
HAL Id: hal-03891774
https://hal.science/hal-03891774

Submitted on 9 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The raise of machine learning hyperparameter
constraints in Python code

Ingkarat Rak-Amnouykit, Ana Milanova, Guillaume Baudart, Martin Hirzel,
Julian Dolby

To cite this version:
Ingkarat Rak-Amnouykit, Ana Milanova, Guillaume Baudart, Martin Hirzel, Julian Dolby. The
raise of machine learning hyperparameter constraints in Python code. ISSTA 2022 - 31st ACM SIG-
SOFT International Symposium on Software Testing and Analysis, Jul 2022, Virtual, South Korea.
�10.1145/3533767.3534400�. �hal-03891774�

https://hal.science/hal-03891774
https://hal.archives-ouvertes.fr

The Raise of Machine Learning Hyperparameter
Constraints in Python Code

Ingkarat Rak-amnouykit
rakami@rpi.edu

Rensselaer Polytechnic Institute
USA

Ana Milanova
milanova@cs.rpi.edu

Rensselaer Polytechnic Institute
USA

Guillaume Baudart
guillaume.baudart@inria.fr

DI ENS, Ecole normale supérieure,
PSL University, CNRS, INRIA

France

Martin Hirzel
hirzel@us.ibm.com

IBM Research
USA

Julian Dolby
dolby@us.ibm.com

IBM Research
USA

ABSTRACT

Machine-learning operators often have correctness constraints that

cut across multiple hyperparameters and/or data. Violating these

constraints causes the operator to raise runtime exceptions, but

those are usually documented only informally or not at all. This

paper presents the first interprocedural weakest-precondition anal-

ysis for Python to extract hyperparameter constraints. The analysis

is mostly static, but to make it tractable for typical Python idioms

in machine-learning libraries, it selectively switches to the concrete

domain for some cases. This paper demonstrates the analysis by ex-

tracting hyperparameter constraints for 181 operators from a total

of 8 ML libraries, where it achieved high precision and recall and

found real bugs. Our technique advances static analysis for Python

and is a step towards safer and more robust machine learning.

CCS CONCEPTS

· Theory of computation→ Semantics and reasoning; · Soft-

ware and its engineering→ Functionality.

KEYWORDS

Python, machine learning libraries, interprocedural analysis

ACM Reference Format:

Ingkarat Rak-amnouykit, Ana Milanova, Guillaume Baudart, Martin Hirzel,

and Julian Dolby. 2022. The Raise of Machine Learning Hyperparameter

Constraints in Python Code. In Proceedings of the 31st ACM SIGSOFT In-

ternational Symposium on Software Testing and Analysis (ISSTA ’22), July

18ś22, 2022, Virtual, South Korea. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3533767.3534400

1 INTRODUCTION

To use machine-learning (ML) operators, data scientists must con-

figure their hyperparameters, usually via constructor arguments.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9379-9/22/07. . . $15.00
https://doi.org/10.1145/3533767.3534400

For example, sklearn’s StandardScaler operator has hyperparame-

ters with_mean and with_std, and LogisticRegression has hyperpa-

rameters dual, solver, penalty, etc. [11]. Incorrect hyperparameter

configurations raise exceptions, cause slowdowns, or yield sub-

optimal accuracy. But configuring hyperparameters correctly is

often not easy due to hyperparameter constraints. For example,

StandardScaler does not allow with_mean==True if input data is

sparse, and LogisticRegression does not allow dual==True unless

solver=="liblinear" and penalty=="l2". We need a reliable formal

specification of these constraints for dynamic precondition checks,

static verifiers, or pruning automated hyperparameter search.

Unfortunately, it is difficult to find a reliable formal specification

of hyperparameter constraints. Type annotations are insufficient:

putting aside the fact that types are not yet widely adopted in

Python and often wrong [34], they are also not expressive enough

for constraints across multiple hyperparameters, or across hyperpa-

rameters and data. Hyperparameter tuning tools, such as auto-

sklearn [15] or hyperopt-sklearn [23], come with search space

specifications. But writing those specifications by hand is tedious

and error-prone: for example, they take 25 KLOC of Python in

auto-pandas [7]. Therefore, they often cut corners, making under-

approximations (e.g., specifying only one of the types of a union)

and over-approximations (e.g., missing constraints). This may be

tolerable for search but is unacceptable for error checking.

One might be tempted to turn to natural-language documen-

tation for hyperparameter constraints [6]. But even though pop-

ular packages like sklearn have high-quality documentation, this

is at most semi-formal and not always reliable. The code may

raise an undocumented exception. For example, using the tech-

niques in this paper, we found that sklearn’s ExtraTreesClassifier

raised an exception if bootstrap==False and oob_score==True. But

the documentation did not mention this constraint. As another

example, our analysis found that AffinityPropagation raised an

exception for sparse data, but the documentation said it handled

sparse data. We submitted sklearn issues for both examples, and

both were confirmed by the developers and fixed within days. The

ExtraTreesClassifier fix updated the documentation to match the

code and the AffinityPropagation fix updated the code to match

the documentation.

This paper presents a static analysis for extracting hyperparam-

eter constraints from code of ML operators. We focus on Python

450

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3533767.3534400
https://doi.org/10.1145/3533767.3534400

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Ingkarat Rak-amnouykit, Ana Milanova, Guillaume Baudart, Martin Hirzel, and Julian Dolby

and sklearn [11], the most widely-used ML framework today (as of

January 2022, the łUsed byž count of the sklearn GitHub repository

was 299k, ahead of 174k for TensorFlow and 113k for PyTorch).

Our analysis comprises four main components: 1) an intraproce-

dural weakest precondition analysis, 2) a call-graph analysis, 3) a

soundness analysis using reference immutability, and 4) an inter-

procedural weakest precondition analysis. Our preconditions are

logic formulas with constraints over at least two hyperparameters

or hyperparameters and data. We can dynamically check these at

the interface, which is friendlier than raising an exception from

deep within the implementation. For better error messages, our

analysis factors formulas to be easily associated with individual

exceptions. We can also use these preconditions to prune search

spaces for hyperparameter tuning. Moreover, we can envision using

them for static verification of client code.

This paper tackles static analysis for Python, a problem that

has received surprisingly little attention given the importance and

widespread use of Python in data science programming. We set out

to build an analysis for extracting hyperparameter constraints ex-

pecting to reuse existing results, only to discover that even classical

analyses such as pointer analysis and call graph construction for

Python remain open problems. The problem is difficult, due to the

rich features of Python and their use in ML libraries. We build our

analysis over the AST, applying classical ideas from Hoare logic

and separation logic. We develop novel call graph construction and

reference immutability analyses as well as a technique that switches

between the analysis domain and the concrete domain to simplify

analysis results (call graphs and weakest precondition formulas).

We ran our analysis on 181ML operators from 8ML libraries (122

sklearn operators plus operators from 7 other popular ML libraries).

The analysis achieved 92.6% precision and 43.9% recall on input

validation experiments, significantly improving over previous work

on the problem. Our analysis also discovered issues in sklearn and

imblearn, leading to 4 merged pull requests.

This paper makes the following contributions:

• The first interprocedural weakest precondition analysis for Python.

• A soundness analysis based on reference immutability.

• Formula simplification using concrete evaluation.

• Successful application to widely-used machine learning libraries.

Overall, we hope that our interface specifications make ML libraries

more reliable and easier to use. Our extracted hyperparameter

constraints are available with the submission.

2 OVERVIEW

This section illustrates our approach for extracting hyperparam-

eter constraints using a weakest-precondition analysis of Python

code. As a running example, Figure 1 shows an excerpt of the source

code of the sklearn logistic regression operator.

2.1 Hyperparameters Constraints

A machine-learning operator is a class (L11). The hyperparame-

ters correspond to the constructor arguments (L33). In sklearn,

hyperparameters always have default values (L33) and are stored as

instance attributes (L34-36). The class docstring (L12-32) specifies

types, default values, and descriptions for hyperparameters.

1 from ..utils.multiclass import check_classification_targets

2 [...]

3

4 def _check_solver(solver, penalty, dual):

5 if solver not in ['liblinear', 'saga'] and penalty not in ('l2', 'none'):

6 raise ValueError(f"{solver} supports only 'l2' or 'none' penalties, got {penalty

}.")

7 [...]

8 return solver

9

10

11 class LogisticRegression(LinearClassifierMixin, SparseCoefMixin,

BaseEstimator):

12 """

13 Logistic Regression (aka logit, MaxEnt) classifier.

14

15 Parameters

16 −−−−−−−−−−

17 penalty : {'l1', 'l2', 'elasticnet', 'none'}, default='l2'

18 Used to specify the norm used in the penalization. The 'newton−cg',

19 'sag' and 'lbfgs' solvers support only l2 penalties. 'elasticnet' is

20 only supported by the 'saga' solver. If 'none' (not supported by the

21 liblinear solver), no regularization is applied.

22

23 solver : {'newton−cg', 'lbfgs', 'liblinear', 'sag', 'saga'}, default='lbfgs'

24 Algorithm to use in the optimization problem.

25 − 'newton−cg', 'lbfgs', 'sag' and 'saga' handle L2 or no penalty

26 − 'liblinear' does not support setting penalty='none'

27

28 l1_ratio : float, default=None

29 The Elastic−Net mixing parameter, with 0 <= l1_ratio <= 1. Only

30 used if penalty='elasticnet'.

31 [...]

32 """

33 def __init__(self, penalty='l2', solver='lbfgs', l1_ratio=None, [...]):

34 self.penalty = penalty

35 self.solver = solver

36 self.l1_ratio = l1_ratio

37 [...]

38

39 def fit(self, X, y, sample_weight=None):

40 solver=_check_solver(self.solver, self.penalty, self.dual)

41

42 if self.penalty == 'elasticnet':

43 if (not isinstance(self.l1_ratio, numbers.Number) or

44 self.l1_ratio < 0 or self.l1_ratio > 1):

45 raise ValueError(f"l1_ratio must be between 0 and 1; got {self.l1_ratio}"

)

46

47 X, y = self._validate_data(X, y, [...])

48 check_classification_targets(y)

49 self.classes_ = np.unique(y)

50 [...]

Figure 1: Source excerpt of LogisticRegression operator from

https://github.com/scikit-learn/scikit-learn/blob/15a949460/sklearn/linear_model/_logistic.py#L1012.

The description sometimes includes constraints between hy-

perparameters that must always hold, e.g., ’liblinear’ does not sup-

port setting penalty=’none’ (L26). But since these constraints are

expressed in natural language, they are open to interpretation, pos-

sibly outdated, and challenging to extract for automatic tools [6].

For instance, in Figure 1, the constraint on solver and penalty is

also rephrased in the description of penalty: If ’none’ (not supported

by the liblinear solver) (L20).

451

https://github.com/scikit-learn/scikit-learn/blob/15a949460/sklearn/linear_model/_logistic.py#L1012

The Raise of Machine Learning Hyperparameter Constraints in Python Code ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

1 {"description": "penalty = 'elasticnet'

2 => is_number(l1_ratio) and (0 <= l1_ratio <= 1)",

3 "anyOf": [

4 {"type": "object",

5 "properties": {"penalty": {"not": {"enum": ["elasticnet"]}}}},

6 {"type": "object",

7 "properties":

8 {"l1_ratio": {"type": "number", "minimum": 0, "maximum": 1}}}]}

9

10 {"description": "solver in ['liblinear', 'saga']

11 or penalty in ['l2', 'none']",

12 "anyOf": [

13 {"type": "object",

14 "properties": {"solver": {"enum": ["liblinear", "saga"]}}},

15 {"type": "object",

16 "properties": {"penalty": {"enum": ["l2", "none"]}}}]}

Figure 2: JSON schemas of the two constraints extracted

from the code of Figure 1

This paper proposes a static analysis to mine these constraints

from the source code of the operator (as opposed to the docstring).

For each raise exception statement, the analysis automatically

extracts a weakest precondition that must hold to prevent that

statement from executing. The analysis then encodes constraints as

JSON Schema [31], a widely-supported and widely-adopted schema

language. For instance, JSON Schema is the foundation of the Open

API language for specifying REST APIs [30]. JSON Schema works

well with Python and is expressive enough to encode complex

constraints. For example, a recent AutoML tool relies on JSON

Schema to specify ML hyperparameters including constraints [5].

2.2 Static Analysis

Our analysis comprises four sub-analyses: 1) intraprocedural, 2) call

graph, 3) soundness analysis, and 4) interprocedural.

Intraprocedural Weakest Precondition Analysis. For each opera-

tor method, the analysis computes the precondition of each raise

exception statement. For instance, in Figure 1, the fit method

can raise a ValueError (L45). Analyzing backward the control flow

that can cause this exception yields the following weakest pre-

condition𝑄 : self.penalty = 'elasticnet'⇒ self.l1_ratio ∈ R∧

0 ≤ self.l1_ratio ≤ 1. The constraint is then compiled into the

JSON schema shown in Figure 2 (L1-8). Hyperparameters corre-

spond to object properties, and the JSON schema keyword "anyOf"

expresses a disjunction (we encode 𝑝 ⇒ 𝑞 as ¬𝑝 ∨𝑞). The type con-

dition l1_ratio ∈ R is translated to a JSON schema type "number",

and bounds are expressed with "minimum" and "maximum".

Call Graph Construction. Sklearn often externalizes complex

checks in dedicated functions. For instance, in Figure 1, function

_check_solver (L4-8) ensures that its arguments solver, penalty,

and dual respect a set of constraints. To collect constraints corre-

sponding to function calls Ð such as _check_solver (L40) Ð this

paper proposes a simple call graph analysis able to handle class

hierarchy and functions imported from other modules. It relies on

concrete evaluation to identify external calls that have no impact on

the analysis results, e.g., library functions like np.unique(y) (L49).

Soundness Analysis. Unfortunately, a lot of Python code in prac-

tice has side effects, which can make the weakest precondition

analysis unsound in general. An exception can occur even if the

precondition holds if a statement modifies a location referenced

in the precondition as a side effect. To mitigate this, we propose

a soundness analysis to check if a precondition may be unsound.

Given a statement 𝑆 and a precondition 𝑄 , the analysis computes

the set of locations read in the precondition (read (𝑄)) and the set

of locations modified by the statement (mod (𝑆)). The precondition

is sound if these two sets are disjoint. In our running example, back-

wards analysis finds the precondition of L41 as 𝑄 : self.penalty =

'elasticnet'⇒ self.l1_ratio ∈ R ∧ 0 ≤ self.l1_ratio ≤ 1. The

call at L40 seemingly does not affect 𝑄 and the analysis propagates

𝑄 to the beginning of fit. However, the call still demands consider-

ation Ð if it writes self.l1_ratio or self.penalty, then even if 𝑄

holds at the start of fit, that does not guarantee that 𝑄 holds after

L40. Our soundness analysis computes mod(_check_solver(...)) =

{ } and read (𝑄) = { self.l1_ratio, self.penalty }. Since they do not

intersect, we conclude that 𝑄 is a sound precondition at the start

of fit. If 𝑄 holds, the exception at L45 will not be raised.

Interprocedural Weakest Precondition Analysis. The call graph

analysis takes an (operator class, target method) pair and constructs

the call graph rooted at the target method. Interprocedural anal-

ysis uses that call graph to trace back exceptions that occur in

reachable methods in the call graph. It computes preconditions

that must hold at the start of a target method, e.g., fit or predict, to

prevent the exceptions from happening at runtime. Intraprocedural

analysis on _check_solver returns the following weakest precondi-

tion: solver ∈ ['liblinear', 'saga'] ∨ penalty ∈ ['l2', 'none'].

Using the call graph, our analysis then maps the arguments solver

and penalty to the corresponding hyperparameters self.solver

and self.penalty (L40). Finally, it compiles the constraint to the

JSON schema shown in Figure 2 (L10-15) for target method fit. The

analysis also simplifies subformulas that depend on constants, such

as default arguments in Python. This works by evaluating likely

constants with the interpreter, as described in Section 6.

3 INTRA-PROCEDURAL ANALYSIS

Our intra-procedural weakest precondition analysis uses essen-

tially standard backwards reasoning [3, 20, 24] and adapts it for

Python. This section describes the core analysis and Section 5 de-

scribes our novel extension with soundness reasoning.

The analysis starts from a raise statement, then computes the

precondition that must hold at the start of the enclosing function

to prevent the exception. Each step of backward reasoning com-

putes WP(stmt, 𝑄post) ↦→ 𝑄pre: given a Python statement and a

postcondition 𝑄post, our analysis returns a precondition 𝑄pre.

• WP(raise E, 𝑄post) handles Raise statements:

return False

At a blank raise statement, an exception is certain, so the precon-

dition for not raising it is 𝑄pre = False.

• WP(x = RHS, 𝑄post) handles Assignment statements:

return 𝑄post[RHS/x]

The precondition 𝑄pre results from the substitution of left-hand

side x with RHS.

452

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Ingkarat Rak-amnouykit, Ana Milanova, Guillaume Baudart, Martin Hirzel, and Julian Dolby

1 # {(self.penalty=='elasticnet'⇒ (isinstance(self.l1_ratio,Number) ∧ 0<=self.l1_ratio<=1)) ∧ (¬(self.penalty=='elasticnet')⇒ True)

2 # ≡ self.penalty=='elasticnet'⇒ (isinstance(self.l1_ratio,Number) ∧ 0<=self.l1_ratio<=1)}

3 if self.penalty == 'elasticnet':

4 # {((¬isinstance(self.l1_ratio,Number) ∨ self.l1_ratio<0∨self.l1_ratio>1)⇒ False) ∧ (¬(¬isinstance(self.l1_ratio,Number) ∨ self.l1_ratio<0 ∨ self.l1_ratio>1)⇒ True)

5 # ≡ isinstance(self.l1_ratio,Number) ∧ 0<=self.l1_ratio<=1}

6 if not isinstance(self.l1_ratio,Number) or self.l1_ratio<0 or self.l1_ratio>1:

7 # {False}

8 raise ValueError(f"l1_ratio must be between 0 and 1; got {self.l1_ratio}")

Figure 3: Inferring the weakest precondition for one of the exceptions raised by Logistic Regression.

• WP(if E: Seq1 else: Seq2, 𝑄post) handles If statements:

𝑄pre1 ←WP(Seq1, 𝑄post)

𝑄pre2 ←WP(Seq2, 𝑄post)

return (E⇒ 𝑄pre1) ∧ (¬ E⇒ 𝑄pre2)

The precondition is standard. If the condition evaluates to True,

then the weakest precondition of Seq1 and 𝑄post must hold, oth-

erwise, the weakest precondition of Seq2 and 𝑄post must hold.

• WP(for E1 in E2: Seq, 𝑄post) handles For statements:

if 𝑄post == True then

𝑄body ←WP(Seq, True)

𝑄pre ← E1 ∈ E2⇒ 𝑄body

return 𝑄pre

else

return 𝑄post

end if

If the exception (recall that the analysis tracks a single raise

statement) is nested in a For statement, then we guard the pre-

condition with E1 ∈ E2. Variables in E1 are bound at the For loop

and the precondition 𝑄body may involve these variables. These

variables are quantified in formula𝑄pre, however, if𝑄pre reaches

the top-level fit, we ignore it because our target language, JSON

Schema, does not support such functionality. On the other hand,

if postcondition 𝑄post is not True, we simply propagate 𝑄post

past the For statement. This can be unsound (the loop body may

modify locations referenced in𝑄post) and imprecise, i.e., stronger

than the weakest precondition (the precondition is not qualified

by the negated loop test), but works well in practice.

• WP(other, 𝑄post) handles Other statements:

return 𝑄post

Other statements are Python statements that do not match the

syntax of the core subset specified above. These include while,

del, try, and the rest of the Statement nodes specified by the

Python AST. The code for Other propagates 𝑄post as-is, which

is potentially unsound as the statement may modify locations

referenced in 𝑄post, but see Section 5.

Figure 3 illustrates with the example from Figure 1 L42-L45.

The figure uses standard Hoare logic notation with curly braces

around logic formulas embedded between code statements. In our

analysis, {𝑄pre} stmt {𝑄post} means 𝑄pre = WP(stmt, 𝑄post). Fur-

thermore, Figure 3 indicates formula simplification by showing

equivalent formulas, notated as {𝑄unsimplified ≡ 𝑄simplified}.

4 CALL GRAPH CONSTRUCTION

Call graph construction for Python is non-trivial, complicated by

imports, functions as first-class values, and complex features such

as decorators and context managers. We are aware of a single pub-

lication on call graph construction in the literature, PyCG [37], and

several GitHub repositories, most notably code2flow [36]. While

both PyCG and code2flow produced quality call graphs, neither

sufficed for our purposes Ð PyCG required that all files under anal-

ysis are specified at the command line, while our problem required

crawling through the ML library and discovering imported classes

and functions. Neither call graph handled inheritance in sklearn,

which was crucial for interprocedural weakest precondition analy-

sis. Unfortunately, call graph construction for Python remains an

open problem Ð none of PyCG, code2flow, or our algorithm, built

for the purposes of interprocedural weakest precondition, handles

value flow or dynamic calls on receiver objects, e.g., enc.fit().

4.1 Basic Algorithm

We propose a new call graph construction analysis that runs in

seconds and achieves good accuracy for our purposes. We be-

lieve that it can be a used as a baseline when developing and

benchmarking more complex and more accurate call graph con-

struction algorithms. The analysis takes as input the full pack-

age (e.g., sklearn) and an (operator class, target method) pair, e.g.

(LogisticRegression, fit) and produces the call graph resulting

from a call of the target method on an operator class receiver. The

analysis is a name-based resolution in its essence. It first crawls the

package directory and creates two maps:

classTable : package:class → [base1,...,baseN]

functionTable : package:class:function→ FunctionDef

The classTable is a map from the fully qualified class name to

the list of (unqualified) names of base classes. Here package is

the full path name of the file that contains the class definition

and class is the unqualified name of the class. For example, class

LogisticRegression in Figure 1 (L11) is represented in classTable

as

'linear_model/_logistic.py:LogisticRegression'→

['LinearClassifierMixin','SparseCoefMixin','BaseEstimator']

The functionTable is amap from the fully qualified function name

to the Python AST node corresponding to that function definition.

For example, function fit (L39) is represented in functionTable as

'linear_model/_logistic.py:LogisticRegression:fit'→

ast.FunctionDef of fit

If the function has no enclosing class, then the class field in the

key is the string 'None'. For example,

'linear_model/_logistic.py:None:_check_solver'→

ast.FunctionDef of _check_solver

453

The Raise of Machine Learning Hyperparameter Constraints in Python Code ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

The algorithm constructs a call graph where each node is a

(class, function) pair andwhere edges represent the calling relations.

Starting at the pair (operator_class, entry_function), it visits all

calls in entry_function’s definition and adds new nodes and edges

to the graph. When the algorithm adds a new (class, function) pair

to the graph, it queues the corresponding function definition for

processing. The process continues until no new nodes or edges are

added.

The analysis uses the Python AST library which has representa-

tions of standard syntactic constructs. In addition to ast.FunctionDef,

we make use of ast.Name(name), representing names such as vari-

ables, ast.Attribute(value,attr), which represents attribute access

such as for example np.unique, or self.estimator._validate_data,

and so on. The AST node type ast.Call(func,args,keywords) repre-

sents a function call, and analysis is difficult because node func can

be arbitrarily complex.

Consider the call check_classification_targets(X) in Figure 1

L48, which is a Name call, the predominant kind of call. The analysis

searches in functionTable and finds

utils/multiclass.py:None:check_classification_targets

It queues node

(None,utils/multiclass.py:None:check_classification_targets)

for processing (if it has not been processed already). The analy-

sis also matches constructor calls, e.g, LogisticRegression(), calls

through self, e.g., self._validate_data(X, y, [...]) (L47), and pac-

kage-qualified calls, e.g., linear_model._logistic.check_solver().

The analysis has limitations, leaving some calls as unresolved.

Most notably, there is no comprehensive value-flow analysis and

expression calls such as self.random_state_.shuffle(ordered_idx)

or est.fit(X), as well as calls through function pointers, remain

unresolved. Also, our target libraries sometimes outsource compu-

tation to Cython [8]. At this point, our analysis does not look at

Cython files to try to find Cython class and function definitions. In

our experiments, unresolved calls are split between (1) expressions

and indirect calls and (2) Cython calls.

4.2 Concrete Evaluation

The most notable part of the analysis is the evaluation of external

library calls directly in the Python interpreter. We separate imports

into two categories, local imports and external imports. Local im-

ports, typically relative imports, are sub-packages of the package

under analysis and are in scope for the static analysis. External

imports refer to separately installed dependencies and are out of

scope. In typical machine-learning Python libraries, built-in calls

and external calls, particularly calls to the numpy and scipy libraries,

abound. When processing calls, the analysis encounters hundreds

of built-in and external calls, which raises the question: Are these

calls unresolved due to limitations of the analysis, or are they built-in

or external calls that generally have no impact on analysis results?

We have a simple but general solution that filters out (certain)

built-in and external calls. We evaluate the call with no arguments

in the Python interpreter using its external import environment

(picked up by a crawler). If evaluation causes a TypeError complain-

ing of missing arguments, then we conclude that the call is an

external call and the callee method is out of scope for the analysis.

If evaluation causes another exception, e.g., a NameError exception,

then the call remains unresolved. As an example, consider the call

np.unique(y) (L49). When the analysis encounters this call, it tries

its cases for Name, self call, etc. but fails to match. It then runs:

eval("import numpy as np; import ...; np.unique()")

which leads to the following error:

TypeError: unique() missing 1 required positional argument: ’ar’.

Our analysis concludes that np.unique(y) is an external call

rather than an unresolved call. Note that sending the call as is will

result in NameError due to the argument y. The distinction between

external and unresolved calls has implications for the analysis, as

it makes a distinction for what is largely łunachievablež for the

analysis (external calls) and what is a potential limitation and room

for improvement (unresolved).

Many calls are successfully resolved in the Python interpreter;

e.g., 346 out of 524 calls in LogisticRegression are external.

5 SOUNDNESS ANALYSIS

Side-effects in Python make the weakest precondition analysis from

Section 3 unsound in general. An exception can be raised even if the

precondition holds if a statement modifies a location referenced in

the precondition as a side effect. To mitigate this issue, we augment

the core analysis from Section 3 with a soundness flag. Clearly,

łsoundnessž is too strong a word given Python’s complex dynamic

nature. In addition, it is predicated upon assumptions about call

graph correctness and behavior of library calls.

5.1 Soundness Flag

At each step of backward reasoning, the analysis now computes

WP(stmt, 𝑄post, 𝑆post) ↦→ (𝑄pre, 𝑆pre): given a Python statement, a

postcondition𝑄post, and a soundness flag 𝑆post, our analysis returns

a pair (𝑄pre, 𝑆pre) of a precondition𝑄pre and its soundness flag 𝑆pre.

If the flag 𝑆pre is true, then 𝑄pre is sound, i.e., if 𝑄pre holds at the

corresponding program point, then the tracked exception is not

raised. On the other hand, if 𝑆pre is false, the exception may still

be raised even if 𝑄pre holds. Below we describe the addition of the

flag for Raise, Assignment, If, and Other statements.

• WP(raise E, 𝑄post, 𝑆post) handles Raise statements:

return (False, True)

A blank raise makes an exception certain, so the precondition

for not raising it is 𝑄pre = False with soundness flag 𝑆pre = True.

• WP(x=RHS, 𝑄post, 𝑆post) handles Assignment statements:

𝑄pre ← 𝑄post[RHS/x]

return (𝑄pre, 𝑆post ∧mod(RHS)∩ read(𝑄pre) == ∅)

Our treatment follows the principles of separation logic [29].

If the set mod(RHS) of locations modified by RHS and the set

read(𝑄pre) of locations read by 𝑄pre are disjoint, then 𝑄pre is

sound, meaning that𝑄pre evaluates to true iff after the execution

of x=RHS, 𝑄post evaluates to true. Otherwise, 𝑄pre is potentially

unsound. In other words, if RHS has side-effects that modify

some location referenced by 𝑄pre, then making 𝑄pre true before

the execution of RHS does not necessarily make 𝑄post true after.

Section 5.2 describes how to compute mod and read sets.

454

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Ingkarat Rak-amnouykit, Ana Milanova, Guillaume Baudart, Martin Hirzel, and Julian Dolby

• WP(if E: Seq1 else: Seq2, 𝑄post, 𝑆post) handles If statements:

(𝑄1, 𝑆1) ←WP(Seq1, 𝑄post, 𝑆post)

(𝑄2, 𝑆2) ←WP(Seq2, 𝑄post, 𝑆post)

𝑄pre ← (E⇒ 𝑄1) ∧ (not E⇒ 𝑄2)

return (𝑄pre, 𝑆1 ∧ 𝑆2 ∧mod(E)∩read(𝑄pre) == ∅)

It is sound if (1)𝑄post is sound, (2) neither Seq1 nor Seq2 contain

statements that invalidate the soundness, and (3) E has no effect

on 𝑄1 or 𝑄2. In practice, E is almost always side-effect free.

• WP(other, 𝑄post, 𝑆post) handles Other statements:

return (𝑄post, 𝑆post ∧mod(other)∩read (𝑄post) == ∅)

The handling of other propagates 𝑄post as-is, however, it sets

the soundness flag to False when other may interfere with the

formula 𝑄post. Our work proposes systematic handling of loops

and other intricate Python constructs (slices, generators, etc.).

Instead of defining handlers for those constructs (e.g., loops are a

known thorn in weakest precondition inference), we observe that

they largely have no impact on analysis results, and therefore can

be ignored. If the analysis can show that the weakest precondition

formula and the statement do not interfere, then loops and calls

and other intricate statements can be handled (i.e., ignored) safely.

We illustrate with a constraint in ExtraTreeClassifier that our

analysis discovered. It was undocumented and we submitted a pull

request which the developers immediately merged.

1 # {(self.bootstrap ∧ ¬ self.oob_score, True)}

2 n_samples_bootstrap = _get_n_samples_bootstrap(

3 n_samples=X.shape[0],max_samples=self.max_samples)

4 # {(self.bootstrap ∨ ¬ self.oob_score, True)}

5 self._validate_estimator()

6 # {(¬ self.bootstrap ∧ self.oob_score⇒ False, True)

7 # ≡ (self.bootstrap ∧ ¬ self.oob_score, True)}

8 if not self.bootstrap and self.oob_score:

9 # {(False,True)}

10 raise ValueError("Out of bag score only available if bootstrap=True")

The exception in L10 yields the formula in L6-7. Propagating over

the call in L5 entails computing mod(self._validate_estimator())

= { self.base_estimator_ } and read(self.bootstrap or not self

.oob_score) = { self.bootstrap, self.oob_score }. These sets do

not intersect and the flag remains True as shown in L4. The call as-

signment in L2-3 entails computingmod(_get_n_samples_bootstrap

(...)), which is { } because the call is side-effect free. This leads

to the sound precondition self.bootstrap or not self.oob_score

in L1. The actual code has about 40 additional lines until the begin-

ning of the function.

5.2 mod (𝑆) and read (𝑄)

The analysis requires information about the set of locationsmodified

by a statement (or statement sequence) as well as the set of locations

read by a formula. In our implementation these are Python AST

nodes, so both the mod and read analyses entail AST traversal.

At the core of mod is the known reference immutability analy-

sis [21, 39]. It computes qualifiers for each variable and field in the

program. A reference x is read-only if the object x refers to, or any

of its transitive components, is not modified through x. E.g.,

• In x.f=1 and in x[0]=1, x is not read-only (it is mutable).

• In y=id(x); y[i]=1, where id is the standard identity function

that returns its argument, x is mutable.

• In y=x.f; y.g=0, x is mutable.

Reference immutability is different from object immutability. We

may have a read-only reference x that points to 𝑜 and there may be

a mutable reference to 𝑜 that would still allow mutation of 𝑜 .

We have adapted the ReIm reference immutability type sys-

tem [21, 27] for Python and inferred qualifiers for each variable

and each field. We use our call graph from Section 4 as ReIm is

inherently interprocedural. We assume that library calls are poly-

morphic with respect to immutability, i.e., they do not modify the

argument; however, if the code modifies the left-hand-side of an

external call assignment, then mutability is passed to the argument.

The novelty of our work, in addition to the integration with

weakest precondition analysis, lies in the computation of what we

call fragment reference immutability. Fragment reference immutabil-

ity takes a Python statement and computes read-only or mutable

qualifiers for that single statement. The example illustrates:

1 for e in lst:

2 x = m(z) # z is read−only as the call does not modify argument

3 z.append(...) # z is mutable here

In ReIm’s łglobalž inference, z is mutable because of the mutation

through append in L3. However, in fragment reference immutability

of the For statement (L1-2), z is read-only, as the mutation occurs

later in the code. Fragment reference immutability infers types ex-

actly as ReIm does, except that at method calls it makes use of the

argument and return types computed by ReIm’s łglobal" inference.

mod (𝑆) contains three kinds of elements x, x.*, and x.f:

• x is a reference different from self. This means that statement 𝑆

may write stack location x. If 𝑆 contains an assignment x = ...,

then x is placed into mod (𝑆).

• x.* means that 𝑆 may write some part of the object that x refers

to, however, the analysis cannot determine which part, i.e., which

field. When fragment reference immutability infers x mutable,

then x.* is placed into mod (𝑆). Here, x may be self. This is

typically due to a call with a mutable argument, e.g., m(x).

• x.f means that 𝑆 may write precisely field f of x, i.e., there is an

assignment x.f = Since x.* takes precedence over x.f, we

implement a minor extension to ReIm to track self.f locations

that occur through calls through self. (At calls self.m(...) we

propagate locations self.f into the caller instead of self.*.)

Thus, mod(_get_n_samples_bootstrap(...)) is { } because method

_get_n_samples_bootstrap is read-only.

Similarly, read(𝑄) contains three kinds of elements x, x.*, and x.f:

• x means that 𝑄 reads stack location x. Any reference variable

that appears in 𝑄 is included in read (𝑄).

• x.* means that 𝑄 may read some part of the object x refers to.

• x.f means that 𝑄 reads precisely field f of x.

Clearly, read(self.bootstrap or not self.oob_score) consists

of {self.bootstrap, self.oob_score}.

Finally, mod (𝑆) ∩ read (𝑄) == ∅ evaluates to True if and only if

none of the following is true:

(1) x is in both mod (𝑆) and read (𝑄) for some x

455

The Raise of Machine Learning Hyperparameter Constraints in Python Code ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

(2) x.f or x.* is in mod (𝑆) and y.g or y.* is in read (𝑄), for some

x≠self, y≠self; f may be the same as g.

(3) self.f or self.* is inmod (𝑆) and self.f or self.* is in read (𝑄)

The above computation assumes that self is a unique reference

on the current stack frame. On the other hand, it treats any x.f

and y.g, where x≠self and y≠self, as potential aliases. We use the

intersection symbol for notational convenience, even though this

is a custom operation as defined here.

6 INTERPROCEDURALWEAKEST
PRECONDITION ANALYSIS

To handle runtime exceptions raised outside of a target function,

we expand our analysis to be interprocedural by using the call

graph described in Section 4 to trace exceptions along function call

paths. The interprocedural analysis computes preconditions that

must hold at the start of a target function, e.g., fit or predict, to

prevent exceptions that could be raised by the target function itself

or transitively reachable callees.

If a callee raises exceptions, their preconditions, after perform-

ing backward reasoning, become additional parts of the caller’s

preconditions. For each raise statement, intraprocedural analysis

computes the precondition at the start of its enclosing function.

Then we propagate that formula upward through the call graph

until it reaches the target function. The number of preconditions of

a target function equals the number of possible paths to all excep-

tions. For example, consider the excerpt of LogisticRegression’s

fit target function from Figure 1 (L39). Its preconditions include

the preconditions from its own raise (L45), those from callees

_check_solver (L40) and self._validate.data (L47), as well as those

from any other functions transitively reachable in the call graph.

6.1 Basic Algorithm

The analysis takes the transitive closure of a target function over

the call graph, breaking cycles if they exist. Then it analyzes each

function in reverse topological order. Preconditions of each func-

tion travel up the call graph via function calls. Each precondition is

treated separately, whether it is from a function’s own raise state-

ment or from a function call. A precondition from a raise statement

follows intraprocedural analysis. For a function call, each of its

preconditions is substituted with appropriate function arguments.

Then it follows the standard intraprocedural backward analysis

from Section 3 until it reaches the entry point of the function.

At a function call, each precondition of the callee is substi-

tuted with the function call’s arguments or the default values

of formal arguments. For positional arguments, the analysis per-

forms a straightforward substitution of arguments or default val-

ues for formals. Consider a call call(arg1) that the call graph

has resolved to function callee(p1,p2='default') and the analy-

sis has computed a list of preconditions (𝑄1

callee
, . . . , 𝑄𝑛

callee
). IWP

defines the computation of the interprocedural weakest precondi-

tion. IWP(call(arg1), (𝑄1

callee
, . . . , 𝑄𝑛

callee
)) propagates the callee’s

preconditions 𝑄1

callee
, . . . , 𝑄2

callee
to the caller:

return
©
«

𝑄1

callee
[arg1/p1] [’default’/p2],

. . . ,

𝑄𝑛
callee
[arg1/p1] [’default’/p2]

ª®
¬

1 # {¬ isinstance(accept_sparse,str)⇒¬ accept_sparse is False}

2 def _ensure_sparse_format(spmatrix, accept_sparse, dtype, copy,

3 force_all_finite, accept_large_sparse):

4 if isinstance(accept_sparse, str):

5 accept_sparse = [accept_sparse]

6 if accept_sparse is False:

7 raise TypeError('A sparse matrix was passed, but dense '

8 'data is required. Use X.toarray() to '

9 'convert to a dense numpy array.')

10

11 # {¬ isinstance(accept_sparse,str)⇒¬ accept_sparse is False}

12 def check_array(array, accept_sparse=False, ∗, accept_large_sparse=True,

13 dtype="numeric", order=None, copy=False,

14 force_all_finite=True, ensure_2d=True,

15 allow_nd=False, ensure_min_samples=1,

16 ensure_min_features=1, estimator=None):

17 array = _ensure_sparse_format(array, accept_sparse=accept_sparse,

18 dtype=dtype, copy=copy,

19 force_all_finite=force_all_finite,

20 accept_large_sparse=accept_large_sparse)

21

22 class BaseEstimator:

23 # {¬ isinstance(check_params.get('accept_sparse',False),str)

24 #⇒¬ check_params.get('accept_sparse',False) is False}

25 def _validate_data(self, X, y='no_validation', reset=True,

26 validate_separately=False, ∗∗check_params):

27 X = check_array(X, ∗∗check_params)

28

29 class LogisticRegression(LinearClassifierMixin,

30 SparseCoefMixin,

31 BaseEstimator):

32 # {True}

33 def fit(self, X, y, sample_weight=None):

34 X, y = self._validate_data(X, y, accept_sparse='csr',

35 dtype=_dtype, order="C",

36 accept_large_sparse=solver!='liblinear')

Figure 4:Modified excerptwith simplified path fromsklearn

LogisticRegression fit function to one specific exception.

The above formula (and the rest of the section) elides the sound-

ness flag for brevity. It is handled in the obvious way, e.g., given

(𝑄1

callee
, 𝑆1

callee
) we have

𝑄1

caller
← 𝑄1

callee
[arg1/p1] [’default’/p2]

𝑆1
caller

← 𝑆1
callee

∧mod (arg1) ∩ read (𝑄1

caller
) == ∅

return (𝑄1

caller
, 𝑆1

caller
)

6.2 Handling Keywords Arguments

Substitution becomes more complex with keyword arguments, par-

ticularly when **kwargs is involved, because kwargs is a Python

dictionary that can be passed from a caller to callees deeply nested

in the call chain and can be updated dynamically along the call

chain. The analysis works in a reverse topological order of a call

graph, making it sometimes impossible to determine at the call the

actual keyword arguments stored in **kwargs, and which of the

callee’s formal arguments use their default values.

In the interest of saving space, we illustrate our handling of

keywords arguments with an example. Figure 4 illustrates this

situation. The values of keyword arguments to check_array (L27)

are set at the call to validate_data (L34) and passed through in L27

via argument check_params. This is a modified source excerpt with

456

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Ingkarat Rak-amnouykit, Ana Milanova, Guillaume Baudart, Martin Hirzel, and Julian Dolby

a simplified path from a target function, LogisticRegression’s fit,

to one specific exception in the _ensure_sparse_format function.

Following the reverse topological order of the call graph, we start

at _ensure_sparse_format (L2). The method’s precondition𝑄 (L1) is

¬ isinstance(accept_sparse, str)⇒ ¬ accept_sparse is False .

Function check_array contains a call to _ensure_sparse_format. The

call does not involve **kwargs so the analysis performs a straight-

forward substitution. The precondition result is the same (L11). (As

the name of the formal accept_sparse and the actual are the same.)

Next, in function _validate_data, a call to check_array involves

**kwargs named check_params. At this point we are not able to de-

termine which keyword arguments are in **check_params. In the

general case, the analysis picks up the keyword arguments used

in 𝑄 and substitutes each of them as in the example below. It uses

the dictionary, e.g., check_params (still placeholder) and the default

value as the default argument of get:

𝑄[check_params.get('accept_sparse',False)/accept_sparse]

[check_params.get('accept_large_sparse',True)/accept_large_sparse]

[check_params.get('dtype','numeric')/dtype], etc.

The resulting precondition for our example is shown at L23ś

24. The idea is that at the call to validate_data the analysis will

substitute check_params with the concrete dictionary, and evaluate

the calls to get; if the concrete dictionary specifies a value, then

get would return that value, otherwise, it would return the default

value.

Finally, in fit, the call self._validate_data(..) (L34) provides

enough information to determine keyword arguments passed with

**check_params. The analysis substitutes check_paramswith the con-

crete dictionary {accept_sparse:'csr', dtype:_dtype, order:'C'

, accept_large_sparse:solver != 'liblinear'}. The precondition

reduces to ¬ isinstance('csr',str) => ¬ 'csr'is False, which is

of course {True} meaning that LogisticRegression’s fit does not

throw the _ensure_sparse_format exception.

6.3 Concrete Evaluation

The above example motivates our next idea. Due to use of de-

fault arguments, weakest precondition formulas can sometimes be

fully evaluated. E.g., isinstance('csr',str) immediately evaluates

to True. Such evaluation can significantly simplify formulas and

improve scalability. Thus, during substitution, the analysis does

concrete evaluation:

ast.Node(C1,C2)[target/value] handles substitution in a com-

posite node ast.Node(C1,C2):

𝑄 ′ ← ast.Node(C1[target/value], C2[target/value])

𝑄 ′′ ← eval(𝑄 ′)

return simplify(𝑄 ′′)

eval(𝑄 ′) tries to evaluate 𝑄 ′ in the interpreter using just the

standard libraries numpy and scipy as the context of evaluation. If

it evaluates to a constant, the analysis propagates this constant

rather than 𝑄 ′. Returning to the example, isinstance('csr',str)

(the antecedent of formula in L23-24), which the interpreter imme-

diately evaluates to True; we also have not ('csr'is False) (the

consequent of formula in L23-24) which the interpreter resolves to

True as well. simplify(𝑄 ′′) performs standard simplification, most

notably of implication formulas: False =>𝑄 becomes True and True

=> 𝑄 becomes 𝑄 .

Awrinkle in the handling of dictionaries is that some of the actual

arguments in the dictionary might be expressions rather than con-

stants. In that case, evaluation of the get expression will result in a

NameError. Running {'accept_sparse':'csr', 'dtype':_dtype, '

order':'C','accept_large_sparse':solver != 'liblinear'}. get(

'accept_sparse',False) in the interpreter will raise a NameError

because of _dtype and solver. That can be handled in either simplify

or eval and we outline the handling in eval.

When creating the actual dictionary, whenever the actual key-

word argument is not a constant, unparse the ast.Node into a string,

then prepend a nonsensical string to it, and then store the string

node into the dictionary. In our running example the ast.Name

expression _dtype becomes the string '?XYZ _dtype' and the dictio-

nary becomes {'accept_sparse':'csr', 'dtype':"?XYZ _dtype",

'order':'C','accept_large_sparse':"?XYZ solver != 'liblinear'

"}. Calling get('accept_sparse',False) on the above receiver eval-

uates into 'csr'. We can parse back the expression stored in the

nonsensical string if it is needed later.

7 EXPERIMENTAL RESULTS

We run the IWP analysis on 8 ML libraries: sklearn (122 opera-

tors), as well as 7 independent libraries that are sklearn-compatible:

XGBoost (2 operators), LightGBM (2 operators), imblearn (22 op-

erators), category_encoders (17 operators), MAPIE (2 operators),

metric_learn (13 operators), and sklearn_pandas (1 operator). Our

analysis is general and can run on any library when provided an

(operator class, target method) entry tuple. We choose the above

libraries because they follow the sklearn convention and provide

(operator class, fit) targets. We run the IWP analysis on these tar-

gets, a total of 181 operators. When analyzing sklearn-compatible

libraries we stop at the boundary with other libraries. Some of the

sklearn-compatible libraries import sklearn functions, most often

data validation functions and we do not reanalyze those functions.

Our evaluation considers four research questions:

RQ1 Is the IWP analysis effective at finding real issues?

RQ2 Is it effective for schema validation for ML operators and how

does it compare to existing solutions?

RQ3 How well does the soundness analysis work?

RQ4 What is the impact of concrete evaluation and does the IWP

analysis scale?

To answer RQ1, we track discrepancies between documentation

and preconditions we infer from code. We reported 3 issues to the

sklearn developers and 1 issue to the imblearn developers; all issues

were fixed and merged into sklearn and imblearn.

To answer RQ2, we design a fuzzing mechanism that samples

random configurations from an operator’s JSON schema and checks

for runtime exceptions during training, i.e., fit calls. We then test

if the JSON schema returned by the IWP analysis stops invalid con-

figurations while allowing valid ones. Our analysis achieves 92.6%

precision and 43.9% recall and outperforms existing approaches.

To answer RQ3, we measure the percentage of inferred pre-

conditions that are judged łsoundž by our analysis across all 181

operators. 95.7% of all inferred preconditions were judged sound.

To answer RQ4, we report on the impact of the concrete evalua-

tion simplifier from Section 6.3 and on analysis running times. The

457

The Raise of Machine Learning Hyperparameter Constraints in Python Code ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

analysis runs under 11 min per operator for all operators, 3 min on

average.

7.1 RQ1: Does the analysis find real issues?

First, we discovered hyperparameter constraints that were not docu-

mented and reported them to the developers. As of now we have re-

ported two such preconditions, one in sklearn and one in imblearn,

and the developers issued PRs that added our preconditions to the

documentation.

Second, having noticed inconsistencies in sklearn’s sparsity

checks, we ran an additional experiment. Operators in sklearn run

data validation code as illustrated in Figure 4. As shown, validation

code checks for sparsity of X, where the default is accept_sparse=

False. Thus, by default, data validation raises an exception when a

sparse X is passed. We isolated the following exception in 'sklearn

/utils/validation.py:None:_ensure_sparse_format':

1 raise TypeError('A sparse matrix was passed, but dense data is

required. Use X.toarray() to convert to a dense numpy array.')

and computed the preconditions up to each fit and each predict

method in sklearn. This exception is guarded by multiple condition-

als along lengthy call chains starting at fit or predict, and ending at

_ensure_sparse_format. It fires up if X is sparse and accept_sparse

is False. Analysis is tricky because there are many different ways

the code can set accept_sparse to a value other than False; it is en-

abled by our novel interprocedural propagation. Figure 4 illustrates

the call chain in LogisticRegression with simplified control flow.

Our analysis either reports (1) a constraint not sp.issparse(X)

at the top of fit/predict, meaning that if the user passes a sparse

matrix the exception is raised, or (2) True, as in Figure 4 L32, mean-

ing that the exception is not raised with a sparse X. Case (2) is

because the operator has set accept_sparse to an appropriate value.

E.g., in Figure 4 L34, the operator sets accept_sparse to 'csr'.

Case (1) indicates that the operator’s fit/predict method does

not accept sparse data and this ought to be specified in the docstring.

If the analysis reports not sp.issparse(X) but the documentation

states that the method accepts a sparse X, then there is definitely a

bug, either a documentation bug or a code bug. Case (2) indicates

that the operator’s fit/predict may accept sparse X, as data vali-

dation code appears to accept sparse X. If the analysis reports True,

but the docstring states that the method does not accepts sparse X,

then this is not necessarily a bug, as the operator may indeed forbid

sparse data due to some internal operational constraints.

We applied the analysis on the fit and predict methods in

all sklearn operators. We detected 2 instances of case (1), one in

AffinityPropagation.predict and one in MeanShift.predict. It ap-

peared that in both cases the predict functions were meant to

support sparse data and they did, but the data validation call forgot

to pass an argument for accept_sparse, so it defaulted to False,

which triggered the exception when a sparse X was passed. We

reported the issue in AffinityPropagation to sklearn and suggested

the following fix: check_array(X, accept_sparse='csr'). The de-

velopers issued and merged a pull request within days. Our PR for

MeanShift led to a discussion among sklearn developers on whether

this should be a documentation fix or a code fix, eventually settling

on a documentation fix.

We detected 22 instances of case (2). 12 cases appear to be docu-

mentation bugs; documentation was not updated to reflect a code

upgrade that added handling of sparse X. We have not reported

the potential overspecification issues, but we plan to do so in the

future.

And third, in addition to sklearn and imblearn, we have con-

tributed PRs to IBM’s Lale Auto-ML project [4], specifically improv-

ing the JSON schema constraints of 72 of sklearn’s operators.

7.2 RQ2: Is the Analysis Effective for Schema
Validation for ML Operators?

This experiment evaluates how well IWP hyperparameter con-

straints are able to stop invalid hyperparameter configurations,

while allowing valid ones to proceed. They work as assertions at

the entry-point methods. Catching invalid configurations early is

important Ð imagine a pipeline where the first operator takes hours

to run only to reach an invalid configuration of the second one.

Experimental Methodology. For each operator, we start with care-

fully crafted schemas for individual hyperparameters; these schemas

capture constraints on individual hyperparameters, but do not cap-

ture constraints that involve multiple hyperparameters or data.

They are JSON schemas from IBM’s Lale Auto-ML project [4]. Sam-

pling from the domain of these schemas, we generated 1,000 random

hyperparameters configurations based on hyperparameters that are

relevant to hyperparameter optimization. Then, we create a trial by

calling the operator’s __init__ method with the hyperparameter

configuration, then calling its fitmethod and checking for dynamic

exceptions. We experiment with two kinds of datasets, dense and

sparse, resulting in a total of 2,000 trials for each operator. A trial

fails if an exception is raised and it passes otherwise.

The results from the dynamic exceptions are our ground truth.

We translate weakest precondition constraints from the analysis

into JSON schema [31] format and use schema validation to check

the hyperparameter configuration against the schema. We define

the categories for precision/recall as follows:

• A trial is a true positive if it fails and the hyperparameter configu-

ration is invalid against the JSON schema (i.e., issues a warning)

as well.

• A trial is a false positive if it passes and the hyperparameter

configuration is invalid against the JSON schema.

• A trial is a false negative if it fails and the hyperparameter con-

figuration is valid against the JSON schema.

• A trial is a true negative if it passes and the hyperparameter

configuration is valid against the JSON schema.

Unfortunately, we only have the necessary carefully crafted JSON

schemas for individual hyperparameter constraints for sklearn,

XGBoost, and LightGBM. We report results on 101 operators: 99 out

of 122 sklearn operators, and one each fromXGBoost and LightGBM.

For the remaining operators, either the trials for gathering the

ground-truth exceeded the time limit or they required customized

inputs that we could not craft.

How well does our analysis work? We report on 101 operators.

We sum up trial results from all operators to calculate precision

and recall. The analysis achieved 92.6% precision and 43.9% recall

458

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Ingkarat Rak-amnouykit, Ana Milanova, Guillaume Baudart, Martin Hirzel, and Julian Dolby

leading to an F1-score of 59.6%. Our interprocedural analysis cap-

tures the vast majority of exceptions, in many cases interprocedural.

For example, 7 weakest precondition constraints from 4 different

functions of LogisticRegression precisely identify 1,406 hyperpa-

rameter configurations from the failed trials. As another example,

in PCA, the analysis correctly identifies 400 true positives and 600

true negatives from the dense dataset; the analysis correctly rejects

all sparse trials because PCA does not support sparse input and has

an explicit exception in the main file that we infer and capture in

JSON schema. (We note that there is an explicit issparse check in

PCA that immediately rejects sparse inputs, rather than defaulting

to the exception in validation code.) Interprocedural analysis is

crucial for improving precision and recall, as the exceptions happen

along call chains from fit.

The main source of false negatives (i.e., lower recall) is that weak-

est precondition expressions were beyond the expressive power

of JSON schema. Clauses of preconditions that are inexpressible

in JSON evaluate to True. As a result, in our experiments, schemas

with inexpressible clauses are nearly always valid, i.e., accept ev-

erything. Concretely, about 15 of the operators in the dataset do

not accept sparse input by specification and all 1000 trials with

sparse datasets fail by throwing the exception in validation code

that we investigated in RQ1. Unfortunately, the JSON schema for

that exception always evaluates to True resulting in thousands of

false negatives. We estimated that special handling of the schema

for that exception would have increased the recall score by about

20 points, however, we have left this for future work as there were

a non-trivial number of exceptions that IWP infers but the schema

does not express. There are occasions when the IWP analysis misses

exceptions as well, e.g., because of dynamic class loading. On no

occasion did the analysis infer a precondition (expressible in JSON)

that passed, but the corresponding exception fired. This is consis-

tent with our soundness result (see section 7.3) Ð about 95% of our

preconditions are sound.

How does our approach compare to other solutions? We consider

two alternative approaches to extract machine-readable hyperpa-

rameter constraints: hand-written schemas [4] and documentation-

extracted schemas [6]. The hand-written constraints are extracted

by careful examination of the documentation. We use the same

experimental methodology to compare IWP to these solutions.

Figure 5 shows an average F1-score of 3 groups: the group with

all 101 operators, the subgroup of 87 operators that have both

Weakest Precondition and NL Docstrings schemas, and the sub-

group of 39 operators that have all three schemas, including Hand-

Written schema. Figure 5 shows that our approach,which is auto-

matic, performs significantly better than the hand-written

constraints.

On the subgroup of 39 operators, the precision and recall for

IWP is 97.1% and 59.4% respectively, resulting in F1-score of 73.7 as

shown in Figure 5. Precision and recall for Hand-Written constraints

is 39.0% and 22.6% respectively, resulting in the F1-score of 28.6.

The worse performance is mainly because hand-written constraints

leave out constraints that appear in the code as exceptions but are

missing from the documentation. Hand-written constraints also

miss exceptions in imported modules. On a rare occasion, hand-

written constraints reject hyperparameter configurations that are

Figure 5: Average F1-score of 3 groups; the groupwith all 101

operators (only IWP schemas), the subgroup of 87 operators

(IWP and NL Docstrings schemas), and the subgroup of 39

operators (IWP, NL, and Hand-Written schemas).

specified in the documentation but do not exist in the code. For

example, sklearn’s LinearSVC states that the combination of penalty

='l1' and loss='hinge' is not supported. However, no exception

exists in the source code, resulting in 492 false positives.

Baudart et al. [6] automatically extract constraints for sklearn

from natural-language documentation. While the technique works

well for constraints on a single hyperparameter, it does not work as

well for constraints on multiple hyperparameters or hyperparam-

eters and data. Of the 101 operators, 87 operators have docstring-

extracted schemas, but the technique only successfully extracts

constraints that involve two or more hyperparameters or hyperpa-

rameters and data for 25 operators. Without these constraints, if a

trial fails, its hyperparameter configuration is valid because there

is nothing to validate against. This leads to a false negative and is

the main reason of a low recall. Figure 5 shows that our weakest

precondition analysis clearly outperforms the technique from [6].

7.3 RQ3: Does Soundness Analysis Work?

We ran the IWP analysis on all 181 operators starting at the target

(operator,fit). Recall that this turns each transitively reachable ex-

ceptions into preconditions at the top of the operator’s fit function,

where each precondition is accompanied by a soundness flag. In

summary, 95.5% of the sklearn preconditions, across all 122

operators, were inferred sound. For the remaining 7 libraries,

97.0% of the preconditions were inferred sound.

One wrinkle is that initially only about 35% of the sklearn pre-

conditions were judged sound, which was highly surprising. Upon

a closer look, the low soundness result across all sklearn opera-

tors was due to a single For loop in the shared data validation code,

specifically in check_array. There are about 10 exceptions raised

in check_array or its callees and each gives rise to 3-4 distinct pre-

conditions at the top level because there are multiple paths from

fit to check_array. Thus, the single source of imprecision (i.e., the

For loop) propagates towards a large number of exceptions. We

ran an experiment and excluded exceptions in check_array and, as

expected, 94% of the inferred preconditions were sound.

The offending For loop assigned a local, has_pd_integer_array,

which also appeared in the postcondition formula, thus rendering

459

The Raise of Machine Learning Hyperparameter Constraints in Python Code ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

Table 1: Running times and file sizes of some operators, with

andwithout the concrete evaluation (CE). Thefiles storeAST

formulas of weakest preconditions in .pkl format.

Time (seconds) File Size (MB)

CE no CE CE no CE

AdaBoostClassifier 2,564.86 3,005.27 4.54 301.94

AdaBoostRegressor 2,197.82 3,196.64 4.68 302.09

BaggingClassifier 2,645.32 5,607.13 33.15 419.20

ColumnTransformer 405.58 424.61 2.35 46.71

ExtraTreesClassifier 2,828.72 3,969.06 131.19 727.10

StandardScaler 4,204.84 38,731.67 110.39 1,479.45

TfidfVectorizer 0.90 1.58 0.03 0.03

VotingClassifier 1.02 1.85 0.04 0.04

the precondition formula unsound. Fortunately, we were able to re-

place (manually) the For statement with an equivalent If statement

that assigned has_pd_integer_array accordingly. The If statement

is equivalent (under some mild assumptions) in the following sense:

WP(For,Q) evaluates to true for the exact same values that WP(If

,Q) evaluates to true (recall that WP(For,Q) is not computable in

general; our analysis limits the impact of loops by reasoning about

what variables are modified within a loop). Then we could analyze

the full code with the If statement, propagating the postcondition

into a sound precondition. Soundness has implications for schema

validation (Section 7.2) Ð an unsound precondition may pass val-

idation while the exception still fires at runtime and this never

happened in our experiments.

7.4 RQ4: Does the Analysis Scale?

Our analysis, like all analyses in this space, suffers from path explo-

sion. This is because exceptions are nested deeply into control-flow

paths that span multiple functions and if-then-else statements. Yet

the analysis still scales and computes a solution for each operator.

Concrete evaluation is crucial for scalability. As an ablation study,

we measure the running time of the analysis and the size of the re-

sult file with and without using concrete evaluation. We can disable

concrete evaluation by commenting out line 𝑄 ′ ← eval(𝑄) of Sec-

tion 6.3 (no CE). The result file is a Python pickle file (.pkl format)

containing AST formulas of the operator’s weakest precondition

constraints. Table 1 shows the comparison on 8 representative

sklearn operators. As expected, the difference in running time be-

comes more pronounced as precondition formulas become larger.

Overall, concrete evaluation speeds up the analysis and simplifies

constraints’ complexity significantly. Speedup ranges from 1.0x to

9.2x for an average of 2.5x. File size reduction ranges from 5.5x to

66.5x for an average of 23.1x. Still, notice that in some cases the

analysis takes about an hour, e.g., StandardScaler in Table 1. To fur-

ther improve scalability, we apply a pruning heuristic that removes

formulas that are excessively large, specifically, 200 implications

or more. Such formulas are uninterpretable and not useful for our

client analyses. All client analyses presented earlier make use of

the preconditions computed with CE and pruning on.

With CE and pruning the analysis completes in under 11 min-

utes on all operatorswith an average about 3minutes for the

181 operators. We run the experiments on a Windows machine

with Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz.

8 RELATED WORK

Our non-archival preliminary work [35] introduces the idea of us-

ing weakest precondition inference for schema validation for ML

operators; it presents an intra-procedural analysis and evaluation

of schema validation on 45 sklearn operators. This work builds

upon and significantly extends [35] with (1) novel call graph and

interprocedural weakest precondition analyses (motivated by defi-

ciencies of the intraprocedural analysis), and (2) soundness analysis

to reason about quality of inferred preconditions. Additionally, we

expand the experimental evaluation and apply IWP to specification

inference, leading to new successful pull requests.

While backward reasoning and, more generally, verification con-

dition generation have a long history, e.g., [3, 16] among other

works, as far as we know, we are the first to apply these technique

on Python, whose rich dynamic semantics notoriously complicate

static analysis. Our work demonstrates scalability and applicability

of these powerful techniques on real-world Python code.

Concrete evaluation in the context of a static analysis has some

similarity to type-level computation theory [13, 22]. Kazerounian

et al. [22] evaluate certain Ruby library calls towards proving type

safety of database queries in Ruby programs. Hirzel et al. perform

pointer analysis on Java that is sound modulo classes loaded and

reflection called up to that point in the program execution, adding

points-to relations when relevant concrete evaluations occur [19].

Our work applies evaluation in the Python interpreter to improve

call graph construction and to simplify weakest precondition for-

mulas. It is also related to concolic testing [26], as that evaluates

SMT formulas to find inputs that improve coverage. PyExZ3 [2] and

PyCT [12] are dynamic concolic testers for Python functions. In

contrast, our analysis is static, includes reasoning about soundness,

and it is interprocedural.

In general, work on static analysis for Python is scarce. Ari-

adne [14] explores static analysis of machine-learning libraries

and outlines challenges to traditional static analysis techniques

and Monat et al. [28] present type analysis via abstract interpre-

tation; we focus on the specific problem of extracting hyperpa-

rameter constraints. There is a body of work on type inference

for Python, including [25], [40], and [18]. Recent work explores

machine-learning-based type inference, including [1] and [32]. Our

work focuses on inference of deeper semantic properties such as

hyperparameter and data constraints. iComment for C [38] and

jDoctor for Java [9] have similar goal to ours Ð reconciling docu-

mentation with code and identifying issues with either of them.

Data validation for ML pipelines is an important problem. Breck

et al. present a system for detection of anomalies in data fed to

machine-learning pipelines [10]. Habib et al. check data flowing

throughML pipelines using JSON subschema checks [17]. Our work

analyzes parts of the Python code that performs data validation

and checks whether it conforms to the data constraints specified in

the documentation. Hyperparameter specifications, including con-

straints, are important for automated machine learning (Auto-ML).

For example, the Auto-ML tools auto-sklearn [15] and hyperopt-

sklearn [23] comewith hand-written hyperparameter schemas. Lale

460

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Ingkarat Rak-amnouykit, Ana Milanova, Guillaume Baudart, Martin Hirzel, and Julian Dolby

also has schemas extracted from docstrings [6]. In contrast, our

paper is the first to show how to extract them via static analysis of

the code.

9 CONCLUSIONS

This paper presents an interprocedural static analysis for extracting

weakest preconditions from Python. We automatically transform

the analysis results to JSON schemas suitable for validation as

well as for automatic tuning of machine-learning hyperparameters.

We add reasoning about soundness using reference immutability,

following the principles of separation logic. We have successfully

applied the analysis on 181 popular ML operators.

DATA AVAILABILITY

The source code of the analysis and the experiments are available

at Zenodo [33].

ACKNOWLEDGMENTS

We thank the ISSTA 2022 reviewers for their constructive feedback.

We are especially grateful to the reviewers for pointing out the

inconsistent interpretation of precision and recall in our submission.

The first and second authors are supported by NSF grant #1814898.

REFERENCES
[1] Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. 2020. Typ-

ilus: Neural Type Hints. In Conference on Programming Language Design and
Implementation (PLDI). 91ś105. https://doi.org/10.1145/3385412.3385997

[2] Thomas Ball and Jakub Daniel. 2015. Deconstructing Dynamic Symbolic Execu-
tion. In Dependable Software Systems Engineering. Vol. 40. IOS Press, 26ś41.

[3] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-
tan M. Leino. 2005. Boogie: A Modular Reusable Verifier for Object-Oriented
Programs. In Symposium on Formal Methods for Components and Objects (FMCO).
364ś387. https://doi.org/10.1007/11804192_17

[4] Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, and Avraham
Shinnar. 2020. Lale: Consistent Automated Machine Learning. In KDD Workshop
on Automation in Machine Learning (AutoML@KDD). https://arxiv.org/abs/2007.
01977

[5] Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, Avraham Shinnar,
and Jason Tsay. 2021. Pipeline Combinators for Gradual AutoML. In Advances in
Neural Information Processing Systems (NeurIPS). https://proceedings.neurips.cc/
paper/2021/file/a3b36cb25e2e0b93b5f334ffb4e4064e-Paper.pdf

[6] Guillaume Baudart, Peter Kirchner, Martin Hirzel, and Kiran Kate. 2020. Min-
ing Documentation to Extract Hyperparameter Schemas. In ICML Workshop on
Automated Machine Learning (AutoML@ICML). https://arxiv.org/abs/2006.16984

[7] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. 2019.
AutoPandas: Neural-Backed Generators for Program Synthesis. In Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).
https://doi.org/10.1145/3360594

[8] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcín, Dag Sverre Sel-
jebotn, and Kurt Smith. 2011. Cython: The Best of Both Worlds. Computing in
Science and Engineering (CISE) 13, 2 (2011), 31ś39. https://doi.org/10.1109/MCSE.
2010.118

[9] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.
Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating Code Com-
ments to Procedure Specifications. In International Symposium on Software Testing
and Analysis (ISSTA). 242ś253. http://doi.acm.org/10.1145/3213846.3213872

[10] Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin
Zinkevich. 2019. Data Validation for Machine Learning. In Conference on Systems
and Machine Learning (SysML). https://mlsys.org/Conferences/2019/doc/2019/
167.pdf

[11] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and
Gaël Varoquaux. 2013. API Design for Machine Learning Software: Experiences
from the scikit-learn Project. https://arxiv.org/abs/1309.0238

[12] Yu-Fang Chen, Wei-Lun Tsai, Wei-Cheng Wu, Di-De Yen, and Fang Yu. 2021.
PyCT: A Python Concolic Tester. In Asian Symposium on Programming Languages
and Systems (APLAS). 38ś46. https://doi.org/10.1007/978-3-030-89051-3_3

[13] Adam Chlipala. 2010. Ur: statically-typed metaprogramming with type-level
record computation. In Conference on Programming Language Design and Imple-
mentation (PLDI). 122ś133. https://doi.org/10.1145/1809028.1806612

[14] Julian Dolby, Avraham Shinnar, Allison Allain, and Jenna Reinen. 2018. Ariadne:
Analysis for Machine Learning Programs. In Workshop on Machine Learning
and Programming Languages (MAPL). 1ś10. http://doi.acm.org/10.1145/3211346.
3211349

[15] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine Learning.
In Conference on Neural Information Processing Systems (NIPS). 2962ś2970. http:
//papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning

[16] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. 2002. Extended Static Checking for Java. In Conference
on Programming Language Design and Implementation (PLDI). 234ś245. https:
//doi.org/10.1145/543552.512558

[17] Andrew Habib, Avraham Shinnar, Martin Hirzel, and Michael Pradel. 2021.
Finding Data Compatibility Bugs with JSON Subschema Checking. In Inter-
national Symposium on Software Testing and Analysis (ISSTA). 620ś632. https:
//doi.org/10.1145/3460319.3464796

[18] Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller. 2018. MaxSMT-
Based Type Inference for Python 3. In Conference on Computer Aided Verification
(CAV). 12ś19. https://doi.org/10.1007/978-3-319-96142-2_2

[19] Martin Hirzel, Daniel Von Dincklage, Amer Diwan, and Michael Hind. 2007. Fast
Online Pointer Analysis. Transactions on Programming Languages and Systems
(TOPLAS) 29, 2 (April 2007). https://doi.org/10.1145/1216374.1216379

[20] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commu-
nications of the ACM (CACM) 12, 10 (1969), 576ś580. https://doi.org/10.1145/
363235.363259

[21] Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. 2012. ReIm
& ReImInfer: checking and inference of reference immutability and method
purity. In Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). 879ś896. https://doi.org/10.1145/2398857.2384680

[22] Milod Kazerounian, Sankha Narayan Guria, Niki Vazou, Jeffrey S. Foster, and
David Van Horn. 2019. Type-Level Computations for Ruby Libraries. CoRR
abs/1904.03521 (2019). https://doi.org/10.1145/3314221.3314630

[23] Brent Komer, James Bergstra, and Chris Eliasmith. 2014. Hyperopt-Sklearn:
Automatic Hyperparameter Configuration for Scikit-Learn. In Python in Science
Conference (SciPy). 32ś37. http://conference.scipy.org/proceedings/scipy2014/
komer.html

[24] K. Rustan M. Leino. 2005. Efficient weakest preconditions. Inform. Process. Lett.
93, 6 (2005), 281ś288. https://doi.org/10.1016/j.ipl.2004.10.015

[25] Eva Maia, Nelma Moreira, and Rogério Reis. 2011. A Static Type Inference for
Python. In Workshop on Dynamic Languages and Applications (DYLA). http:
//scg.unibe.ch/download/dyla/2011/dyla11_submission_3.pdf

[26] Rupak Majumdar and Koushik Sen. 2007. Hybrid Concolic Testing. In In-
ternational Conference on Software Engineering: Companion (ICSE-C). https:
//doi.org/10.1109/ICSE.2007.41

[27] Ana Milanova. 2018. Definite Reference Mutability. In European Conference
for Object-Oriented Programming (ECOOP), Todd D. Millstein (Ed.). 25:1ś25:30.
https://doi.org/10.4230/LIPIcs.ECOOP.2018.25

[28] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. 2020. Static Type
Analysis by Abstract Interpretation of Python Programs. In European Conference
on Object-Oriented Programming (ECOOP). 17:1ś17:29. https://doi.org/10.4230/
DARTS.6.2.11

[29] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning
about Programs that Alter Data Structures. In Workshop on Computer Science
Logic (CSL). 1ś19. https://doi.org/10.1007/3-540-44802-0_1

[30] OpenAPI Initiative. 2014. OpenAPI Specification (fka Swagger RESTful API
Documentation Specification). https://github.com/OAI/OpenAPI-Specification/
blob/master/versions/2.0.md.

[31] Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martín Ugarte, and Domagoj
Vrgoč. 2016. Foundations of JSON Schema. In International Conference on World
Wide Web (WWW). 263ś273. https://doi.org/10.1145/2872427.2883029

[32] Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2020. Type-
Writer: Neural Type Prediction with Search-Based Validation. In Symposium on
the Foundations of Software Engineering (FSE). 209ś220. https://doi.org/10.1145/
3368089.3409715

[33] Ingkarat Rak-amnouykit. 2022. The Raise of Machine Learning Hyperparameter
Constraints in Python Code (Artifact). https://doi.org/10.5281/zenodo.6534173

[34] Ingkarat Rak-amnouykit, Daniel McCrevan, Ana Milanova, Martin Hirzel, and
Julian Dolby. 2020. Python 3 Types in the Wild: A Tale of Two Type Systems. In
Dynamic Languages Symposium (DLS). 57ś70. https://doi.org/10.1145/3426422.
3426981

[35] Ingkarat Rak-amnouykit, Ana Milanova, Guillaume Baudart, Martin Hirzel, and
Julian Dolby. 2021. Extracting hyperparameter constraints from code. In ICLR
Workshop on Security and Safety in Machine Learning Systems (SecML@ICLR).
https://aisecure-workshop.github.io/aml-iclr2021/papers/18.pdf

461

https://doi.org/10.1145/3385412.3385997
https://doi.org/10.1007/11804192_17
https://arxiv.org/abs/2007.01977
https://arxiv.org/abs/2007.01977
https://proceedings.neurips.cc/paper/2021/file/a3b36cb25e2e0b93b5f334ffb4e4064e-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/a3b36cb25e2e0b93b5f334ffb4e4064e-Paper.pdf
https://arxiv.org/abs/2006.16984
https://doi.org/10.1145/3360594
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
http://doi.acm.org/10.1145/3213846.3213872
https://mlsys.org/Conferences/2019/doc/2019/167.pdf
https://mlsys.org/Conferences/2019/doc/2019/167.pdf
https://arxiv.org/abs/1309.0238
https://doi.org/10.1007/978-3-030-89051-3_3
https://doi.org/10.1145/1809028.1806612
http://doi.acm.org/10.1145/3211346.3211349
http://doi.acm.org/10.1145/3211346.3211349
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
https://doi.org/10.1145/543552.512558
https://doi.org/10.1145/543552.512558
https://doi.org/10.1145/3460319.3464796
https://doi.org/10.1145/3460319.3464796
https://doi.org/10.1007/978-3-319-96142-2_2
https://doi.org/10.1145/1216374.1216379
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/2398857.2384680
https://doi.org/10.1145/3314221.3314630
http://conference.scipy.org/proceedings/scipy2014/komer.html
http://conference.scipy.org/proceedings/scipy2014/komer.html
https://doi.org/10.1016/j.ipl.2004.10.015
http://scg.unibe.ch/download/dyla/2011/dyla11_submission_3.pdf
http://scg.unibe.ch/download/dyla/2011/dyla11_submission_3.pdf
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.4230/LIPIcs.ECOOP.2018.25
https://doi.org/10.4230/DARTS.6.2.11
https://doi.org/10.4230/DARTS.6.2.11
https://doi.org/10.1007/3-540-44802-0_1
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.5281/zenodo.6534173
https://doi.org/10.1145/3426422.3426981
https://doi.org/10.1145/3426422.3426981
https://aisecure-workshop.github.io/aml-iclr2021/papers/18.pdf

The Raise of Machine Learning Hyperparameter Constraints in Python Code ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

[36] Scott Rogowski. 2021. code2flow. Retrieved January 26, 2021 from https://github.
com/scottrogowski/code2flow

[37] Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis, and
Dimitris Mitropoulos. 2021. PyCG: Practical Call Graph Generation in Python.
In International Conference on Software Engineering (ICSE). 1646ś1657. https:
//arxiv.org/abs/2103.00587

[38] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007.
/* iComment: Bugs or Bad Comments? */. In Symposium on Operating Sys-
tems Principles (SOSP). 145ś158. https://doi.org/10.1145/1294261.1294276

[39] Matthew S. Tschantz and Michael D. Ernst. 2005. Javari: adding reference im-
mutability to Java. In Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA). 211ś230. https://doi.org/10.1145/1094811.
1094828

[40] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. 2016. Python
Probabilistic Type Inference with Natural Language Support. In Symposium on
the Foundations of Software Engineering (FSE). 607ś618. https://doi.org/10.1145/
2950290.2950343

462

https://github.com/scottrogowski/code2flow
https://github.com/scottrogowski/code2flow
https://arxiv.org/abs/2103.00587
https://arxiv.org/abs/2103.00587
https://doi.org/10.1145/1294261.1294276
https://doi.org/10.1145/1094811.1094828
https://doi.org/10.1145/1094811.1094828
https://doi.org/10.1145/2950290.2950343
https://doi.org/10.1145/2950290.2950343

	Abstract
	1 Introduction
	2 Overview
	2.1 Hyperparameters Constraints
	2.2 Static Analysis

	3 Intra-procedural Analysis
	4 Call Graph Construction
	4.1 Basic Algorithm
	4.2 Concrete Evaluation

	5 Soundness Analysis
	5.1 Soundness Flag
	5.2 mod(S) and read(Q)

	6 Interprocedural Weakest Precondition Analysis
	6.1 Basic Algorithm
	6.2 Handling Keywords Arguments
	6.3 Concrete Evaluation

	7 Experimental Results
	7.1 RQ1: Does the analysis find real issues?
	7.2 RQ2: Is the Analysis Effective for Schema Validation for ML Operators?
	7.3 RQ3: Does Soundness Analysis Work?
	7.4 RQ4: Does the Analysis Scale?

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

