0 < 1).
• Other fixed points of hki are solutions of

α(1− 4τ2
i ) +

√
α8τiλ

√
2Gk − 4λ2(2Gk + 1) = 0. (19)

– For τi = 1
2 , (19) is a linear equation with solution

√
ᾱi = λ(2Gk + 1)/

√
2Gk. (20)

Then, one can check that

ᾱi > 8λ2Gk ⇐⇒ Gk < 2τ2
i =

1

2

and (hki )′(ᾱi) = 1
2 −G

k < 1 (i.e., ᾱi is attracting).
– For τi < 1

2 , (19) is a quadratic equation in
√
α with solutions

√
α =

−4τiλ
√

2Gk ± 2λ
√

2Gk + 1− 4τ2
i

1− 4τ2
i

. (21)

As τi < 1
2 , we have 1−4τ2

i > 0 and 4τiλ
√

2Gk < 2λ
√

2Gk <

2λ
√

2Gk + 1− 4τ2
i , showing that the solution with the plus

sign is admissible. Denoting ᾱi this solution, we have

ᾱi > 2λ2Gk/τ2
i ⇐⇒ Gk < 2τ2

i .

Moreover, one can show that (see details in [14, Sec. 1.4])

(hki )′(ᾱi) =

√
2Gk(2τi

√
2Gk + 1− 4τ2

i −
√

2Gk)

1− 4τ2
i

. (22)

is bounded by 1
2 (1 −

√
1− 4τ2

i ) when Gk < 2τ2
i . Then,

with τi <
1
2 , we get that (hki )′(ᾱi) <

1
2 . This shows (with

Lemma 1) that ᾱi is attracting. Combining all these disjoint
cases complete the proof.

3When Gk = yi/2, while it is clear from the proof that 0 is the unique
fixed-point, the fact that it is attracting does not come from Lemma 1 (as here
(hki )

′(0) = 1). It comes from the fact that here hki (α) < α ∀α 6= 0.
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