The raise of machine learning hyperparameter constraints in Python code - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

The raise of machine learning hyperparameter constraints in Python code

Ana Milanova
  • Fonction : Auteur
  • PersonId : 1199999
Guillaume Baudart
  • Fonction : Auteur
  • PersonId : 1119186
Julian Dolby
  • Fonction : Auteur
  • PersonId : 1200000

Résumé

Machine-learning operators often have correctness constraints that cut across multiple hyperparameters and/or data. Violating these constraints causes the operator to raise runtime exceptions, but those are usually documented only informally or not at all. This paper presents the first interprocedural weakest-precondition analysis for Python to extract hyperparameter constraints. The analysis is mostly static, but to make it tractable for typical Python idioms in machine-learning libraries, it selectively switches to the concrete domain for some cases. This paper demonstrates the analysis by extracting hyperparameter constraints for 181 operators from a total of 8 ML libraries, where it achieved high precision and recall and found real bugs. Our technique advances static analysis for Python and is a step towards safer and more robust machine learning.
Fichier principal
Vignette du fichier
issta22.pdf (312.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03891774 , version 1 (09-12-2022)

Identifiants

Citer

Ingkarat Rak-Amnouykit, Ana Milanova, Guillaume Baudart, Martin Hirzel, Julian Dolby. The raise of machine learning hyperparameter constraints in Python code. ISSTA 2022 - 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, Jul 2022, Virtual, South Korea. ⟨10.1145/3533767.3534400⟩. ⟨hal-03891774⟩
47 Consultations
172 Téléchargements

Altmetric

Partager

More