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Abstract

We study the typical behavior of the harmonic measure of balls in large critical Galton–
Watson trees whose offspring distribution has finite variance. The harmonic measure consid-
ered here refers to the hitting distribution of height n by simple random walk on a critical
Galton–Watson tree conditioned to have height greater than n. We prove that, with high
probability, the mass of the harmonic measure carried by a random vertex uniformly chosen
from height n is approximately equal to n−λ, where the constant λ > 1 does not depend
on the offspring distribution. This universal constant λ is equal to the first moment of the
asymptotic distribution of the conductance of size-biased Galton–Watson trees minus 1.
Keywords: size-biased Galton–Watson tree, harmonic measure, uniform measure, simple
random walk and Brownian motion on trees.
AMS MSC 2010: 60J80, 60G50, 60K37.

1 Introduction
Let θ be a non-degenerate probability measure on Z+, and assume that θ has mean one and
finite variance σ2 > 0. Under the probability measure P, for every integer n ≥ 0, we let T(n) be a
Galton–Watson tree with offspring distribution θ, conditioned on non-extinction at generation n.
From our assumption that θ is critical (i.e. of mean 1), T(n) is a.s. a finite tree. We denote by
T(n)
n the set of all vertices of T(n) at generation n. The classical Yaglom’s theorem in the

theory of branching processes states that n−1#T(n)
n converges in distribution to an exponential

distribution with parameter 2/σ2 (see e.g. Theorem 9.2 in Chapter 1 of [1]).
Conditionally on the tree T(n), we consider a simple random walk on T(n) starting from

the root. Let Σn be the first hitting point of generation n by the random walk. We call the
distribution of Σn the harmonic measure µn at level n, which is a random probability measure
supported on the level set T(n)

n . The main result of the present work is the following:

Theorem 1. Let Ωn be a random vertex uniformly chosen from T(n)
n . There exists a universal

constant λ ∈ (1,∞), which does not depend on the offspring distribution θ, such that for every
δ > 0,

lim
n→∞

P
(
n−λ−δ ≤ µn(Ωn) ≤ n−λ+δ

)
= 1. (1)
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Loosely speaking, if we look at a typical vertex at level n of the conditional critical Galton–
Watson tree T(n), then as shown by (1), it carries with high probability a mass of order n−λ
given by the harmonic measure µn. Recall that the number of vertices of T(n) at generation n
is of order n according to Yaglom’s theorem. Since λ > 1, our main theorem clearly indicates
that the harmonic measure µn is far from being uniformly spread over T(n)

n .
To be more precise, by the definition of Ωn, the convergence (1) can be rewritten as

lim
n→∞

E
[

1
#T(n)

n

∑
v∈T(n)

n

1{µn(v) > n−λ+δ or µn(v) < n−λ−δ}
]

= 0.

Using the theorem of Yaglom, it is easy to see that the preceding convergence is equivalent to

lim
n→∞

1
n
E
[ ∑
v∈T(n)

n

1{µn(v) > n−λ+δ or µn(v) < n−λ−δ}
]

= 0. (2)

We take δ ∈ (0, λ − 1), and define An := {v ∈ T(n)
n : µn(v) > n−λ+δ}. The convergence (2)

implies that for every ε > 0,
P
(#An

n
> ε

)
−→
n→∞

0.

On the other hand, by the definition of An, we have µn(v) ≤ n−λ+δ for any vertex v ∈ T(n)
n \An,

and it follows that µn(T(n)
n \An) ≤ n−λ+δ#T(n)

n . Using again Yaglom’s theorem, we get that

P
(
µn(T(n)

n \An) > ε
)
−→
n→∞

0.

Therefore, it holds with probability tending to 1 as n → ∞ that, up to a mass of size ε, the
harmonic measure µn is supported on a subset of T(n)

n of cardinality smaller than εn. This
simple consequence of Theorem 1 has already been observed in a recent paper of Curien and
Le Gall [3], where, instead of looking at a vertex typical for the tree, they have considered a
vertex typical for the harmonic measure. In Theorem 1 of [3], they have shown the existence of
another universal constant β ∈ (0, 1) independent of the offspring distribution θ, such that for
every δ > 0, we have the convergence in P-probability

µn
(
{v ∈ T(n)

n : n−β−δ ≤ µn(v) ≤ n−β+δ}
) (P)−−−→
n→∞

1. (3)

In other words, the typical mass given by the harmonic measure µn to a vertex at level n
drawn with respect to the harmonic measure is with high probability of order n−β with β < 1,
and we can thus say that most of the harmonic measure µn is supported on a subset of size
approximately equal to nβ, which is much smaller than the size of T(n)

n . One may think of both
results, (1) and (3), as the first steps towards a complete analysis of the multifractal nature of
the harmonic measure in critical Galton–Watson trees.

As pointed out by Curien and Le Gall in [3], for studying the harmonic measure at level n
on T(n)

n , we can consider directly simple random walk on the reduced tree T∗n, which consists
of all vertices of T(n) that have at least one descendant at generation n. Moreover, if we scale
the graph distances by n−1, the rescaled discrete reduced trees n−1T∗n converge to a random
compact rooted R-tree ∆, whose structure is described as follows. We take a random variable
U∅ uniformly distributed over [0, 1], and start with an oriented line segment of length U∅,
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whose origin will be the root of ∆. To the other end of this initial line segment, we attach the
initial points of two new line segments with respective lengths U1 and U2, in such a way that,
conditionally given U∅, the variables U1 and U2 are independent and uniformly distributed over
[0, 1 − U∅]. To the other end of the first of these 2 line segments, we attach two line segments
whose lengths are independent and uniformly distributed over [0, 1−U∅−U1], again conditionally
on U∅ and U1. We repeat this procedure independently for the second line segment with U1
replaced by U2. We continue this construction by induction, and after an infinite number of
steps we obtain a random non-compact rooted R-tree ∆0 with binary branching (see Figure 1),
whose completion with respect to its intrinsic metric d is called the continuous reduced tree ∆.
We assume that ∆ is also defined under the probability measure P. Its boundary ∂∆ is the set
of all points of ∆ at height 1, i.e. at distance 1 from the root.

Brownian motion on ∆ starting from the root can be easily defined up to the first hitting time
of ∂∆. Roughly speaking, this process behaves in the same way as a standard linear Brownian
motion as long as it remains inside a line segment. It is reflected at the root of the tree ∆, and
when it arrives at a branching point, it chooses each of the three line segments incident to this
point with equal probabilities. The (continuous) harmonic measure µ on ∂∆ is defined as the
(quenched) distribution of the first hitting point of ∂∆ by Brownian motion.

height 1

height 0

U∅

U2

U1

∅

level n

level 0

Figure 1: A large reduced tree T∗n of height n on the left, and the random tree ∆0 on
the right

We then define another (non-compact) random rooted R-tree Γ with binary branching, such
that each point of Γ at height y ∈ [0,∞) corresponds to a point of ∆0 at height 1− e−y ∈ [0, 1).
The resulting new tree Γ is the Yule tree which describes the genealogy of the classical Yule
process, where individuals have independent exponential lifetimes with parameter 1 and each
individual has exactly two offspring. By definition, the boundary ∂Γ of Γ is the set of all
infinite geodesics in Γ starting from the root (these are called geodesic rays). Due to the binary
branching mechanism, both ∂∆ and ∂Γ can be canonically identified with {1, 2}N.

For every r > 0, we write Γr for the level set of Γ at height r. By a martingale argument,
one can define

W := lim
r→∞

e−r#Γr,

and it is well known thatW follows an exponential distribution of parameter 1. For every x ∈ Γ,
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we let H(x) denote the height of x in Γ, and we write Γ[x] for the tree of descendants of x in Γ,
viewed as an infinite random R-tree rooted at x. For every r > 0, we write Γr[x] for the level
set at height r of the tree Γ[x]. If one thinks of Γ[x] as a subtree of Γ, the set Γr[x] consists of
all the points of Γ at height r +H(x) that are descendants of x. We similarly define

Wx := lim
r→∞

e−r#Γr[x].

It is immediate to see that for every r > 0,∑
x∈Γr

e−rWx =W.

The uniform measure ω̄ on ∂Γ is defined as the unique random probability measure on ∂Γ
satisfying that, for every x ∈ Γ and for every geodesic ray v ∈ ∂Γ passing through x,

ω̄(B(v, H(x))) = e−H(x)Wx

W
,

where B(v, H(x)) stands for the set of all geodesic rays in Γ that coincide with v up to height
H(x). In earlier work, ω̄ is also named as the branching measure on the boundary of Γ. Recall
that ∂∆ can be identified with ∂Γ as explained above. We let ω be the random probability
measure on ∂∆ induced by ω̄, which will be referred to as the uniform measure on ∂∆.

Theorem 2. With the same constant λ as in Theorem 1, we have P-a.s. ω(dv)-a.e.

lim
r↓0

logµ(Bd(v, r))
log r = λ , (4)

lim
r↓0

logω(Bd(v, r))
log r = 1 , (5)

where Bd(v, r) stands for the closed ball of radius r centered at v in the metric space (∆,d).

Remark. The Hausdorff measure of ∂∆ with respect to d is a.s. equal to 1. An exact Hausdorff
measure function can be found in Duquesne and Le Gall [4, Theorem 1.3].

Corollary 3. P-a.s. the two measures µ and ω on the boundary of ∆ are mutually singular.

In fact, with the same constant β as in (3), it is shown in Theorem 3 of [3] that P-a.s. µ(dv)-
a.e.,

lim
r↓0

logµ(Bd(v, r))
log r = β.

If we define
B =

{
v ∈ ∂∆: lim

r↓0

logµ(Bd(v, r))
log r = β

}
,

then P-a.s. µ(B) = 1. However, since β < 1 < λ, we get from (4) that P-a.s. ω(B) = 0, which
finishes the proof of Corollary 3.

Similar results for supercritical infinite Galton–Watson trees can be found in Theorem 3 of
Liu and Rouault [7] and in Theorem 6.3 of Lyons, Pemantle and Peres [8], where the uniform
measure and the visibility measure (defined as the law of the geodesic ray chosen by forward
simple random walk) on the boundary of the infinite tree are considered.

In order to get a better understanding of the distinguished geodesic ray in the Yule tree Γ
chosen randomly according to the uniform measure ω̄(dv), we follow the ideas of Lyons, Pemantle
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and Peres [9] to construct a size-biased version Γ̂ of Γ, which is the genealogical tree of the
following branching process. Initially, there is one particle having an exponential lifetime with
parameter 2, and it reproduces two offspring simultaneously when it dies. We choose one of
them uniformly at random and the chosen one will continue as the initial ancestor, while the
other offspring will independently evolve as the classical Yule process. The size-biased Yule tree
Γ̂ thus defined is an infinite random R-tree with binary branching. Applying to Γ̂ the same
transformation that relates Γ and ∆0, we get a bounded (yet non-compact) rooted R-tree ∆̂0,
which is interpreted as the size-biased version of ∆0. Essentially, every point of Γ̂ at height
y ≥ 0 corresponds to a point of ∆̂0 at height 1− e−y. The completion of ∆̂0 with respect to its
intrinsic metric is denoted as ∆̂, and we call ∆̂ the size-biased reduced tree. Its boundary ∂∆̂
is similarly defined as the set of all points of ∆̂ at height 1.

height 1

height 0
∅

V∅

(1− V∅)V1

Figure 2: Schematic representation of the size-biased reduced tree ∆̂

Due to the previous description of Γ̂, one can also construct ∆̂ directly as follows. At first, the
root ∅ of ∆̂ has a distinguished descendant line of length 1. Let V∅ be a random variable taking
values in [0, 1] with density 2(1−x), and we graft to the distinguished descendant line at height
V∅ a subtree which is an independent copy of ∆ scaled by the factor (1 − V∅). In the second
step, we take V1 as an independent copy of V∅ and graft to the distinguished descendant line at
height V∅+(1−V∅)V1 another independent copy of ∆ scaled by the factor (1−V∅)(1−V1). Note
that for each grafting, we choose the left-hand side or the right-hand side of the distinguished
descendant line with equal probabilities. We continue this procedure to graft more subtrees to
the distinguished descendant line, with the height of the grafting position increasing to 1. After
an infinite number of steps we obtain a realization of ∆̂. See Figure 2 for an illustration. We
assume as before that ∆̂ is defined under the probability measure P.

The constant λ appearing in Theorems 1 and 2 can be expressed in terms of the (continuous)
conductance of ∆̂. Informally, if we think of the random trees ∆ and ∆̂ as electric networks of
resistors with unit resistance per unit length, the effective conductances between the root and
the boundary in ∆ and ∆̂ are continuous random variables denoted respectively as C and Ĉ.
From a probabilistic point of view, each of these conductances can be obtained as the mass
under the Brownian excursion measure in the corresponding tree for the excursion paths away
from the root that hit height 1. It is easy to see that both C and Ĉ take values in [1,∞). The
law of C has been studied at length in [3]. Following the above construction of ∆̂ and the electric
network interpretation, the distribution of Ĉ satisfies the recursive distributional equation

Ĉ (d)==
(
V + 1− V

Ĉ + C

)−1
, (6)
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where in the right-hand side V, C and Ĉ are independent, and the distribution of the random
variable V has density 2(1− x) over [0, 1]. Using this distributional identity (6), we prove that,
similarly as the law of C, the law γ̂ of Ĉ has finite moments of all orders, and it has a continuous
density f̂ over [1,∞), which reaches its global maximum at 3/2. The density function f̂ exhibits
a singular behavior analogous to that of the density function of C (see [3, Section 2.3]). Although
f̂ is twice continuously differentiable on the interval (1, 3), it is shown that f̂ is not third-order
differentiable at the point 2. A similar singular behavior is expected at all integer points n ≥ 2.
See Figure 3.

1.5 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3: A histogram of the distribution γ̂ over (1,∞) obtained from the simulations
based on (6). The red and the blue curves correspond respectively to the explicit formulae
for the density of γ̂ over [1, 2] and [2, 3].

Proposition 4. The distribution γ̂ of the conductance Ĉ is characterized in the class of all
probability measures on [1,∞) by the distributional equation (6). The constant λ appearing in
Theorems 1 and 2 is given by

λ = E
[
Ĉ
]
− 1 ∈ (1,∞). (7)

Numerical simulations based on (6) and (7) show that λ ≈ 1.21.
It is worth pointing out that the main results of [3] have been generalized in [6] to the

case where the critical offspring distribution θ belongs to the domain of attraction of a stable
distribution of index α ∈ (1, 2]. We expect that results analogous to those in the present work
should hold in the general stable case. This is left to be explored in a future work.

The remainder of this paper is structured as follows. We start by defining formally the
continuous random trees ∆ and Γ. The notation of the random variables involved will be
slightly different from the one used in this Introduction. The distribution γ̂ of the conductance
Ĉ is studied in Section 2.4, and the proof of Theorem 2 and of formula (7) is given in Section 2.5.
The size-biased continuous random trees ∆̂ and Γ̂ are properly defined respectively in Section 2.6
and in Section 2.7. In Section 3, we gather some preliminaries for the discrete setting, where, for
example, we prove the convergence of discrete conductances, and introduce a backward version
of the discrete size-biased Galton-Watson tree. The last part, Section 4, is devoted to the proof
of Theorem 1.

6



Acknowledgments. The author gratefully acknowledges many helpful suggestions of J.-F. Le Gall
during the preparation of this work. He is also indebted to N. Curien for several stimulating
discussions.

2 The continuous setting

2.1 The continuous reduced tree ∆
We set

V :=
∞⋃
n=0
{1, 2}n,

where {1, 2}0 = {∅}. If v = (v1, . . . , vn) ∈ V, we set |v| = n (in particular |∅| = 0). If
v 6= ∅, we define the parent of v as v̄ = (v1, . . . , vn−1), and we then say that v is a child
of v̄. If both u = (u1, . . . , um) and v = (v1, . . . , vn) belong to V, their concatenation is uv :=
(u1, . . . , um, v1, . . . , vn). The notions of a descendant and an ancestor of an element of V are
defined in the obvious way, with the convention that a vertex v ∈ V is both an ancestor and a
descendant of itself. If v, w ∈ V, v ∧ w is the unique element of V that is an ancestor of both v
and w and such that |v ∧ w| is maximal.

We consider a collection (Uv)v∈V of independent real random variables uniformly distributed
over [0, 1] under the probability measure P. We set Y∅ = U∅ and then by induction, for every
v ∈ {1, 2}n with n ≥ 1, we let

Yv = Yv̄ + Uv(1− Yv̄).

Note that a.s., 0 ≤ Yv < 1 for every v ∈ V. Consider the set

∆0 := ({∅} × [0, Y∅]) ∪
( ⋃
v∈V\{∅}

{v} × (Yv̄, Yv]
)
.

We can define a natural metric d on ∆0, so that (∆0,d) is a (noncompact) R-tree and, for every
x = (v, r) ∈ ∆0, d((∅, 0), x) = r. To be specific, let x = (v, r) ∈ ∆0 and y = (w, r′) ∈ ∆0:

• If v is a descendant of w or w is a descendant of v, we set d(x, y) = |r − r′|.

• Otherwise, d(x, y) = d((v ∧ w, Yv∧w), x) + d((v ∧ w, Yv∧w), y) = (r − Yv∧w) + (r′ − Yv∧w).

See Figure 4 for an illustration of the precompact tree ∆0.
We let ∆ be the completion of ∆0 with respect to the metric d. Then ∆ = ∆0 ∪ ∂∆, where

the boundary ∂∆ := {x ∈ ∆: d((∅, 0), x) = 1} is canonically identified with {1, 2}N. Note that
(∆,d) is now a compact R-tree. The point (∅, 0) is called the root of ∆. For every x ∈ ∆, we
set H(x) = d((∅, 0), x) and call it the height of x. We can define a genealogical order on ∆ by
setting x ≺ y if and only if x belongs to the geodesic path from the root to y.

For every ε ∈ (0, 1), we set ∆ε := {x ∈ ∆: H(x) ≤ 1 − ε}, which is also a compact R-tree
for the metric d. The leaves of ∆ε are the points of the form (v, 1 − ε) for all v ∈ V such that
Yv̄ < 1 − ε ≤ Yv. The branching points of ∆ε are the points of the form (v, Yv) for all v ∈ V
such that Yv < 1− ε.

Conditionally on ∆, we can take any ε ∈ (0, 1) and define Brownian motion on ∆ε starting
from the root. Informally, this process behaves like linear Brownian motion as long as it stays
on an “open interval” of the form {v} × (Yv̄, Yv ∧ (1 − ε)), and it is reflected at the root (∅, 0)
and at the leaves of ∆ε. When it arrives at a branching point of the tree, it chooses each of
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Height 1
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Y∅

Y2

Y1

Y11
Y12

Y21

Y22

∅

U∅

U1(1− Y∅)

U2(1− Y∅)

Figure 4: The random tree ∆0

three possible line segments ending at this point with equal probabilities. By taking a sequence
(εn = 2−n)n≥1 and then letting n go to infinity, we can construct under the same probability
measure P a Brownian motion (Bt)t≥0 on ∆ starting from the root up to its first hitting time τ
of ∂∆. We refer the reader to [3, Section 2.1] for the details of this construction. The harmonic
measure µ is the distribution of Bτ− under P , which is a (random) probability measure on
∂∆ = {1, 2}N.

2.2 The Yule tree Γ
To define the Yule tree, consider a collection (Iv)v∈V of independent real random variables
exponentially distributed with mean 1 under the probability measure P. We set Z∅ = I∅ and
then by induction, for every v ∈ {1, 2}n with n ≥ 1, Zv = Zv̄ + Iv. The Yule tree is the set

Γ := ({∅} × [0, Z∅]) ∪
( ⋃
v∈V\{∅}

{v} × (Zv̄, Zv]
)
,

which is equipped with the metric d defined in the same way as d in the preceding section. For
every x = (v, r) ∈ Γ, d((∅, 0), x) = r and we keep the notation H(x) = r for the height of the
point x.

Observe that if U is uniformly distributed over [0, 1], the random variable − log(1 − U) is
exponentially distributed with mean 1. Hence, we may and will suppose that the collection
(Iv)v∈V is constructed from (Uv)v∈V in the previous section via the formula Iv = − log(1− Uv),
for every v ∈ V. Then the mapping Ψ defined on ∆0 by Ψ(v, r) = (v,− log(1 − r)), for every
(v, r) ∈ ∆0, is a homeomorphism from ∆0 onto Γ.

Using stochastic calculus, we can write, for every t ∈ [0, τ),

Ψ(Bt) = W
( ∫ t

0
(1−H(Bs))−2 ds

)
(8)

where (W (t))t≥0 is Brownian motion with constant drift 1/2 towards infinity on the Yule tree
(this process is defined in a similar way as Brownian motion on ∆, except that it behaves like
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Brownian motion with drift 1/2 on every “open interval” of the tree Γ). Note that W is also
defined under the probability measure P . From now on, Brownian motion on the Yule tree Γ or
on other similar trees will always refer to Brownian motion with drift 1/2 towards infinity.

By definition, the boundary ∂Γ is the set of all geodesic rays in Γ starting from the root
(∅, 0). From the transience of Brownian motion on Γ, there is a.s. a unique geodesic ray denoted
by W∞ that is visited by (W (t), t ≥ 0) at arbitrarily large times. The distribution of W∞ under
P yields a probability measure ν on the boundary ∂Γ. Thanks to (8), we have in fact ν = µ,
provided we identify ∂∆ and ∂Γ with {1, 2}N and view both µ and ν as (random) probability
measures on {1, 2}N.

Yule-type trees. We define T to be the set of all collections (zv)v∈V of positive real numbers
such that the following properties hold:

(i) zv̄ < zv for every v ∈ V\{∅};

(ii) for every v = (v1, v2, . . .) ∈ {1, 2}N, z(v1,...,vn) → +∞ as n→∞.

Notice that we allow the possibility that z∅ = 0. If (zv)v∈V ∈ T , we consider the associated
“tree”

T := ({∅} × [0, z∅]) ∪
( ⋃
v∈V\{∅}

{v} × (zv̄, zv]
)
,

which is equipped with the distance d similarly defined as above. If x = (v, r) ∈ T , we still write
H(x) = r for the height of x. The genealogical (partial) order on T is defined as previously and
will again be denoted by ≺. The set of all geodesic rays in T is called the boundary ∂T , which
is naturally identified with {1, 2}N. If u = (u1, u2, . . .) ∈ {1, 2}N, and x = (v, r) ∈ T , we write
x ≺ u if v = (u1, u2, . . . , uk) for some integer k ≥ 0.

We will often say that we consider a tree T ∈ T : this means that we are given a collection
(zv)v∈V satisfying the above properties, and we consider the associated tree T . In particular,
the tree T has an order structure given by the lexicographical order on V. Elements of T will
be called Yule-type trees. The Yule tree Γ can be viewed as a random variable taking values in
T , and we write Θ(dT ) for its distribution.

Let us fix T ∈ T . If r > 0, the level set at height r is Tr := {x ∈ T : H(x) = r}. If x ∈ Tr,
we can then consider the subtree T [x] of descendants of x in T . Formally, we view T [x] as an
element of T : We write vx for the unique element of V such that x = (vx, r), and define T [x]
as the Yule-type tree corresponding to the collection (zvxv − r)v∈V .

As we have seen in the Introduction, the limit W(T ) = limr→∞ e
−r#Tr exists Θ(dT )-a.s.,

and
∫
W(T )Θ(dT ) = 1. For every x ∈ T , we similarly set W(T [x]) = limr→∞ e

−r#Tr[x]. If
v ∈ ∂T is a geodesic ray passing through x, let B(v, H(x)) denote the set of geodesic rays in
T that coincide with v up to height H(x). Then Θ(dT )-a.s., the uniform measure ω̄T on ∂T is
defined as the unique probability measure on ∂T satisfying that

ω̄T (B(v, H(x))) = e−H(x)W(T [x])
W(T ) , for every x ∈ T and v ∈ ∂T such that x ≺ v.

On the other hand, for a fixed Yule-type tree T ∈ T , we define the harmonic measure µT
on ∂T as the distribution of the first hitting point of ∂T by Brownian motion on T (with drift
1/2 towards infinity).
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2.3 The invariant measure

We write
T ∗ := T × {1, 2}N

for the set of all pairs consisting of a tree T ∈ T and a distinguished geodesic ray v. Let
us define a shift transformation S on T ∗ by shifting (T,v) at the first branching point of T .
More precisely, if T corresponds to the collection (zv)v∈V , we write T(1) and T(2) for the two
subtrees of T obtained at the first branching point, which means, for i ∈ {1, 2}, T(i) is the tree
corresponding to the collection (ziv − z∅)v∈V . For any geodesic ray v = (v1, v2, . . .) in the tree
T , we set S(T,v) := (T(v1), ṽ), where ṽ = (v2, v3, . . .).

The following proposition is the analogue of Proposition 6.1 in [8] for the Yule tree.

Proposition 5. The probability measure W(T )Θ(dT )ω̄T (dv) is invariant under S.

Proof. Under Θ(dT ), if T corresponds to the collection (zv)v∈V , then z∅ is exponentially dis-
tributed with mean 1. Conditionally on z∅, the branching property of the Yule tree states that
T(1) and T(2) are i.i.d. of the same law Θ.

Let F be a bounded measurable function on T ∗. By the definition of the shift S and the
preceding observation, we have∫

F ◦ S(T,v)W(T )Θ(dT )ω̄T (dv) =
2∑
i=1

∫
F (T(i),u)

(
e−z∅W(T(i))

)
Θ(dT )ω̄T(i)(du)

= 2
∫ ∞

0
e−2z dz ×

∫
F (T,u)W(T )Θ(dT )ω̄T (du)

=
∫
F (T,u)W(T )Θ(dT )ω̄T (du),

which completes the proof.

2.4 The continuous conductances

For a fixed Yule-type tree T , we consider the excursion measure of Brownian motion (with drift
1/2) on T away from the root, and define C(T ) as the mass assigned by this excursion measure
to the set of trajectories that never return to the root. Note that 1 ≤ C(T ) <∞ for any T ∈ T .
For more details on this probabilistic definition of the conductance C(T ), we refer the reader to
[3, Section 2.3].

To simplify notation, we introduce under the probability measure P a pair of random variables
(W, C) that is distributed as (W(T ), C(T )) under Θ(dT ). In addition, we let Ĉ be a random
variable defined under P that is distributed as C(T ) under the probability measureW(T )Θ(dT ).

Let T be a Yule-type tree corresponding to the collection (zv)v∈V . Recall that T(1) and
T(2) stand for the two subtrees of T obtained at the first branching point. From the identity
W(T ) = e−z∅

(
W(T(1))+W(T(2))

)
for every T ∈ T , it follows that the distribution ofW satisfies

the distributional equation
W (d)== (1− U)(W1 +W2),

in which W1,W2 are two independent copies of W, and U is uniformly distributed over [0, 1]
and independent of (W1,W2). Moreover, the preceding equation holds jointly with a similar
distributional identity for the conductance C (see equation (2) in [3]). To sum up, we have

(W, C) (d)==
(

(1− U)(W1 +W2),
(
U + 1− U

C1 + C2

)−1)
, (9)
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where U is as above, while (Wi, Ci)i∈{1,2} are two independent copies of (W, C), and are inde-
pendent of U .

Lemma 6. The random variable Ĉ satisfies the distributional identity (6).

Proof. By definition, the law of Ĉ is determined by

E
[
g(Ĉ)

]
= E

[
W g(C)

]
(10)

for every nonnegative measurable function g. Using (9) and symmetry, we have

E
[
g(Ĉ)

]
= E

[
(1− U)(W1 +W2) g

((
U + 1− U

C1 + C2

)−1)]
= E

[
2(1− U)W1 g

((
U + 1− U

C1 + C2

)−1)]
.

Recall that the random variable V in (6) has density function 2(1−x) over [0, 1]. The statement
of the lemma therefore follows by applying (10) in reverse order.

The law γ of the conductance C has been discussed in great detail in [3, Proposition 6].
We can study the law γ̂ of Ĉ by similar arguments. These properties are collected in the next
proposition.

For every v ∈ (0, 1), x ≥ 0 and c ≥ 1, we define

G(v, x, c) :=
(
v + 1− v

x+ c

)−1
.

Let M be the set of all probability measures on [0,∞] and let Φ̂ : M →M map a probability
measure σ to

Φ̂(σ) = Law
(
G(V,X, C)

)
(11)

where V and C are as in (6), while X is distributed according to σ, and is independent of the
pair (V, C).

Proposition 7. (1) The distributional equation (6) characterizes the law γ̂ of Ĉ in the sense
that, γ̂ is the unique fixed point of the mapping Φ̂ on M , and for every σ ∈M , the k-th
iterate Φ̂k(σ) converges to γ̂ weakly as k →∞.

(2) The law γ̂ has a continuous density over [1,∞), and all its moments are finite.

(3) For any monotone continuously differentiable function g : [1,∞)→ R+, we have

E
[
Ĉ(Ĉ − 1)g′(Ĉ)

]
+ 2E

[
g(Ĉ)

]
= 2E

[
g(Ĉ + C)

]
, (12)

where Ĉ and C are always assumed to be independent under the probability measure P.

(4) We define, for all ` ≥ 0, the Laplace transforms ϕ(`) = E[exp(−` C/2)] and

ϕ̂(`) = E[exp(−` Ĉ/2)] =
∫ ∞

1
e−`r/2 γ̂(dr).

Then ϕ̂ solves the linear differential equation

2` φ′′(`) + ` φ′(`)− 2(1− ϕ(`))φ(`) = 0.

11



The proof is very similar to that of the analogous results in [3, Proposition 6]. We therefore
skip the details.

Remark 1. Using assertion (1) in Proposition 7, one can approximate the law γ̂ of Ĉ by
iterating the mapping Φ̂. An application of the Monte-Carlo method gives E[Ĉ] ≈ 2.21.

Remark 2. Following the preceding proposition, we discuss some smoothness properties of
the density of γ̂. For every t ≥ 1, we set F̂ (t) = P(Ĉ ≥ t), and we get from (6) that

F̂ (t) = 2
( t− 1

t

)2 ∫ ∞
t

dx x

(x− 1)3 P(Ĉ + C ≥ x). (13)

Since P(Ĉ + C ≥ t) = 1 for every t ∈ [1, 2], we obtain from the last display that

F̂ (t) = 4t− 2
t2

A0 − 2A0 + 1, ∀t ∈ [1, 2], (14)

where
A0 := 2−

∫ ∞
2

dx x

(x− 1)3 P(Ĉ + C ≥ x) ∈
(1

2 , 2
)
.

Let f̂ = −F̂ ′ be the density of the law γ̂. Then it follows from (14) that for all t ∈ [1, 2],

f̂(t) = 4A0 ×
t− 1
t3

and f̂ ′(t) = 4A0 ×
3− 2t
t4

.

In particular, we have f̂(1) = 0, f̂(2) = A0/2 and f̂ ′(3
2) = 0. Numerical approximations of f̂(2)

show that A0 ≈ 0.976.
For the density f of the law of C, it is shown in [3, Section 2.3] that there exists a constant

K0 ∈ (1, 2) such that f(t) = K0t
−2 for t ∈ [1, 2]. The explicit forms of f and f̂ over [1, 2] can

be used to calculate the probability P(Ĉ + C ≥ t) for t ∈ [2, 3] by convolution. The values of F̂
over [2, 3] are thus determined via the ordinary differential equation

t(t− 1) F̂ ′(t)− 2 F̂ (t) = −2P(Ĉ + C ≥ t), (15)

which is a direct consequence of (13). By solving this differential equation, we are able to get an
explicit, yet complicated, expression of F̂ over [2, 3], in terms of the two (unknown) parameters
A0 and K0 (numerical approximations of f(1) show that K0 ≈ 1.477). One can then verify that
the density f̂ is continuously differentiable on (1, 3). Furthermore, it holds that

f̂ ′′(2−) = f̂ ′′(2+) = 0 ,

and that f̂ is twice continuously differentiable on (1, 3). However, f̂ is not third-order differen-
tiable at the point 2, as one has

f̂ ′′′(2−) = 3A0
4 , while f̂ ′′′(2+) = 3A0

4 − 4A0K0.

This is similar to the singular behavior of the density f pointed out in [3, Section 2.3], where it is
shown that f ′′(2−) 6= f ′′(2+). One may conjecture that the density f̂ of γ̂ is twice continuously
differentiable on the whole interval (1,∞), but not third-order differentiable at all integers n ≥ 2.

We finally remark that 3/2 is the global maximum point for the density f̂ . In fact, we have
seen that f̂ reaches it maximum at 3/2 over the interval [1, 2]. Meanwhile, it is elementary to
verify, by differentiating (15), that the function f̂ is strictly decreasing over [3/2,∞).
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2.5 Proof of Theorem 2 and of Proposition 4

We have seen in Proposition 5 that the probability measure W(T )Θ(dT )ω̄T (dv) on T ∗ is in-
variant under the shift S. Recall thatW(T ) follows an exponential distribution of mean 1 under
Θ(dT ). Taking into account that W(T ) > 0, Θ(dT )-a.s., we can then verify, in a similar way as
in [6, Proposition 2.6], that the shift S acting on the probability space (T ∗,W(T )Θ(dT )ω̄T (dv))
is ergodic. We shall apply Birkhoff’s ergodic theorem to the three functionals defined below.

First, let Hn(T,v) denote the height of the n-th branching point on the geodesic ray v. One
immediately verifies that, for every n ≥ 1,

Hn =
n−1∑
i=0

H1 ◦ Si,

where Si stands for the i-th iterate of the shift S. It follows thus from the ergodic theorem that
W(T )Θ(dT )ω̄T (dv)-a.s.,

1
n
Hn −→

n→∞

∫
H1(T,v)W(T ) Θ(dT )ω̄T (dv). (16)

Since the density W(T ) is a.s. strictly positive, the latter convergence also holds Θ(dT )ω̄T (dv)-
a.s. By the definition of H1 and then the branching property of the Yule tree,∫

H1(T,v)W(T ) Θ(dT )ω̄T (dv) =
∫
z∅W(T ) Θ(dT )

=
∫
z∅ e

−z∅(W(T(1)) +W(T(2))) Θ(dT )

= 2
( ∫ ∞

0
ze−2zdz

)
×
∫
W(T ) Θ(dT ) = 1

2 . (17)

Secondly, for a fixed geodesic ray v = (v1, v2, . . .) ∈ {1, 2}N, we let xn,v denote the n+1-st
branching point on the geodesic ray v, i.e. xn,v = ((v1, . . . , vn), Hn+1(T,v)). We set, for every
n ≥ 1, the functional Fn(T,v) := log ω̄T ({u ∈ ∂T : xn,v ≺ u}). In particular,

F1(T,v) = log
W(T(v1))

W(T(1)) +W(T(2))
.

By the definition of ω̄T , one can check that

Fn =
n−1∑
i=0

F1 ◦ Si.

Using the ergodic theorem again, we have Θ(dT ) ω̄T (dv)-a.s.,

1
n
Fn −→

n→∞

∫
F1(T,v)W(T ) Θ(dT )ω̄T (dv),

13



in which the limit can be calculated as follows:∫
F1(T,v)W(T ) Θ(dT )ω̄T (dv)

=
2∑
i=1

∫
e−z∅W(T(i)) log

W(T(i))
W(T(1)) +W(T(2))

Θ(dT )

=
2∑
i=1

∫
e−z∅W(T(i)) logW(T(i)) Θ(dT )−

∫ ( 2∑
i=1

e−z∅W(T(i)) log
(
ez∅W(T )

))
Θ(dT )

= 2
( ∫ ∞

0
e−2zdz

)
×
∫
W(T ) logW(T ) Θ(dT )−

∫
W(T ) log

(
ez∅W(T )

)
Θ(dT )

= −
∫
z∅W(T ) Θ(dT ). (18)

Note that we used the fact that
∫
W(T )| logW(T )|Θ(dT ) < ∞ to derive the last equality. In

view of (17), we see that Θ(dT ) ω̄T (dv)-a.s., Fn/n converges to −1
2 whereas Hn/n converges

to 1
2 . By considering the ratio Fn/Hn and taking n→∞, we get that Θ(dT )-a.s. ω̄T (dv)-a.e.,

lim
r→∞

1
r

log ω̄T (B(v, r)) = −1,

from which the convergence (5) readily follows.
Thirdly, we turn to the harmonic measure µT and set, for every n ≥ 1, the functional

Gn(T,v) := logµT ({u ∈ ∂T : xn,v ≺ u}). In particular,

G1(T,v) = log
C(T(v1))

C(T(1)) + C(T(2))
.

The flow property of the harmonic measure µT (see Lemma 7 in [6]) yields that

Gn =
n−1∑
i=0

G1 ◦ Si.

Similarly we have the Θ(dT )ω̄T (dv)-almost sure convergence
1
n
Gn −→

n→∞

∫
G1(T,v)W(T ) Θ(dT )ω̄T (dv), (19)

and we calculate the limit∫
G1(T,v)W(T ) Θ(dT )ω̄T (dv)

=
2∑
i=1

∫
e−z∅W(T(i)) log

C(T(i))
C(T(1)) + C(T(2))

Θ(dT )

= 2
( ∫ ∞

0
e−2zdz

)
×
∫
W(T(1)) log

C(T(1))
C(T(1)) + C(T(2))

Θ(dT )

=
∫
W(T(1)) log

C(T(1))
C(T(1)) + C(T(2))

Θ(dT ).

Putting the convergence (19) together with (16) and (17), we see that Θ(dT )-a.s. ω̄T (dv)-a.e.,

lim
r→∞

1
r

logµT (B(v, r)) = 2
∫
W(T(1)) log

C(T(1))
C(T(1)) + C(T(2))

Θ(dT ).
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Using the branching property of the Yule tree and recalling the notation in Section 2.4, we have
therefore P-a.s. ω(dv)-a.e. that

lim
r↓0

logµ(Bd(v, r))
log r = 2E

[
log

( Ĉ + C
Ĉ

)]
,

where Ĉ and C are supposed to be independent under the probability measure P. However, by
taking g(x) = log(x) in (12), we see that

E
[
Ĉ
]
− 1 = 2E

[
log

( Ĉ + C
Ĉ

)]
. (20)

We define λ := E[Ĉ]− 1. The proof of the convergence (4) is hence completed.
Finally, in view of Proposition 7, it only remains to verify that λ > 1. In fact, we know from

the display following (19) that

λ = 2
∫
e−z∅

( 2∑
i=1
W(T(i)) log

C(T(1)) + C(T(2))
C(T(i))

)
Θ(dT ).

By concavity of the logarithm,

2∑
i=1

W(T(i))
W(T(1)) +W(T(2))

log
(W(T(1)) +W(T(2))

W(T(i))
·

C(T(i))
C(T(1)) + C(T(2))

)
≤ 0,

which entails that
2∑
i=1
W(T(i)) log

C(T(1)) + C(T(2))
C(T(i))

≥
2∑
i=1
W(T(i)) log

W(T(1)) +W(T(2))
W(T(i))

.

Notice that the previous inequality is strict if and only if for i ∈ {1, 2},

W(T(i))
W(T(1)) +W(T(2))

6=
C(T(i))

C(T(1)) + C(T(2))
.

Since the latter property holds with positive probability under Θ(dT ), we have

λ > 2
∫
e−z∅

( 2∑
i=1
W(T(i)) log

W(T(1)) +W(T(2))
W(T(i))

)
Θ(dT )

= − 2
∫
F1(T,v)W(T ) Θ(dT ) ω̄T (dv).

By (18) and (17), the right-hand side of the last display is equal to 1. We have therefore finished
the proof of Theorem 2 and of Proposition 4.

2.6 The size-biased Yule tree Γ̂
Let (Γ̂, v̂) denote a random element in T ∗ distributed according to W(T )Θ(dT )ω̄T (dv). We
give here a direct construction of (Γ̂, v̂) ∈ T ∗ under the probability measure P. In the following
description, all the random variables involved are supposed to be defined under P.
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First, we introduce a sequence (ak)k≥1 of i.i.d. random variables uniformly distributed over
{1, 2}, and another sequence (Jk)k≥1 of i.i.d. real random variables exponentially distributed with
mean 1/2. Let (Γ(k))k≥1 be a collection of independent Yule trees, each of which corresponding
respectively to the collection (Z(k)

v )v∈V with the notation introduced in Section 2.2. We assume
that (ak)k≥1, (Jk)k≥1 and (Γ(k))k≥1 are independent.

For every integer n ≥ 1, we set vn = (a1, a2, . . . , an) ∈ {1, 2}n and Zvn =
∑n
k=1 Jk. We write

ṽn = (a1, a2, . . . , an−1, 3− an) ∈ {1, 2}n for the unique sibling of vn in V, and define the subtree
Γ〈ṽn〉 grafted at ṽn as

Γ〈ṽn〉 :=
(
{ṽn} × (Zvn , Zvn + Z

(n)
∅ ]

)
∪
( ⋃
v∈V\{∅}

{ṽnv} × (Zvn + Z
(n)
v̄ , Zvn + Z(n)

v ]
)
.

Finally, let Γ̂ be the following Yule-type tree

Γ̂ := ({∅} × [0, Zv1 ]) ∪
( ⋃
n≥1
{vn} × (Zvn , Zvn+1 ]

)
∪
( ⋃
n≥1

Γ〈ṽn〉
)
.

We will call Γ̂ the size-biased Yule tree. See Figure 5 for an illustration.

∅

Zv2

Zv1

v̂

J1

J2

Γ〈ṽ1〉

Γ〈ṽ2〉

Figure 5: Schematic representation of the size-biased Yule tree Γ̂

Lemma 8. The pair
(
Γ̂, v̂ = (a1, a2, . . .)

)
∈ T × {1, 2}N constructed above follows the required

distribution W(T )Θ(dT )ω̄T (dv).
The proof of this lemma is based on similar calculations carried out in the previous section.

We leave the details to the reader. Note that the analog for discrete-time Galton–Watson trees
can be found in Exercise 16.9 in [10].

2.7 The size-biased reduced tree ∆̂
Recall the bijection Ψ: (v, r) ∈ ∆0 7→ (v,− log(1 − r)) ∈ Γ introduced in Section 2.2. We now
apply the inverse mapping Ψ−1(v, s) = (v, 1− e−s) to the size-biased Yule tree Γ̂.
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We keep the notation of the preceding section. For every integer n ≥ 1, we set Vn =
1− exp(−Jn), and then by induction,

Ŷvn = Ŷvn−1 + (1− Ŷvn−1)Vn .

Notice that (Vn)n≥1 are i.i.d. real random variables with density function 2(1 − x)1x∈[0,1], and
that for every n ≥ 1, Ŷvn = 1− exp(−Zvn). Thus,

Ψ−1(Γ̂) = ({∅} × [0, Ŷv1 ]) ∪
( ⋃
n≥1
{vn} × (Ŷvn , Ŷvn+1 ]

)
∪
( ⋃
n≥1

Ψ−1(Γ〈ṽn〉)).
We point out that, independently for every n ≥ 1, Ψ−1(Γ〈ṽn〉) is a rescaled copy of the precom-
pact reduced tree ∆0 with the scaling factor (1− Ŷvn). From now on we will denote Ψ−1(Γ̂) by
∆̂0. See Figure 6 for an illustration of ∆̂0.

Height 1

Height 0
∅

v̂

Ŷv2

Ŷv1

V1

(1− Ŷv1)V2

Figure 6: Schematic representation of the random tree ∆̂0

One can define, as for ∆0, the intrinsic metric d on ∆̂0 such that (∆̂0,d) is a noncompact
R-tree, and for every x = (v, r) ∈ ∆̂0, we have d((∅, 0), x) = r. Then we let ∆̂ be the completion
of ∆̂0 with respect to d, so that (∆̂,d) is a compact R-tree. In fact, ∆̂ = ∆̂0 ∪ ∂∆̂, and the
boundary ∂∆̂ := {x ∈ ∆̂ : d((∅, 0), x) = 1} is canonically identified with {1, 2}N. We will call ∆̂
the size-biased reduced tree. We keep the same notation H(x) = d((∅, 0), x) for the height of
x ∈ ∆̂. For every ε ∈ (0, 1), we set the truncation of ∆̂ at height 1− ε

∆̂ε := {x ∈ ∆: H(x) ≤ 1− ε}.

One can think of both ∆ and ∆̂ as electric networks of ideal resistors with unit resistance
per unit length, and define C(∆) (resp. C(∆̂)) be the effective conductance between the root and
the set ∂∆ (resp. ∂∆̂) in the corresponding network. As explained in [3, Section 2.3], C(∆) is
identically distributed as the random variable C defined in Section 2.4. Analogously, C(∆̂) has
the same distribution as Ĉ according to Lemma 8. We thus call Ĉ the continuous conductance
of the size-biased reduced tree ∆̂.
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3 The discrete setting

3.1 Notation for discrete trees

We set
U :=

∞⋃
n=0

Nn,

where N = {1, 2, . . .} and N0 = {∅} by convention. If u = (u1, . . . , un) ∈ U , |u| = n is called the
generation (or height) of u. In particular, |∅| = 0. A (rooted ordered) tree T is a subset of U
such that the following holds:

(i) ∅ ∈ T ;

(ii) If u = (u1, . . . , un) ∈ T \{∅}, then ū := (u1, . . . , un−1) ∈ T ;

(iii) For every u = (u1, . . . , un) ∈ T , there exists an integer ku(T ) ≥ 0 such that, for every
j ∈ N, (u1, . . . , un, j) ∈ T if and only if 1 ≤ j ≤ ku(T ).

The notions of a child and a parent of a vertex of T are defined in an obvious way. We write ≺
for the genealogical order on T . The quantity ku(T ) in (iii) is called the number of children of u
in T . We always view a tree T as a graph whose vertices are the elements of T and whose edges
are the pairs {ū, u} for all u ∈ T \{∅}.

If T is finite, we call it a plane tree. The set of all plane trees is denoted by Tf . For an
infinite tree T , we say it has a single infinite line of descent if there exists a unique sequence of
positive integers (un)n≥1 such that (u1, u2, . . . , un) ∈ T for all n ≥ 1. We denote by T∞ the set
of all infinite trees that have a single infinite line of descent.

The height of a tree T is written as h(T ) := sup{|u| : u ∈ T }. The set of all vertices of T at
generation n is denoted by Tn := {u ∈ T : |u| = n}. If u ∈ T , the subtree of descendants of u is
T̃ [u] := {u′ ∈ T : u ≺ u′}. Note that T̃ [u] is not a tree under our definition, but we can relabel
its vertices to turn it into a tree, by setting T [u] := {w ∈ U : uw ∈ T }.

Let T be a tree of height larger than n, and consider a simple random walk X = (Xk)k≥0
on T starting from the root ∅, which is defined under the probability measure P T . We write
τn := inf{k ≥ 0: |Xk| = n} for the first hitting time of generation n by X, and we define the
discrete harmonic measure µTn supported on Tn as the law of Xτn under P T .

Critical Galton–Watson trees. Let θ be a non-degenerate probability measure on Z+,
and assume that θ has mean one and finite variance σ2 > 0. For every integer n ≥ 0, we let
T(n) be a Galton–Watson tree with offspring distribution θ, conditioned on non-extinction at
generation n, viewed as a random element in Tf . In particular, T(0) is just a Galton–Watson
tree with offspring distribution θ. We suppose that the random trees T(n) are defined under the
probability measure P.

Let T∗n be the reduced tree associated with T(n), which is the random tree composed of all
vertices of T(n) that have descendants at generation n. It is always implicitly assumed that we
have relabeled the vertices of T∗n, preserving both the lexicographical order and the genealogical
order, so that T∗n becomes a plane tree in the sense of our preceding definition.

For every n ≥ 1 we set qn := P(#T(0)
n > 0). By a standard result (see e.g. Theorem 9.1 of [1,

Chapter 1]) on the non-extinction probability up to generation n, we have

qn ∼
2
nσ2 , as n→∞. (21)
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Size-biased Galton–Watson tree. Let N̂ be a random variable distributed according to
the size-biased distribution of θ, that is, for every k ≥ 0, P(N̂ = k) = k θ(k). Take a sequence
(N̂k)k≥1 of independent copies of N̂ defined under P. Now we follow Kesten [5] and Lyons,
Pementle and Peres [9] to construct a size-biased Galton–Watson tree T̂ defined under P. First,
the root ∅ of T̂ is given a number N̂1 of children. Choose one of these children uniformly at
random, say v1. It has a number N̂2 of children, whereas the other children of the root have
independently ordinary θ-Galton–Watson descendant trees. Again, among the children of v1 we
choose one uniformly at random, call it v2, and give the others independent θ-Galton–Watson
descendant trees. Meanwhile the vertex v2 has a number N̂3 of children. Since a.s. N̂ ≥ 1, we
can repeat this procedure infinitely many times. The resulting random infinite tree T̂ is called a
size-biased Galton–Watson tree (see Figure 7). It is clear by the construction that T̂ is a random
element in T∞ and that its unique infinite line of descent is (v1,v2, . . .), which we will call the
spine of T̂.

∅

θ-GW θ-GW θ-GW

θ-GW

θ-GW θ-GW

θ-GW

N̂1 = 4

N̂2 = 2

N̂3 = 3

N̂4 = 2

v1

v2

v3

v4

Figure 7: Schematic representation of a size-biased Galton–Watson tree T̂

Let [T̂](n) be the plane tree obtained from T̂ by keeping only its first n generations, i.e.,

[T̂](n) := {u ∈ T̂ : |u| ≤ n}.

It is shown in [5] and [9] that [T̂](n) is distributed in Tf according to the law of T(n) biased
by #T(n)

n . Moreover, conditionally given the first n levels of T̂, the vertex vn on the spine is
uniformly distributed on the n-th level of T̂. Besides, notice that

E
[
#T(n)

n

]
= E[#T(0)

n ]
qn

= 1
qn
.

All these observations are summarized in the following proposition.

Proposition 9. Let F (T , v) be a nonnegative measurable function defined on Tf ×U . Then for
every integer n ≥ 1,

E
[ ∑
v∈T(n)

n

F (T(n), v)
]

= 1
qn

E
[
F ([T̂](n),vn)

]
.
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For every integer n ≥ 1, let [T̂]n be the plane tree obtained from T̂ by erasing the (infinite)
tree of descendants of the vertex vn. By convention, the vertex vn is kept in [T̂]n. Notice that
in general [T̂]n 6= [T̂](n), since the height of [T̂]n can be strictly greater than n.

We let [T̂]∗n denote the reduced tree associated with the plane tree [T̂]n up to generation n,
which consists of all vertices of [T̂]n that have (at least) one descendant at generation n. We
implicitly assume that the relabelling has been done to turn [T̂]∗n into a tree. It is elementary
to check that [T̂]∗n is also the reduced tree associated with [T̂](n) up to generation n.

3.2 Convergence of discrete reduced trees

We briefly recall the result in [3] on the convergence of the discrete reduced trees T∗n. For every
real number s ∈ [0, n], we write the truncation of the tree T∗n at level n− bsc as

Rs(T∗n) :=
{
u ∈ T∗n : |u| ≤ n− bsc

}
.

For every ε ∈ (0, 1), we have set ∆ε = {x ∈ ∆: H(x) ≤ 1 − ε}. We know that, for every
fixed ε, there is a.s. no branching point of ∆ at height 1 − ε. The skeleton of ∆ε is defined as
the following plane tree

Sk(∆ε) := {∅} ∪
{
v ∈ V\{∅} : Yv̄ ≤ 1− ε

}
= {∅} ∪

{
v ∈ V\{∅} : (v̄, Yv̄) ∈ ∆ε

}
.

Consider then the set Tf,bin of all plane trees in which every vertex has either 0, 1 or 2
children. For T ∈ Tf,bin we write S(T ) for the set of all vertices of T having 0 or 2 children.
Then there is a unique plane tree 〈T 〉 such that one can find a canonical bijection u 7→ wu from
〈T 〉 onto S(T ) that preserves the genealogical order and the lexicographical order of vertices.

The following result is Proposition 16 in [3].

Proposition 10. We can construct the reduced trees T∗n and the (continuous) tree ∆ on the
same probability space (Ω,F ,P) so that the following properties hold for every fixed ε ∈ (0, 1)
with P-probability one.

(i) For every sufficiently large integer n, we have Rεn(T∗n) ∈ Tf,bin and 〈Rεn(T∗n)〉 = Sk(∆ε).

(ii) For every sufficiently large n, such that the properties stated in (i) hold, and for every
u ∈ Sk(∆ε), let wn,εu denote the vertex of S(Rεn(T∗n)) corresponding to u via the canonical
bijection from 〈Rεn(T∗n)〉 onto S(Rεn(T∗n)). Then we have

lim
n→∞

1
n
|wn,εu | = Yu ∧ (1− ε).

3.3 Convergence of discrete conductances

Let T ∈ T be a tree of height larger than n, and consider the new tree T ′ obtained by adding to
the graph T an edge between the root ∅ and an extra vertex ∂. We define under the probability
measure P T ′ a simple random walk X on T ′ starting from the root ∅. Let τ∂ be the first hitting
time of ∂ by X, and for every integer 1 ≤ i ≤ n, let τi be the first hitting time of generation i
(of the tree T ) by X. We write

Ci(T ) := P T
′(τi < τ∂).

This notation is justified by the fact that Ci(T ) can be interpreted as the effective conductance
between ∂ and generation i of T in the graph T ′, see e.g. [10, Chapter 2].
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Recall the notation that C(∆) stands for the conductance between the root and the set ∂∆
in the reduced tree ∆. Analogously, for every ε ∈ (0, 1), C(∆ε) denotes the conductance between
the root and the set {x ∈ ∆: H(x) = 1− ε} in ∆. The following result is stated in [3] without
a proof. We provide here the details.
Proposition 11. Suppose that the reduced trees T∗n and the tree ∆ are constructed so that the
properties stated in Proposition 10 hold. Then

n Cn(T∗n) a.s.−−−→
n→∞

C(∆).

Proof. By definition, for every ε ∈ (0, 1),

Cn−bεnc(T∗n) = P (T∗n)′(τn−bεnc < τ∂) ≥ P (T∗n)′(τn < τ∂) = Cn(T∗n).

Note that there is probability at least 1 − bεncn+1 that, after hitting the generation n − bεnc, the
simple random walk on (T∗n)′ will hit the generation n before moving down to the extra vertex ∂.
Hence it follows from the strong Markov property of simple random walk that

0 ≤ Cn−bεnc(T∗n)− Cn(T∗n) ≤ bεnc
n+ 1Cn−bεnc(T

∗n).

By similar probabilistic arguments, we also have

0 ≤ C(∆ε)− C(∆) ≤ ε C(∆ε),

which entails particularly that C(∆ε) ≤ 2 C(∆) if ε < 1/2.
Let n be sufficiently large so that assertions (i) and (ii) of Proposition 10 hold with ε ∈ (0, 1

2).
By calculating the conductances using the series law and parallel law, we see that a.s.

lim
n→∞

|n Cn−bεnc(T∗n)− C(∆ε)| = 0.

Then, it follows from

|n Cn(T∗n)− C(∆)| ≤ |n Cn(T∗n)− n Cn−bεnc(T∗n)|+ |n Cn−bεnc(T∗n)− C(∆ε)|+ |C(∆ε)− C(∆)|
≤ bεncCn−bεnc(T∗n) + |n Cn−bεnc(T∗n)− C(∆ε)|+ ε C(∆ε)

that
lim sup
n→∞

|n Cn(T∗n)− C(∆)| ≤ 2ε C(∆ε) ≤ 4ε C(∆).

Letting ε→ 0, we conclude that |n Cn(T∗n)− C(∆)| → 0 as n→∞.

Let us write C(∆̂ε) for the conductance between the root and the set {x ∈ ∆̂ : H(x) = 1− ε}
in ∆̂. By the same reasoning as in the previous proof, for every ε ∈ (0, 1/2), we have

0 ≤ C(∆̂ε)− C(∆̂) ≤ 2ε C(∆̂). (22)

Remark. We can also show the convergence of the reduced trees [T̂]∗n to the (continuous) size-
biased reduced tree ∆̂, in a sense similar to Proposition 10, which implies a size-biased analog
of Proposition 11. In particular, it holds the convergence in law

n Cn([T̂]n) (d)−−−→
n→∞

C(∆̂).

Since these results are not needed in Section 4 for proving Theorem 1, we omit the proofs.
For future reference, we state the following result, which is Lemma 22 in [3].

Lemma 12. There exists a constant K ≥ 1 such that, for every integer n ≥ 1,

E
[(
n Cn(T∗n)

)2] ≤ K.
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3.4 Backward size-biased Galton–Watson tree

We introduce in this section a new infinite random tree T

̂

, which originates from the inflated
Galton–Watson tree constructed by Peres and Zeitouni in [11]. It will be clear from the following
descriptions that T

̂

is a rear-view variant of the size-biased Galton–Watson tree T̂.
First, the random tree T

̂

has a unique infinite ray of vertices (u0,u1,u2, . . .), which will be
referred to as its spine. We declare that, for every n ≥ 0, the vertex un is at generation −n.
This gives a genealogical order on the spine of T

̂

: u1 is viewed as the parent of u0, u2 is viewed
as the parent of u1, and so on.

Next, let us describe the finite subtrees in T

̂

branching off every node of the spine. To this
end, we recall that N̂ follows the size-biased distribution of θ, and we denote by L a random
variable which, conditionally on N̂ , is uniformly distributed on the set {0, 1, . . . , N̂ − 1}. Let
(Ln, N̂n)n≥1 be a sequence of i.i.d. copies of (L, N̂), and set Rn = N̂n − Ln − 1 for every n ≥ 1.
To every vertex un we give a number Ln of children to the left of the spine and a number
Rn of children to the right of the spine. Each of these children (there are N̂n − 1 in total)
will independently have an ordinary θ-Galton–Watson descendant tree (later we will say that
these Galton–Watson trees are grafted at un), and we also assume the independence of these
Galton–Watson trees among all n ≥ 1. This finishes the construction of T

̂

. See Figure 8 for an
illustration. We remark that T

̂

is not a tree in the sense of Section 3.1. However, due to its
obvious tree structure, we will call T

̂

the backward size-biased Galton–Watson tree.

(L4,R4) = (2, 1) u3

u2

u1

u0

θ-GW

θ-GW

θ-GW

θ-GWθ-GW

θ-GW

θ-GW

u4

Generation 0

Generation −1

Generation −2

Generation −3

Generation −4

(L3,R3) = (0, 1)

(L2,R2) = (2, 0)

(L1,R1) = (0, 1)

Figure 8: Schematic representation of the backward size-biased Galton–Watson tree Ť

The genealogical (partial) order on T

̂

is defined in the following way. We simply keep the
genealogical orders inherited from the grafted Galton–Watson trees and combine them with the
genealogical order on the spine. For instance, u2 is an ancestor of any vertex in the subtrees
grafted at u1. We can also define in a consistent manner the notion of generation for every
vertex in T

̂

. In fact, for any vertex v not on the spine, there is a unique vertex um on the spine
such that v belongs to a finite subtree grafted at um, then we say that the generation of v in T

̂
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is equal to −m+ 1 plus the initial generation of v inside the corresponding grafted plane tree.
The vertex u0 in T

̂

corresponds to the root in the inflated Galton–Watson tree (abbreviated
as IGW ) described in Peres and Zeitouni [11]. It is worth pointing out that, while an independent
number of offspring of distribution θ is assigned the root of IGW, the vertex u0 in T

̂

has no
descendants. Besides, our notion of generation on T

̂

can also be called as the horocycle distance
from u0, if we follow the terminology in [11].

For every n ≥ 1, let [T

̂

]n be the plane tree obtained from T

̂

by only keeping the finite tree
above the vertex un. We take un as the root of [T

̂

]n, and the lexicographical order on the set of
vertices of [T

̂

]n corresponds to the order of visit when one “moves around” the finite tree [T

̂

]n in
clockwise order, starting from the root un. A key observation is that, viewed as a random plane
tree, [T

̂

]n has the same distribution as the random tree [T̂]n defined in Section 3.1. Moreover,
the root un of [T

̂

]n corresponds to the root ∅ of [T̂]n, and the vertex u0 in [T

̂

]n corresponds to
the vertex vn in [T̂]n.

4 Proof of Theorem 1
Before we start the proof of Theorem 1, let us emphasize that Theorem 1 is not a straightforward
consequence of Theorem 2. In fact, we will not directly use the results (4) and (5) obtained in
the continuous setting.

Recall that λ = E[Ĉ]− 1 is the constant greater than 1 that appears in the convergence (4).
Let δ > 0. By applying Proposition 9 to the indicator function

F (T , v) = 1{n−λ−δ ≤ P T (Xτn = v) ≤ n−λ+δ}c, for T ∈ Tf and v ∈ T ,

we see that

E
[ ∑
v∈T(n)

n

1{n−λ−δ ≤ PT(n)(Xτn = v) ≤ n−λ+δ}c
]

= 1
qn

P
(
{n−λ−δ ≤ P [T̂](n)(Xτn = vn) ≤ n−λ+δ}c

)
.

Notice that in the left-hand side of the last display, PT(n)(Xτn = v) is by definition the harmonic
measure µn(v) at vertex v. By virtue of (2) and (21), the proof of convergence (1) is thus reduced
to showing that for every δ > 0,

lim
n→∞

P
(
n−λ−δ ≤ P [T̂](n)(Xτn = vn) ≤ n−λ+δ

)
= 1. (23)

Since the hitting distribution of generation n is the same for simple random walk on [T̂](n)

and on its reduced tree [T̂]∗n, we have the equality

P [T̂](n)(Xτn = vn) = P [T̂]∗n(Xτn = vn) = P [T̂]n(Xτn = vn)

under the probability measure P. Furthermore, according to the final remark in Section 3.4, the
(random) probability P [T̂]n(Xτn = vn) is distributed under P as

P [Ť]n(Xτn = u0),

by which we mean the probability that a simple random walk on [T

̂

]n starting from the root un
hits level n (of [T

̂

]n) for the first time at u0. So the convergence (23) is equivalent to

lim
n→∞

P
(
n−λ−δ ≤ P [Ť]n(Xτn = u0) ≤ n−λ+δ

)
= 1. (24)
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In order to show the latter convergence, we denote by −M1,−M2, . . . the generations of the
vertices on the spine of T

̂

where there is (at least) one grafted plane tree that reaches generation
0, i.e. has a descendant of generation 0. This sequence of negative integers (−Mk)k≥1 is listed
in the strict decreasing order, and we set by convention M0 = 0. For every k ≥ 1, we also set
Lk := Mk −Mk−1 ≥ 1.

For every n ≥ 1, let kn := kn(T

̂

) be the index such that Mkn ≤ n < Mkn+1.

Lemma 13. We have P-a.s.
lim
n→∞

kn
2 logn = 1.

Proof. Recall that for every j ≥ 1, there are N̂j − 1 independent Galton–Watson trees grafted
at uj in T

̂

. Consider the event that at least one of those plane trees grafted at uj reaches
generation 0, and let εj be the corresponding indicator function. Then,

P(εj = 0) = E
[
(1− qj−1)N̂j−1

]
= E

[
(1− qj−1)N̂−1

]
.

Let gθ be the generating function of θ, i.e.

gθ(r) :=
∑
k≥0

θ(k)rk , 0 ≤ r ≤ 1.

Since θ has a finite variance σ2,

gθ(1− s) = 1− s+ σ2

2 s
2 + o(s2) as s→ 0.

As the mean of N̂ − 1 is σ2, we have E
[
(1− s)N̂−1] = 1− σ2s+ o(s) as s→ 0, which, together

with (21), yields that

P(εj = 0) = 1− 2
j

+ o(j−1) as j →∞. (25)

Notice that by definition, kn = ε1 + ε2 + · · ·+ εn. Hence,

E[kn] =
n∑
j=1

(
1− P(εj = 0)

)
∼ 2 logn as n→∞.

Since ε1, . . . , εn are independent, we also have var(kn) = O(logn), and the L2-convergence of
kn/(2 logn) follows immediately. The a.s. convergence is then obtained by standard monotonicity
and Borel–Cantelli arguments.

We introduce some additional notation before stating the next proposition. For every j ≥ 0,
we write P Ť

j for the (quenched) probability measure under which we consider a simple random
walk X = (Xk)k≥0 on T

̂

starting from the vertex uj . Under P Ť
j , we denote by S0 the hitting time

of generation 0 by the simple random walk X, and for every i ≥ 0, Πi := inf{k ≥ 0: Xk = ui}
denotes the hitting time of vertex ui.

Proposition 14. For every δ > 0, there exists an integer n0 ∈ N such that for every n ≥ n0,
we have

P
(
P [Ť]n(Xτn = u0) ≥ n−λ+δ

)
≤ 8P

(
P Ť
Mkn

(XS0 = u0, S0 < ΠMkn+1) ≥ n−λ+δ/2
)
,

and
P
(
P [Ť]n(Xτn = u0) ≤ n−λ−δ

)
≤ 8P

(
P Ť
Mkn

(XS0 = u0, S0 < ΠMkn+1) ≤ n−λ−δ
)
.
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Proof. We keep the notation used in the proof of Lemma 13. Observe that

P(Mkn+1 − n > n) = P(εn+j = 0 for all 1 ≤ j ≤ n) =
n∏
j=1

P(εn+j = 0)

converges to 1/4 as n→∞ by (25). One can thus find an integer n0 such that for every n ≥ n0,

P(Mkn+1 > 2n) ≥ 1
8 . (26)

Since Mkn+1 − n is independent of the finite tree above the vertex un in T

̂

,

P
(
Mkn+1 > 2n, P [Ť]n(Xτn = u0) ≥ n−λ+δ) = P(Mkn+1 > 2n)× P

(
P [Ť]n(Xτn = u0) ≥ n−λ+δ).

(27)
On the other hand, it is crucial to notice that under the probability measure P, the probability

P [Ť]n(Xτn = u0) has the same distribution as the conditional probability

P Ť
n (XS0 = u0 |S0 < ΠMkn+1),

which can be calculated as

P Ť
n (XS0 = u0 |S0 < ΠMkn+1) =

P Ť
n (XS0 = u0, S0 < ΠMkn+1)

P Ť
n (S0 < ΠMkn+1)

=
P Ť
n (ΠMkn

< ΠMkn+1)× P Ť
Mkn

(XS0 = u0, S0 < ΠMkn+1)

P Ť
n (S0 < ΠMkn+1)

by the strong Markov property of the random walk. Besides, simple considerations show that
P Ť
n (S0 < ΠMkn+1) ≥ 1/2 on the event {Mkn+1 > 2n}. Hence, we have

P
(
Mkn+1> 2n, P [Ť]n(Xτn = u0) ≥ n−λ+δ) = P

(
Mkn+1> 2n, P Ť

n (XS0 = u0 |S0 < ΠMkn+1) ≥ n−λ+δ)
≤ P

(
Mkn+1> 2n, P Ť

Mkn
(XS0 = u0, S0 < ΠMkn+1) ≥ n−λ+δ/2

)
≤ P

(
P Ť
Mkn

(XS0 = u0, S0 < ΠMkn+1) ≥ n−λ+δ/2
)
.

The last display, together with (26) and (27), yields the first inequality in the statement of the
proposition.

We can argue in a similar manner for the second inequality stated in the proposition. Its
proof is even simpler because it suffices to use the bound

P Ť
Mkn

(XS0 = u0, S0 < ΠMkn+1) ≤ P Ť
n (XS0 = u0 |S0 < ΠMkn+1),

instead of the estimate P Ť
n (S0 < ΠMkn+1) ≥ 1/2 used above.

According to (24) and the preceding result, we can therefore derive Theorem 1 from the
following proposition.

Proposition 15. For every δ > 0, it holds that

lim
n→∞

P
(
n−λ−δ ≤ P Ť

Mkn
(XS0 = u0, S0 < ΠMkn+1) ≤ n−λ+δ

)
= 1. (28)
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4.1 Proof of Proposition 15

Under the probability measure P, we set, for every k ≥ 1,

pk = pk(T

̂

) := P Ť
Mk

(XS0 = u0, S0 < ΠMk+1).

By the definition of Mk, there exists at least one plane tree grafted to uMk
that reaches gener-

ation 0. The root of this subtree is necessarily a child of uMk
distinct from uMk−1. If such a

subtree is unique, we let ck = ck(T

̂

) be the probability that a simple random walk starting from
its root reaches generation 0 before visiting uMk

. If there is more than one such grafted trees,
we take ck to be the sum of the corresponding probabilities. This definition is justified by the
fact that ck can be interpreted as the effective conductance between uMk

and generation 0 in
the graph that consists only of the vertex uMk

and all the subtrees grafted to it.
We also set, for every k ≥ 1,

hk = hk(T

̂

) := P Ť
Mk−1(S0 < ΠMk

),

which is the probability that a simple random walk starting from uMk−1 reaches generation 0
before visiting uMk

. With the notation of Section 3.3, it is clear that

hk = CMk−1([T

̂

]Mk−1).

We write `k = 1/Lk = (Mk −Mk−1)−1 for all k ≥ 1. Then simple considerations show that

p1 = `1
`1 + c1 + `2

,

and, for all k ≥ 2,

pk = `k
`k + ck + `k+1

(
pk−1 + `k

`k + ck−1 + hk−1
pk
)
. (29)

To establish the last formula, we consider the excursions of simple random walk outside of vertex
uMk

, which are independent of the same law. Under this excursion law, the random walk makes
its first jump with equal probability towards one of its neighbors, which are uMk−1, uMk+1 and
the children of uMk

distinct from uMk−1. The respective probabilities for an excursion to visit
uMk−1 , to visit uMk+1 , and to reach generation 0 in one of the subtrees grafted at uMk

, are
proportional respectively to 1/Lk = `k, to 1/Lk+1 = `k+1 and to ck. So the probability for the
random walk starting from uMk

to visit uMk−1 before hitting uMk+1 or reaching generation 0 is

`k
`k + `k+1 + ck

.

Next, conditionally on the latter event, the strong Markov property leads us to consider a simple
random walk that starts from uMk−1 . With probability pk−1 it reaches generation 0 by hitting
the vertex u0 before moving down to uMk

. However, we must also add the probability that this
random walk goes back down to uMk

before reaching generation 0, which is equal to

`k
`k + ck−1 + hk−1

,

multiplied by the probability pk that once returning to uMk
the random walk will eventually hit

generation 0 at u0 before moving down to uMk+1 .
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We derive from (29) that

pk−1 = pk
(`k + ck + `k+1

`k
− `k
`k + ck−1 + hk−1

)
,

from which it follows that

p1 = pk ×
k∏
j=2

(
1 + cj + `j+1

`j
− `j
`j + cj−1 + hj−1

)
.

We define thus, for every j ≥ 2,

Qj = Qj(T

̂

) := log
(
1 + cj + `j+1

`j
− `j
`j + cj−1 + hj−1

)
.

Lemma 16. We have
1
k

k∑
j=2

Qj
L2(P)−−−→
k→∞

λ

2 . (30)

The proof of this key lemma is postponed to the next section. Let us first show how it
implies Proposition 15 and thus Theorem 1. For any δ > 0, consider the event

{
(λ− δ) logn ≤

kn∑
j=2

Qj ≤ (λ+ δ) logn
}
.

Using Lemma 13 and Lemma 16, we see that the last event holds with P-probability tending
to 1 as n→∞. As

pkn = p1 exp
(
−

kn∑
j=2

Qj
)
,

we have
lim
n→∞

P
(
p1n
−λ−δ ≤ pkn ≤ p1n

−λ+δ
)

= 1.

Recalling the definition of pk, we conclude that

lim
n→∞

P
(
p1n
−λ−δ ≤ P Ť

Mkn
(XS0 = u0, S0 < ΠMkn+1) ≤ p1n

−λ+δ
)

= 1.

Since δ is arbitrary, the required convergence (28) readily follows from the last display. Therefore,
it remains to prove Lemma 16.

4.2 Proof of Lemma 16

By the definition of Qk, we can write for every k ≥ 2,

Qk = log
(

1 +
Mkck + Mk

Lk+1
Mk
Lk

−
Mk
Lk

Mk
Lk

+ Mk
Mk−1

(Mk−1ck−1 +Mk−1hk−1)

)
.

Lemma 17. We have(Lk+1
Mk

,
Lk
Mk−1

,Mkck,Mk−1ck−1,Mk−1hk−1
) (d)−→
k→∞

(
R,R′, C, C′, Ĉ

)
,

where in the limit
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• R and R′ are two positive random variables with the same distribution given by

P(R > x) = (1 + x)−2 for all x ≥ 0;

• C and C′ are distributed according to the law γ;

• Ĉ is distributed according to the law γ̂.

Furthermore, we suppose that R,R′, C, C′, Ĉ are all defined under the probability measure P, and
they are independent.

Proof. We first observe that (Mk−1, Lk)k≥1 is a homogeneous Markov chain on Z+ × N whose
initial distribution and transition probabilities are given as follows. Initially M0 = 0 and for
every integer ` ≥ 1,

P(L1 > `) =
∏̀
j=1

P(εj = 0),

where {εj = 0} means as previously that none of the Galton–Watson trees grafted at uj reaches
generation 0. Then for every k ≥ 1, Mk = Mk−1 + Lk and conditionally on {Mk = m},

P(Lk+1 > ` |Mk = m) =
∏̀
j=1

P(εm+j = 0) =: F (m, `), for every ` ≥ 1. (31)

Using (25), it is elementary to verify that for every x > 0,

F (m, bxmc) −→
m→∞

1
(1 + x)2 .

For every k ≥ 1, let Fk = σ(L1, L2, . . . , Lk) be the σ-field generated by (Li, 1 ≤ i ≤ k), so that
(Fk)k≥1 is the natural filtration associated with the Markov chain (Mk−1, Lk)k≥1. As Mk ≥ k,
it is clear that Mk →∞ as k →∞. By dominated convergence and the last display, we get that
for every x, y > 0,

P
( Lk
Mk−1

> x,
Lk+1
Mk

> y
)

= E
[
1
{ Lk
Mk−1

> x
}
P
(
Lk+1
Mk

> y

∣∣∣∣Fk)]
= E

[
1
{ Lk
Mk−1

> x
}
P
(
Lk+1
Mk

> y

∣∣∣∣Mk

)]
−→
k→∞

1
(1 + x)2(1 + y)2 ,

which entails that ( Lk
Mk−1

,
Lk+1
Mk

) (d)−→
k→∞

(
R′,R

)
. (32)

Note that conditionally on Mk and on the number of subtrees grafted at uk that hit genera-
tion 0, these subtrees are Galton–Watson trees conditioned to have height greater than Mk − 1.
Furthermore, the property E[N̂ ] =

∑
k2θ(k) < ∞ and the estimate (21) entail that a.s. for all

sufficiently large k, there is a unique subtree grafted at uMk
that reaches generation 0. Hence

by Proposition 11, we obtain the convergence

(
Mk−1ck−1,Mkck

) (d)−→
k→∞

(
C′, C

)
, (33)
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which holds jointly with (32), provided we let (C′, C) be independent of (R′,R).
Let J ≥ 2 be a fixed integer. We can generalize the preceding arguments to show that the

2J-tuple ( Lk−1
Mk−2

,
Lk−2
Mk−3

, . . . ,
Lk−J
Mk−J−1

,Mk−2ck−2,Mk−3ck−3, . . . ,Mk−J−1ck−J−1
)

converges in distribution as k →∞ to (R1,R2, . . . ,RJ , C1, C2, . . . , CJ). These random variables
appearing in the limit are all independent, and (Rj)1≤j≤J , respectively (Cj)1≤j≤J , have the
same distribution as R, resp. as C. If we set Vj = Rj

1+Rj
for all 1 ≤ j ≤ J , then (Vj)1≤j≤J are

i.i.d. with the same law of density 2(1− x) on [0, 1]. Moreover, the previous convergence can be
reformulated as ( Lk−j

Mk−j
,Mk−j−1ck−j−1

)
1≤j≤J

(d)−→
k→∞

(Vj , Cj)1≤j≤J . (34)

For all integers k > J and 0 ≤ j ≤ J , we can define

h
(j)
k = h

(j)
k (T

̂

) := P Ť
Mk−1(S0 ∧ΠMk−j−1 < ΠMk

),

which is the probability that a simple random walk starting from uMk−1 reaches generation 0
or the vertex uMk−j−1 before visiting uMk

. By definition it is clear that h(0)
k = 1. From the

interpretation of h(J)
k−1 as an electric conductance, we obtain the formula

h
(J)
k−1 =

(
Lk−1 +

(
ck−2 + h

(J−1)
k−2

)−1)−1

by the series law and parallel law. It follows that

Mk−1h
(J)
k−1 =

 Lk−1
Mk−1

+
1− Lk−1

Mk−1

Mk−2ck−2 +Mk−2h
(J−1)
k−2

−1

.

The same calculation can be repeated for Mk−2h
(J−1)
k−2 ,Mk−3h

(J−2)
k−3 . . . up until Mk−Jh

(1)
k−J . By

using (34) and the fact that h(0)
k−J−1 = 1, we see that the law of Mk−1h

(J)
k−1 converges weakly to

the J-th iterate Φ̂J(δ∞) as k →∞, where Φ̂ is the mapping defined in (11). Moreover, according
to assertion (1) in Proposition 7, Φ̂J(δ∞) converges weakly to γ̂ = Law(Ĉ) as J →∞.

On the other hand,

0 ≤ h(J)
k − hk = P Ť

Mk−1(ΠMk−J−1 < ΠMk
< S0).

Note that there is probability at least 1 − Mk−J−1
Mk

that, after hitting the vertex uMk−J−1, the
simple random walk on T

̂

will reach generation 0 before hitting uMk
. Hence, by the strong

Markov property of simple random walk, we have

h
(J)
k − hk ≤ P

Ť
Mk−1(ΠMk−J−1 < S0 ∧ΠMk

)× Mk−J − 1
Mk

.

By similar reasoning,

P Ť
Mk−1(ΠMk−J−1 < S0 ∧ΠMk

) ≤ 1
Mk −Mk−J + 1 ,
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and it follows that
Mkh

(J)
k −Mkhk ≤

Mk−J − 1
Mk −Mk−J + 1 .

Thus, for any η > 0,

P
(
|Mk−1hk−1 −Mk−1h

(J)
k−1| ≥ η

)
≤ P

( Mk−J−1 − 1
Mk−1 −Mk−J−1 + 1 ≥ η

)
.

But due to the previous discussions, it is clear that

lim
J→∞

lim sup
k→∞

P
( Mk−J−1 − 1
Mk−1 −Mk−J−1 + 1 ≥ η

)
= 0.

So we obtain, for any η > 0, that

lim
J→∞

lim sup
k→∞

P
(
|Mk−1hk−1 −Mk−1h

(J)
k−1| ≥ η

)
= 0.

Finally, by applying [2, Theorem 3.2] we get that

Mk−1hk−1
(d)−→
k→∞

Ĉ. (35)

Notice that hk−1 only depends on Mk−1 and the finite tree strictly above the vertex uMk−1 in T

̂

.
So conditionally on Mk−1, the latter quantity hk−1 is independent of (Lk, Lk+1, ck−1, ck). In
consequence, the convergence (35) holds jointly with (32) and (33), if we take Ĉ to be independent
of (R,R′, C, C′). The proof of Lemma 17 is therefore complete.

Lemma 18. It holds that
sup
k≥1

E
[
(Mkhk)2] <∞.

Proof. From the interpretation of hk as a conductance, we know by the series law and parallel
law that

hk =
(
Lk +

(
ck−1 + hk−1

)−1)−1
.

It follows that
Mkhk = Mk−1ck−1 +Mk−1hk−1

Lk
Mk

(Mk−1ck−1 +Mk−1hk−1) + 1− Lk
Mk

.

Again from the interpretation of ck−1 and hk−1 as conductances, it is elementary to see that
Mk−1ck−1 ≥ 1 and Mk−1hk−1 ≥ 1. Hence,

Mkhk ≤
Mk−1ck−1 +Mk−1hk−1

2Lk
Mk

+ 1− Lk
Mk

≤ Mk−1ck−1 + Mk−1hk−1

1 + Lk
Mk

.

For any η > 0, one can take C(η) > 1+ 1
η so that (a+b)2 ≤ C(η)a2 +(1+η)b2 for every a, b > 0.

Applying this inequality to the last display, we obtain

E
[
(Mkhk)2] ≤ C(η)E

[
(Mk−1ck−1)2]+ (1 + η)E

[(Mk−1hk−1

1 + Lk
Mk

)2]
. (36)

Now notice that

E
[(Mk−1hk−1

1 + Lk
Mk

)2]
= E

[ ∞∑
`=1

P(Lk = ` |Mk−1) (Mk−1hk−1)2

(1 + `
Mk−1+`)2

]
.
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According to (31), there exists a constant c > 0 such that, a.s. for all integers k ≥ 2, we have
P(Lk ≥Mk−1 |Mk−1) ≥ c. It follows that

∑
`≥1

P(Lk = ` |Mk−1) (Mk−1hk−1)2

(1 + `
Mk−1+`)2

≤
(2
3
)2 ∑

`≥Mk−1

P(Lk = ` |Mk−1)(Mk−1hk−1)2 +
∑

`<Mk−1

P(Lk = ` |Mk−1)(Mk−1hk−1)2

≤
(
1− 5

9c
)
(Mk−1hk−1)2,

and thus
E
[(Mk−1hk−1

1 + Lk
Mk

)2]
≤
(
1− 5

9c
)
E
[
(Mk−1hk−1)2].

Together with (36), the last display entails that

E
[
(Mkhk)2] ≤ C(η)E

[
(Mk−1ck−1)2]+ (1 + η)(1− 5

9c)E
[
(Mk−1hk−1)2].

Recall that by Lemma 12, E
[
(Mk−1ck−1)2] is uniformly bounded with respect to k. So by

choosing η sufficiently small so that (1+η)(1− 5
9c) < 1, we see that there exist positive constants

C <∞ and ρ < 1, both independent of k, such that for all k ≥ 2,

E
[
(Mkhk)2] ≤ C + ρE

[
(Mk−1hk−1)2].

The sequence (E[(Mkhk)2])k≥1 is therefore bounded.

With the notation of Lemma 17, we set

Q∞ := log
(

1 +
C + 1

R
1+R′
R′

− 1
1 +R′

(
C′ + Ĉ

)).
Lemma 19. (i) We have limk→∞ E[Qk] = E[Q∞].

(ii) We have the equality E[Q∞] = λ/2.

(iii) It holds that
sup
i,j≥1

E
[
|QiQj |

]
<∞ and sup

i,j≥1
E
[
(QiQj)2] <∞.

Proof. (i) On the one hand, since Mk
Lk

> 1,

Qk ≤ log
(

1 +
Mkck + Mk

Lk+1
Mk
Lk

)
≤ log

(
1 +Mkck + Mk

Lk+1

)
.

On the other hand,

Qk ≥ log
(

1−
Mk
Lk

Mk
Lk

+ Mk
Mk−1

(Mk−1ck−1 +Mk−1hk−1)

)

= − log
(

1 +
Mk
Lk

Mk
Mk−1

(Mk−1ck−1 +Mk−1hk−1)

)
= − log

(
1 +

Mk−1
Lk

Mk−1ck−1 +Mk−1hk−1

)
.
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Using the facts that Mk−1ck−1 ≥ 1 and Mk−1hk−1 ≥ 1, we arrive at

|Qk| ≤ max
{

log
(
1 +Mkck + Mk

Lk+1

)
, log

(
1 + Mk−1

2Lk

)}
.

One can find A > 0 such that log(1 + x) ≤ A+ x1/2 for every x > 0. It follows that

|Qk| ≤ A+
(
Mkck + Mk

Lk+1

) 1
2 +

(Mk−1
Lk

) 1
2 ≤ A+ (Mkck)

1
2 +

( Mk

Lk+1

) 1
2 +

(Mk−1
Lk

) 1
2
. (37)

Recall the convergence in distribution Mkck
(d)→ C shown in Lemma 17. By Lemma 12, it

follows that
E[Mkck] −→

k→∞
E[C]. (38)

In particular, supk E[Mkck] < ∞. Meanwhile, using (25) and (31), it is not difficult to verify
that there exists a positive constant K such that for every x > 0,

sup
k≥1

P
( Mk

Lk+1
> x

)
≤ K

1 + x
.

So using the formula

E
[( Mk

Lk+1

)α]
=
∫ ∞

0
αxα−1 P

( Mk

Lk+1
> x

)
dx ,

we get the existence of a constant α ∈ (1
2 , 1) such that

sup
k≥1

E
[( Mk

Lk+1

)α]
<∞. (39)

Hence, it follows from (37) that (Qk)k≥2 is bounded in Lp with some p > 1. The sequence (Qk)k≥2
is thus uniformly integrable. However, according to Lemma 17, Qk converges in distribution
to Q∞. Therefore, Qk → Q∞ in L1 and we have

lim
k→∞

E[Qk] = E[Q∞].

(ii) Recall that V = R
1+R and V ′ = R′

1+R′ are independent with the same law of density
2(1− x) on [0, 1]. Noting that

log
(

1 +
C + 1

R
1+R′
R′

− 1
1 +R′

(
C′ + Ĉ

)) = log
((
C + 1
R

)
V ′ + V ′(C′ + Ĉ)

1− V ′ + V ′(C′ + Ĉ)

)

= log V ′ + log
(
C + 1
R

+
(
V ′ + 1− V ′

C′ + Ĉ

)−1)
,

we can use the distributional identity (6) to obtain

E
[
Q∞

]
= E

[
log V ′

]
+ E

[
log

(
C + 1
R

+ Ĉ
)]
.

Since R = V
1−V , it follows that

log
(
C + 1
R

+ Ĉ
)

= log(1− V + V (C + Ĉ))− log V,
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which yields E
[
Q∞

]
= E

[
log(1 − V + V (C + Ĉ)

]
. To complete the proof of assertion (ii), we

apply (6) again to see that

E
[
log(1− V + V (C + Ĉ))

]
= E

[
log(Ĉ + C)

]
− E

[
log(Ĉ)

]
= E

[
log

( Ĉ + C
Ĉ

)]
,

which is equal to λ/2 according to (20).
(iii) There exists a constant Ã > 0 such that log(1+x) ≤ Ã+x1/4 for every x > 0. It follows

then from the same arguments as in the proof of assertion (i) that

|QiQj | ≤
(

log
(
1 +Mici + Mi

Li+1

)
+ log

(
1 + Mi−1

2Li

))(
log

(
1 +Mjcj + Mj

Lj+1

)
+ log

(
1 + Mj−1

2Lj

))
≤
(

2Ã+
(
Mici + Mi

Li+1

) 1
4 +

(Mi−1
Li

) 1
4
)(

2Ã+
(
Mjcj + Mj

Lj+1

) 1
4 +

(Mj−1
Lj

) 1
4
)
.

In order to prove that supi,j E[|QiQj |] <∞, it is enough to develop the product in the last line
of the preceding display, and to show that the expectation of each term is uniformly bounded
with respect to i and j. In fact, by the Cauchy–Schwarz inequality,

E
[(Mi−1

Li

) 1
4
(Mj−1
Lj

) 1
4
]
≤ E

[(Mi−1
Li

) 1
2
] 1

2
E
[(Mj−1

Lj

) 1
2
] 1

2
,

in which the right-hand side is uniformly bounded according to (39). Moreover, as

E
[(
Mici + Mi

Li+1

) 1
4
(
Mjcj + Mj

Lj+1

) 1
4
]
≤ E

[(
(Mici)

1
4 +

( Mi

Li+1

) 1
4
)(

(Mjcj)
1
4 +

( Mj

Lj+1

) 1
4
)]
,

we can develop the right-hand side and similarly use (38) and (39) to show that it is uniformly
bounded. All the other terms can be treated in an analogous way. By similar arguments, one
can also prove that supi,j E[(QiQj)2] <∞. This finishes the proof of assertion (iii).

Using assertions (i) and (ii) of Lemma 19, we have thus

lim
k→∞

E
[1
k

k∑
j=2

Qj

]
= lim

k→∞

1
k

k∑
j=2

E[Qj ] = E[Q∞] = λ

2 . (40)

Lemma 20. We have

lim sup
k→∞

E
[(1
k

k∑
j=2

Qj
)2]
≤
(
E[Q∞]

)2 = λ2

4 . (41)

Proof. We first note that for every δ ∈ (0, 1/2),∣∣∣∣∣E[ ∑
2≤i,j≤k

QiQj
]
− E

[ ∑
δk≤i,j≤k
|i−j|>δk

QiQj
]∣∣∣∣∣ ≤ 4δk2 × sup

i,j
E
[
|QiQj |

]
.

In view of Lemma 19 (iii), the estimate (41) will be proved if we can show for arbitrarily small
δ ∈ (0, 1/2) that

lim sup
k→∞

1
k2 E

[ ∑
δk≤i,j≤k
|i−j|>δk

QiQj

]
≤
(
E[Q∞]

)2
. (42)
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We thus fix δ ∈ (0, 1/2) in the following arguments. By symmetry, we can further restrict our
attention to the indices i and j such that δk ≤ i, j ≤ k and j − i > δk.

Notice that by the Cauchy–Schwarz inequality,∣∣∣∣∣ 1
k2 E

[ ∑
δk≤i,j≤k
j−i>δk

QiQj1{Mi+1≥εMj−1}

]∣∣∣∣∣ ≤ 1
k2

∑
δk≤i,j≤k
j−i>δk

P(Mi+1 ≥ εMj−1)
1
2E
[
(QiQj)2] 1

2

≤ sup
δk≤i,j≤k
j−i>δk

P(Mi+1 ≥ εMj−1)
1
2 × sup

i,j
E
[
(QiQj)2] 1

2 . (43)

However, observe that Lemma 13 can be reformulated as
logMk

k
P−a.s.−→
k→∞

1
2 ,

and it follows that for all ε ∈ (0, 1),

lim
k→∞

P
(
there exist i, j ∈ [δk, k] with j − i > δk such that Mi+1 ≥ εMj−1

)
= 0. (44)

Together with Lemma 19 (iii), the latter display implies that the right-hand side of (43) converges
to 0 as k →∞. The proof of (42) is thus reduced to showing that for fixed δ,

lim sup
ε→0

(
lim sup
k→∞

2
k2 E

[ ∑
δk≤i,j≤k
j−i>δk

QiQj1{Mi+1<εMj−1}

])
≤
(
E[Q∞]

)2
. (45)

To this end, we take ε ∈ (0, 1/2) and define, for every k ≥ 2,

hεk = hεk(T

̂
) := CMk−1−bεMkc([T

̂
]∗(Mk−1))

where [T

̂

]∗(Mk−1) stands for the reduced tree associated with [T

̂

]Mk−1 up to height Mk − 1.
In other words, hεk is the probability that a simple random walk on T

̂

starting from uMk−1
hits a point of generation −bεMkc that has a descendant at generation 0 before hitting uMk

.
Comparing with the definition of hk, it is clear that hεk ≥ hk. On the other hand, by similar
arguments as in the proof of Proposition 11, we obtain

hεk − hk ≤
bεMkc
Mk

hεk,

which entails that
Mkh

ε
k −Mkhk ≤ bεMkchεk ≤ 2εMkhk. (46)

We set

Qεk = Qεk(T

̂

) := log
(

1 +
Mkck + Mk

Lk+1
Mk
Lk

−
Mk
Lk

Mk
Lk

+ Mk
Mk−1

(Mk−1ck−1 +Mk−1h
ε
k−1)

)
≥ Qk.

Using the elementary inequality 0 ≤ log x− log y ≤ x−y
y for x ≥ y > 0, we see that

Qεk −Qk ≤
Mk
Lk

Mkck + Mk
Lk+1

( Mk
Lk

Mk
Lk

+ Mk
Mk−1

(Mk−1ck−1 +Mk−1hk−1)
−

Mk
Lk

Mk
Lk

+ Mk
Mk−1

(Mk−1ck−1 +Mk−1h
ε
k−1)

)

≤
(Mk
Lk

)2
Mkck + Mk

Lk+1

·
Mk
Mk−1

(Mk−1h
ε
k−1 −Mk−1hk−1)(Mk

Lk
+ Mk

Mk−1
(Mk−1ck−1 +Mk−1hk−1)

)2 .
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Taking account of the easy facts that Mkck ≥ 1 and Mk = Mk−1 + Lk, we obtain

Qεk −Qk ≤
(Mk
Lk

)2 Mk
Mk−1

(Mk−1h
ε
k−1 −Mk−1hk−1)(

Mk
Lk

+ Mk
Mk−1

)2 ≤Mk−1h
ε
k−1 −Mk−1hk−1,

which, together with (46), implies that

Qεk −Qk ≤ 2εMk−1hk−1.

This allows us to approximate E[QiQj1{Mi+1<εMj−1}] by E[QiQεj1{Mi+1<εMj−1}], because∣∣∣E[QiQj1{Mi+1<εMj−1}
]
− E

[
QiQ

ε
j1{Mi+1<εMj−1}

]∣∣∣ ≤E
[
|Qi(Qεj −Qj)|

]
≤E

[
(Qεj −Qj)2] 1

2 × E
[
(Qi)2] 1

2

≤ 2εE
[
(Mj−1hj−1)2] 1

2 × E
[
(Qi)2] 1

2 ,

and the right-hand side converges to 0 uniformly with respect to i, j and k when ε→ 0, according
to Lemma 18 and assertion (iii) of Lemma 19.

Let us return to the indices i, j such that δk ≤ i, j ≤ k and j − i > δk, and let F̃i be the σ-
field generated by the variableMi+1 and the finite part of T

̂

above the vertex uMi+1 . Informally,
one can think of it as the σ-field generated by [T

̂

]Mi+1 . Then Qi is F̃i-measurable and

E
[
QiQ

ε
j1{Mi+1<εMj−1}

]
= E

[
Qi E

[
Qεj1{Mi+1<εMj−1} | F̃i

]]
. (47)

At this point, we observe that

E
[
Qεj1{Mi+1<εMj−1} | F̃i

]
= E

[
Qεj1{Mi+1<εMj−1} |Mi+1

]
. (48)

On the other hand, one can generalize the proof of Lemma 17 to show that(Lj+1
Mj

,
Lj
Mj−1

,Mjcj ,Mj−1cj−1,Mj−1h
ε
j−1

) (d)−→
j→∞

(
R,R′, C, C′, Ĉε

)
, (49)

where in the limit, the first four random variables R,R′, C, C′ are the same as in Lemma 17,
whereas Ĉε is distributed as C(∆̂ε). It is assumed in addition that R,R′, C, C′, Ĉε are independent
under P. Furthermore, we can verify that the convergence (49) is still valid if, instead of the
distribution of (Lj+1

Mj
,
Lj
Mj−1

,Mjcj ,Mj−1cj−1,Mj−1h
ε
j−1

)
,

we consider the conditional distribution of the same random 5-tuple given Mi+1, and let i and j
tend to infinity satisfying that j − i > δj.

We define thus
Qε∞ := log

(
1 +
C + 1

R
1+R′
R′

− 1
1 +R′

(
C′ + Ĉε

)),
which has the limiting distribution of the sequence (Qεj) conditioned on Mi+1. By similar
arguments used in the proof of assertion (i) of Lemma 19, we know that there exists some p > 1
such that

sup
` : P(Mi+1=`)>0

E
[
(Qεj)p |Mi+1 = `

]
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is uniformly bounded for all i, j satisfying that j − i > δj, and that

lim
i,j→∞
j−i>δj

(
sup

` : P(Mi+1=`)>0

∣∣∣E[Qεj |Mi+1 = `
]
− E

[
Qε∞

]∣∣∣) = 0.

In view of (44) and (48), it follows that a.s.

lim
i,j→∞
j−i>δj

∣∣∣E[Qεj1{Mi+1<εMj−1} | F̃i
]
− E

[
Qε∞

]∣∣∣ = 0.

Hence, we get from (47) and Lemma 19 (i) that

lim
k→∞

(
sup

i,j∈[δk,k]
j−i>δk

E
[
QiQ

ε
j1{Mi+1<εMj−1}

])
≤ E[Q∞]E

[
Qε∞

]
.

Finally, it remains to estimate the difference between E
[
Qε∞

]
and E[Q∞]. To do this, we use

a coupling argument by defining both Ĉε and Ĉ from a common reduced tree ∆̂, independent of
(R,R′, C, C′), so that Ĉ = C(∆̂) and Ĉε = C(∆̂ε). Since C ≥ 1 and Ĉε ≥ Ĉ ≥ 1, one can proceed
in the same way as we did for bounding Qεk −Qk, and arrive at

0 ≤ Qε∞ −Q∞ ≤
1 + 1

R′

C + 1
R

R′(Ĉε − Ĉ)
(1 +R′(C′ + Ĉ))2

≤
(
1 + 1
R′
)R′(Ĉε − Ĉ)

(1 +R′)2 ≤ Ĉε − Ĉ.

Taking account of (22), the last display gives
∣∣E[Qε∞] − E[Q∞]

∣∣ ≤ 2εE[Ĉ], and the right-hand
side converges to 0 as ε→ 0.

According to the previous discussions, we conclude that

lim sup
ε→0

(
lim sup
k→∞

2
k2E

[ ∑
δk≤i,j≤k
j−i>δk

QiQj1{Mi+1<εMj−1}

])

= lim sup
ε→0

(
lim sup
k→∞

2
k2E

[ ∑
δk≤i,j≤k
j−i>δk

QiQ
ε
j1{Mi+1<εMj−1}

])

≤ lim sup
ε→0

E[Q∞]E
[
Qε∞

]
=
(
E[Q∞]

)2
,

which finishes the proof of (45). The proof of Lemma 20 is therefore completed.

Proof of Lemma 16. By combining (40) and (41), we have

lim sup
k→∞

E
[(1
k

k∑
j=2

Qj −
λ

2
)2]
≤
(

lim sup
k→∞

E
[(1
k

k∑
j=2

Qj
)2])

− λ lim
k→∞

E
[1
k

k∑
j=2

Qj

]
+ λ2

4 ≤ 0,

which gives the desired result.

36



References
[1] K.B. Athreya, P. E. Ney, Branching Processes. Springer, New York–Heidelberg, 1972.

[2] P. Billingsley, Convergence of probability measures, 2nd edition, John Wiley & Sons
Inc., New York, 1999.

[3] N. Curien, J.-F. Le Gall, The harmonic measure of balls in random trees, to appear in
Ann. Probab., available at arxiv:1304.7190.

[4] T. Duquesne, J.-F. Le Gall, The Hausdorff measure of stable trees, Alea, 1 (2006),
393-415.

[5] H. Kesten, Subdiffusive behavior of random walk on a random cluster, Ann. Inst. H.
Poincaré Probab. Statist., 22 (1986), 425–487.

[6] S. Lin, The harmonic measure of balls in critical Galton–Watson trees with infinite variance
offspring distribution. Electron. J. Probab. 19 (2014), no. 97, 1–35.

[7] Q. Liu, A. Rouault, On two measures defined on the boundary of a branching tree, in
Classical and Modern Branching Processes, The IMA Volumes in Mathematics and its
Applications Volume 84, Springer New York, 1997, 187–201

[8] R. Lyons, R. Pemantle, and Y. Peres, Ergodic theory on Galton-Watson trees: speed
of random walk and dimension of harmonic measure, Ergodic Theory Dynam. Systems, 15
(1995), 593–619.

[9] R. Lyons, R. Pemantle, and Y. Peres, Conceptual proofs of l log l criteria for mean
behavior of branching processes, Ann. Probab., 23 (1995), 1125–1138.

[10] R. Lyons, Y. Peres, Probability on Trees and Networks, Cambridge University Press, to
appear, available at http://pages.iu.edu/~rdlyons/.

[11] Y. Peres, O. Zeitouni, A central limit theorem for biased random walks on Galton-
Watson trees, Probab. Theory Related Fields, 140 (2008), no. 3-4, 595–629.

37


	Introduction
	The continuous setting
	The continuous reduced tree 
	The Yule tree 
	The invariant measure
	The continuous conductances
	Proof of Theorem 2 and of Proposition 4
	The size-biased Yule tree "0362
	The size-biased reduced tree "0362

	The discrete setting
	Notation for discrete trees
	Convergence of discrete reduced trees
	Convergence of discrete conductances
	Backward size-biased Galton–Watson tree

	Proof of Theorem 1
	Proof of Proposition 15
	Proof of Lemma 16


