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Abstract

ProbZelus is a synchronous probabilistic language for the
design of reactive probabilistic models in interaction with an
environment. Reactive inference methods continuously learn
distributions over the unobserved parameters of the model
from statistical observations. Unfortunately, this inference
problem is in general intractable. Monte Carlo inference
techniques thus rely on many independent executions to
compute accurate approximations. These methods are ex-
pensive but can be parallelized.
We propose to use JAX to parallelize ProbZelus reactive

inference engine. JAX is a recent library to compile Python
code which can then be executed on massively parallel ar-
chitectures such as GPUs or TPUs.

In this paper, we describe a new reactive inference engine
implemented in JAX and the new associated JAX backend for
ProbZelus. We show on existing benchmarks that our new
parallel implementation outperforms the original sequential
implementation for a high number of particles.

CCS Concepts: ·Computingmethodologies→ Parallel

computing methodologies; · Mathematics of comput-

ing→ Bayesian computation; Sequential Monte Carlo

methods; · Software and its engineering → Data flow

languages.

Keywords: Probabilistic Programming, Reactive Program-
ming, Streaming Inference, Parallel Computing, Compilation

ACM Reference Format:

Guillaume Baudart, Louis Mandel, and Reyyan Tekin. 2022. JAX
Based Parallel Inference for Reactive Probabilistic Programming.
In Proceedings of the 23rd ACM SIGPLAN/SIGBED International Con-

ference on Languages, Compilers, and Tools for Embedded Systems

(LCTES ’22), June 14, 2022, San Diego, CA, USA. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3519941.3535066

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.

LCTES ’22, June 14, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9266-2/22/06. . . $15.00
https://doi.org/10.1145/3519941.3535066

1 Introduction

Synchronous languages [5] were introduced to ease the de-
sign and implementation of real-time embedded systems.
Designers use these languages to write high-level executable
specifications that can be simulated, tested, and formally ver-
ified. Specialized compilers then generate correct by construc-
tion embedded code, i.e., code that preserves the semantics
of the initial specification. For example, the synchronous
language Scade [14] is now routinely used in industry to
program airplane and train controllers.

Most embedded systems operate in an open environment
that they only perceive through noisy sensors, e.g., accelerom-
eters, camera. Interactions with autonomous agents, e.g.,
animals, humans, robots, add another level of uncertainty.
However, synchronous languages offer limited support for
modeling and reasoning about this uncertainty.
General purpose probabilistic programming languages

have been introduced to describe models that explicitly ma-
nipulate uncertainty, and automatically infer distributions
over parameters from statistical observations [7, 18, 22, 25,
26]. These languages are based on Bayesian inference where
a prior belief on parameters distributions is updated using
concrete data to obtain a posterior distribution. In this line,
ProbZelus is a recent language [2] combining reactive con-
structs from synchronous dataflow languages (discrete global
clock, parallel composition, hierarchical automata) with prob-
abilistic constructs (sampling from distribution and condi-
tioning a model on observed data). ProbZelus can thus be
used to design reactive applications involving probabilistic
models, e.g., a robot controller which continuously estimates
its position to adapt its trajectory [1].
Given a probabilistic model the inference problem is in

general intractable. Monte Carlo inference techniques thus
rely on multiple independent executions, called particles, to
approximate the posterior distribution [16]. These methods
are expansive but can be parallelized.

ProbZelus is compiled to sequential code that relies on im-
perative memory updates which cannot be used for parallel
execution. In this paper, we propose to use JAX to parallelize
ProbZelus runtime. JAX is a recent library that can seam-
lessly compile code written in a purely functional subset of
Python that can then run on massively parallel architectures
such as GPUs or TPUs [11]. JAX comes with an impres-
sive numerical library that can be leveraged to implement
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Figure 1. Sample execution trace for the node watch.

ProbZelus inference engine. In the future, additional JAX
features such as automatic differentiation could be used to
implement more advanced inference techniques.
In this paper, we use JAX to parallelize the execution of

reactive probabilistic applications. We present the following
contributions.

• Anew JAX based parallel inference runtime (Section 3).
• A new compiler from ProbZelus to JAX (Section 4).
• We evaluate the performance of our proposal on a set
of existing benchmarks (Section 5).

The source code is available in the ACM Digital Library [3]
and at https://github.com/rpl-lab/lctes22-zlax.

2 Background

In this section we recall the basics of synchronous program-
ming and probabilistic programming on an example.

2.1 Reactive Probabilistic Programming

Synchronous programming. ProbZelus extends the syn-
chronous language Zelus1 [10] with probabilistic constructs.
Zelus is a dataflow synchronous language à la Lustre [20].
A program defines a set of stream processors, called nodes.
All streams progress synchronously, i.e., time proceeds by
discrete logical steps, and at each step, a node computes the
value of each stream depending on its inputs and possibly
previously computed values. This programming style is a
natural fit to describe block-diagram, a classic notation for
embedded reactive system [14].

For instance, the following node raises an alarm when the
Boolean input stream is set to true.

node watch x = alarm where

rec automaton

| Wait → do alarm = false unless x then Ring

| Ring → do alarm = true done

The node watch computes the output stream alarm from the
input stream x. The behavior of this node is defined with a
two-states automaton. In the initial state Wait, the output
alarm is always false. When x is set to true, the transition
unless x is activated and the automaton enters the state
Ring. The output alarm is then always true. Figure 1 shows
a sample execution trace for the node watch.

1https://zelus.di.ens.fr

Probabilistic programming. The goal of Bayesian infer-
ence is to estimate the distribution of a parameter 𝜃 given a
series of observations x, the posterior distribution 𝑝 (𝜃 | x),
from an initial belief, the prior distribution 𝑝 (𝜃 ).

𝑝 (𝜃 | x) =
𝑝 (𝜃 ) 𝑝 (x | 𝜃 )

𝑝 (x)
(Bayes, 1763)

To describe probabilistic models, recent probabilistic lan-
guages typically extend general purpose languages with
three specialized constructs: sample, observe, and infer.
theta = sample(d) introduces a random variable theta

with a prior distribution d; observe(d, x) conditions the
model assuming the observation xwas sampled from the dis-
tribution d; infer m x computes the posterior distribution
of output values of a model given the input data x.
A classic introductory example is to compute the distri-

bution of the bias of a coin from a series of independent
tosses. At each step 𝑛 ∈ N we observe the results of a
coin toss: 𝑥𝑛 = True (head) or 𝑥𝑛 = False (tail). We assume
that every toss follows a Bernoulli distribution of param-
eter 𝜃 : 𝑝 (𝑥𝑛 | 𝜃 ) = 𝜃 and 𝑝 (𝑥𝑛 | 𝜃 ) = 1 − 𝜃 . The goal is
to estimate the bias 𝜃 from the observations (𝑥𝑛)𝑛∈N, i.e.,
𝑝 (𝜃 | 𝑥0, 𝑥1, 𝑥2, . . . ).

The following program implement thismodel in ProbZelus.

proba coin x = theta where

rec init theta = sample (uniform_float (0., 1.))

and () = observe (bernoulli theta, x)

Compared to a classic Zelus node, a probabilistic model is
introduced with the keyword proba. Initially we have no
information, all possible bias are equiprobable. The prior dis-
tribution is thus a uniform distribution over [0, 1] (𝜃 = 0.5

corresponds to a fair coin, 𝜃 = 0 is a coin that always falls
on tail). We assume that the parameter 𝜃 is constant over
time (keyword init). At each step, we use the observe con-
struct to condition the model on the fact that the observa-
tion x follows a Bernoulli distribution with parameter 𝜃 .

2.2 Inference in the Loop

The infer construct is a higher-order node that takes as
argument a model node and an input stream. At each step,
the output of infer is the distribution of output values given
the inputs observed so far. Inference is a synchronous process
that never stops and can be executed in the loop with classic
deterministic nodes. For instance, the following program
combines the previous coin model and the watch node to
implement a cheater detector.

node cheater_detector x = a where

rec theta_dist = infer coin x

and m, s = stats_float theta_dist

and a = watch ((m < 0.2 || 0.8 < m) && (s < 0.01))

The stream theta_dist is the estimated distribution for the
parameter 𝜃 given the first observations 𝑥0, 𝑥1, . . . , 𝑥𝑛 . At
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each step, we compute the mean m and standard deviation s

of this distribution. The node watch defined above raise the
alarm a as soon as we are reasonably confident that the bias
is over 0.8 or below 0.2.

2.3 ProbZelus

The syntax, typing rules, and semantics of ProbZelus are
formally defined in [2]. In this section we briefly recall the
main ideas that are required to understand our contributions.

Syntax. The syntax of a kernel of ProbZelus is the fol-
lowing. Missing constructs, e.g., hierarchical automata, can
be compiled to this kernel via a series of source-to-source
transformations.

d ::= node 𝑓 𝑥 = 𝑒 | proba 𝑓 𝑥 = 𝑒 | 𝑑 𝑑

e ::= 𝑐 | 𝑥 | (𝑒,𝑒) | op(𝑒) | 𝑓 (𝑒) | last 𝑥 | 𝑒 where rec 𝐸

| present 𝑒 -> 𝑒 else 𝑒 | reset 𝑒 every 𝑒

| sample(𝑒) | observe(𝑒,𝑒) | infer(𝑓 (𝑒))

E ::= 𝑥 = 𝑒 | init 𝑥 = 𝑐 | 𝐸 and 𝐸

A program is a sequence of deterministic (node) or proba-
bilistic (proba) nodes declarations. The body of a node is
an expression. Expressions comprise constants, variables,
pairs, external operator applications (e.g., +, -, mean), func-
tion or node applications, logical delays (last 𝑥 returns the
value of 𝑥 at the previous step), or local definitions with a set
of mutually recursive equations. An equation 𝑥 = 𝑒 defines
the value of the variable 𝑥 and an equation init 𝑥 = 𝑐 de-
fines the initial (constant) value of 𝑥 . In addition, the kernel
comprises two control structures: present 𝑥 -> 𝑒1 else 𝑒2
lazily computes 𝑒1 or 𝑒2 depending on the current value of 𝑥 ;
reset 𝑒1 every 𝑒2 resets the values of the last 𝑥 expressions
in 𝑒1 to their initial values defined by init 𝑥 = 𝑐 equations.
Finally, this language is extended with the probabilistic ex-
pressions sample(𝑒), observe(𝑒1,𝑒2), and infer(𝑓 (𝑒)).

Scheduling. At compile time, equations are simplified
and scheduled according to data dependencies. Initializations
init 𝑥 𝑗 = 𝑐 𝑗 are grouped at the beginning and an equation
𝑥 𝑗 = 𝑒 𝑗 must appear before 𝑥𝑖 = 𝑒𝑖 if 𝑒 𝑗 depends on 𝑥𝑖 outside
a last operator. Programs that cannot be statically scheduled
are rejected by a dedicated type system [4]. To simplify the
presentation, we assume that programs are scheduled. We
also assume that all the variables introduced with init are
also defined by an equation. The compiler can always add
an equation 𝑥𝑖 = last 𝑥𝑖 to satisfy this assumption.

Semantics. The semantics of ProbZelus is defined in a co-
iterative framework [12]. Given an environment 𝛾 mapping
variable names to their values, deterministic expressions
define states machines characterized by an initial state J𝑒Kinit𝛾

of type 𝑆 , and a transition function J𝑒K
step
𝛾 of type 𝑆 → 𝑇 × 𝑆 .

From the current state, firing the transition function returns
an output and the next state. The corresponding stream is
obtained by repeatedly firing the transition function from

the initial state. For instance, the semantics of a variable and
the lazy present construct are defined as follows:

J𝑥K𝑖𝛾 = ()

J𝑥K𝑠𝛾 = 𝜆𝑠. (𝛾 (𝑥), 𝑠)

Jpresent 𝑒 -> 𝑒1 else 𝑒2K
init
𝛾 = (J𝑒Kinit𝛾 , J𝑒1K

init
𝛾 , J𝑒2K

init
𝛾 )

Jpresent 𝑒 -> 𝑒1 else 𝑒2K
step
𝛾 =

𝜆(𝑠, 𝑠1, 𝑠2). let 𝑣, 𝑠
′
= J𝑒K

step
𝛾 (𝑠) in

if 𝑣 then let 𝑣1, 𝑠
′
1 = J𝑒1K

step
𝛾 (𝑠1) in (𝑣1, (𝑠

′, 𝑠 ′1, 𝑠2))

else let 𝑣2, 𝑠
′
2 = J𝑒2K

step
𝛾 (𝑠2) in (𝑣2, (𝑠

′, 𝑠1, 𝑠
′
2))

The transition function of a variable always returns the cor-
responding value in the environment, and the state is empty.
The transition function of present 𝑒 -> 𝑒1 else 𝑒2 lazily
executes one of the two branches (𝑒1 or 𝑒2) depending on the
value of 𝑒 . The state of present is composed of the state of
the three sub-expressions.

Probabilistic expressions are also characterized by an ini-
tial state {[𝑒]}init𝛾 and a transition function {[𝑒]}

step
𝛾 , but the

transition function returns a measure which associates a
positive score to a set of possible outcomes, i.e., a set of
pairs (output, next state). The type of the transition function
is thus 𝑆 → Σ𝑇×𝑆 → [0,∞) where Σ𝑇×𝑆 is the 𝜎-algebra
over 𝑇 × 𝑆 , i.e., the set of measurable sets over 𝑇 × 𝑆 .

The infer operator returns a deterministic expression (a
distribution), from a probabilistic model 𝑓 and a stream of
observations 𝑒 . At each step, infer computes the distribution
of output values and a distribution of possible next states.

Jinfer(𝑓 (𝑒))Kinit𝛾 = 𝜆𝑈 . 𝛿J𝑓 (𝑒)K𝑖𝛾
(𝑈 )

Jinfer(𝑓 (𝑒))K
step
𝛾 =

𝜆𝜎. let 𝜇 = 𝜆𝑈 .
∫

𝑆
𝜎 (𝑑𝑠){[𝑓 (𝑒)]}

step
𝛾 (𝑠) (𝑈 ) in

let 𝜈 = 𝜆𝑈 . 𝜇 (𝑈 )/𝜇 (⊤) in

(𝜋1∗ (𝜈), 𝜋2∗ (𝜈))

The initial state Jinfer(𝑓 (𝑒))Kinit is the Dirac delta measure
on the initial state of 𝑓 (𝑒). The transition function integrates
the measure defined by the model {[𝑓 (𝑒)]}step𝛾 over all possi-
ble states. The resulting measure 𝜇 is then normalized into
a distribution 𝜈 : 𝑇 × 𝑆 dist (⊤ denotes the entire space)
that is then split into a pair of marginal distributions over
results and next states using the pushforward measures by
the projections 𝜋1 and 𝜋2.

3 Inference Engine

Computing the posterior distribution of a probabilistic model
is in general intractable. Most probabilistic programming
languages thus rely on approximate inference algorithms.
Monte Carlo methods estimates a distribution from multiple
independent random simulations [16].
In this section we formalize two approximate inference

methods for ProbZelus models: importance sampling and
particle filtering. Compared to [2] where inference is only
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{[𝑐]}
step
𝛾 = 𝜆𝑠,𝑤 . (𝑐, 𝑠,𝑤)

{[𝑥]}
step
𝛾 = 𝜆𝑠,𝑤 . (𝛾 (𝑥), 𝑠,𝑤)

{[sample(𝑒)]}
step
𝛾 =

𝜆𝑠,𝑤 . let 𝑑, 𝑠 ′,𝑤 ′
= {[𝑒]}

step
𝛾 (𝑠,𝑤) in (draw(𝑑), 𝑠 ′,𝑤 ′)

{[observe(𝑒1,𝑒2)]}
step
𝛾 =

𝜆(𝑠1, 𝑠2),𝑤 .

let 𝜇, 𝑠 ′1,𝑤1 = {[𝑒1]}
step
𝛾 (𝑠1,𝑤) in

let 𝑣, 𝑠 ′2,𝑤2 = {[𝑒2]}
step
𝛾 (𝑠2,𝑤1) in ((), (𝑠 ′1, 𝑠

′
2),𝑤2 ∗ 𝜇pdf (𝑣))

{[present 𝑒 -> 𝑒1 else 𝑒2]}
step
𝛾 =

𝜆(𝑠, 𝑠1, 𝑠2),𝑤 .

let 𝑣, 𝑠 ′,𝑤 ′
= {[𝑒]}

step
𝛾 (𝑠,𝑤) in

if 𝑣 then let 𝑣1, 𝑠
′
1,𝑤1 = {[𝑒1]}

step
𝛾 (𝑠1,𝑤

′) in (𝑣1, (𝑠
′, 𝑠 ′1, 𝑠2),𝑤1)

else let 𝑣2, 𝑠
′
2,𝑤2 = {[𝑒2]}

step
𝛾 (𝑠2,𝑤

′) in (𝑣2, (𝑠
′, 𝑠1, 𝑠

′
2),𝑤2)

{[reset 𝑒1 every 𝑒2]}
step
𝛾 =

𝜆(𝑠0, 𝑠1, 𝑠2),𝑤 .

let 𝑣2, 𝑠
′
2,𝑤2 = {[𝑒2]}

step
𝛾 (𝑠2,𝑤) in

let 𝑣1, 𝑠
′
1,𝑤1 = {[𝑒1]}

step
𝛾 (if 𝑣2 then (𝑠0,𝑤2) else (𝑠1,𝑤2)) in

(𝑣1, (𝑠0, 𝑠
′
1, 𝑠

′
2),𝑤1)

{[𝑒 where rec init 𝑥1 = 𝑐1 ... and init 𝑥𝑘 = 𝑐𝑘
and 𝑦1 = 𝑒1 ... and 𝑦𝑛 = 𝑒𝑛

]}step

𝛾
=

𝜆((𝑚1, . . . ,𝑚𝑘 ), (𝑠1, . . . , 𝑠𝑛), 𝑠),𝑤 .

let 𝛾1 = 𝛾 [𝑚1/𝑥1_last] in . . . let 𝛾𝑘 = 𝛾𝑘−1 [𝑚𝑘/𝑥𝑘_last] in

let 𝑣1, 𝑠
′
1,𝑤1 = {[𝑒1]}

step
𝛾𝑘 (𝑠1,𝑤) in let 𝛾 ′1 = 𝛾𝑘 [𝑣1/𝑦1] in . . .

let 𝑣𝑛, 𝑠
′
𝑛,𝑤𝑛 = {[𝑒𝑛]}

step

𝛾 ′𝑛−1
(𝑠𝑛,𝑤𝑛−1) in let 𝛾 ′𝑛 = 𝛾 ′𝑛−1 [𝑣𝑛/𝑦𝑛] in

let 𝑣, 𝑠 ′,𝑤 ′
= {[𝑒]}

step

𝛾 ′𝑛
(𝑠) in

(𝑣, ((𝛾 ′𝑛 [𝑥1], . . . , 𝛾
′
𝑛 [𝑥𝑘 ]), (𝑠

′
1, . . . , 𝑠

′
𝑛), 𝑠

′),𝑤 ′)

Figure 2.Operational semantics of probabilistic expressions.

defined on the compiled imperative code, for each inference
method we define the operational semantics directly on the
dataflow source code. We then show how the runtime can
be parallelized using JAX.

3.1 Sampler

The operational semantics of a probabilistic model for Monte
Carlo methods is a sampler. Initial states are the same as in
the ideal semantics presented in Section 2.3, but transition
functions return a random sample together with a score
measuring the quality of this sample.

The transition function of a probabilistic expression is of
type 𝑆 × [0,∞) → 𝑇 ×𝑆 × [0,∞). Given the current state and
the current score, the transition function returns an output,
the next state and an updated score. The definition of the
transition functions are presented in Figure 2. Constants and
variables accesses return the expected value without chang-
ing the score. sample(d) draws a random sample from the
distribution d without changing the score. observe(d, x)

multiplies the score by the likelihood of the observation x

w.r.t. the distribution d (i.e., the value of the density func-
tion dpdf at x) and returns the empty value (). For other
expressions, the transition function simply computes the
next state and propagates the score following dependencies
order between sub-expressions.

For the where rec expression, the variables 𝑥𝑖s are a sub-
set of the variables 𝑦 𝑗 s. The state of this expression contains
the state of all the sub-expressions, and the value of all local
variables at the previous step (𝑚1, . . . ,𝑚𝑘 ). The transition
function first updates the environment 𝛾 with a set of fresh
variables𝑥𝑖_last initializedwith the values𝑚𝑖 . This environ-
ment is then extended with the definitions of the variables 𝑦𝑖
by executing all the sub-expressions while propagating the
score. Then the main expression 𝑒 is executed in the final
environment. The next state contains the new value of all
the initialized variable that will be used to start the next step.

3.2 Importance Sampling

The most simple sampler based inference method launches
𝑁 independent executions of the model, called particles. At
each step, each particle executes one step of the sampler
to compute a triple (results, next state, score). Scores are
then normalized to obtain a categorical distribution, i.e., a
weighted discrete distribution over pairs (result, next state).

Jinfer(𝑓 (𝑒))Kinit𝛾 = [(J𝑓 (𝑒)Kinit𝛾 , 1)]1≤𝑖≤𝑁

Jinfer(𝑓 (𝑒))K
step
𝛾 =

𝜆𝑠.

let
[

(𝑜𝑖 , 𝑠
′
𝑖 ,𝑤

′
𝑖 ) = let 𝑠𝑖 ,𝑤𝑖 = 𝑠 [𝑖] in {[𝑓 (𝑒)]}

step
𝛾 (𝑠𝑖 ,𝑤𝑖 )

]

1≤𝑖≤𝑁
in

let 𝜇 = 𝜆𝑈 .
∑

1≤𝑖≤𝑁 𝑤 ′
𝑖 ∗ 𝛿𝑜𝑖 (𝑈 ) in

𝜇, [(𝑠 ′𝑖 ,𝑤
′
𝑖 )]1≤𝑖≤𝑁

The state of the infer operator is an array initialized with 𝑁
copies of the sampler initial state with the initial score 1. At
each step, each particle retrieves its current state and current
score in the array to execute one step of the sampler. Scores
are then normalized to obtain the resulting distribution 𝜇

and the array is updated for the next step (𝑤𝑖 = 𝑤𝑖/
∑𝑁

𝑗=1𝑤 𝑗

denotes the normalized scores). Compared to the ideal seman-
tics of infer presented in Section 2.3, importance sampling
approximates the intractable integral with a discrete sum
over the array of particles.

Consider the coinmodel of Section 2.1. At the initial step,
the first equation init theta = sample (uniform_float

(0.,1.)) draws a set of possible values for the parame-
ter theta. Then, at each step, the first equation does not
change (operator init) but the second one () = observe

(bernoulli theta, x) updates the score for each possi-
ble theta value as follows: 𝑤 ′

= 𝑤 ∗ Bernoulli(𝜃 )pdf (𝑥) =

𝑤 ∗𝜃𝑥 (1−𝜃 ) (1−𝑥) . We can then normalize the scores to obtain
the posterior distributions of results at each step. Figure 3
shows one possible execution when observations are always
head/true. As expected, over time values closer to 1 (a coin
that always returns head) are the most probable.
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Figure 3. Importance sampling with 7 particles for the coin model. We observe head/true at each step.

Figure 4 illustrates the precision of importance sampling
for an increasing number of particles on the coin example.
On this simple example 1000 particles are enough to ob-
tain a reasonable approximation of the theoretical distribu-
tion: Beta(1, 10 + 1). For more complex examples with multi-
dimensional parameters, the number of required particles
quickly increases. However, since particles are independent
from each other, we can parallelize computations.

3.3 JAX Based Parallelization

JAX2 is a recent library that can seamlessly compile code
written in a purely functional subset of Python that can
then run on massively parallel architectures such as GPUs or
TPUs [11]. During execution, a Just-In-Time (JIT) compiler
specializes Python functions that are then compiled by XLA,3

the Google high-performance compiler for GPUs and TPUs.

vmap operator. The JAX operator vmap automatically vec-
torizes a function for data parallel computations. For tree-
like data structures, this operator preserves the input/output
structures and only vectorizes the leafs. For example, given
a function such that f(0) = ((1, 2), 3) we have:

vmap(f)([0, 0, 0]) = (([1,1,1], [2,2,2]), [3,3,3]).

More generally, if inputs are of type float t_in and outputs
are of type float t_outwhere float t_in and float t_out
are static tree-like data structures where all leafs are of type
float, the type of vmap is:

val vmap:

(float t_in → float t_out) → float array t_in

→ float array t_out

In ProbZelus, this property is paramount to vectorize the
state of the particles which contains the state of all sub-
expressions in the form of nested tuples (cf. Section 2.3).
Using the vmap operator, we can implement a higher-order
ProbZelus node zmap which launches 𝑁 parallel instances
of a node as follows:

2https://github.com/google/jax
3https://www.tensorflow.org/xla

from jax import vmap

from jax.numpy import empty

class zmap(Node):

def __init__(self, f, n):

f = f()

self.f_vinit = vmap(lambda _: init(f))

self.f_vstep = vmap(step(f))

self.n = n

def init(self)

s_init = self.f_vinit(empty(self.n))

return s_init

def step(self, s, i):

o, s = self.f_vstep(s, i)

return s, o

ProbZelus nodes must implement the Node class which im-
poses the definition of the two methods init (memory allo-
cation) and step (transition function). The instantiation of
this class creates f_vinit and f_vstep the vectorized ver-
sions of init and step for the node f given as an argument.
The init method of zmap applies f_vinit on an empty ar-
ray of size 𝑁 to allocate the initial state with the correct
dimension. The transition function of zmap applies f_vstep
on the (vectorized) current state s and an input array i of
the same dimension.

The implementation of the importance sampler follows the
same scheme. The initial state contains 𝑁 copies of the initial
state of f associated with the initial score 1. The transition
function unpacks the current state into a pair (state, score)
that can be used to vectorize the execution of the sampler.
Results are then normalized to obtain a distribution.

class infer_importance(Node):

def __init__(self, f, n):

f = f()

self.f_vinit = vmap(lambda _: init(f), 1.0)

self.f_vstep = vmap(step(f))

self.n = n

def init(self):

return self.f_vinit(empty(self.n))
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Figure 4. Importance sampling accuracy as a function of the number of particles 𝑁 after 10 steps for the coin example.

def step(self, s, obs):

s_in, w_in = s

o, s_out, w_out = self.f_vstep(s_in, w_in, obs)

mu = normalize(o, w_out)

return mu, (s_out, w_out)

Remark. JAX random number generator (used to implement
the sample construct) requires an explicit random seed. To
simplify the presentation, we ignored this detail. In practice,
transition functions take an additional argument key that
can be grouped with the score to form a single argument
proba containing all the required information to execute the
probabilistic transition functions (cf. Section 4.1).

3.4 Particle Filter

Importance sampling is relatively accurate to infer constant
parameters from a series of observations, as in the coin

example. Unfortunately, this method quickly shows its lim-
itations on models where parameters vary over time. For
instance, the following model implement a Hidden Markov
Model (HMM) to estimate the current position of a moving
object from noisy observations.

proba hmm obs = x where

rec x = sample (gaussian (0. → pre x), speed)

and () = observe (gaussian (x, noise), obs)

At each step, we assume that the current position is not
too far from the previous position, i.e., the current position
follows a normal distribution centered on 0. → pre x (the
previous value of x initialized with 0). speed and noise are
global constants.
For such models, importance sampling is equivalent to a

random walk: at each step, we draw the current value of x at
random. The probability that a random trajectory matches a
series of observation quickly collapse to 0. Estimations are
thus unusable after 2 or 3 steps (Figure 5a).

Resampling. To mitigate this issue, a particle filter intro-
duces a resampling step. The number of particles remains
constant over time, but at each time step, the least likely

particles are discarded and the most likely particles are du-
plicated. In other words, the particles array is re-centered on
the current observation.

Jinfer(𝑓 (𝑒))Kinit𝛾 = [(J𝑓 (𝑒)Kinit𝛾 , 1)]1≤𝑖≤𝑁

Jinfer(𝑓 (𝑒))K
step
𝛾 =

𝜆𝑠.

let
[

(𝑜𝑖 , 𝑠
′
𝑖 ,𝑤

′
𝑖 ) = let 𝑠𝑖 ,𝑤𝑖 = 𝑠 [𝑖] in {[𝑓 (𝑒)]}

step
𝛾 (𝑠𝑖 ,𝑤𝑖 )

]

1≤𝑖≤𝑁
in

let 𝜇 = 𝜆𝑈 .
∑

1≤𝑖≤𝑁 𝑤 ′
𝑖 ∗ 𝛿 (𝑜𝑖 ,𝑠𝑖 ) (𝑈 ) in

𝜋1∗ (𝜇), [(draw(𝜋2∗ (𝜇)), 1)]1≤𝑖≤𝑁

The semantics of the infer operator is similar to the im-
portance sampler. At each step, each particle executes one
step of the sampler. Scores are then normalized to obtain a
distribution over pairs (results, next state). As in the ideal
semantics presented in Section 2.3, this distribution is then
split into a pair of marginal distributions. We can then sam-
ple 𝑁 values in the distribution of next state to compute the
new particles array and reset the score of each particle to 1.
The implementation of the particle filter is similar to the

infer_importance node. We use the vmap operator to vec-
torize the execution of the sampler. The normalize function
returns a categorical distribution that can be sampled with
the sample method.

class infer_pf(Node):

def __init__(self, f, n):

f = f()

self.f_vinit = vmap(lambda _: (init(f), 1.0)

self.f_vstep = vmap(step(f))

self.n = n

def init(self):

return self.f_vinit(np.empty(self.n))

def step(s, obs):

s_in, w_in = s

o, s_out, w_out = self.f_vstep(s_in, w_in, obs)

mu = normalize(o, w_out)

s_dist = normalize(s_out, w_out)

s_out = s_dist.sample(sample_shape=self.n)

return mu, (s_out, np.ones(self.n))
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Figure 5. Estimations for the hmm example with 100 particles on a noisy sinus after 150 steps. Noisy observations are shown in
red, the blue line is the estimated mean, and the blue zone contains all the particles (min/max interval at each step).

Figure 5b shows the result of the particle filter on the
hmm model. We observe that this inference method returns
accurate estimations for a reactive probabilistic model where
parameters change over time.

Remark. In practice, the developer has to pick the most suit-
able inference method for a given model.

4 Compiling ProbZelus to JAX

We now need to compile ProbZelus models to Python/JAX
code that can be called by the nodes infer_importance

and infer_pf. In this section we thus present a new JAX
backend for ProbZelus.
Synchronous language compilers translate dataflow pro-

grams to imperative code. The memory required to run the
program is statically allocated before execution and updated
with side-effects. This compilation scheme, well suited to
low-level languages used for embedded systems, guaran-
tees a bounded memory execution. Unfortunately, JAX only
accepts purely functional code which is easier to parallelize.
Our work is based on the Zelus [9] compiler which has

the following architecture. (1) The source program is first
analyzed and rewritten by a series of source-to-source trans-
formations to a subset of the source language. These analy-
ses and transformations include typing, causality analysis,
hierarchical automata reduction, equations normalization,
common sub-expressions elimination, or dead code removal.
(2) Mutually recursive equations are then scheduled to sat-
isfy data dependencies (cf. Section 2.3) and the program is
translated into OBC, an intermediate imperative language.
(3) The OBC code is compiled to imperative OCaml code.

To benefit as much as possible from this toolchain, we
only change the last step. We translate the OBC code to
𝜇𝐹 , a purely functional language, which is then compiled to

JAX. Compared to [2] where 𝜇𝐹 is only used to express the
semantics but does not correspond to the generated code,
here 𝜇𝐹 is the compilation target language.

4.1 Intermediate Languages

TheOBC language. The intermediate languageOBC (Ob-
ject Based Code) was introduced to compile a synchronous
language à la Lustre to imperative code (e.g., C) [6]. OBC is
for instance used in the Heptagon [19], Vélus [8], and Zelus
compilers (with minor differences for each of these compil-
ers). In OBC, a stream function is characterized by a state
and a transition function which perform in place impera-
tive updates to the state. The syntax of OBC extended with
probabilistic constructs is the following:

program ::= 𝑑∗

𝑑 ::= machine proba?𝑚 =

memory (𝑥, . . . , 𝑥)

instances (𝑜 :𝑚, . . . , 𝑜 :𝑚,

𝑜 : infer(𝑚), . . . , 𝑜 : infer(𝑚))

reset() = 𝑆

step(𝑝) returns(𝑝) = 𝑆

𝑆 ::= var 𝑥 in 𝑆 | 𝑥 := 𝑒 | state(𝑥) := 𝑒 | 𝑆 ; 𝑆 | skip

| match 𝑥 with | 𝐶 -> 𝑆 . . . | 𝐶 -> 𝑆

| 𝑜.reset | 𝑝 := 𝑜.step(𝑒)

| 𝑝 := 𝑜.pstep(𝑒) | 𝑝 := sample(𝑒) | observe(𝑒,𝑒)

𝑒 ::= 𝑐 | 𝑥 | state(𝑥) | op(𝑒)

𝑝 ::= 𝑥 | (𝑝,𝑝)

Aprogram is a series ofmachine declarations (or classes). The
optional proba annotation indicates a probabilistic model.
A machine𝑚 comprises four fields: (1) memory: the state of
the transition function, (2) instances: the machines used
in𝑚 (node applications), (3) reset: the method to reset the
state, and (4) step: the transition function that takes an
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input, updates the state, and returns an output. Instances are
annotated by the type𝑚 of the machine or infer(𝑚) for
instances of the infer operator.
A statement can be a declaration of a mutable local vari-

able (var 𝑥 in 𝑆), a local variable update (𝑥 := 𝑒), a state
variable update (state(𝑥) := 𝑒), a sequence of statements
(𝑆 ; 𝑆), a statement with no effect (skip), a control structure
(match/with), or a method call (step or reset). OBC is also
extended with the probabilistic constructs sample, observe,
and a method pstep which corresponds to a call to the step
method of a probabilistic machine. An expression can be
a constant (𝑐), a local variable access (𝑥), a state variable
access (state(𝑥)), or an operator application.

The 𝜇𝐹 language. 𝜇𝐹 is a first-order purely functional
language [2]. The syntax of 𝜇𝐹 is defined by the following
grammar:

program ::= 𝑑∗

𝑑 ::= val 𝑝 = 𝑒

| val𝑚 = stream { init = 𝑒 ; step(𝑝,𝑝) = 𝑒 }

𝑒 ::= 𝑐 | 𝑥 | (𝑒,𝑒) | op(𝑒) | 𝑓 (𝑒)

| match 𝑥 with | 𝐶 -> 𝑒 . . . | 𝐶 -> 𝑒

| let 𝑝 = 𝑒 in 𝑒 | init(𝑚) | unfold(𝑥,𝑒)

| sample(proba,𝑒) | observe(proba,𝑒,𝑒)

| infer(𝑚)

A program is a sequence of values and stream functions dec-
larations. A stream function𝑚 comprises an initial state (init)
and a transition function (step). A transition function takes
a state and an input as arguments and returns an output and
a new state. An expression can be a constant, a variable, a
pair, an operator application, a function call, a conditional,
or a local definition. The expression init(𝑚) returns a new
instance𝑚 whose state is the initial state. The expression
unfold(𝑥,𝑒) executes one step of the instance 𝑥 using the
input 𝑒 , and returns the next element in the stream and a
new instance with an updated state.

The transition function of a probabilistic machine adds to
its inputs/outputs a value probawhich represents the state of
the probabilistic model, e.g., the particles score, or the keys
for the JAX random number generator (see Section 3.3). This
proba value is passed as an argument, updated, and returned
by the probabilistic operators sample and observe. Finally,
the infer operator instantiates the inference operator on a
probabilistic model.

4.2 Compilation

Compiling OBC to 𝜇𝐹 . The compilation function explic-
its state manipulations to turn imperative OBC code into
functional 𝜇𝐹 code. Consider the following machine𝑚:

machine𝑚 =

memory (𝑥1, . . . , 𝑥𝑛)

instances (𝑜1 :𝑚1, . . . , 𝑜𝑡 :𝑚𝑡 ,

𝑜𝑡+1 : infer(𝑚𝑡+1), . . . , 𝑜𝑘 : infer(𝑚𝑘))

reset() = 𝑆

step(𝑝) returns(𝑝) = 𝑆

The compilation of such a machine 𝑚 produces a stream
function declaration (stream). The compilation of the reset
produces the init field and the compilation of the step

method produces the step field.

C(reset() = 𝑆) = init = C𝑥1,...,𝑥𝑛,𝑜1,...,𝑜𝑘 (𝑆)

C(step(𝑝input) returns(𝑝output)) =

step(𝑥1, . . . , 𝑥𝑛, 𝑜1, . . . , 𝑜𝑘,𝑝input) = C(𝑝output,𝑥1,...,𝑥𝑛,𝑜1,...,𝑜𝑘) (𝑆)

For a probabilistic machine, the proba variable is added to
the inputs and outputs of the step function.

C(step(𝑝input) returns(𝑝output)) =

step(𝑥1, . . . , 𝑥𝑛, 𝑜1, . . . , 𝑜𝑘,(proba,𝑝input)) =

C((𝑝output,proba),𝑥1,...,𝑥𝑛,𝑜1,...,𝑜𝑘) (𝑆)

The compilation function for OBC statements C𝑝 (𝑆) is de-
fined in Figure 6. This function is parameterized by the set 𝑝
of variables that may be updated by the evaluation of the
statement 𝑆 and returns the value of these variables. Compil-
ing skip (C𝑝 (skip)) simply returns 𝑝 . The compilation of an
assignment (C𝑝 (𝑥 := 𝑒)) respects the invariant that the vari-
able 𝑥 is in 𝑝 . The expression let 𝑥 = C(𝑒) in 𝑝 thus hides
the previous value of 𝑥 and returns its new value. Compiling
the 𝑜.reset method instantiates a new state. Depending
on the instance declaration 𝑜 , the state is allocated with the
init or the infer operator. The compilation of probabilis-
tic machines, sample, and observe, explicitly updates the
probabilistic state. Otherwise, the compilation function for
expressions C is mostly the identity function. Note that in
𝜇𝐹 , the state is treated like a local variable C(state(𝑥)) = 𝑥 .

Remark. This compilation function generates a lot of nested
local declarations and variable copies. A source-to-source
compilation pass then simplifies the generated code.

Compiling 𝜇𝐹 to JAX. From the purely functional 𝜇𝐹
code, it is now possible to generate Python code that is com-
patible with JAX. Stream functions are compiled to classes
with an init and a step method. To avoid variable scop-
ing issues in Python, a compilation pass rewrites the 𝜇𝐹

code without nested definitions. The compilation to Python
is then straightforward. The match construct is translated
into JAX conditionals that take closures as arguments to
control their evaluation. Finally, to enable automatic paral-
lelization, data structures must be serializable. Since the state
of ProbZelus programs respects a simple tree structure, the
@register_pytree_node_class decorator can be used to
automatically generate the serialization and deserialization
functions.
For example, the generated code for the coin model in

Section 2 is the following:

@register_pytree_node_class

class coin(Node):

def init(self):

return {"theta": 42.0, "fst": True}
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C𝑝 (skip) = 𝑝

C𝑝 (𝑥 := 𝑒) = let 𝑥 = C(𝑒) in 𝑝

C𝑝 (state(𝑥) := 𝑒) = let 𝑥 = C(𝑒) in 𝑝

C𝑝 (var 𝑥 in 𝑆) = let (𝑝,𝑥) = C(𝑝,𝑥) (𝑆) in 𝑝

C𝑝 (𝑆1 ; 𝑆2) = let 𝑝 = C𝑝 (𝑆1) in C𝑝 (𝑆2)

C𝑝 (match 𝑒 with | 𝐶1 -> 𝑆1 . . . | 𝐶𝑛 -> 𝑆𝑛) = match C(𝑒) with | 𝐶1 -> C𝑝 (𝑆1) . . . | 𝐶𝑛 -> C𝑝 (𝑆𝑛)

C𝑝 (𝑜.reset) = let 𝑜 = init(𝑚) in 𝑝 if 𝑜 :𝑚

C𝑝 (𝑜.reset) = let 𝑜 = infer(𝑚) in 𝑝 if 𝑜 : infer(𝑚)

C𝑝 (𝑝
′ := 𝑜.step(𝑒)) = let (𝑝 ′,𝑜) = unfold(𝑜,C(𝑒)) in 𝑝

C𝑝 (𝑝
′ := 𝑜.pstep(𝑒)) = let ((𝑝 ′,proba),𝑜) = unfold(𝑜,(proba,C(𝑒))) in 𝑝

C𝑝 (sample(proba,𝑒)) = let (𝑝 ′,proba) = sample(proba,C(𝑒)) in 𝑝

C𝑝 (observe(proba,𝑒1,𝑒2)) = let proba = sample(proba,C(𝑒)) in 𝑝

Figure 6. Compiling OBC to 𝜇𝐹 .

def step(self, *args):

(state, (proba, obs)) = args

def _t(_):

u_dist = uniform_float(0.0, 1.0)

(proba, theta) = sample(proba, u_dist)

return (proba, {**state, "theta": theta})

def _f(_):

return (proba, state)

(proba, state) = cond(state["fst"], _t, _f, None)

state = {**state, "fst": False}

b_dist = bernoulli(state["theta"]

(proba, ()) = observe(proba, b_dist, obs)

return (state, (proba, state["theta"]))

5 Evaluation

We evaluate the performance of our new inference engine for
ProbZelus on a set of existing benchmarks [2]. The missing
benchmarks are models that require more advanced infer-
ence algorithms (SLAM and MTT) or linear algebra solvers
(Discrete-timeAlgebraic Riccati Equation) that are not yet im-
plemented in JAX (robot). In our evaluation, we consider two
questions: (QR1) What is the impact of the new inference
engine on accuracy? (QR2) Does automatic parallelization
improve runtime performance?

5.1 Experimental method

For each of the examples, we measure the execution time
and the accuracy obtained after 500 steps with the OCaml
inference engine on CPU, and the JAX inference engine on
GPU. Accuracy is the Mean Square Error (MSE) over all the
parameters of the model. For each experiment, we compute
the median and the 90% and 10% quantiles, aggregated over
10 runs. All of the experiments were performed on an Intel
Xeon E7 server with 64 cores, 128 GB of RAM and an Nvidia
Quadro M6000 GPU with 24 GB of RAM.
The selected benchmarks are the following:

Coin estimates the bias of a coin from a series of tosses. We
initially assume that the bias follows a uniform distribution
over [0, 1]. This model corresponds to the coin example pre-
sented in Section 2.

Gaussian-Gaussian estimates the mean and standard de-
viation of a normal distribution from a set of samples. We
initially assume that themean follows a distributionN(0, 10),
and that the standard deviation follows a distributionN(0, 1).
Kalman3D is a 3D version of the hmm model of Section 3.4
where an agent estimates its position from noisy observa-
tions. At each instant, we assume that the current position
follows a normal distribution around the previous position,
and that the current observation follows a normal distribu-
tion around the current position.
Outlier is a model adapted from [21]. As with Kalman, an
agent tries to estimate its position, but the sensor is faulty
and occasionally produces invalid readings. The probability
of getting an invalid read follows a Beta(100, 1000) distribu-
tion, which corresponds to approximately 10% of errors. If a
reading is invalid, we assume that the current observation
follows an uninformative normal distribution N(0, 1000).
Otherwise the model is the same as Kalman.

5.2 Results

QR1: Accuracy. Accuracy results are presented in Fig-
ure 7. For all the examples considered, the two inference en-
gines are equivalent. As expected the error decreases when
the number of particles increases before reaching a plateau
when the results approach the theoretical distribution. Minor
differences are due to implementation differences of OCaml
and JAX random generators.

QR2: Runtime Performance. The runtime performance
results are presented next to the accuracy results in Figure 8.
Performances of the OCaml runtime are characteristic of the
classic time/accuracy trade-off: an higher number of parti-
cles yields better estimates at the cost of longer execution
times. The performance of the JAX inference engine remains
nearly constant up to 100, 000 particles. Compiling to GPU
optimized code is expensive and only amortized for a high
number of particles (around 10, 000). On the other hand, once
the code is compiled, JAX can easily run a very large number
of particles in parallel with very little additional cost. For all
models, GPU limits are reached at around 200, 000 particles.
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Figure 7. Accuracy as function of number of particles. Figure 8. Performance as function of number of particles.
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Then performance degrades linearly with the number of par-
ticles, but for a given number of particles the JAX runtime
still outperforms the OCaml runtime. Note that the crossing
point between OCaml and JAX performances depends on
the model dimension and complexity (e.g., 20, 000 for Coin,
4, 000 for Kalman3D).

Trade-off. For simple models (Coin, Kalman3D) relatively
few particles are required to reach the accuracy plateau.
The OCaml implementation thus converges faster than the
JAX implementation. However, for more complex models
(Gaussian-Gaussian, Outlier), inference converges after the
performance crossing point, i.e., the JAX implementation
outperforms the OCaml implementation. In addition, the
models considered here are all relatively simple with few
low dimensional random variables. The difference between
JAX and OCaml implementations should be more significant
for more realistic models.

6 Related Work and Conclusion

Parallelizing inference algorithms for probabilistic program-
ming is an active research field. Most modern probabilistic
languages [7, 15, 24, 26] rely on efficient parallel computing
systems popularized by deep learning. Our work, however, is
the first to apply these techniques to a reactive language like
ProbZelus. There are also several works on the parallelization
of synchronous languages [13, 17, 23]. But none of them deal
with the specific problems of probabilistic programming.

In this article we showed how JAX can be used to effi-
ciently parallelize the inference engine for reactive proba-
bilistic models programmed in ProbZelus. Using our imple-
mentation, we can now try to leverage other JAX features,
such as auto-differentiation, to implement more advanced
inference techniques for reactive systems involving proba-
bilistic models.
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