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This study is concerned with the elastoplastic torsion problem, in dimension n ≥ 1, and in a polytopal, convex or not, domain. In the physically relevant case where the source term is a constant, this problem can be reformulated using the distance function to the boundary. We combine the aforementioned reformulation with a Nitsche-type discretization as in [Burman, Erik, et al. Computer Methods in Applied Mechanics and Engineering 313 (2017): 362-374]. This has two advantages: 1) it leads to optimal error bounds in the natural norm, even for nonconvex domains; 2) it is easy to implement within most of finite element libraries. We establish the wellposedness and convergence properties of the method, and illustrate its behavior with numerical experiments.

Introduction

Problems written with weak formulations involving variational inequalities represent various nonlinear phenomena which occur in mechanics and physics [START_REF] Duvaut | Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Kinderlehrer | An introduction to variational inequalities and their applications[END_REF]. We focus on the elastoplastic torsion problem, as presented in, e.g., [START_REF] Glowinski | Lectures on numerical methods for nonlinear variational problems[END_REF] (see also [START_REF] Caffarelli | The free boundary for elastic-plastic torsion problems[END_REF][START_REF] Glowinski | Numerical analysis of variational inequalities[END_REF]). In the aforementioned reference, a direct piecewise affine Lagrange finite element approximation of the variational inequality is also presented, as well as a convergence result (Theorem 3.3), and two error estimates in the H 1 -norm, in dimension one (Theorem 3.4) and in dimension two (Theorem 3.5). The error estimate in one dimension is optimal (O(h)), whereas it remained suboptimal in dimension two, as it is of order O(h 1 2 -1 p ) for a source term in L p , p > 2. Among the first and few existing results are weak and strong convergence results [START_REF] Mouallif | Approximation du problème de la torsion élasto-plastique d'une barre cylindrique par régularisation et discrétisation d'un problème inf-sup sur H 1 0 (Ω) × L ∞ + (Ω)[END_REF], and error estimates of O(h) for the L 2 -norm of the gradient of the solution and under suitable restrictive assumptions, for mixed finite element approximations, using P 1 /P 0 finite elements [START_REF] Falk | Error estimates for elasto-plastic problems[END_REF] or Raviart-Thomas finite elements [START_REF] Bermúdez De Castro López | A mixed method for the elastoplastic torsion problem[END_REF].

In this paper, we focus on the torsion problem with a positive constant source term, corresponding to constant shear modulus and angle of twist. In this case the variational inequality can be reformulated as an "obstacle" problem where the constraint involves the distance to the boundary, so the obstacle is nonsmooth and the usual techniques from the obstacle problem cannot be directly applied: for instance in [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]Theorem 5.1.2], the obstacle is supposed of Sobolev regularity H 2 . In a previous paper [START_REF] Chouly | On a finite element approximation for the elastoplastic torsion problem[END_REF], a direct finite element approximation of the variational inequality has been proposed, that makes use of piecewise affine, continuous, Lagrange finite elements, and in which the constraint involving the distance function is imposed at each node. When the domain is convex, error estimates have been established in any dimension n = 1, 2, 3, with an optimal error bound of O(h), for a regular enough continuous solution. In the case of a nonconvex domain, an error bound of O(h 3 4 ) has been proven for a solution of Sobolev regularity H α , α ≥ 7/4. In the present paper, we propose a new method that combines both the reformulation with the distance function, as in [START_REF] Chouly | On a finite element approximation for the elastoplastic torsion problem[END_REF], and a Nitsche term that allows to incorporate weakly the inequality constraint, following [START_REF] Burman | Galerkin least squares finite element method for the obstacle problem[END_REF] and related works on Nitsche's method for variational inequalities, see, e.g., [START_REF] Chouly | An overview of recent results on Nitsche's method for contact problems[END_REF] and references therein. For this discretization, we manage to derive optimal error estimates, for linear and quadratic finite elements, and even in the nonconvex situation, which improves the result of [START_REF] Chouly | On a finite element approximation for the elastoplastic torsion problem[END_REF]. Moreover, this method is easy to implement into modern finite element librairies, and we provide also some numerical experiments, that allow to confirm the expected theoretical convergence rates.

As usual, we denote by H s (•), s ∈ R, the Sobolev spaces. The usual norm of H s (D) is denoted by ∥•∥ s,D , and the corresponding semi-norm is denoted by |•| s,D . The space H 1 0 (D) is the subspace of functions in H 1 (D) with vanishing trace on ∂D. The letter C stands for a generic constant, independent of the mesh size, which value can changes at different occurences.

The elastoplastic torsion problem

Let Ω ⊂ R n , n ≥ 1, be an open bounded polytope, connected and with Lipschitz boundary. We consider the variational inequality which, for n = 2, models the torsion of an infinitely long elastoplastic cylinder of cross section Ω and plasticity yield r > 0. To simplify we assume that r = 1. The problem is to find the stress potential u such that

u ∈ K 1 : a(u, v -u) ≥ L(v -u) ∀ v ∈ K 1 , (1) 
where a : H 1 0 (Ω) × H 1 0 (Ω) → R is the bilinear form given by:

a(u, v) := Ω ∇u • ∇v, ∀ u, v ∈ H 1 0 (Ω),
and

L(v) := Ω f v, ∀ v ∈ H 1 0 (Ω),
with f ∈ L 2 (Ω). The notation K 1 represents the nonempty closed convex set of admissible stress potentials:

K 1 := v ∈ H 1 0 (Ω) : |∇v| ≤ 1 a.e.
in Ω , where | • | denotes the euclidian norm in R n . From Stampacchia's theorem we deduce that Problem (1) admits a unique solution (see also, e.g., [START_REF] Duvaut | Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Glowinski | Lectures on numerical methods for nonlinear variational problems[END_REF][START_REF] Glowinski | Numerical analysis of variational inequalities[END_REF][START_REF] Kinderlehrer | An introduction to variational inequalities and their applications[END_REF]).

Remark 2.1. We recall some regularity results for (1): if Ω ⊂ R n is open, bounded and convex, with Lipschitz boundary, and for f ∈ L p (Ω) with n < p < +∞, then u ∈ W 2,p (Ω) ∩ C 1,α (Ω), where α = 1 -n/p [START_REF] Brezis | Sur la régularité de la solution d'inéquations elliptiques[END_REF]. When the domain is nonconvex the W 2,p (Ω) regularity can be obtained but the boundary needs to be more regular (C 1,1 more precisely, see [START_REF] Gerhardt | Regularity of solutions of nonlinear variational inequalities with a gradient bound as constraint[END_REF]) so reentrant corners of polytopes are not allowed. When reentrant corners of polytopes are considered, the loss of W 2,p -regularity is only located near these corners [START_REF] Caffarelli | The free boundary for elastic-plastic torsion problems[END_REF].

Next we suppose that f = C is a constant function. In this case and according to [START_REF] Brézis | Équivalence de deux inéquations variationnelles et applications[END_REF] (see also [START_REF] Idone | Variational inequalities and the elastic-plastic torsion problem[END_REF]) the problem (1) can be rewritten as follows: find the stress potential u such that

u ∈ K : a(u, v -u) ≥ C Ω (v -u) ∀v ∈ K, (2) 
with

K := v ∈ H 1 0 (Ω) : |v| ≤ d ∂Ω a.e.
in Ω , and d ∂Ω denotes the (interior) distance function with respect to the boundary ∂Ω:

d ∂Ω (x) := inf y∈∂Ω |x -y|, ∀ x ∈ Ω.
Note that (2) still admits a unique solution from Stampacchia's theorem. To lighten the discussion we can suppose without loss of generality that C > 0 (see [START_REF] Chouly | On a finite element approximation for the elastoplastic torsion problem[END_REF]Remark 2.2]), so problem (2) can be rewritten as follows: find the stress potential u such that

u ∈ K : a(u, v -u) ≥ C Ω (v -u) ∀ v ∈ K, (3) 
with

K := v ∈ H 1 0 (Ω) : v ≤ d ∂Ω a.e.
in Ω . Again (3) admits a unique solution from Stampacchia's theorem. Moreover, Problem (2) and Problem (3) are equivalent, when C > 0 [9, Proposition 2.1 and Remark 2.3]. So the torsion problem can be seen as an obstacle problem where the distance function plays the role of the obstacle. Generally speaking, for a polytope, the distance function does not lie in H 2 (Ω). This implies that the classical finite element error analysis for the obstacle problem can not be directly applied.

Problem (3) in strong form, reads: find u : Ω -→ R solution to:

         -∆u ≤ C in Ω, u = 0 on ∂Ω, u ≤ d ∂Ω in Ω, (u -d ∂Ω )(∆u + C) = 0 in Ω. ( 4 
)
We reformulate (4) using a Lagrange multiplier λ, and get:

               -∆u + λ = C in Ω, u = 0 on ∂Ω, λ ≥ 0 in Ω, u ≤ d ∂Ω in Ω, (u -d ∂Ω )λ = 0 in Ω. (5)
We introduce the following notation for the positive part: [a] + := max(0, a), for a ∈ R, and recall the relationship

([a] + -[b] + )(a -b) ≥ ([a] + -[b] + ) 2 , (6) 
for a, b ∈ R.

Following [START_REF] Burman | Galerkin least squares finite element method for the obstacle problem[END_REF], the Kuhn-Tucker condition (5) 3-5 can equivalently be reformulated as

λ = γ -d ∂Ω + u + γ -1 λ + , (7) 
with γ an arbitrary positive function on the domain Ω.

A Nitsche finite element method

Let V k h be a family of Lagrange finite element spaces of degree k ≥ 1 indexed by h, and coming from a family T h of simplicial meshes of the domain Ω (h := max T ∈T h h T where h T is the diameter of T ∈ T h ). The family of meshes is assumed regular. More precisely we have:

V k h = {v h ∈ C (Ω) ∩ H 1 0 (Ω) : v h | T ∈ P k (T ) ∀ T ∈ T h }.
Each simplex T of the mesh T h is supposed to be closed, and we denote by T the interior of T . We define a piecewise polynomial discrete Laplacian as follows, for every v h in V k h , and every simplex

T ∈ T h : (∆ h v h )| T := ∆(v h | T ).
The value of ∆ h v h on the facets of the mesh is of no importance, and can be set in practice to 0, for instance. We define also:

R h (v h ) := ∆ h v h + C. Remark that, for k = 1, ∆ h v h = 0 and R h (v h ) = C.
The Nitsche-type method proposed for the discretization of the elastoplastic torsion problem (5) reads: find

u h ∈ V k h such that a(u h , v h ) + γ h -d ∂Ω + u h + γ -1 h R h (u h ) + , v h = (C, v h ) (8) 
for all v h ∈ V k h . Above the notation (•, •) stands for the L 2 (Ω)-scalar product, and the function γ h is defined cell-wise as follows:

γ h | T := γ 0 h 2 T ,
where γ 0 > 0 is the Nitsche parameter. Again, the value of γ h on the facets of the mesh is of no importance, and can be set in practice to 0, for instance.

Remark 3.1. As in [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF][START_REF] Hu | Skew-symmetric Nitsche's formulation in isogeometric analysis: Dirichlet and symmetry conditions, patch coupling and frictionless contact[END_REF], for any parameter θ ∈ R, we can write a whole family of methods:

a(u h , v h ) -θ(γ -1 h ∆ h u h , ∆ h v h ) + γ h -d ∂Ω + u h + γ -1 h R h (u h ) + , v h + θγ -1 h ∆ h v h = (C, v h + θγ -1 h ∆ h v h ). (9) 
Method (8) corresponds to θ = 0 and can be called an incomplete method, using the terminology widespread for discontinuous Galerkin methods. This method involves less terms and is the easiest to extend to more complex problems [START_REF] Mlika | An unbiased Nitsche's formulation of large deformation frictional contact and self-contact[END_REF]. A symmetric method is recovered when θ = 1, that corresponds to the Galerkin Least Squares technique of [START_REF] Burman | Galerkin least squares finite element method for the obstacle problem[END_REF] and the Nitsche method of [START_REF] Gustafsson | Mixed and stabilized finite element methods for the obstacle problem[END_REF]: this symmetric method can be recovered thanks to a minimization argument, and the tangent system has a symmetric Jacobian. Provided that the Nitsche parameter γ 0 is large enough, the analysis below, for θ = 0, can be extended without difficulty to other values of θ.

Remark 3.2. Remark that, for the distance function, there holds d ∂Ω ∈ H 1 (Ω) ∩ C 0,1 (Ω), see [START_REF] Chouly | On a finite element approximation for the elastoplastic torsion problem[END_REF] and references therein. In [START_REF] Burman | Galerkin least squares finite element method for the obstacle problem[END_REF] the assumption made on the obstacle function is stronger and this function is supposed to be C 1,1 (Ω). In fact, such Nitsche or Galerkin Least Squares formulations do not require so much regularity on the obstacle function.

The following local inverse inequality will be helpful in the sequel, that holds for an arbitrary v h ∈ V k h and every T ∈ T h :

∥∇v h ∥ 0,T ≤ C I h -1 T ∥v h ∥ 0,T , (10) 
where C I > 0 is a constant that depends on the shape regularity of the mesh and of the polynomial order k, but not of h and T ∈ T h . See, e.g., [START_REF] Brenner | The mathematical theory of finite element methods[END_REF][START_REF] Ern | Finite elements I-Approximation and interpolation[END_REF] for the proof.

Numerical analysis: well-posedness and error estimate

We first state a preliminary consistency result:

a(u, v h ) + γ h -d ∂Ω + u + γ -1 h λ + , v h = (C, v h ) ∀ v h ∈ V k h . (11) 
The above result is a direct consequence of ( 5)-( 7) and the inclusion V k h ⊂ H 1 0 (Ω).

Well-posedness

We make use of the results from Brezis (see, e.g., [START_REF] Brezis | Équations et inéquations non linéaires dans les espaces vectoriels en dualité[END_REF]) for M-type and pseudo-monotone operators in vector spaces. It consists in showing that the operator associated to Problem ( 8) is one-to-one. Proof: We introduce the nonlinear operator B h : V k h → V k h defined as follows:

B h z h , v h 1,Ω def = a(z h , v h ) + γ h -d ∂Ω + z h + γ -1 h R h (z h ) + , v h (12) 
for all z h ∈ V k h and where (•, •) 1,Ω is the scalar product in H 1 (Ω). Note that the right-hand side of ( 12) is linear with respect to v h and, hence, B h is well defined thanks to Riesz' Theorem. The existence and uniqueness of solution for problem ( 8) is equivalent to the property of B h to be one-to-one. To this purpose, according to [START_REF] Brezis | Équations et inéquations non linéaires dans les espaces vectoriels en dualité[END_REF], it suffices to show that by B h is monotone and hemicontinuous.

For the monotonicity we first note that, owing to (12), we have

B h z h -B h v h , z h -v h 1,Ω =∥∇(z h -v h )∥ 2 0,Ω + γ h -d ∂Ω + z h + γ -1 h R h (z h ) + -γ h -d ∂Ω + v h + γ -1 h R h (v h ) + , z h -v h T 1 (13) 
for all z h , v h ∈ V k h . On the other hand, by adding and subtracting suitable terms into T 1 , we get

T 1 = γ h -d ∂Ω + z h + γ -1 h R h (z h ) + -γ h -d ∂Ω + v h + γ -1 h R h (v h ) + , -d ∂Ω + z h + γ -1 h R h (z h ) -(-d ∂Ω + v h + γ -1 h R h (v h )) + γ 1 2 h -d ∂Ω + z h + γ -1 h R h (z h ) + -γ 1 2 h -d ∂Ω + v h + γ -1 h R h (v h ) + , γ -1 2 h (∆ h v h -∆ h z h ) .
Hence, using the inequality (6), Cauchy-Schwarz, Young inequalities and the inverse inequality [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF], it follows that

T 1 ≥ γ 1 2 h -d ∂Ω + z h + γ -1 h R h (z h ) + --d ∂Ω + v h + γ -1 h R h (v h ) + 2 0,Ω - 1 2 γ 1 2 h -d ∂Ω + z h + γ -1 h R h (z h ) + --d ∂Ω + v h + γ -1 h R h (v h ) + 2 0,Ω - 1 2 ∥γ -1 2 h (∆ h z h -∆ h v h )∥ 2 0,Ω ≥ 1 2 γ 1 2 h -d ∂Ω + z h + γ -1 h R h (z h ) + --d ∂Ω + v h + γ -1 h R h (v h ) + 2 0,Ω - C 2 I 2γ 0 ∥∇(z h -v h )∥ 2 0,Ω .
The monotonicity of B h then follows by inserting this estimate into (13) under the condition γ 0 ≥ C 2 I . For the hemicontinuity, we must show that the real function φ : [0, 1] → R defined as

φ(t) def = (B h (z h -tv h ), v h ) is continuous for all z h , v h ∈ V k h . We bound φ(t) -φ(s) using the inequality |[a] + -[b] + | ≤ |a -b|, for all a, b ∈ R. This gives |φ(t) -φ(s)| = (s -t)a(v h , v h ) + γ h -d ∂Ω + (z h -tv h ) + γ -1 h R h (z h -tv h ) + -γ h -d ∂Ω + (z h -sv h ) + γ -1 h R h (z h -sv h ) + , v h ≤|t -s|a(v h , v h ) + γ h (z h -tv h ) + γ -1 h R h (z h -tv h ) -(z h -sv h ) -γ -1 h R h (z h -sv h ) , v h =|t -s| a(v h , v h ) + γ h v h + γ -1 h ∆ h v h ) , |v h |
which means that φ is Lipschitz and, thus, B h is hemicontinuous. □

A priori error estimate

We provide first an abstract estimate, as in [START_REF] Burman | Galerkin least squares finite element method for the obstacle problem[END_REF].

Theorem 4.2. Assume that the solution (u, λ) (λ = ∆u + C) to the elastoplastic torsion problem (5) belongs to K × L 2 (Ω). For γ 0 > 0 large enough, the approximation u h provided by (8) satisfies the following error estimate:

∥u -u h ∥ 1,Ω + γ 1 2 h -d ∂Ω + u + γ -1 h λ + --d ∂Ω + u h + γ -1 h R h (u h ) + 0,Ω + γ -1 2 h (∆u -∆ h u h ) 0,Ω ≤ C inf v h ∈V k h ∥u -v h ∥ 1,Ω + γ 1 2 h (u -v h ) 0,Ω + γ -1 2 h (∆u -∆ h v h ) 0,Ω . (14) 
Proof: Let v h ∈ V k h . We first use the V -ellipticity and the continuity of a(•, •), as well as Young's inequality, to obtain:

α∥u -u h ∥ 2 1,Ω ≤ a(u -u h , u -u h ) = a(u -u h , (u -v h ) + (v h -u h )) ≤ C∥u -u h ∥ 1,Ω ∥u -v h ∥ 1,Ω + a(u -u h , v h -u h ) ≤ α 2 ∥u -u h ∥ 2 1,Ω + C 2 2α ∥u -v h ∥ 2 1,Ω + a(u -u h , v h -u h ), (15) 
with α > 0 the ellipticity constant. We can transform the last term using the consistency property [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] for u and the finite element formulation (8) for u h . This yields

a(u -u h , v h -u h ) =a(u, v h -u h ) -a(u h , v h -u h ) = γ h -d ∂Ω + u + γ -1 h λ + -γ h -d ∂Ω + u h + γ -1 h R h (u h ) + , u h -v h . ( 16 
)
We now transform the expression u h -v h :

u h -v h =u h -v h + γ -1 h R h (u h ) -γ -1 h R h (u h ) --d ∂Ω -u -γ -1 h λ + d ∂Ω + u + γ -1 h λ = -(-d ∂Ω + u + γ -1 h λ) -(-d ∂Ω + u h + γ -1 h R h (u h )) -v h + u -γ -1 h (R h (u h ) -λ).
Hence, by inserting this expression into ( 16), we get

a(u -u h , v h -u h ) = -γ h -d ∂Ω + u + γ -1 h λ + -γ h -d ∂Ω + u h + γ -1 h R h (u h ) + , T 1 (-d ∂Ω + u + γ -1 h λ) -(-d ∂Ω + u h + γ -1 h R h (u h )) T 1 + γ h -d ∂Ω + u + γ -1 h λ + -γ h -d ∂Ω + u h + γ -1 h R h (u h ) + , -v h + u -γ -1 h (R h (u h ) -λ) T 2 . ( 17 
)
The first term is estimated by using the inequality [START_REF] Caffarelli | The free boundary for elastic-plastic torsion problems[END_REF], which yields

T 1 ≤ -γ 1 2 h -d ∂Ω + u + γ -1 h λ + --d ∂Ω + u h + γ -1 h R h (u h ) + 2 0,Ω . ( 18 
)
For the term T 2 we use Cauchy-Schwarz and Young's inequality, to obtain

T 2 ≤ 1 2 γ 1 2 h -d ∂Ω + u + γ -1 h λ + --d ∂Ω + u h + γ -1 h R h (u h ) + 2 0,Ω + γ 1 2 h (u -v h ) 2 0,Ω + γ -1 2 h (λ -R h (u h )) 2 0,Ω . (19) 
There remains to bound the last term above. Let T ∈ T h be a mesh cell. Using a triangular inequality, we bound first

∥R h (u h ) -λ∥ 0,T = ∥∆ h u h -∆u∥ 0,T ≤ ∥∆ h u h -∆ h v h ∥ 0,T + ∥∆u -∆ h v h ∥ 0,T .
With the inverse inequality [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF] and triangular inequality, we bound

∥∆ h u h -∆ h v h ∥ 0,T ≤ C I h -1 T ∥∇u h -∇v h ∥ 0,T ≤ C I h -1 T (∥∇u h -∇u∥ 0,T + ∥∇u -∇v h ∥ 0,T ).
Therefore the last term in [START_REF] Gustafsson | Mixed and stabilized finite element methods for the obstacle problem[END_REF] can be bounded as

γ -1 2 h (R h (u h ) -λ) 2 0,Ω ≤ C γ -1 0 ∥∇u h -∇u∥ 2 0,Ω + ∥∇u -∇v h ∥ 2 0,Ω (20) 
+C γ

-1 2 h (∆u -∆ h v h ) 2 0,Ω .
We combine estimates ( 15)-( 17)-( 18)-( 19)- [START_REF] Hu | Skew-symmetric Nitsche's formulation in isogeometric analysis: Dirichlet and symmetry conditions, patch coupling and frictionless contact[END_REF], which yields

α 2 - C γ 0 ∥u -u h ∥ 2 1,Ω + 1 2 γ 1 2 h -d ∂Ω + u + γ -1 h λ + --d ∂Ω + u h + γ -1 h R h (u h ) + 0,Ω ≤ C 2 2α + C γ 0 ∥u -v h ∥ 2 1,Ω + γ 1 2 h (u -v h ) 0,Ω + C γ -1 2 h (∆u -∆ h v h ) 0,Ω . (21) 
Choosing γ 0 large enough, we obtain the desired bound on the first two terms in [START_REF] Falk | Error estimates for elasto-plastic problems[END_REF]. The bound on the error on the multiplier λ comes from combination of ( 20) and [START_REF] Idone | Variational inequalities and the elastic-plastic torsion problem[END_REF]. □

The optimal convergence of the method for P 1 and P 2 Lagrange finite elements is stated below, for a Sobolev regularity α ≤ 2.

Theorem 4.3. Suppose that k = 1, 2, and that the solution u belongs to H 1 0 (Ω) ∩ H α (Ω), with the Sobolev regularity α that satisfies max(1, n/2) < α ≤ 2. Suppose that λ belongs to L 2 (Ω). Suppose finally that the Nitsche parameter γ 0 is large enough. The solution u h to Problem (8) satisfies the following error estimate:

∥u -u h ∥ 1,Ω + γ 1 2 h -d ∂Ω + u + γ -1 h λ + --d ∂Ω + u h + γ -1 h R h (u h ) + 0,Ω + γ -1 2 h (∆u -∆ h u h ) 0,Ω ≤ C(h α-1 |u| α,Ω + h∥∆u∥ 0,Ω ) (22) 
with C > 0 a constant, independent of h and u, but not of γ 0 .

Proof: We consider first the case k = 1. We start from the estimate [START_REF] Falk | Error estimates for elasto-plastic problems[END_REF]. We take

v h = I 1 h u, the Lagrange interpolant of u onto V 1
h . So, first, from standard interpolation estimates, we obtain

u -I 1 h u 1,Ω ≤ Ch α-1 |u| α,Ω ,
and γ

1 2 h u -I 1 h u 0,Ω ≤ Ch α-1 |u| α,Ω .
And then, for k = 1, we can simply proceed as follows:

γ -1 2 h ∆u -∆ h (I 1 h u) 0,Ω ≤ γ -1 2 0 h∥∆u -∆ h (I 1 h u) =0 ∥ 0,Ω = γ -1 2 0 h∥∆u∥ 0,Ω .
For k = 2, we proceed exactly as above. We start from the estimate [START_REF] Falk | Error estimates for elasto-plastic problems[END_REF].

Since V 1 h ⊂ V 2 h , we take v h = I 1 h u ∈ V 1 h (⊂ V 2 h ), the Lagrange interpolant of u onto V 1 h
, and get the same estimates as above for the three terms. This ends the proof. □

The next statement is for P 2 Lagrange finite elements, where a better convergence rate than O(h) can be expected if the solution u is regular enough.

Theorem 4.4. Suppose that k = 2, and that the solution u belongs to H 1 0 (Ω) ∩ H α (Ω), with the Sobolev regularity α that satisfies max(2, n/2) < α ≤ 3. Suppose that the Nitsche parameter γ 0 is large enough. The solution u h to Problem (8) satisfies the following error estimate:

∥u -u h ∥ 1,Ω + γ 1 2 h -d ∂Ω + u + γ -1 h λ + --d ∂Ω + u h + γ -1 h R h (u h ) + 0,Ω + γ -1 2 h (∆u -∆ h u h ) 0,Ω ≤ Ch α-1 |u| α,Ω , (23) 
with C > 0 a constant, independent of h and u, but not of γ 0 .

Proof: We proceed as previously, in Theorem 4.3, but with the following modifications. We start from the estimate [START_REF] Falk | Error estimates for elasto-plastic problems[END_REF]. We take v h = I 2 h u, the Lagrange interpolant of u onto V 2 h . Still from standard interpolation estimates, we obtain

∥u -I 2 h u∥ 1,Ω ≤ Ch α-1 |u| α,Ω ,
and γ

1 2 h u -I 2 h u 0,Ω ≤ Ch α-1 |u| α,Ω .
For the last term, we need the following local error bound, for each T ∈ T h :

γ -1 2 h ∆u -∆ h (I 2 h u) 0,T = γ -1 2 0 h T ∥∆u -∆(I 2 h u| T )∥ 0,T ≤ Cγ -1 2 0 h T ∥u -I 2 h u| T ∥ 2,T
which is possible since α > 2. Then we use standard (local) interpolation error estimates to get:

γ -1 2 h ∆u -∆ h (I 2 h u) 0,T ≤ Cγ -1 2 0 h T h α-2 T |u| α,T ≤ Ch α-1 T |u| α,T .
By summation on the simplices T of the mesh T h , we get finally

γ -1 2 h ∆u -∆ h (I 2 h u) 0,Ω ≤ Ch α-1 |u| α,Ω .
This ends the proof. □

Numerical experiments

The following results are computed with the help of scikit-fem [START_REF] Gustafsson | scikit-fem: A Python package for finite element assembly[END_REF] for finite element assembly and autograd [START_REF] Maclaurin | Autograd: Effortless Gradients in Numpy[END_REF] for automatic differentiation. We consider two experiments introduced in [START_REF] Glowinski | Numerical analysis of variational inequalities[END_REF] with convex and nonconvex domains. The parameters are chosen as C = γ 0 = 10. First, a convergence study is performed using linear elements and the mesh sequences are depicted in Figure 1. Error in the stress potential u is computed against a reference solution which is obtained using quadratic finite elements and a sufficiently refined mesh. The resulting discrete solutions u h and the magnitudes of the gradient |∇u h | are depicted in Figures 2 and4, and the error in Figures 3 and5 for the convex and nonconvex examples, respectively. The convergence rate of the H 1 error is O(h) which is also an expected consequence of Theorem 4.3. Moreover, the convergence rate of the L 2 -error is O(h 2 ), a rate we are not able to prove. It is well-known that L 2 -error estimates are difficult to prove for problems modelled by variational inequalities.

We continue by solving the same experiments using quadratic elements. For this purpose, a reference solution is computed using cubic elements and a suitably refined mesh. The resulting discrete solutions are given in Figure 6 with the convergence rates in Figure 7. This time we observe that the H 1 error is approximately O(h 1.5 ). This is in agreement with Theorem 4.4. However this is lower than the rate O(h 2 ) for quadratic elements and a smooth solution. The reduction in the convergence rate is explained by the Sobolev regularity of the exact solution as u ∈ H 2 (Ω) while u ̸ ∈ H 3 (Ω). In one dimension, it is easy to check that the second derivative is expected to have a step discontinuity at the free boundary between elastic and plastic zones which suggests u ∈ H s (Ω), s < 5/2 (see also Remark 2.1). This also means that adaptive techniques could be used to improve the convergence rate with respect to the number of degrees-of-freedom. Figure 3: The error between u h and a reference solution as a function of the mesh parameter h for the convex example. The reference solution is obtained using a quadratic finite element method on a suitably refined mesh. Figure 5: The error between u h and a reference solution as a function of the mesh parameter h for the nonconvex example. The reference solution is obtained using a quadratic finite element method on a suitably refined mesh. Figure 7: The error between u h and a reference solution as a function of the mesh parameter h for the convex example using quadratic elements. The reference solution is obtained using a cubic finite element method on a suitably refined mesh.
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 41 For γ 0 ≥ C 2 I , Problem (8) admits one unique solution u h ∈ V k h .

Figure 1 :Figure 2 :

 12 Figure 1: The first three meshes for the convex (top) and nonconvex (bottom) examples from the uniform mesh sequences. The side length of the larger square is 1 while the smaller square in the nonconvex example has a side length of 0.2.

Figure 4 :

 4 Figure 4: The first three discrete solutions u h (top) and gradient magnitudes |∇u h | (bottom) for the nonconvex example.

Figure 6 :

 6 Figure 6: The first three discrete solutions u h (top) and gradient magnitudes |∇u h | (bottom) for the convex example using quadratic elements.
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