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DERIVED DEFORMATION RINGS ALLOWING CONGRUENCES

YICHANG CAI

Abstract. We generalize a result of Galatius and Venkatesh ([GV18, Theorem 14.1]) which relates the
graded module of cohomology of locally symmetric spaces to the graded homotopy ring of the derived Galois
deformation rings, by removing certain assumptions, and in particular by allowing congruences inside the
localized Hecke algebra.
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Introduction

The cohomology of locally symmetric spaces associated to reductive algebraic groups defined over number
fields is a central object in modern Number Theory. As a complex vector space endowed with an action of
the Hecke algebra, it generalizes the space of modular forms for general groups; on the other hand, this Hecke
module admits natural underlying integral structures (for instance over rings of p-adic integers). Given a
cohomological cuspidal automorphic representation π, the π-isotypical component of the cohomology under
the Hecke action may occur in several degrees. In the Shimura variety case, this phenomenon can be avoided
by restricting to tempererd representations, but in general, it cannot be avoided. This phenomenon has
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2 YICHANG CAI

been explained over C by Borel and Wallach by calculations of (g,K)-cohomology. More recently, a motivic
interpretation of this phenomenon has been investigated by A. Venkatesh. Over the p-adic integers, the
fundamental works are those by Calegari and Geraghty [CG18] and by Galatius and Venkatesh [GV18].
Following these works, we will study the relation between the graded structure of cohomology of locally
symmetric spaces and the graded homotopy ring of the derived Galois deformation rings under assumptions
similar but lighter than those of [GV18].

Let F be a fixed number field. We use the bold G to denote a connected reductive linear algebraic group

over F and write G = LG = Ĝ⋊Gal(F̄ /F ) for convenience, as the paper will mainly focus on the L-group.
Let Gf = G(A∞

F ) and G∞ = G(F ⊗Q R). Let XG = G∞/K∞ be the symmetric space associated to G,
where K∞ = C∞ ·A(R), C∞ is a maximal compact subgroup of the real Lie group G∞ and A is a maximal
Q-split torus of the center of ResFQG. Let q0 and ℓ0 be integers associated to G such that{

2q0 + ℓ0 = dimXG = d;
ℓ0 = rankG∞ − rankK∞.

For an open compact subgroup U ⊆ Gf , the locally symmetric space of G with level structure U is defined

to be XU
G = G(F )\(XG ×Gf/U).

Let p > 2 be an odd prime number. LetK be a large enough p-adic number field containing all embeddings
of F into Q̄p, let O be its ring of integers, k be its residue field and ϖ be a uniformizing parameter. For
a dominant weight λ = (λτ,i)τ : F ↪→K,1≤i≤n for G, we write Vλ = ⊗τ : F ↪→KVλτ for the irreducible algebraic

representation of G of highest weight λ, and write Ṽλ(R) for the associated sheaf for an O-algebra R.
The complex cohomology of XU

G can be studied via the theory of (g,K)-cohomology. In particular, the

tempered part H∗
temp(X

U
G, Ṽλ(C)) (an embedding K ↪→ C is fixed) is concentrated in the interval [q0, q0+ ℓ0]

and we have

dimHq0+i
temp(X

U
G, Ṽλ(C)) =

(
ℓ0
i

)
· dimHq0

temp(X
U
G, Ṽλ(C)).

In fact, in [PV16, Section 3], the authors constructed an action of ∧∗a∗G on H∗
temp(X

U
G, Ṽλ(C)), where a∗G is

the dual of the Lie algebra of the split part of a fundamental Cartan algebra, such that Hd−∗
temp(X

U
G, Ṽλ(C))

is freely generated in degree q0 over ∧∗a∗G.
It’s natural to consider the analogous question for integral coefficients. Under some assumptions, the

Calegari-Geraghty method (see [CG18]) implies that, H∗(XU
G, Ṽλ(O))m, where m is a non-Eisenstein maximal

ideal of the associated Hecke algebra, is a free graded module over a graded commutative ring which arises
naturally in the Taylor-Wiles method. However, this graded commutative ring is not canonically defined,
and the idea of [GV18] is that the better object is the derived generalization of the Galois deformation ring.
We will now explain in more details the backgrounds and results of this paper.

We suppose that p is very good for G in the sense of [BHKT19, Page 10] and ζp /∈ F . Let Sp be the set of
places of F dividing p and S∞ be the set of archimedean places of F . Let S ⊇ Sp be a finite set of finite places
of F . We write GS =

∏
v∈S G(Fv) and GS for the image of the natural projection Gf →

∏
v/∈S G(Fv). Let’s

fix a faithful representation G→ GLN and define G to be the schematic closure of G in GLN,OF
. Suppose

U = US × US = (
∏

v∈S Uv)× (
∏

v/∈S Uv) with Uv ⊆ G(Ov) for every finite place v and each Uv (v /∈ S\Sp)

hyperspecial maximal; the spherical Hecke algebra H(GS , US) acts on H∗(XU
G, Ṽλ(O)). Note that the image

of this action, which we denote by h, is a finite commutative O-algebra. We say that a maximal ideal m is

non-Eisenstein if any (h⊗O k)-isotypical component appearing in H∗(XU
G, Ṽλ(O))m⊗O k doesn’t come from

H∗(XU
G, Ṽλ(k))/H

∗
! (X

U
G, Ṽλ(k)). Let m be a non-Eisenstein maximal ideal of h and let T = hm. Let π be a

cuspidal automorphic representation occuring in H∗(XU
G, Ṽλ(O))m.
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Let Γv = Gal(F̄v/Fv) and let ΓS be the Galois group of the maximal S-ramified extension of F . We make
the following assumption:

Assumption (Resm). There exists an absolutely irreducible (see [BHKT19, Definition 3.5]) Galois repre-
sentation ρ̄ : ΓS → G(k) associated to π (see [BG10, Section 5]) such that

(1) for v /∈ S, the Ĝ(k)-conjugacy class of ρ̄(Frobv) is given by the Satake parameter of πv modulo m;
(2) ρ̄|Γv is minimal for v ∈ S\Sp;
(3) ρ̄|Γv is simultaneously either ordinary, or Fontaine-Laffaille with Hodge–Tate weights differing by at

most p − 2 for v ∈ Sp. In the ordinary case, ρ̄|Γv is furthermore assumed to be regular and dual
regular (see [Til96, Propostion 6.2 and Propostion 6.3]).

We require further that ρ̄ is odd (see Definition 1.11) and has an enormous image (see Definition 1.8).

Let S be the global deformation problem for ρ̄ : ΓS → G(k), which is either minimal ordinary or minimal
Fontaine-Laffaille. Then the deformation functor for ρ̄ of type S (denoted DS) is represented by a complete
Noetherian local O-algebra RS .

The method of [CG18] relies significantly on the following conjectures:

Conjecture (Vanm). The cohomology group H i(XU
G, Ṽλ(O))m vanishes unless i ∈ [q0, q0 + ℓ0].

Conjecture (Galm). There is a Galois representation ρm : ΓS → G(T) lifting ρ̄ such that

(1) ρm|Γv is minimal for v ∈ S\Sp;
(2) ρm|Γv is simultaneously either ordinary, or Fontaine-Laffaille for every v ∈ Sp;
(3) ρm|Γv satisifies local-global compatibility for any Taylor-Wiles prime v.

(see [GV18, Assumption 2] and [KT17, Conjecture 6.27]). This means that there is a natural morphism
RS → T in CNLO and similarly for the ”Taylor-Wiles thickenings” RQ and TQ of the rings RS and T.

Remark. For GLN over CM fields, [ACC+18] gives strong evidences for the existence of RS → T, as these
authors do prove it after quotient by a nilpotent ideal of T.

Then Calegari and Geraghty ([CG18]) constructed R∞ = O[[X1, . . . , Xg]] and S∞ = O[[X1, . . . , Xg+ℓ0 ]]
(g is a constant) with an O-algebra morphism S∞ → R∞, as well as a complex C∗

∞ of finite free S∞-
modules concentrated in degrees [q0, q0 + ℓ0] and an S∞-algebra morphism R∞ → EndS∞(H∗(C∗

∞)), such

that H∗(C∗
∞ ⊗S∞ O) ∼= H∗(XU

G, Ṽλ(O))m and the following result holds:

Theorem (Calegari-Geraghty). Let the notations be as above. Assume (Resm), (Galm) and (Vanm). Then

(1) H i(C∗
∞) = 0 for i ̸= q0 + ℓ0 and Hq0+ℓ0(C∗

∞) is free over R∞.

(2) There is an isomorphism Hq0+ℓ0−i(XU
G, Ṽλ(O))m ∼= TorS∞

i (Hq0+ℓ0(C∗
∞),O), and TorS∞

∗ (Hq0+ℓ0(C∗
∞),O)

is a natural graded TorS∞
∗ (R∞,O)-module freely generated by TorS∞

0 (Hq0+ℓ0(C∗
∞),O).

(3) RS → T is an isomorphism.

Note the isomorphism TorS∞
∗ (R∞,O) ∼= π∗(R∞⊗S∞

O) as graded commutativeO-algebras, where−⊗S∞
O

can be thought of as a model for calculating the total left derived functor of the degreewise-extended tensor
on simplicial rings (see Section 2.1.6), so it’s natural to think of TorS∞

∗ (R∞,O) as the homotopy of some
derived generalization of RS . It is observed in [GV18] that this is indeed the case.

For a complete and cocomplete category C, the simplicial category sC is defined to be the category of
contravariant functors from ∆ to C, where ∆ is the cosimplicial indexing category (the objects are totally
ordered sets [n] = {0, . . . , n} and morphisms are non-decreasing maps). When C is the category of sets,
modules or algebras, the category sC is naturally a simplicial model category. In particular in these categories
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(1) we can define homotopy groups and a weak equivalence relation, such that f : A → B is a weak
equivalence if and only if f induces isomorphisms on all homotopy groups;

(2) there is an enriched hom sHom(A,B) ∈ sSets, with the property sHom(A,B)0 ∼= Hom(A,B).

Note DS restricts to a functor from the category of artinian local O-algebras ArtO to the category
of sets Sets. Following [GV18], DS can be extended to a functor sDS from the category of simplicial
artinian local O-algebras O\sArt/k to the category of simplicial sets sSets. By saying extended, we mean
DS(A) ∼= π0sDS(A) when A is a classical artinian local O-algebra (on the right hand side A is regarded as
a constant object in O\sArt/k).

It is proved that the functor sDS is pro-representable. More precisely, there exists a projective system
RS = (Rn)n∈N with each Rn ∈ O\sArt/k being cofibrant, such that sDS(A) is weakly equivalent to
lim−→
n

sHomO\sCR/k(Rn, A) for each A ∈ O\sArt/k. Note RS is unique only in the homotopy category,

nonetheless π∗RS is well-defined. Indeed, by regarding π∗RS as the projective limit, it is naturally a graded
commutative O-algebra, and at degree 0 we have π0RS ∼= RS . We can now state our main result (see
Theorem 3.32), which is a generalization of [GV18, Theorem 14.1]:

Theorem. With the above notations, there is an isomorphism of graded commutative O-algebras π∗RS ∼=
TorS∞

∗ (R∞,O) (where π∗RS is defined as the projective limit). Moreover, H∗(XU
G, Ṽλ(O))m is a graded

π∗RS-module freely generated by Hq0+ℓ0(XU
G, Ṽλ(O))m.

We mention the differences with [GV18, Theorem 14.1]:

(1) In [GV18, Theorem 14.1] the group G is assumed to have a trivial center. In the general case, as
already pointed out in [GV18], one has to modify the derived (local and global) universal deformation
functors to take the center into account.

(2) More importantly, one has to redefine the derived local deformation problems, for in [GV18, Section
9] it is assumed that the classical local (unframed) deformation functors are represented by formally
smooth rings, which is not the case for us.

(3) In [GV18], only the case RS = T = O is considered since the application in [GV18, Section 15] uses
the surjectivity of the homomorphism S∞ ↠ R∞ (see [GV18, Remark 1.1]). This surjectivity is
obtained by imposing strong restrictions on the local deformation conditions ([GV18, Section 10])
which we don’t have. Here, we have to recalculate the Poitou-Tate Euler characteristics in order
to verify [GV18, Theorem 11.1] in our more general setting. See also [TU21], where some partial
results are proved without the surjection S∞ ↠ R∞.

Here is the outline of the paper. In Section 1, we will recall the Calegari-Geraghty method which describes
the graded structure of the integral cohomology after non-Eisenstein localizations. In Section 2, we will
prepare the necessary backgrounds on simplicial theory to study functors from simplicial Artinian O-algebras
to simplicial sets. In Section 3, we will extend the classical deformation functors to simplicial categories and
study the homotopy of their pro-representing rings. The main result (Theorem 3.32) is a generalization of
[GV18, Theorem 14.1], where in particular the congruences inside the localized Hecke algebra are allowed.
In Section 4, we will discuss the examples of general linear groups and orthogonal similitude groups, and
we will try to compare the derived deformation rings and the cohomology of locally symmetric spaces under
certain Langlands transfers.
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1. Calegari-Geraghty method

In this section we will present the Calegari-Geraghty method with an emphasis on the graded structures of

H∗(XU
G, Ṽλ(O))m and TorS∞

∗ (R∞,O). As mentioned in the introduction, the isomorphism TorS∞
∗ (R∞,O) ∼=

π∗(R∞⊗S∞
O) provides a motivation for considering deformations to simplicial rings.

We suppose the center Z of G is smooth over O. Let gk = Lie(G/O)⊗O k (resp. zk = Lie(Z/O)⊗O k).
Let ΓS be the Galois group of the maximal S-ramified extension of F and let ρ̄ : ΓS → G(k) be a fixed

absolutely irreducible continuous Galois representation; ρ̄ will eventually be the representation described in
(Resm). Since ρ̄ is absolutely irreducible, we have H0(ΓS , gk) = zk (see [BHKT19, Lemma 5.1]).

1.1. Galois deformation theory. We begin by recalling some deformation theory for ρ̄. Let CNLO be
the category of complete Notherian local O-algebras with residue field k. The universal framed deformation
functor Def□S : CNLO → Sets for ρ̄ is defined by associating A ∈ CNLO to the set of continuous liftings
ρ : ΓS → G(A) which make the following diagram commute:

ΓS
ρ //

ρ̄

""

G(A)

��
G(k).

Moreover, the universal deformation functor DefS : CNLO → Sets is defined by associating A ∈ CNLO
to the set of ker(G(A)→ G(k))-conjugacy classes of Def□S (A). As an application of Schlessinger’s criterion
(see [Sch68, Theorem 2.11]), the functors Def□S and DefS are representable (for the latter we require the
condition H0(Γ, gk) = zk, see [Til96, Theorem 3.3]).

For each place v ∈ S, we define similarly the universal framed deformation functor Def□v and the universal
deformation functor Defv for ρ̄|Γv (recall Γv = Gal(F̄v/Fv)). Again Schlessinger’s criterion implies that
Def□v is representatble, say by R□

v ∈ CNLO. However the functor Defv is generally not representable, for
H0(Γv, gk) = zk is usually not true.

Definition 1.1. Let v be a finite place of F . A local deformation problem for ρ̄|Γv is a subfunctor Dv of
Def□v satisfying the following conditions:

(1) Dv is represented by a quotient Rv ∈ CNLO of R□
v .

(2) For any A ∈ CNLO, ρ ∈ Dv(A) and a ∈ Ĝ(A), we have aρa−1 ∈ Dv(A).

Let k[ϵ] = k[t]/(t2). Then it’s well-known that Dv(k[ϵ]) can be identified with a subspace L̃v ⊆ Z1(Γv, gk),
which is the preimage of a subspace Lv ⊆ H1(Γv, gk) under the projection Z1(Γv, gk) → H1(Γv, gk). Note
Rv can be generated by

dimk L̃v = dimk gk + (dimk Lv − dimk H
0(Γv, gk))

variables over O. We say Dv or Rv is formally smooth if Rv is a power series ring over O; note then the

number of generators is dimk L̃v.

Definition 1.2. A global deformation problem is a tuple S = (S, {Dv}v∈S), where Dv is a local deformation
problem for ρ̄|Γv for each v ∈ S.

Definition 1.3. We say a lifting ρ : ΓS → G(A) (A ∈ CNLO) of ρ̄ is of type S if ρ|Γv ∈ Dv(A) for every
v ∈ S. Two liftings ρ1,ρ2 : ΓS → G(A) of type S are said to be equivalent if there exists a ∈ ker(G(A) →
G(k)) such that ρ2 = aρ1a

−1. An equivalent class of liftings of type S is called a deformation of type S. We
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denote by DS : CNLO → Sets the functor which sends A ∈ CNLO to the set of deformations to G(A) of
type S.

Under our condition H0(ΓS , gk) = zk, it’s well-known that the functor DS is representable, say by RS ∈
CNLO.

We define C∗
S(ΓS , gk) by the cone construction: let C∗

S(ΓS , gk) = C∗[−1], where C∗ is the mapping cone
of the natural morphism

0 // C0(ΓS , gk) //

��

C1(ΓS , gk) //

��

C2(ΓS , gk)

��

// . . .

0 // 0 //
⊕

v∈S C1(Γv, gk)/L̃v
//
⊕

v∈S C2(Γv, gk) // . . .

Let H∗
S(ΓS , gk) be the cohomology of C∗

S(ΓS , gk). Then we have the following exact sequence:

0→H0
S(ΓS , gk)→ H0(ΓS , gk)→ 0

→H1
S(ΓS , gk)→ H1(ΓS , gk)→

⊕
v∈S

H1(Γv, gk)/Lv

→H2
S(ΓS , gk)→ H2(ΓS , gk)→

⊕
v∈S

H2(Γv, gk)

→H3
S(ΓS , gk)→ 0.

For a finite O-module M equipped with a Galois group action, we write M∨ = HomO(M,K/O) and
M∗ = HomO(M,K/O(1)). In particular, if M is a k-vector space, then M∨ ∼= Homk(M,k) and M∗ ∼=
Homk(M,k(1)).

Define H1
S⊥(ΓS , g

∗
k) = ker(H1(ΓS , g

∗
k) →

⊕
v∈S H1(Γv, g

∗
k)/L

⊥
v ), where L⊥

v ⊆ H1(Γv, g
∗
k) is the dual of

Lv ⊆ H1(Γv, gk) under the local Tate duality. As an application of the Poitou-Tate duality, we have
H1

S⊥(ΓS , g
∗
k)

∨ ∼= H2
S(ΓS , gk) and H0(ΓS , g

∗
k)

∨ ∼= H3
S(ΓS , gk) (see the proof of [ACC+18, Proposition 6.2.24]).

Lemma 1.4. There is an O-algebra surjection O[[X1, . . . , Xg]] ↠ RS , with

g = dimk H
1
S(ΓS , gk) =dimk H

1
S⊥(ΓS , g

∗
k) + dimk H

0(ΓS , gk)− dimk H
0(ΓS , g

∗
k)

−
∑
v | ∞

dimk H
0(Γv, gk) +

∑
v∈S

(dimk Lv − dimk H
0(Γv, gk)).

Proof. See [ACC+18, Proposition 6.2.24]. □

Remark 1.5. Suppose ζp /∈ F , and suppose H = ρ̄(GalF (ζp)) satisfies g
H
k = zk (this is part of the enormous

image condition for ρ̄), then it’s easy to see H0(ΓS , g
∗
k) = 0.

1.2. Taylor-Wiles primes. Given S and a finite set of places Q disjoint from S, we write SQ = (S ∪
Q, {Dv}v∈S∪Q) where Dv = Def□v for every v ∈ Q.

Definition 1.6. (1) A place v /∈ S is called a Taylor-Wiles prime if N(v) ≡ 1 (mod p) and ρ̄(Frobv) is
conjugated to a strongly regular element of T (k) (i.e., an element t ∈ T (k) whose centralizer in G
coincides with T ).

(2) An allowable Taylor-Wiles datum of level m is a set of Taylor-Wiles primes Q = (v1, . . . , vr), together
with a strongly regular element tvi ∈ T (k) conjugate to ρ̄(Frobvi) for each i ∈ {1, . . . , r}, such that
(a) N(vi) ≡ 1 (mod pm), for every i ∈ {1, . . . , r};
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(b) H2
SQ

(ΓS∪Q, gk) = 0.

Remark 1.7. By the Poitou-Tate duality, condition (b) is equivalent to H1
S⊥(ΓS , g

∗
k) = 0.

The existence of Taylor-Wiles data relies on the enormous image assumption for ρ̄ (see [ACC+18, Defi-
nition 6.2.28]):

Definition 1.8. Let g′k be the Lie algebra of the derived group G′. We say ρ̄ : ΓS → G(k) has an enormous
image, if H = ρ̄(GalF (ζp)) satisfies the following:

(1) H has no non-trivial p-power order quotient.
(2) H0(H, g′k) = H1(H, g′k) = 0.

(3) For any simple k[H]-module W ⊆ g′k, there is a regular semisimple h ∈ H such that W h ̸= 0.

Lemma 1.9. Suppose ρ̄ : ΓS → G(k) has an enormous image. Let r ≥ dimk H
1
S(ΓS , g

∗
k) and m ≥ 1. Then

there exists an allowable Taylor-Wiles datum Q of level m and cardinal r.

Proof. [ACC+18, Lemma 6.2.31] proved this for GLN , but the proof applies verbatim for general G. □

Now fix r ≥ dimk H
1
S(ΓS , g

∗
k). Let Q = (Qm)m≥1 be a system of disjoint allowable Taylor-Wiles data,

such that each Qm is of level m and cardinal r. For simplicity, we write Γm = ΓS∪Qm , Dm = DSQm
for the

deformation functor of type SQm and Rm = RSQm
for the representing ring of Dm. Let n = rankG.

Lemma 1.10. For every m ≥ 1, there is an O-algebra surjection O[[X1, . . . , Xg]] ↠ Rm, with

g = dimk H
1
SQm

(Γm, gk) = nr + dimk H
1
S(ΓS , gk)− dimk H

1
S⊥(ΓS , g

∗
k).

Proof. We apply Lemma 1.4 to the global deformation problem SQm . Then H1
S⊥
Qm

(Γm, g∗k) = 0 by the

definition of Qm, so

g = dimk H
0(ΓS , gk)−

∑
v | ∞

dimk H
0(Γv, gk) +

∑
v∈S

(dimk Lv − dimk H
0(Γv, gk))

+
∑

v∈Qm

(dimk Lv − dimk H
0(Γv, gk)).

By Lemma 1.4, we have

dimk H
1
S(ΓS , gk)− dimk H

1
S⊥(ΓS , g

∗
k) =dimk H

0(ΓS , gk)−
∑
v | ∞

dimk H
0(Γv, gk)

+
∑
v∈S

(dimk Lv − dimk H
0(Γv, gk)).

On the other hand, for v ∈ Qm, we have Lv = H1(Γv, gk) and hence

dimk Lv − dimk H
0(Γv, gk) = dimk H

0(Γv, g
∗
k) = n

(here the first equality follows from the local Euler characteristic formula and the second equality is because
N(v) ≡ 1 (mod p) and ρ̄(Frobv) is conjugated to a strongly regular element of T (k)). So the conclusion
follows. □

Definition 1.11. We say ρ̄ is odd, if
∑
v | ∞

dimk H
0(Γv, gk) = ℓ0+[F : Q](dimG−dimB)+dimk H

0(ΓS , gk).



8 YICHANG CAI

Remark 1.12. This definition seems rather deliberate. For the locally symmetric space associated to
ResFQGLN and ρ̄ : ΓS → GLN (k), one has ℓ0 = [N+1

2 ]r1+Nr2− 1, where r1 (resp. r2) is the numbers of real
(resp. complex) places of F , and hence

ℓ0 + [F : Q](dimG− dimB) + dimk H
0(ΓS , gk) = [

N + 1

2
]r1 +Nr2 − 1 + (r1 + 2r2)

N2 −N

2
+ 1.

Therefore the oddness of ρ̄ means precisely dimk H
0(Γv, gk) = [N

2+1
2 ] for every real place v, or in other

words, H0(Γv, gk) has the minimal possible dimension.

Write ρm : Γm → G(Rm) be any representative of the universal deformation. Then for each v ∈ Qm, there
exists a conjugation of ρm|Γv which takes values in T (Rm) (see [GV18, Remark 8.4]). By restricting to O∗

v

via the local Artin reciprocity, we get an O-algebra homomorphism O[∆v] → Rm where ∆v is the Sylow
p-subgroup of (k∗v)

n. Define ∆Qm =
∏

v∈Qm
∆v, then Rm is naturally an O[∆Qm ]-algebra and it’s clear that

RS ∼= Rm ⊗O[[∆Qm ]] O.
Let S∞ = O[[X1, . . . , Xnr]], Jm = ⟨((1 +Xi)

pm − 1)1≤i≤nr⟩ and Sm = S∞/Jm (m ≥ 1). Note that J1 ⊇
J2 ⊇ . . . is a decreasing sequence and ∩i≥1Ji = 0. Since ∆Qm is a product of nr cyclic groups, each of order
at least pm, the ring Sm is a quotient of O[∆Qm ]. We introduce S̄m = Sm/pm and R̄m = Rm ⊗O[[∆Qm ]] S̄m.

Let R∞ = O[[X1, . . . , Xg]] with g = nr + dimk H
1
S(ΓS , gk) − dimk H

1
S⊥(ΓS , g

∗
k). Then Lemma 1.10 implies

there is a surjection R∞ ↠ Rm for every m ≥ 1.

1.3. Calegari-Geraghty setting. Let U = US × US = (
∏

v∈S Uv) × (
∏

v/∈S Uv) be a neat open compact
subgroup of Gf such that Uv ⊆ G(Ov) and each Uv (v /∈ S) is hyperspecial maximal. Let h be the image

of H(GS , US) acting on H∗(XU
G, Ṽλ(O)) and let m be a non-Eisenstein maximal ideal of h, and we write

T = hm. Assume (Resm), (Galm) and (Vanm).
Set S to be the global deformation problem for ρ̄ : ΓS → G(k) described in (Resm) (more precisely, it is

simultaneously either ordinary or Fontaine-Laffaille for v ∈ Sp, and minimal for v ∈ S\Sp). In Section 3.2.1
we will show ∑

v∈S
(dimk Lv − dimk H

0(Γv, gk)) = [F : Q](dimG− dimB),

so together with the oddness condition, one has

dimk H
1
S(ΓS , gk)− dimk H

1
S⊥(ΓS , g

∗
k) = −ℓ0,

and hence dimS∞ − dimR∞ = ℓ0.
The conjecture (Vanm) implies that we can choose a minimal cochain complex of O-modules C∗ con-

centrated in degrees [q0, q0 + ℓ0] such that H∗(C∗) ∼= H∗(XU
G, Ṽλ(O))m (see [KT17, Lemma 2.3]). For

each allowable Taylor-Wiles datum Qm, it is explained in [GV18, Section 13.6] that, under the local-
global compatibilities at Taylor-Wiles primes, there exists a cochain complex C∗

m of finite free S̄m-modules
such that C∗

m ⊗S̄m
O/pm is quasi-isomorphic to C∗/pm and there is a natural action of R̄m on H∗(C∗

m)

which is compatible as S̄m-algebras, and compatible with the RS-action on H∗(C∗) after descending to
C∗
m⊗S̄m

O/pm ≃ C∗/pm. We can further require C∗
m to be minimal so that it is also concentrated in degrees

[q0, q0 + ℓ0], and the quasi-isomorphism C∗
m ⊗S̄m

O/pm ≃ C∗/pm is then induced from an isomorphism of
chain complexes.

To summarize the data, we have:

(1) a minimal complex of O-modules C∗ concentrated in degrees [q0, q0 + ℓ0];
(2) an O-algebra homomorphism RS → EndO(H

∗(C∗));
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(3) a minimal complex of S̄m-modules C∗
m concentrated in degrees [q0, q0+ℓ0], such that C∗

m⊗S̄m
O/pm ∼=

C∗/pm for each m ≥ 1;
(4) a commutative diagram of S̄m-algebra homomorphisms for each m ≥ 1:

R̄m
//

−⊗S̄m
O/pm

��

EndO(H
∗(C∗

m))

−⊗S̄m
O/pm

��
RS/p

m // EndO/pm(H
∗(C∗/pm));

(5) a surjective O-algebra homomorphism R∞ → R̄m for each m ≥ 1.

Now by the patching argument (see [KT17, Proposition 3.1]), we can find the following data:

(a) a complex of finite free S∞-modules C∗
∞ concentrated in degrees [q0, q0 + ℓ0] together with an iso-

mophism C∗
∞ ⊗S∞ O ∼= C∗;

(b) an O-algebra homomorphism S∞ → R∞;
(c) a commutative diagram of S∞-algebra homomorphisms:

R∞ //

−⊗S∞O
����

EndS∞(H∗(C∗
∞))

−⊗S∞O
��

RS // EndO(H
∗(C∗)).

Remark 1.13. An important point in the patching argument is that R̄m → EndO(H
∗(C∗

m)) factors through

R̄m/m
c(m)

R̄m
for a constant c(m) only depending on m, so essentially the datum (R̄m/m

c(m)

R̄m
, C∗

m) admits only

finite choices, and hence we can select a compatible system satisfying conditions (3)-(5) and pass to the
inverse limit.

The difference with the Taylor-Wiles method is the appearance of the positive ℓ0, both as dimS∞−dimR∞
and the length of the interval [q0, q0+ℓ0]. Note dimS∞ H∗(C∗

∞) = dimR∞ H∗(C∗
∞) ≤ dimR∞ = dimS∞−ℓ0

(the first equality is because R∞/AnnR∞(H∗(C∗
∞)) acts faithfully on the finite S∞-module H∗(C∗

∞), so it
is finite over S∞). By the commutative algebra lemma 1.14 (applying to S = S∞ and D∗ = C∗

∞), we know
H i(C∗

∞) is non-zero only at degree i = q0 + ℓ0, and{
depthS∞ Hq0+ℓ0(C∗

∞) = dimS∞ Hq0+ℓ0(C∗
∞) = dimS∞ − ℓ0;

pdS∞Hq0+ℓ0(C∗
∞) = ℓ0.

See also [Han12, Theorem 2.1.1], which proves above results by a different approach.

Lemma 1.14. Let S be a Noetherian local ring. Let D∗ be a complex of finite free S-modules concentrated
in degrees [qm, qs]. Let ℓ = qs−qm. Suppose H∗(D∗) ̸= 0, then dimS H∗(D∗) ≥ depthS−ℓ. If equality holds,
then H i(D∗) is non-zero only at degree i = qs, and we have depthS Hqs(D∗) = depthS−ℓ, pdSHqs(D∗) = ℓ.

Proof. Let q be the smallest integer that Hq(D∗) ̸= 0, and set Kq = Dq/im(Dq−1).
Note that 0 → Dqm → · · · → Dq is a projective resolution of Kq, so pdSK

q ≤ q − qm. On the other
hand, by Ischebeck’s Lemma (see [Mat80, (15.E) Lemma 2]), ExtiS(H

q(D∗),Kq) = 0 for i < depthS Kq −
dimS Hq(D∗). In particular, since Hq(D∗) is a non-zero submodule of Kq, we must have depthS Kq ≤
dimS Hq(D∗).

By the Auslander–Buchsbaum formula (see [Sta, Tag 090V]), we get the desired inequality:

depthS = depthS Kq + pdSK
q ≤ dimS Hq(D∗) + (q − qm) ≤ dimS Hq(D∗) + ℓ.
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If the two inequalities are actually equalities, then the second one gives q = qs, which implies Kq =
Hqs(D∗), and the first one then gives{

depthS Hqs(D∗) = dimS Hqs(D∗) = depthS − ℓ;
pdSH

qs(D∗) = ℓ.

□

Corollary 1.15. (1) H∗(C∗
∞) = Hq0+ℓ0(C∗

∞) is free over R∞.

(2) There is an isomorphism Hq0+ℓ0−i(C∗) ∼= TorS∞
i (Hq0+ℓ0(C∗

∞),O).
(3) Hq0+ℓ0(C∗) is free over RS and RS → T is an isomorphism.

Proof. (1) Since the map S∞ → R∞ repects the module structures of Hq0+ℓ0(C∗
∞), it sends a regular

sequence in S∞ for Hq0+ℓ0(C∗
∞) to a regular sequence in R∞ for Hq0+ℓ0(C∗

∞), so

depthR∞ Hq0+ℓ0(C∗
∞) ≥ depthS∞ Hq0+ℓ0(C∗

∞) = depthR∞.

Since Hq0+ℓ0(C∗
∞) is finitely generated over the regular local ring R∞, it’s well-known that the

projective dimension of Hq0+ℓ0(C∗
∞) over R∞ is finite (consider the Koszul resolution for R∞/mR∞

or see [Sta, Tag 00O7]) and we can apply the Auslander–Buchsbaum formula

pdR∞Hq0+ℓ0(C∗
∞) = depthR∞ − depthR∞ Hq0+ℓ0(C∗

∞) ≤ 0.

Therefore Hq0+ℓ0(C∗
∞) is free over R∞.

(2) The Künneth spectral sequence (see [Weib94, Theorem 5.6.4], we use the cohomological version)

Ep,q
2 = TorS∞

−p (H
q(C∗

∞),O)⇒ Hp+q(C∗
∞ ⊗S∞ O)

collapses because Ep,q
2 = 0 unless q = q0 + ℓ0, so we get the desired isomorphism.

(3) The above results imply that Hq0+ℓ0(C∗) ∼= Hq0+ℓ0(C∗
∞)⊗S∞ O is free over R∞ ⊗S∞ O. Then since

the module structure on Hq0+ℓ0(C∗) factors through R∞ ⊗S∞ O ↠ RS , the map R∞ ⊗S∞ O → RS
is an isomorphism and Hq0+ℓ0(C∗) is free over RS .

□

1.4. Graded structure. Let’s discuss the graded structures of TorS∞
∗ (R∞,O) and TorS∞

∗ (Hq0+ℓ0(C∗
∞),O).

A priori, these are graded modules, but in fact TorS∞
∗ (R∞,O) carries additional structures: it’s a graded

commutative ring.

Definition 1.16. (1) A graded commutative ring is a graded ring A = ⊕i≥0Ai, such that the multipli-
cation satisfies a · b = (−1)mnb · a for a ∈ Am and b ∈ An.

(2) Let A = ⊕i≥0Ai be a graded commutative ring. A graded A-module is an A-module M equipped
with a graded structure M = ⊕i≥0Mi such that the scalar multiplication sends Am ×Mn to Mm+n.

Definition 1.17. (1) A differential graded ring is a graded commutative ring A = ⊕i≥0Ai equipped
with a differential d : A→ A (i.e., a group homomorphism for the additive structure of A) satisfying
(a) d sends Ai to Ai−1;
(b) d ◦ d = 0;
(c) d(a · b) = (da) · b+ (−1)ma · (db) for a ∈ Am and b ∈ An.

(2) Let A be a differential graded ring with differential d. A differential graded A-module is a graded
A-module M = ⊕i≥0Mi equipped with a differential dM : M →M (i.e., a group homomorphism for
the additive structure of M) satisfying
(a) dM sends Mi to Mi−1;
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(b) dM ◦ dM = 0;
(c) dM (a · x) = (da) · x+ (−1)ma · (dMx) for a ∈ Am and x ∈Mn.

A differential graded ring or module has a natural chain complex structure, and we write H∗(−) for the
homology. Note that if M is a differential graded A-module, then H∗(M) is naturally a graded H∗(A)-
module.

When A is a ring and B1, B2 are A-algebras, the Tor-algebra TorA∗ (B1, B2) can be calculated as π∗(B1⊗A

c(B2)) where c(B2) is a cofibrant replacement of B2 in A\sCR (see Section 2.1.6 and [Gil13, Section 7.11]).
In fact, TorA∗ (B1, B2) is a strictly graded commutative A-algebra equipped with divided powers (see [Gil13,
Section 8.5]).

In our situation, the Koszul resolution of the S∞-algebra O is a differential graded ring, and by [BMR13,
Theorem 11.8], one can calculate the Tor-algebra TorS∞

∗ (R∞,O) using this differential graded resolution
instead of the simplicial resolution.

Lemma 1.18. TorS∞
∗ (Hq0+ℓ0(C∗

∞),O) is naturally a graded module over the graded commutative O-algebra
TorS∞

∗ (R∞,O), freely generated by TorS∞
0 (Hq0+ℓ0(C∗

∞),O).

Proof. Let E ∼= (S∞)nr and let {e1, . . . , enr} be the canonical basis. Since (X1, . . . , Xnr) is a regular sequence
in S∞ and S∞/(X1, . . . , Xnr) ∼= O, the Koszul complex K∗(s) associated to the S∞-linear map s : E → S∞
which sends ei to Xi is a free resolution of O. Recall that

K∗(s) : 0→
nr∧

E
dnr−−→ · · · d2−→

1∧
E

d1−→
0∧
E ∼= S∞ → 0,

where dk(a1 ∧ · · · ∧ ak) =
∑k

i=1(−1)i−1s(ai)a1 ∧ · · · ∧ âi ∧ · · · ∧ ak.
Note that K∗(s) is naturally a differential graded ring with the multiplication defined by

(a1 ∧ · · · ∧ ai) · (b1 ∧ · · · ∧ bj) = a1 ∧ · · · ∧ ai ∧ b1 ∧ · · · ∧ bj .

Then together with the R∞-module structure on Hq0+ℓ0(C∗
∞), K∗(s)⊗S∞ Hq0+ℓ0(C∗

∞) is naturally a differ-
ential graded K∗(s)⊗S∞ R∞-module. By the foregoing comment, TorS∞

∗ (Hq0+ℓ0(C∗
∞),O) ∼= H∗(K∗(s)⊗S∞

Hq0+ℓ0(C∗
∞)) is a graded module over the graded commutative ring TorS∞

∗ (R∞,O) ∼= H∗(K∗(s) ⊗S∞ R∞).

Moreover, TorS∞
∗ (Hq0+ℓ0(C∗

∞),O) is freely generated by TorS∞
0 (Hq0+ℓ0(C∗

∞),O) because Hq0+ℓ0(C∗
∞) is free

over R∞. □

Note that H∗(XU
G, Ṽλ(O))m ∼= H∗(C∗) is equipped with a graded structure (note the switch of indexes

i 7→ q0 + ℓ0 − i) via the isomorphism Hq0+ℓ0−i(C∗) ∼= TorS∞
i (Hq0+ℓ0(C∗

∞),O). The following corollary is
straightforward:

Corollary 1.19. H∗(XU
G, Ṽλ(O))m is a graded TorS∞

∗ (R∞,O)-module, freely generated by Hq0+ℓ0(XU
G, Ṽλ(O))m.

Remark 1.20. As mentioned in the introduction, an unsatisfactory aspect is that TorS∞
∗ (R∞,O) depends

on various non-canonical choices. Note the isomorphism

TorS∞
∗ (R∞,O) ∼= π∗(R∞⊗S∞

O)
as graded commutative O-algebras, where R∞⊗S∞

O is a simplicial ring which represents the derived tensor

product R∞
L
⊗S∞O (see Section 2.1.6). The insight of Galatius and Venkatesh is that one can extend

deformations to simplicial rings and reinterpret R∞⊗S∞
O as a derived representing ring, thus canonically.

In the following sections we will discuss the derived deformation functors and derived deformation rings,
which are the principal subjects of this paper.
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2. Simplicial backgrounds

The derived deformation functors are more or less functors from simplicial commutative O-algebras to
simplicial sets. In this section we will prepare the necessary foundations to study these functors. In
Section 2.1 we will recall some basic facts on simplicial model categories, and an important objective is to
understand the structure of O\sCR/k. In Section 2.2 we will focus on the pro-representabilty of functors
from the Artinian subcategory O\sArt/k of O\sCR/k to simplicial sets.

2.1. Simplicial model categories.

2.1.1. Simplicial sets. We denote by ∆ the cosimplicial indexing category: the objects are totally ordered
sets [n] = {0, 1, . . . , n} for n ≥ 0, and the morphisms are order-preserving functions between these sets. Let
di : [n− 1]→ [n] (0 ≤ i ≤ n) and sj : [n+ 1]→ [n] (0 ≤ j ≤ n) be the morphisms defined by

di({0, 1, . . . , n− 1}) = {0, 1, . . . , i− 1, i+ 1, . . . , n},
and

sj({0, 1, . . . , n+ 1}) = {0, 1, . . . , j, j, . . . , n}.
Definition 2.1. For a category C, we define sC to be the category of functors ∆op → C.

In fact, an object X ∈ sC can be regarded as a sequence of Xn ∈ C for n ≥ 0 (Xn being the image of
[n]) together with morphisms di : Xn → Xn−1 (0 ≤ i ≤ n) and sj : Xn → Xn+1 (0 ≤ j ≤ n) satisfying the
relations 

djdi = didj+1 if i ≤ j
sjsi = sisj−1 if i ≤ j − 1
djsi = sidj−1 if i ≤ j − 2
djsj−1 = djsj = id
djsi = si−1dj if i ≥ j + 1.

We call sSets the category of simplicial sets, sGp the category of simplicial groups...

Example 2.2. (1) ∆n = Hom∆(−, [n]) (n ≥ 0) is a simplicial set, we call it the standard n-simplex.
(2) We denote by ∂∆n the smallest sub-simplicial set of ∆n which contains di(id[n]), 0 ≤ i ≤ n. We

call ∂∆n the boundary of ∆n. Explicitly, ∂∆n
k is the set of non-surjective order-preserving functions

{0, 1, . . . , k} → {0, 1, . . . , n}.
(3) Let n ≥ 1 and 0 ≤ m ≤ n. We denote by Λn

m the smallest sub-simplicial set of ∆n which contains
di(id[n]) for 0 ≤ i ≤ n and i ̸= m. We call Λn

m the m-th horn of ∆n. Explicitly, (Λn
m)k is the

set of order-preserving functions {0, 1, . . . , k} → {0, 1, . . . , n} such that the image doesn’t contain
{0, 1, . . . ,m− 1,m+ 1, . . . , n}.

Definition 2.3. (1) A morphism of sSets is a cofibration if it is injective in every simplicial degree.
(2) Let X and Y be simplicial sets. A morphism p : X → Y is a fibration if for every n ≥ 1, 0 ≤ k ≤ n

and solid arrow commutative diagram as follows:

Λn
k

//

i
��

X

p

��
∆n //

>>

Y,

where i : Λn
k ↪→ ∆n is the natural inclusion, there is a dotted arrow making the diagram commute.

We say a simplicial set X is fibrant (or Kan), if X → ∗ is a fibration (here ∗ refers to ∆0, which is
the terminal object of sSets).
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A morphism Λn
k → X can be regarded as an n-tuple (z0, . . . , ẑk, . . . , zn) of zi ∈ Xn−1 such that dj−1zi =

dizj for i < j. Thus p : X → Y is a fibration if and only if for every n ≥ 1 and n-tuple (z0, . . . , ẑk, . . . , zn)
as above satisfying p(zi) = diy for some y ∈ Yn, there exists x ∈ Xn such that p(x) = y and zi = dix.

Lemma 2.4. Every simplicial group is fibrant as a simplicial set, and every morphism of simplicial groups
f : G → H which induces surjective Gn → Hn for every n ≥ 1 is a fibration as a morphism of simplicial
sets.

Proof. For the first statement, see [GJ09, Lemma I.3.4]. For the second statement, it suffices to show that
for every n ≥ 1 and n-tuple (z0, . . . , ẑk, . . . , zn) of elements in Gn−1 and y ∈ Hn such that dj−1zi = dizj for
i < j and f(zi) = diy, there exists x ∈ Gn such that f(x) = y and dix = zi. Since Gn → Hn is surjective,
there exists a pre-image x′ of y, by considering (dix

′)−1 ·zi, it reduces to show ker(f) is fibrant, which follows
from the first statement. □

Let ∆X be the category of simplices of X (see [Hir09, Definition 15.1.16]): the objects are natural
transformations ∆n → X, and the morphisms from ∆n → X to ∆m → X consist of natural transformations
∆n → ∆m which respect the natural transformations to X. By Yoneda’s lemma, the objects of ∆X can
be identified with

⊔
n≥0

Xn, and the morphisms from x ∈ Xn to y ∈ Xm can be identified with morphisms

[n]→ [m] of ∆ such that the induced map Xm → Xn sends y to x.
We have the following well-known lemma:

Lemma 2.5. Suppose C is a category admitting colimits; let F : ∆→ C be a covariant functor. Let F∗ : C →
sSets be the functor which sends A ∈ C to the simplicial set X = (Xn)n≥0 given by Xn = HomC(F ([n]), A)
at n-th simplicial degree, and let F ∗ : sSets → C be the functor which sends X ∈ sSets to lim−→

(n,σ)∈∆X

F (σ).

Then F ∗ is left adjoint to F∗.

Proof. It’s clear that F∗ is well-defined, and F ∗ is well-defined since every simplicial set morphism f : X → Y
induces a functor ∆X →∆Y . For X ∈ sSets and A ∈ C, we have

HomC(F
∗(X), A) ∼= lim←−

(∆n→X)∈(∆X)op

HomC(F ([n]), A)

∼= lim←−
(∆n→X)∈(∆X)op

HomsSets(∆
n, F∗(A))

∼= HomsSets( lim−→
(∆n→X)∈∆X

∆n, F∗(A))

∼= HomsSets(X,F∗(A)),

where the last equation follows from [Hir09, Proposition 15.1.20]. So F ∗ is left adjoint to F∗. □

Example 2.6. Consider the functor ∆→ Top, which sends [n] to |∆n|, where |∆n| = {(t0, . . . , tn) ∈ Rn+1 |
n∑

i=0
ti = 1, ti ≥ 0} is the topological standard n-simplex, and sends morphisms of ∆ to corresponding linear

maps. The associated left adjoint sends X ∈ sSets to |X| = lim−→
(∆n→X)∈∆X

|∆n|, and the associated right

adjoint is the usual singular complex functor. We call |X| the geometric realization of X.

Definition 2.7. A morphism of simplicial sets f : X → Y is a weak equivalence, if the induced map
|f | : |X| → |Y | is a topological weak equivalence.
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Definition 2.8. Let X be a simplicial set and let v : ∗ → X be a vertex of X. We also use v to denote the
corresponding point of the geometric realization |X|. Then for n ≥ 1 the n-th homotopy group of (X, v) is
defined by πn(X, v) = πn(|X|, v). We also define π0(X) = π0(|X|).

For fibrant X, the group structures on πn(X, v) for n ≥ 1 can be defined combinatorially without refering
to the geometric realization (see [GJ09, Section I.7]). In particular, this is the case when X ∈ sGp.
Henceforth, when X is a simplicial group with unit e and n ≥ 1, we will abbreviate πn(X, e) by πn(X). Since
changing the vertex v induces group isomorphisms of homotopy groups πn(X, v) natural in X, a morphism
f : X → Y of simplcial groups is a weak equivalence in sSets if and only if πn(f) : πn(X) → πn(Y ) is an
isomorphism for all n.

The reason for introducing cofibrations, fibrations and weak equivalences of sSets is that with these
strucutures, the category sSets becomes a model category.

2.1.2. Model categories.

Definition 2.9. A category C is a model category, if it is equipped with three classes of morphisms:
cofibrations, fibrations and weak equivalences (we say a cofibration or fibration is trivial if it is also a weak
equivalence), such that the following axioms hold:

CM1: C is complete and cocomplete.
CM2: Given composable morphisms f, g of C, if any two of f, g and fg are weak equivalences, then so is

the third.
CM3: If f is a retract of g and g is a cofibration, fibration or weak equivalence, then so is f .
CM4: If either i is a trivial cofibration and p is a fibration, or i is a cofibration and p is a trivial fibration,

then i has the left lifting property with respect to p (tautologically p has the right lifting property
with respect to i), i.e., for every solid arrow commutative diagram

A //

i
��

X

p

��
B //

??

Y,

there exists a dotted arrow making the diagram commutative.
CM5: Any morphism f : X → Y can be factored in two ways:

(a) f = pi, where p is a fibration and i is a trivial cofibration.
(b) f = qj, where q is a trivial fibration and j is a cofibration.

Remark 2.10. (1) It’s customary to write ↪→ for a cofibration, ↠ for a fibration, and
∼→ for a weak

equivalence.
(2) The axiom CM1 implies that C has an initial object ∅ and a terminal object ∗. We say an object

A ∈ C is cofibrant if ∅ ↪→ A, and fibrant if A ↠ ∗.
(3) We say B is a cofibrant replacement of A if ∅ ↪→ B↠̃A. We say B is a fibrant replacement of A if

A ˜↪→B ↠ ∗.
(4) If C is a model category, then the opposite category Cop also carries a model category structure: a

morphism of Cop is a cofibration, fibration or weak equivalence if and only if its dual is a fibration,
cofibration or weak equivalence of C respectively. So if we can prove some statement under axioms
of model category, then the dual statement is also true.

(5) It follows from the axioms CM3, CM4 and CM5 that a morphism is a cofibration if and only
if it has the left lifting property with respect to all trivial fibrations, and a morphism is a trivial
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cofibration if and only if it has the left lifting property with respect to all fibrations. Similarly,
a morphism is a fibration if and only if it has the right lifting property with respect to all trivial
cofibrations, and a morphism is a trivial fibration if and only if it has the right lifting property with
respect to all cofibrations.

Let’s review the theory of cofibrantly generated model categories for the first infinite cardinal, which is
sufficient for our purpose. See [Hir09, Chapters 10 and 11] for transfinite generalizations.

Definition 2.11. Let C be a category.

(1) Let U be a class of morphisms of C. We say an object X ∈ C is small relative to U if for every
(countable) sequence

Y0 → Y1 → · · · → Yi → . . .

where each Yi → Yi+1 belongs to U, the natural map lim−→
i

HomC(X,Yi) → HomC(X, lim−→
i

Yi) is an

isomorphism.
(2) Let I be a set of morphisms of C. We say I permits the small object argument if the sources of

morphisms of I are small relative to the class of morphisms consisting of pushouts of coproducts of
I.

Definition 2.12. A model category C is cofibrantly generated, if it satisfies the following two conditions:

(1) There is a set of morphisms I, such that I permits the small object argument, and a morphism is a
trivial fibration if and only if it has the right lifting property with respect to all elements of I. We
call such I a set of generating cofibrations.

(2) There is a set of morphisms J , such that J permits the small object argument, and a morphism is
a fibration if and only if it has the right lifting property with respect to all elements of J . We call
such J a set of generating trivial cofibrations.

The small object argument of Quillen implies that the factorizations in CM5 can be chosen functorial.
We say a morphism f : X0 → X is an N-composition of morphisms in some class U if there exists X0 →
X1 → · · · → Xi → . . . such that each Xi → Xi+1 belongs to U and f coincides with X0 → lim−→

i

Xi.

Lemma 2.13. Let C be a cofibrantly generated model category with a set of generating cofibrations I and a
set of generating trivial cofibrations J .

(1) There is a functorial factorization of every morphism of C into a cofibration followed by a trivial
fibration, such that the cofibration is an N-composition of pushouts of coproducts of I.

(2) There is a functorial factorization of every morphism of C into a trivial cofibration followed by a
fibration, such that the trivial cofibration is an N-composition of pushouts of coproducts of J .

Proof. See [Hir09, Corollary 11.2.6]. □

Corollary 2.14. Let notations be as above. Then a morphism of C is a cofibration if and only if it is a
retract of an N-composition of pushouts of coproducts of I.

Proof. See [Hir09, Corollary 10.5.23]. □

Example 2.15. Ch≥0(R), the category of chain complexes of R-modules concentrated in non-negative
degrees for a commutative ring R, is a cofibrantly generated model categroy. The cofibrations, fibrations
and weak equivalences are characterized as follows:

(1) f : C∗ → D∗ is a cofibration if Cn → Dn is injective with projective cokernel for n ≥ 0.
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(2) f : C∗ → D∗ is a fibration if Cn → Dn is surjective for n ≥ 1.
(3) f : C∗ → D∗ is a weak equivalence if H∗f is an isomorphism.

Thus every C∗ ∈ Ch≥0(R) is fibrant, and taking cofibrant replacement means exactly taking projective
resolution in the sense of homological algebra.

For n ≥ 0, let R[n] be the chain complex with R on n-th degree and with 0 elsewhere, and let R ⟨n+ 1⟩
be the chain complex

· · · → 0→
n+1
R =

n
R→ 0→ . . .

Then the generating cofibrations may be taken to be 0 → R[0] together with natural inclusions R[n] →
R ⟨n+ 1⟩, and the generating trivial cofibrations may be taken to be 0→ R ⟨n+ 1⟩.

For a model category C there are (left or right) homotopy relations for morphisms f, g : X → Y of C. For
our purpose we will only focus on the case where X is cofibrant and Y is fibrant, and in this case the left
and right homotopy relations coincide and define an equivalence relation (see [Hir09, Section 7.3 and 7.4]
for details).

Definition 2.16. Let C be a model category and f : A→ B be a given morphism of C. We define the over
and under category A\C/B, such that the objects are arrows A → X → B with composition f , and the
morphisms from A → X → B to A → Y → B are the morphisms X → Y which respect the morphisms
from A and to B.

Obviously one has the following lemma:

Lemma 2.17. The category A\C/B is a model categories, with cofibrations, fibrations and weak equivalences
being those of C.

We can regard A\C/B as a subcategory of C. Then if two morphisms f, g : X → Y are (left or right)
homotopic in A\C/B, they are (left or right) homotopic in C (see [Hir09, Proposition 7.6.8]).

2.1.3. Homotopy categories and derived functors. For a model category C, the localization with respect to
weak equivalences exists. More precisely, there is an associated homotopy category Ho(C) with a functor
γ : C → Ho(C), such that γ(f) is an isomorphism if and only if f is a weak equivalence, and if F : C → D is a
functor which sends weak equivalences to isomorphisms, then there is a unique functor F∗ : Ho(C)→ D such
that F∗ ◦ γ = F . We remark that Ho(C) has same objects as C and the functor γ : C → Ho(C) is identity on
objects. The morphisms of Ho(C) satisfy

HomHo(C)(A,X) ∼= HomC(B, Y )/(homotopy),

where B is any cofibrant replacement of A and Y is any fibrant replacement of X. See [Hir09, Section 8.3]
for details.

Lemma 2.18. Let C be a model category and A be any category. We fix simultaneously a cofibrant replace-
ment X ′ for every X ∈ C. Suppose F : C → A is a functor which sends trivial cofibrations between cofibrant
objects to isomorphisms. Then there is a well-defined functor

LF : Ho(C)→ A

which sends X to F (X ′). We say that LF is the total left derived functor for F .

Proof. See [Hir09, Lemma 7.7.1] and [GJ09, Lemma II.7.3]. □
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Note that the total left derived functor depends on the system of cofibrant replacements up to natural
isomorphism.

We may dually define the total right derived functor R for a functor which sends trivial fibrations between
fibrant objects to isomorphisms.

Definition 2.19. Let C,D be two model categories and let F : C ⇄ D : G be a pair of adjoint functors. We
say (F,G) is a Quillen pair if one of the following equivalent conditions holds:

(1) F preserves cofibrations and trivial cofibrations.
(2) G preserves fibrations and trivial fibrations.

In this case we say F is a left Quillen functor and G is a right Quillen functor.

Theorem 2.20. Let C,D be two model categories and let F : C ⇄ D : G be a pair of adjoint functors.
Suppose (F,G) is a Quillen pair. Then LF : Ho(C) → Ho(D) and RG : Ho(D) → Ho(C) exist, and RG is
right adjoint to LF . If furthermore for cofibrant A ∈ C and fibrant X ∈ D, the map A → GX is a weak
equivalence if and only if the adjoint map FA → X is a weak equivalence, then LF and RG induce an
adjoint equivalence of categories Ho(C) ∼= Ho(D).

Proof. See [Hir09, Theorem 8.5.18 and Theorem 8.5.23]. □

Example 2.21. Let C be a model category and let I be a small category.
Suppose that there exists a model category structure on CI such that a morphism A → B is a fibration

or weak equivalence if and only if every A(i) → B(i) (i ∈ I) is a fibration or weak equivalence in C (this
holds when C is cofibrantly generated, see [Hir09, Theorem 11.6.1]); we call it the projective model structure
and denote it by CIproj. Then the constant functor ∆: C → CIproj preserves fibrations and weak equivalences,

so the left adjoint functor lim−→ : CIproj → C is left Quillen, and the total left derived functor L lim−→ exists.

For convenience, we denote the colimit of some cofibrant replacement by hocolim (it is defined up to weak
equivalence) and call it the homotopy colimit.

Dually, supppose that there exists a model category structure on CI such that a morphism A → B is a
cofibration or weak equivalence if and only if every A(i)→ B(i) (i ∈ I) is a cofibration or weak equivalence
in C (this holds when C is combinatorial, see [Lur09, Proposition A.2.8.2]); we call it the injective model
structure and denote it by CIinj. Then the constant functor ∆: C → CIinj preserves cofibrations and weak

equivalences, so the right adjoint lim←− : CIinj → C is right Quillen, and the total right derived functor R lim←−
exists. For convenience, we denote the limit of some fibrant replacement by holim (it is defined up to weak
equivalence) and call it the homotopy limit.

We will primarily work with certain specific types of I, where it has a Reedy category structure. Then
there is a Reedy model cateogory stucture on CI which can be described explicitly (see [Hir09, Theorem
15.3.4]). Moreover, the homotopy limit (resp. homotopy colimit) can be computed via Reedy fibrant
replacements (resp. Reedy cofibrant replacements). See [Hir09, Proposition 15.10.10 and 15.10.12] for the
cases of homotopy pulllbacks (homotopy pushouts) and homotopy (co)limits indexed by N.

When I is represented by the diagram • → • ← •, we also write A1 ×h
A0

A2 for holim (A1 → A0 ← A2).
We say a diagram

A //

��

A1

��
A2

// A0

is a homotopy pullback square if the natural map A→ A1 ×h
A0

A2 is a weak equivalence.
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Lemma 2.22. Let C and D be two model categories. Let F : C → D and G : D → C be two functors and
suppose that (F,G) is a Quillen pair. Let I be a small category.

(1) If CIproj,DI
proj exist, then LF ◦ L lim−→ is naturally isomorphic to L lim−→◦LF .

(2) If CIinj,DI
inj exist, then RG ◦R lim←− is naturally isomorphic to R lim←−◦RG.

Proof. We prove the second part, and the proof for the first part is similar.
Let F I : CIinj → DI

inj and GI : DI
inj → CIinj be the degreewise extensions of F and G. Then it’s easy to see

that F I is left adjoint to GI , and F I preserves cofibrations and weak equivalences, so (F I , GI) is a Quillen
pair. Since ∆: C → CIinj and F : C → D preserve cofibrant objects, the following diagram commutes up to
natural isomorphism:

Ho(CIinj)
LF I
// Ho(DI

inj)

Ho(C) LF //

L∆

OO

Ho(D).

L∆

OO

Therefore the adjoint diagram

Ho(CIinj)

R lim←−
��

Ho(DI
inj)

RGI
oo

R lim←−
��

Ho(C) Ho(D)RGoo

commutes up to natural isomorphism. □

2.1.4. Simplicial model categories.

Definition 2.23. A category C is a simplicial category if there is a mapping space functor

sHomC(−,−) : Cop × C → sSets,

with the following properties:

(1) sHomC(A,B)0 = HomC(A,B).
(2) The functor sHomC(A,−) : C → sSets has a left adjoint

A⊗− : sSets→ C

natural in A.
(3) The functor A⊗− is associative in the sense that there is an isomorphism

A⊗ (K × L) ∼= (A⊗K)⊗ L

natural in A ∈ C and K,L ∈ sSets.
(4) The functor sHomC(−, B) : Cop → sSets has a left adjoint

shomC(−, B) : sSets→ Cop

natural in B.

Definition 2.24. A category C is a simplicial model category, if it is both a model category and a simplicial
category, and satisfies the additional axiom:
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SM7: Suppose j : A→ B is a cofibration and q : X → Y is a fibration. Then

sHomC(B,X)
(j∗,q∗)−−−−→ sHomC(A,X)×sHomC(A,Y ) sHomC(B, Y )

is a fibration in sSets, which is trivial if j or q is trivial.

Remark 2.25. (1) The above definitions imply that sHomC(A,−) : C → sSets is right Quillen with
left adjoint A⊗− when A is cofibrant, sHomC(−, X) : Cop → sSets is right Quillen with left adjoint
shomC(−, X) when X is fibrant, and −⊗K : C → C is left Quillen with right adjoint shomC(K,−)
for K ∈ sSets.

(2) There is a simplicial homotopy relation for morphisms X → Y in a simplicial model category C (see
[Hir09, Definition 9.5.2]), which coincides with the left and right homotopy relations if the source X
is cofibrant and the target Y is fibrant (see [Hir09, Proposition 9.5.24]). In particular, if X ∈ C is
cofibrant and Y ∈ C is fibrant, then HomHo(C)(X,Y ) ∼= π0sHomC(X,Y ).

Example 2.26. The category of simplicial sets sSets is a simplicial model category, with the specified
classes of cofibrations, Kan fibrations and weak equivalences. In this case, the tensor product is just the
usual product, and shomsSets coincides with sHomsSets (see [GJ09, Proposition I.5.1, Theorem I.11.3 and
Proposition I.11.5]).

Moreoover, sSets is cofibrantly generated. Note that every simplicial set with finitely many non-
degenerate simplices is small relative to all morphisms, we can take the set of generating cofibrations
I = {∂∆n ↪→ ∆n | n ≥ 0} (see [GJ09, Theorem I.11.2]), and the set of generating trivial cofibrations
J = {Λn

k ↪→ ∆n | n ≥ 1, 0 ≤ k ≤ n}.

We explain how to generate cofibrantly generated simplicial model categories from already known ones.
For a complete and cocomplete category C, the category sC has a simplicial category structure: for A ∈ sC

and K ∈ sSets, we define A⊗K ∈ sC by (A⊗K)n =
⊔

k∈Kn

An, where
⊔

denotes the coproduct in C, with

connecting morphisms naturally induced from those of A and K. Note that the definition is consistent for
sSets.

Let C and D be complete and cocomplete categories. Suppose there is an adjoint pair of functors

F : C ⇄ D : G,

then the level-wise extended pair F : sC ⇄ sD : G is still an adjoint pair between the simplicial categories,
and there are natural isomorphisms F (A ×K) ∼= F (A) ⊗K for A ∈ sC and K ∈ sSets since F preserves
coproducts.

Proposition 2.27. Let notations be as above. Suppose sC is a cofibrantly generated simplicial model category
with a set of generating cofibrations I and a set of generating trivial cofibrations J . Let FI = {Fi | i ∈ I}
and FJ = {Fj | j ∈ I}. Suppose

(a) both FI and FJ permit the small object argument (see Definition 2.11), and
(b) G : sD → sC sends N-compositions of pushouts of coproducts of FJ to weak equivalences in sC.

Then there is a cofibrantly generated simplicial model category structure on sD, such that FI is a set of
generating cofibrations and FJ is a set of generating trivial cofibrations. With this model category structure,
(F,G) is a Quillen pair.

Proof. See [Hir09, Theorem 11.3.2] and [GJ09, Theorem II.4.4]. □

Remark 2.28. (1) The sets FI and FJ already determine the weak equivalences, fibrations and cofi-
brations of D. They can be characterized as follows:
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(a) f is a weak equivalence if and only if Gf is a weak equivalence in C.
(b) f is a fibration if and only if Gf is a fibration in C.
(c) f is a cofibration if and only if it is a retract of an N-composition of pushouts of coproducts of

FI (see Corollary 2.14).
(2) When G preserves filtered colimits and the sources of I and J are small relative to all morphisms,

assumption (a) holds by the proof of [GJ09, Theorem II.4.1]. For a condition to ensure assumption
(b), see [GJ09, Lemma II.5.1].

Example 2.29. Let R be a commutative ring. We denote by sModR the category of simplicial R-modules
and denote by sCR the category of simplicial commutative rings. Assumptions (a) and (b) of Proposi-
tion 2.27 hold in the following situations:

(1) Consider the adjoint pair F : sSets ⇄ sModR : G, where F is the free module functor and G is the
forgetful functor. We take I and J as in Example 2.26. Then sModR is a cofibrantly generated
simplicial model category. In the next section we will show that the model structure of sModR

is essentially the same as the model structure of Ch≥0(R) defined in Example 2.15, and a more
convenient choice of generating cofibrations and generating trivial cofibrations is by transfering
those of Ch≥0(R) in Example 2.15 via the Dold-Kan equivalence.

(2) Consider the adjoint pair F : sModZ ⇄ sCR : G, where F is the symmetric algebra functor and
G is the forgetful functor. We take I = {0 → Z} ∪ {DK(Z[n] → Z ⟨n+ 1⟩) | n ≥ 0} and J =
{DK(0 → Z ⟨n+ 1⟩) | n ≥ 0} as remarked above. Then sCR is a cofibrantly generated simplicial
model category. The weak equivalences and fibrations are those of sModZ, and the cofibrations are
retracts of N-compositions of pushouts of coproducts of FI.

2.1.5. Dold-Kan correspondence. Let R be a commutative ring. Our goal here is to recall an equivalence of
model categories between sModR and Ch≥0(R).

When M ∈ sModR, we write Mn for the R-module on n-th simplicial degree. Let N(M) be the chain

complexes of R-modules with N(M)n =
n−1⋂
i=0

ker(di) ⊆Mn and n-th differential map

(−1)ndn :
n−1⋂
i=0

ker(di) ⊆Mn →
n−2⋂
i=0

ker(di) ⊆Mn−1.

Then obviously M 7→ N(M) is natural in M , and we call N(M) ∈ Ch≥0(R) the normalized complex of M .
The Dold-Kan functor DK: Ch≥0(R) → sModR is the quasi-inverse of N . Explicitly, for a chain of

R-modules C∗ = (C0 ← C1 ← C2 ← . . . ), we define DK(C∗) ∈ sModR as follows:

(1) DK(C∗)n =
⊕

[n]↠[k]

Ck.

(2) For θ : [m]→ [n], we define the corresponding DK(C∗)n → DK(C∗)m on each component of DK(C∗)n

indexed by [n]
σ
↠ [k] as follows: suppose [m]

t
↠ [s]

d
↪→ [k] is the epi-monic factorization of the

composition [m]
θ→ [n]

σ
↠ [k], then the map on component [n]

σ
↠ [k] is

Ck
d∗→ Cs ↪→

⊕
[m]↠[r]

Cr.

Remark 2.30. Let M [1] be the chain complex with M on degree 1 and 0 elsewhere. Then DK(M [1]) is
the nerve of the abelian group M (see Example 3.1).
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Theorem 2.31. (1) (Dold-Kan) The functors DK and N are quasi-inverse and form an equivalence
of categories. Moreover, two morphisms f, g ∈ HomsModR

(M,N) are simplicially homotopic if and
only if N(f) and N(g) are chain homotopic.

(2) The functors DK and N preserve the model category stuctures of Ch≥0(R) and sModR defined
above.

Proof. See [Weib94, Theorem 8.4.1] and [GJ09, Lemma 2.11]. Note that (1) is valid for any abelian category
instead of sModR. □

Remark 2.32. LetCh(R) be the category of complexes (Ci)i∈Z of R-modules andCh≥0(R) the subcategory
of complexes for which Ci = 0 for i < 0. The category Ch≥0(R) is naturally enriched over simplicial R-
modules, and we have

sHomCh≥0(R)(C∗, D∗) ∼= sHomsModR
(DK(C∗),DK(D∗)).

Given C∗, D∗ ∈ Ch≥0(R). Let [C∗, D∗] ∈ Ch(R) be the mapping complex, more precisely, [C∗, D∗]n =∏
mHomR(Cm, Dm+n) and the differential maps are natural ones. Let τ≥0 be the functor which sends a

chain complex X∗ to the truncated complex

0← ker(X0 → X−1)← X1 ← . . .

Then there is a weak equivalence

sHomCh≥0(R)(C∗, D∗) ≃ DK(τ≥0[C∗, D∗])

(see [Lur09, Remark 11.1]). And it’s clear that πnsHomCh≥0(R)(C∗, D∗) is isomorphic to the chain homotopy
classes of maps from C∗ to D∗+n.

2.1.6. Simplicial commutative rings. In Example 2.29 we introduce a model category structure on sCR such
that the fibrations and weak equivalences are those of sModZ (or equivalently sSets). The description of
cofibrations is a bit complicated, but we mention that a cofibration A → B must be degreewise flat (see
[Gil13, Lemma 7.10.2]). One can deduce from this fact that the degreewise tensor product−⊗AB : A\sCR→
B\sCR is a left Quillen functor, so it makes sense to define its total left derived functor

−
L
⊗AB : Ho(A\sCR)→ Ho(B\sCR).

We also use C⊗AB to denote some c(C) ⊗A B ∈ B\sCR, where c(C) is a cofibrant replacement of C in

A\sCR; it is well defined up to weak equivalence and it represents C
L
⊗AB.

In what follows, we will explain the graded commutative ring structure on π∗(A) for A ∈ sCR. Here it’s
natural to consider together the modules over simplicial commutative rings.

Definition 2.33. Fix A ∈ sCR. We define the category Mod(A) as follows: the objects are simplicial
abelian groupsM such that eachMn is an An-module and each morphism [m]→ [n] of∆ inducesMn →Mm

compatible with An → Am, and the morphisms from M to N consist of An-module morphisms Mn → Nn

(n ≥ 0) compatible with ∆-morphisms [m]→ [n].

Note if A ∈ sCR is the constant simplicial ring associated to A ∈ CR, then Mod(A) is naturally
isomorphic to sModA.

For A ∈ sCR and M ∈Mod(A), the unnormalized chain complex is C(M) =
⊕∞

n=0Mn with differential
n∑

i=0

(−1)idi : Mn →Mn−1.
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It’s clear that the above construction is natural in M . Moreover, the inclusion of abelian group complexes
N(M)→ C(M) (by the way one can check the boundary and cycle inN(M)n are An-modules) is a homotopy

equivalence and induces H∗(N(M))
∼→H∗(C(M)) (see [Gil13, Lemma 5.1.2]).

In the following we define multiplications of C(A) on C(M), making C(M) a differential graded module
over C(A) (see Section 1.4).

For m,n ≥ 0, the set of surjective morphisms [m + n] → [m] of ∆ is in one-to-one correspondence
with the set {σ = (σi)

m
i=1 | 1 ≤ σ1 < σ2 < · · · < σm ≤ m + n}, where σ = (σi)

m
i=1 corresponds to the

morphism [m + n] → [m] sending σi, σi + 1, . . . , σi+1 − 1 to i (we put σ0 = 0 and σm+1 = m + n + 1 for
convenience). Let Pm,n be the set of permutations (σ, τ) of {1, 2, . . . ,m + n} where σ = (σi)

m
i=1 satisfies

1 ≤ σ1 < σ2 < · · · < σm ≤ m+n and τ = (τi)
n
i=1 satisfies 1 ≤ τ1 < τ2 < · · · < τn ≤ m+n. Then (σ, τ) ∈ Pm,n

determines surjective morphisms σ : [m + n] → [m] and τ : [m + n] → [n]. Let sign(σ, τ) be the sign of the
permutation (σ, τ). Then for (σ, τ) ∈ Pm,n, we have (τ, σ) ∈ Pn,m and sign(σ, τ) = (−1)mnsign(τ, σ).

The multiplication of C(A) on C(M) is defined by

a · x =
∑

(σ,τ)∈Pm,n

sign(σ, τ)A(σ)(a)M(τ)(x),

for a ∈ Am and x ∈Mn, where A(σ) : Am → Am+n corresponds to σ : [m+n]→ [m] andM(τ) : Mn →Mm+n

corresponds to τ : [m+ n]→ [n]. Then one has the following lemma:

Lemma 2.34. Let A ∈ sCR and let M ∈Mod(A).

(1) C(A) is a strictly graded commutative (i.e., a · a = 0 for every a ∈ Ai for every odd i) differential
graded ring. Moreover, with the multiplication induced from C(A), the normalized chain complex
N(A) is a sub-differential graded ring of C(A).

(2) C(M) is a differential graded module over C(A). Moreover, with the multiplication induced from
C(M), the normalized chain complex N(M) ⊆ C(M) is a differential graded module over N(A) ⊆
C(A).

(3) The multiplication is well-defined for homology groups. In particular, under the isomorphisms
π∗(A) ∼= H∗(N(A)) ∼= H∗(C(A)) and π∗(M) ∼= H∗(N(M)) ∼= H∗(C(M)), π∗(A) is a graded commu-
tative ring and π∗(M) is a graded π∗(A)-module.

Proof. See [Gil13, Lemma 8.3.2]. □

2.2. Representability of functors.

2.2.1. Simplicial Artinian rings. Recall that O is the ring of integers in a p-adic number field K, and k is
the residue field of O. We regard O and k as constant objects in sCR.

For A ∈ O\sCR, we have shown that
⊕

i πiA is naturally a graded commutative O-algebra. Recall that
sCR is cofibrantly generated, so we can fix a functorial factorization O ↪→ c(A)

∼
↠ A for A ∈ O\sCR. Now

let’s define an Artinian subcategory of O\sCR/k.

Definition 2.35. The simplicial Artinian O-algebras over k, which we denote by O\sArt/k, is the full
subcategory of O\sCR/k consisting of objects A ∈ O\sCR/k such that:

(1) π0A is an Artinian local O-algebra in the usual sense.
(2) π∗A = ⊕i≥0πiA is finitely generated as a module over π0A.
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Note that O\sArt/k is not a model category, and cofibrations, fibrations and weak equivalences in

O\sArt/k are used to indicate those in O\sCR/k. Nevertheless, O\sArt/k is closed under weak equiv-
alences since the definition only involves homotopy groups. We also remark that every A ∈ O\sArt/k is
fibrant since A→ k is degreewise surjective.

Example 2.36. If M ∈ sModk and dimk(π∗(M)) < ∞, then the object k ⊕M ∈ O\sCR/k defined by
square-zero extension on each simplicial degree is an object of O\sArt/k. In particular, k ⊕ DK(k[n]) ∈
O\sArt/k for n ≥ 0 (here k[n] is the chain complex with k on n-th degree and 0 elsewhere). For simplicity
we write k ⊕ k[n] for k ⊕DK(k[n]).

2.2.2. Formally cohesive functors.

Definition 2.37. A functor F : O\sArt/k → sSets is called formally cohesive if it satisfies the following
conditions:

(1) F is homotopy invariant (i.e. preserves weak equivalences).
(2) Suppose that

A //

��

B

��
C // D

is a homotopy pullback square with at least one of B → D and C → D being degreewise surjective
(i.e., a fibration with surjective π0, see [GJ09, Lemma III.2.11]), then

F(A) //

��

F(B)

��
F(C) // F(D)

is a homotopy pullback square (in this case we say F preserves homotopy pullbacks for simplicity).
(3) F(k) is contractible.

Example 2.38. If R ∈ O\sCR/k is cofibrant, then the functor

sHomO\sCR/k(R,−) : O\sArt/k → sSets

is a restriction of a right Quillen functor and obviously Kan-valued. In addition, it extends to

sHomO\sCR/k(A,B)→ sHomsSets(sHomO\sCR/k(R,A), sHomO\sCR/k(R,B))

(this is called the simplicial enrichment), which is given by the adjoint

sHomO\sCR/k(A,B)× sHomO\sCR/k(R,A)→ sHomO\sCR/k(R,B)

defined just below [GJ09, Lemma II.2.2]. Moreover, the functor is formally cohesive:

(1) Since a right Quillen functor preserves weak equivalences between fibrant objects ([Hir09], Proposi-
tion 8.5.7) and every object of O\sArt/k is fibrant, sHomO\sCR/k(R,−) is homotopy invariant.

(2) Note that B ×h
D C ∈ O\sArt/k (see [GV18, Lemma 2.3]). Write F = sHomO\sCR/k(R,−) for

simplicity. By Lemma 2.22 we have RF(B ×h
D C) ∼= RF(B) ×h

RF(D) RF(C) in the homotopy

category, then use the fact that F is homotopy invariant, we get the chain of weak equivalences
F(A) ≃ F(B ×h

D C) ≃ F(B)×h
F(D) F(C).

(3) sHomO\sCR/k(R, k) is obviously contractible.
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We can construct formally cohesive functors from known ones:

Lemma 2.39. (1) Let X be a simplicial set and let F be a Kan-valued, homotopy invariant functor.
Then the functor A 7→ sHomsSets(X,F(A)) is formally cohesive (resp. preserves homotopy pull-
backs) if F is formally cohesive (resp. preserves homotopy pullbacks).

(2) Let C be a small category and let (Fc)c∈C be a C-system of homotopy invariant functors from

O\sArt/k to sSets. Define F = holimc∈C Fc to be the objectwise homotopy limit, then F is formally
cohesive (resp. preserves homotopy pullbacks) if every Fc (c ∈ C) is formally cohesive (resp. preserve
homotopy pullbacks).

(3) Let I be a small filtered category and let (Fi)i∈I be a filtered system of homotopy invariant functors.
Define F(A) = hocolimI Fi(A). Then F is formally cohesive (resp. preserves homotopy pullbacks)
if all Fi (i ∈ I) are formally cohesive (resp. preserve homotopy pullbacks).

Proof. First note sHomsSets(X,F(−)) and holimc∈C Fc are homotopy invariant under our assumptions, then
since both sHomsSets(X,−) and the homotopy limit functor are right Quillen, (1) and (2) are consequences
of Lemma 2.22 (see also [GV18, Lemma 4.29 and Lemma 4.30]). Part (3) follows from Lemma 2.40 below. □

Lemma 2.40. Let I be a small filtered category.

(1) The functor lim−→I
: sSetsIproj → sSets preserves fibrations and trivial fibrations.

(2) The functor lim−→I
: sSetsIproj → sSets preserves weak equivalences.

(3) The functor lim−→I
: sSetsI → sSets commutes with homotopy pullbacks.

Proof. (1) Fibrations and trivial fibrations are characterized by right lifting properties with respect to
morphisms ∂Λn

k ↪→ ∆n and ∂∆n ↪→ ∆n respectively, and all objects involved are small in the sense
of Quillen, so the result follows.

(2) By part (1) and [Hir09, Proposition 8.5.7], the functor lim−→I
preserves weak equivalences between

fibrant objects. The result follows because Kan’s Ex∞ functor (see [GJ09, III.4]) gives fibrant
replacements and preserves filtered colimits.

(3) Let (Bi → Di ← Ci)i∈I be a system of diagrams. Let B′
i → D′

i ← C ′
i be a fibrant replacement of

Bi → Di ← Ci, then by lifting properties (B′
i → D′

i ← C ′
i)i∈I forms a direct system. From parts

(1) and (2), we see lim−→I
B′

i → lim−→I
D′

i ← lim−→I
C ′
i is fibrant and is weakly equivalent to lim−→I

Bi →
lim−→I

Di ← lim−→I
Ci, so

lim−→
I

Bi ×h
lim−→I

Di
lim−→
I

Ci ≃ lim−→
I

B′
i ×lim−→I

D′
i
lim−→
I

C ′
i ≃ lim−→

I

B′
i ×D′

i
C ′
i,

where the second weak equivalence is because filtered colimits commute with finite limits.
□

2.2.3. Pro-representable functors.

Definition 2.41. Let F and G be two functors from O\sArt/k to sSets.

(1) A natural transformation T : F → G is a weak equivalence if it induces weak equivalences F(A)
∼→G(A)

for all A ∈ O\sArt/k.
(2) F and G are weakly equivalent if there exists a finite zig-zag of weak equivalences between F and G.

Definition 2.42. A functor F : O\sArt/k → sSets is pro-representable, if there is a projective system R =
(Rn)n∈N with each Rn ∈ O\sArt/k cofibrant, such that F is weakly equivalent to lim−→

n

sHomO\sCR/k(Rn,−).
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In this case we say R = (Rn) is a representing (pro-)ring for F (we will often omit ”pro” for convenience).
For a pro-ring R = (Rn) we shall write

sHomO\sCR/k(R,−) = lim−→
n

sHomO\sCR/k(Rn,−)

for simplicity.

Remark 2.43. (1) The pro-representability defined above is called the sequential pro-representability
in [GV18], but we will only encounter this case.

(2) By Lemma 2.40, one can replace the colimit by the homotopy colimit. As pointed out in [GV18,
Section 2.6], the homotopy colimit is easier to map out of, while the usual colimit preserves fibrations.

(3) The representing ring is not uniquely determined up to natural isomorphism. However, since filtered
colimits of sSets commute with π0, it’s easy to see that the representing ring is uniquely determined
up to natural isomorphism as a pro-object in Ho(O\sCR/k). So if R pro-represents F then π∗R is
well-defined.

We expect that a natural transformation of pro-representable functors induces a morphism between the
corresponding pro-rings, at least modulo homotopy. For this we require the representing pro-ring R to be nice
in the sense of [GV18, Definition 2.23]. When R = (Rn) is degreewise cofibrant, then the niceness condition
means exactly that the pro-ring R is Reedy fibrant in the standard Reedy model category (O\sCR/k)

N, so
one can always make such a choice by taking fibrant replacements in the Reedy model category.

Lemma 2.44. Let F and G be two Kan-valued functors from O\sArt/k to sSets. We use T : F 99K G to
denote a zigzag of natural tansformations

F ∼← F1 → F2
∼← F3 → F4

∼← · · · → G

where all left arrows are weak equivalences. Suppose R = (Rn) (resp. S = (Sn)) is a representing pro-ring

for F (resp. G) and R is fibrant in the Reedy model category (i.e., nice), then there is a morphism S
α−→ R

of pro-simplicial rings such that for A ∈ O\sArt/k, the diagram

F(A)
T // G(A)

sHomO\sCR/k(R,A)
α∗
//

≃

OO

sHomO\sCR/k(S,A)

≃

OO

is commutative after taking homotopy groups πi (i ≥ 0) (note the dotted arrows become true arrows after
taking homotopy groups, since weak equivalences become isomorphisms).

Proof. First of all we can replace the zigzag T by F ∼← F∗ → G, where F∗ is the homotopy limit of the
diagram

F ∼← F1 → F2
∼← F3 → F4

∼← · · · → G
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(see discussions around [GV18, (7.3)]). Then as [GV18, Lemma 2.25] there exists horizontal arrows in the
second and third lines which make the diagram

F∗(A) // G(A)

hocolimn sHomO\sCR/k(Rn, A) //

OO

��

hocolimn sHomO\sCR/k(Sn, A)

OO

��
sHomO\sCR/k(R,A) // sHomO\sCR/k(S,A)

commute modulo simplicial homotopy. Note the niceness of R implies that

lim
n

sHomO\sCR/k(S,Rn)→ holimn sHomO\sCR/k(S,Rn)

is a weak equivalence, and the arrow in the third line exists by the enriched Yoneda’s lemma. □

By Lemma 2.40 and Example 2.38, any pro-representable functor is formally cohesive. Conversely, Lurie’s
criterion asserts that a formally cohesive functor is pro-representable if additionally its tangent complex is
not far from the tangent complexes of simplicial commutative rings. We will introduce tangent complexes
and Lurie’s criterion below.

2.2.4. (Co)tangent complexes of simplicial commutative rings. Let’s recall Quillen’s cotangent and tangent
complexes of simplicial commutative rings.

Let ΩR/O be the module of differentials with the canonical R-derivation d : R → ΩR/O for an O-algebra
R. Let DerO(R,−) be the covariant functor which sends an R-module M to the R-module

DerO(R,M) = {D : R→M | D is O-linear and D(xy) = xD(y) + yD(x), ∀x, y ∈ R}.

It’s well-known that HomR(ΩR/O,−) is naturally isomorphic to DerO(R,−) via ϕ 7→ ϕ ◦ d.
For any k-module M and any R ∈ O\CR/k, we have natural isomorphisms

Homk(ΩR/O ⊗R k,M) ∼= DerO(R,M) ∼= HomO\CR/k(R, k ⊕M).

where k ⊕M is the k-algebra with square-zero ideal M . So the functor R 7→ ΩR/O ⊗R k is left adjoint to
the functor M 7→ k ⊕M .

The above adjunction has level-wise extensions to simplicial categories (see [GJ09] Lemma II.2.9 and
Example II.2.10). For R ∈ O\sCR, we can form degreewisely ΩR/O ⊗R k ∈ sModk, and we have

sHomsModk
(ΩR/O ⊗R k,M) ∼= sHomO\sCR/k(R, k ⊕M).

The functor M 7→ k ⊕M from sModk to O\sCR/k preserves fibrations and weak equivalences (we may
see this via the Dold-Kan correspondence), so the left adjoint functor R 7→ ΩR/O ⊗R k is left Quillen and it
admits a total left derived functor.

Definition 2.45. For R ∈ O\sCR, we define the cotangent complex of R to be

LR/O = Ωc(R)/O ⊗c(R) R ∈Mod(R)

(here ⊗ is the degreewise tensor product, and see Definition 2.33 for Mod(R)).
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Then the total left derived functor of R 7→ ΩR/O ⊗R k is R 7→ LR/O ⊗R k.
By construction, LR/O ⊗R k is cofibrant as it’s the image of the cofibrant object c(R) under a total left

derived functor, and it is fibrant in sModk (all objects are fibrant there). It follows that LR/O ⊗R k is
determined up to homotopy equivalence (by the Whitehead theorem [Hir09, Theorem 7.5.10]). Using the
Dold-Kan equivalence, we can form the normalized complex (determined up to homotopy equivalence)

N(LR/O ⊗R k) ∈ Ch≥0(k).

We will often abuse the language and also use LR/O ⊗R k to denote its image under N .
Recall that for M,N ∈ Ch(k), the internal Hom [M,N ] ∈ Ch(k) is defined as

[M,N ]n =
∏
m

Homk(Mm, Nm+n).

When R ∈ O\sCR/k and C∗ ∈ Ch≥0(k), we have (by Remark 2.32):

sHomO\sCR/k(c(R), k ⊕DK(C∗)) ∼= sHomsModk
(LR/O ⊗R k,DK(C∗))

≃ DK(τ≥0[LR/O ⊗R k,C∗]).

Definition 2.46. The tangent complex tR is the internal hom complex [LR/O ⊗R k, k] ∈ Ch≤0(k).

Note that tR is well-defined up to chain homotopy equivalence since it is the case for LR/O ⊗R k. Also

note H−i(tR) = 0 for i < 0. When convenient, we may identify Ch≤0(k) = Ch≥0(k) via Ci = C−i.

Remark 2.47. For a field k, the functor Homk(−, k) on k-vector spaces is exact and there are no significant
differences between tR and LR/O ⊗R k. On the other hand, in studying the adjoint Selmer groups, [TU21]
considers derived deformations over ρB : ΓS → G(B) for some Artinian O-algebra B, where LR/O ⊗R B
appears to be the more appropriate object.

2.2.5. (Co)tangent complexes of formally cohesive functors and Lurie’s criterion. The tangent complexes
of formally cohesive functors is constructed in [GV18, Section 4]. The key result is the following:

Proposition 2.48. Let F : O\sArt/k → sSets be a formally cohesive functor. Then there exists LF ∈
Ch(k) such that F(k ⊕ DK(C∗)) is weakly equivalent to DK(τ≥0[LF , C∗]) for every C∗ ∈ Ch≥0(k) with
H∗(C∗) finite.

Proof. See [GV18, Lemma 4.25]. □

Definition 2.49. Let F : O\sArt/k → sSets be a formally cohesive functor. We define tF = [LF , k] to be
the tangent complex of F .

Remark 2.50. It’s easy to see that LF and tF are well-defined up to quasi-isomorphisms. Comparing with
above discussions for simplicial commutative rings, we call LF the cotangent complex of F .

Remark 2.51. In [GV18, Section 4], the authors showed the existence of tangent complexes for general
formally cohesive functors. On the other hand, we can explicitly calculate the tangent complexes of the
derived deformation functors we are interested in.

It’s convenient to regard tF as a cochain complex via Ci = C−i, and we denote tiF = H−itF . Then for
i, n ≥ 0, we have πiF(k ⊕ k[n]) ∼= Hi([LF , k[n]]) ∼= Hi−n([LF , k]) ∼= tn−iF .

If R ∈ O\sCR/k is cofibrant and FR = sHomO\sCR/k(R,−), then the cotangent complexes LFR
and

LR/O ⊗R k are quasi-isomorphic, since

DK(τ≥0[LFR
, k[n]]) ≃ sHomO\sCR/k(R, k ⊕ k[n]) ≃ DK(τ≥0[LR/O ⊗R k, k[n]]).
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Now we see any pro-representable functor F is formally cohesive and satisfies tiF = 0 (∀i < 0). The
following theorem gives the converse:

Theorem 2.52 (Lurie’s criterion). Let F be a formally cohesive functor. If dimk t
iF is finite for every

i ∈ Z and tiF = 0 for every i < 0, then F is (sequentially) pro-representable.

Proof. See [Lur04, Corollary 6.2.14] and [GV18, Theorem 4.33]. □

The following lemma illustrates the conservativity of the tangent complex functor:

Lemma 2.53. Suppose F ,G : O\sArt/k → sSets are formally cohesive functors. Then a natural transfor-
mation F → G is a weak equivalence if and only if it induces isomorphisms tiF → tiG for all i.

Proof. One direction is clear and we prove the other. If the natural transformation induces isomorphisms
tiF → tiG for all i, then F(k⊕k[n])→ G(k⊕k[n]) is a weak equivalence for every n ≥ 0. Hence by simplicial
artinian induction [GV18, Lemma 2.8] and the formal cohesiveness of F and G, the map F(A)→ G(A) is a
weak equivalence for every A ∈ O\sArt/k. □

The following lemma says that tangent complexes commute with homotopy limits:

Lemma 2.54. Let C be a small category and let (Fc)c∈C be a C-system of formally cohesive functors from

O\sArt/k to sSets. Define F = holimc∈C Fc to be the objectwise homotopy limit, then tF = holimc∈C tFc.
In particular, for the objectwise homotopy pullback diagram

F
f1 //

f2
��

F1

p1
��

F2
p2 // F0

with Fi (i = 0, 1, 2) formally cohesive, we have the long exact sequence

tnF ((f1)∗,(f2)∗)−−−−−−−−→ tnF1 ⊕ tnF2
(p1)∗−(p2)∗−−−−−−−→ tnF0 → tn+1F → . . . .

Proof. The functor F is formally cohesive by Lemma 2.39. The equation tF = holimc∈C tFc follows imme-
diately from F(k ⊕DK(C∗)) ≃ DK(τ≥0(tF ⊗ C∗)) (C∗ ∈ Ch≥0(k) with H∗(C∗) finite). □

3. Derived deformation functors

In this section, we will define the derived deformation functors with prescribed local deformation condi-
tions, and study the homotopy of the pro-representing rings. The main result is Theorem 3.32, where we
show that [GV18, Theorem 14.1] holds in our more general setting.

In Section 3.1, we will introduce the derived universal deformation functor with an emphasis on the center-
modified version following [GV18, Section 5.4]. In Section 3.2, we will define the derived local deformation
problems using the classical framed local deformation rings; this can be thought of as the reverse procedure
of Remark 3.3, where we define the derived framed deformation functor from the unframed one. In Section
3.3 we will impose local conditions to the derived global deformation functor, and in Section 3.4 we will
verify the calculations of [GV18, Section 11 and Section 14] in our more general setting and then prove
Theorem 3.32.

3.1. Derived universal deformation functor.
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3.1.1. Reformulation of DefS. Let ρ̄ : ΓS → G(k) be a fixed residual representation. Recall we defined
DefS : CNLO → Sets by associating A ∈ CNLO to the set of ker(G(A) → G(k))-conjugacy classes of
continuous liftings ρ : ΓS → G(A) which make the following diagram commute:

ΓS
ρ //

ρ̄

""

G(A)

��
G(k).

It’s convenient to work with Artinian localO-algebrasArtO instead ofCNLO to avoid the issue of continuity,
so we often regard ΓS as the projective limit of finite groups Γi and restrict DefS to ArtO.

In the following we shall explain the simplicial interpretation of DefS : ArtO → Sets.
Let Gpd be the category of small groupoids (recall a groupoid is a category such that all homomorphisms

between two objects are isomorphisms). Note that a group G can be regarded as a one point groupoid • with
End(•) = G. One reason for introducing groupoids is that Gpd is a model category (see [Str00, Theorem
6.7]), while Gp is not. Let’s recall a morphism f : G→ H of Gpd is

(1) a weak equivalence if it is an equivalence of categories;
(2) a cofibration if it is injective on objects;
(3) a fibration if for all a ∈ G, b ∈ H and h : f(a) → b there exists g : a → a′ such that f(a′) = b and

f(g) = h.

Moreover, the empty groupoid is the initial object and the unit groupoid consisting in a unique object with a
unique isomorphism is the final object, every object of Gpd is both cofibrant and fibrant, and the homotopy
category Ho(Gpd) is the quotient category of Gpd modulo natural isomorphisms. By regarding a group
G as a one point groupoid, the functor Gp→ Ho(Gpd) so obtained has the effect of modulo conjugations,
so, for any finite group Γi, we have

HomGp(Γi, G(A))/Gad(A) ∼= HomHo(Gpd)(Γi, G(A)).

Let Cat be the category of small categories. Let’s recall the nerve construction for Cat and Gpd; it’s
an application of Lemma 2.5:

Example 3.1. (1) Let ∆ → Cat be the functor defined by regarding [n] as a posetal category: its
objects are 0, 1, . . . n and Hom[n](k, ℓ) has at most one element, and is non-empty if and only if
k ≤ ℓ. We write P : sSets → Cat and B : Cat → sSets for the associated left adjoint and right
adjoint respectively. The functor B is called the nerve functor. The simplicial set BC = (Xn)

is defined by sets Xn ⊂ Ob(C)[n] of (n + 1)-tuples (C0, . . . , Cn) of objects of C with morphisms
Ck → Cℓ when k ≤ ℓ, which are compatible when n varies; it is a fibrant simplicial set if and only
if C ∈ Gpd (see [GJ09, Lemma I.3.5]). In a word, for BC to be fibrant, it must have the extension
property with respect to inclusions of horns in ∆n (∀n ≥ 1). For n = 2, it amounts to saying that
all homomorphisms in C are invertible; for n > 2, the extension condition is automatic (details in
the reference above). For C ∈ Cat, we have PBC ∼= C, so HomCat(C,D) ∼= HomsSets(BC, BD)
(∀C,D ∈ Cat). Note that B(C × [1]) ∼= BC × ∆[1] (product is taken degreewise); in consequence,
when C ∈ Cat and D ∈ Gpd, two functors f, g : C → D are naturally isomorphic if and only if Bf
and Bg are homotopic.

(2) As a corollary of (1), we have HomGpd(GPX,H) ∼= HomsSets(X,BH) for X ∈ sSets and H ∈
Gpd, where GPX is the free groupoid associated to PX. We remark that GPX and π1|X| (the
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fundamental groupoid of the geometric realization) are isomorphic in Ho(Gpd) (see [GJ09, Theorem
III.1.1]).

Lemma 3.2. The nerve functor B : Gpd → sSets is fully faithful and Kan-valued. Moreover, it is right
Quillen.

Proof. For the first statement, we know by the above example that HomCat(C,D) ∼= HomsSets(BC, BD)
(∀C,D ∈ Cat) and BC is fibrant for a groupoid C.

For the second statement, note that B obviously preserves weak equivalences; moreover, by definition,
Bf : BG → BH is a fibration if and only if it has the right lifting property with respect to inclusions of
horns in ∆n, ∀n ≥ 1 (see [GJ09, page 10]). For n = 1 this means exactly that f is a fibration, while for
n ≥ 2 it’s automatic (see the proof of [GJ09, Lemma I.3.5]). □

For convenience, for ΓS = lim←−Γi, we understand BΓS as the pro-simplicial set (BΓi) (here each Γi is

regarded as the one object groupoid • such that End(•) = Γi). For A ∈ ArtO, by applying the above
lemma and then passing to homotopy categories, we get

HomGp(Γi, G(A))/Gad(A) ∼= HomHo(Gpd)(Γi, G(A))

∼= HomHo(sSets)(BΓi, BG(A))

∼= π0sHomsSets(BΓi, BG(A)).

Passing to the limit, π0sHomsSets(BΓS , BG(A)) is isomorphic to the set of Gad(A)-conjugacy classes of
continuous maps from ΓS to G(A).

We shall consider the deformations of ρ̄, so it’s natural to work with the overcategory sSets/BG(k). It
is also a simplicial model category: the cofibrations, fibrations, weak equivalences and tensor products
are those of sSets (see [GJ09, Lemma II.2.4] for the only non-trivial part of the statement). Note that
ρ̄ : ΓS → G(k) induces a map BΓS → BG(k), which makes BΓS a pro-object of sSets/BG(k). Similar to
preceding discussions, we have

DefS(A) ∼= HomHo(sSets/BG(k))(BΓS , BG(A)) ∼= π0sHomsSets/BG(k)
(BΓS , BG(A))

for A ∈ ArtO. Note that sHomsSets/BG(k)
(BΓS , BG(A)) is the fiber over ρ̄ of the fibration map

sHomsSets(BΓS , BG(A))→ sHomsSets(BΓS , BG(k)),

so it is actually the homotopy fiber (see [Hir09, Theorem 13.1.13 and Proposition 13.4.6]).

Remark 3.3. The same argument gives a simplicial interpretation of the framed universal deformation
functor Def□S . Let Gpd∗ be the category of based groupoids (i.e., the under category ∗\Gpd). Now one
has

HomGp(Γi, G(A)) ∼= HomHo(Gpd∗)
(Γi, G(A)).

We regard BΓS as a pro-object of the over and under category ∗\sSets/BG(k) under ρ̄ : ΓS → G(k) (note

∗\sSets/BG(k) is also a simplicial model category: the cofibrations, fibrations, weak equivalences are those of
sSets, and the tensor product of X ∈ ∗\sSets/BG(k) and K ∈ sSets is the pushout of ∗ ← ∗⊗K → X⊗K).
Proceeding as the unframed case, one gets

Def□S (A) ∼= HomHo(∗\sSets/BG(k))(BΓS , BG(A)) ∼= π0sHom∗\sSets/BG(k)
(BΓS , BG(A))

for A ∈ ArtO.
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By the description of the tensor product in ∗\sSets/BG(k), one sees that sHom∗\sSets/BG(k)
(BΓS , BG(A))

is isomorphic to the fiber over the base point of the fibration map

sHomsSets/BG(k)
(BΓS , BG(A))→ sHomsSets/BG(k)

(∗, BG(A)).

In other words, one has the homotopy pullback square

sHom∗\sSets/BG(k)
(BΓS , BG(A)) //

��

∗

��
sHomsSets/BG(k)

(BΓS , BG(A)) // sHomsSets/BG(k)
(∗, BG(A)).

3.1.2. Derived universal deformation functor. Let’s extend the functor sHomsSets/BG(k)
(BΓS , BG(−)) to

the category O\sArt/k (see Definition 2.35).
Define ON•G ∈ Alg∆

O (i.e., a functor ∆→ AlgO, also called a cosimplicial object in AlgO) as follows: in

codegree p we have ONpG = O⊗p
G , and the coface and codegeneracy maps are induced from the comultiplica-

tion and the coidentity of the Hopf algebra OG respectively. Then for A ∈ AlgO, the nerve BG(A) is exactly
HomAlgO(ON•G, A), with face and degeneracy maps induced by the coface and codegeneracy maps in ON•G.
When A ∈ O\sCR, the näıve analogy is the diagonal of the bisimplicial set ([p], [q]) 7→ HomAlgO(ONpG, Aq)
(recall that the diagonal of a bisimplicial set is a simplicial set model for its geometric realization). However,
we need to make some modifications using cofibrant replacements to ensure the homotopy invariance. Recall

that sCR is cofibrantly generated, so there is a functorial factorization O ↪→ c(A)
∼
↠ A for A ∈ O\sCR.

Definition 3.4. (1) For A ∈ O\sCR, we define Bi(A) to be the bisimplicial set

([p], [q]) 7→ HomO\sCR(c(ONpG), A
∆[q]),

with face and degeneracy maps induced by the coface and codegeneracy maps in ON•G and the face
and degeneracy maps in A∆[•].

(2) The diagonal diag Bi(A) is the simplicial set induced from the diagonal embedding

∆op →∆op ×∆op Bi(A)−−−→ Sets.

When A is an O-algebra regarded as a constant object in O\sCR, we have

Bi(A)p,q = HomO\sCR(c(ONpG), A
∆[q]) ∼= HomAlgO(ONpG, A),

where the latter isomorphism is because the constant embedding functor is right adjoint to π0 : O\sCR→
AlgO. Hence Bi(A) is just a disjoint union of copies of BG(A) in index q. In particular, for A ∈ O\sArt/k
there is a natural map Bi(A)•,q → BG(k) for each q ≥ 0, so we may regard Bi(A) ∈ (sSets/BG(k))

∆op
via

the association [q] 7→ Bi(A)•,q. Recall that any morphism X → Y in sSets admits a functorial factorization

X
∼
↪→ X̃ ↠ Y

into a trivial cofibration and a fibration.

Definition 3.5. For A ∈ O\sArt/k, the simplicial set BG(A) is defined by the functorial trivial cofibration-

fibration factorization diag Bi(A)
∼
↪→ BG(A) ↠ BG(k).

It’s clear that BG : O\sArt/k → sSets/BG(k) defines a functor. If A ∈ ArtO is a constant simplicial
ring, then diag Bi(A) = BG(A) ↠ BG(k) is a fibration, and hence BG(A) is a strong deformation retract
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of BG(A) in sSets/BG(k) (see [Hir09, Definition 7.6.10]). In particular, these two are indistinguishable in
our applications.

The following lemma explains the reason for taking cofibrant replacements of ONpG:

Lemma 3.6. If A→ B is a weak equivalence, then so is BG(A)→ BG(B).

Proof. If A→ B is a weak equivalence, then

sHomO\sCR(c(ONpG), A)→ sHomO\sCR(c(ONpG), B)

is a weak equivalence for each p ≥ 0, so are diag Bi(A) → diag Bi(B) (see [Hir09, Theorem 15.11.11]) and
BG(A)→ BG(B). □

Definition 3.7. (1) The derived universal deformation functor sDefS : O\sArt/k → sSets is defined
by

sDefS(A) = sHomsSets/BG(k)
(BΓS ,BG(A)).

(2) The derived universal framed deformation functor sDef□S : O\sArt/k → sSets is defined by

sDef□S (A) = hofib∗(sDefS(A)→ sHomsSets/BG(k)
(∗,BG(A))).

Note sDefS(A) can be defined alternatively as

hofibρ̄(sHomsSets(BΓS ,BG(A))→ sHomsSets(BΓS , BG(k))).

The following proposition summarizes the properties of the derived functors:

Proposition 3.8. The functors sDefS and sDef□S are formally cohesive.

Proof. We first verify three conditions in the above definition for sDefS :

(1) If A→ B is a weak equivalence, then BG(A)→ BG(B) is a weak equivalence between fibrant objects
in sSets/BG(k), so

sHomsSets/BG(k)
(BΓS ,BG(A))→ sHomsSets/BG(k)

(BΓS ,BG(B))

is also a weak equivalence.
(2) By [GV18, Lemma 4.31], to prove

BG(A) //

��

BG(B)

��
BG(C) // BG(D)

is a homotopy pullback square (one can regard this diagram in either sSets/BG(k) or sSets), it
suffices to check:
(a) the functor ΩBG : O\sArt/k → sSets preserves homotopy pullbacks, and
(b) π1BG(C)→ π1BG(D) is surjective whenever C → D is degreewise surjective.
Part (a) follows from [GV18, Lemma 5.2], and part (b) follows from [GV18, Corollary 5.3].

Then since BG is homotopy invariant and take fibrant values in sSets/BG(k), we can apply
Lemma 2.39 to deduce that sDefS = sHomsSets/BG(k)

(BΓS ,BG(−)) preserves homotopy pullback
squares.

(3) It’s clear that sDefS(k) is contractible.

The same argument applies for A → sHomsSets/BG(k)
(∗,BG(A)). So sDef□S is formally cohesive as it is

the homotopy pullback of formally cohesive functors. □
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Now it’s clear that sDefS and sDef□S are indeed generalizations of DefS and Def□S :

Proposition 3.9. When A is homotopy discrete (i.e., A is weakly equivalent to π0A), we have π0sDefS(A) ∼=
DefS(π0A) and π0sDef□S (A) ∼= Def□S (π0A).

Proof. By the formal cohesiveness, we may suppose A is a constant simplicial ring. Then since BG(A) is a
strong deformation retract of BG(A) in sSets/BG(k), the proposition follows from the discussions in Section
3.1.1. □

It’s natural to ask if the functors sDefS and sDef□S are pro-representable, and for this one has to calculate
their tangent complexes. From now on, we will use calligraphic letters for the pro-representing rings of
derived deformation functors to distinguish them from the classical representing rings.

Lemma 3.10. (1) We have tisDefS = H i+1(ΓS , gk) for all i ∈ Z.

(2) We have tisDef□S =

 0 if i < 0;
Z1(ΓS , gk) if i = 0;
H i+1(ΓS , gk) if i > 0.

Proof. (1) See [GV18, Lemma 5.10]. Here we give a slightly different approach.
Without loss of generality, we temporarily forget the pro-issue on X = BΓS . Then by [Hir09,

Proposition 18.9.2], X is weakly equivalent to hocolim(∆X)op ∗ (i.e., the homotopy colimit of the
single-point simplicial set indexed by (∆X)op), and hence

sHomsSets(X,BG(k ⊕ k[n])) ≃ holim∆X BG(k ⊕ k[n]).

Since homotopy limits commute with homotopy pullbacks, we deduce

sDefS(k ⊕ k[n]) ≃ holim∆X sHomsSets/BG(k)
(∗,BG(k ⊕ k[n])).

So t(sDefS) is the homotopy limit indexed by ∆X of t(sHomsSets/BG(k)
(∗,BG(−))). The homotopy

groups of hofib∗(BG(k⊕k[j])→ BG(k)) are trivial except at degree j+1, where it is gk (see [GV18,
Lemma 5.5]), so t(sHomsSets/BG(k)

(∗,BG(−))) is concentrated on degree −1, where it is gk. The

∆X-diagram of complexes on X forms a cohomological coefficient system in the sense of [GM13,
Page 28], or local system in the sense of [GV18, Definition 4.34], and the π1(X, ∗)-action on gk is
exacly the adjoint action.

By shifting (co)degrees i 7→ i + 1, it suffices to calculate holim∆X gk where gk is the cochain
complex concentrated on degree 0. By [Hir09, Lemma 18.9.1], holim gk is naturally isomorphic to
holim∆ Z where Z is the cosimplicial object in Ch≥0(k) whose codegree [n] term is

∏
σ∈Xn

gk. The
coface maps of Z can be described as follows:

The k[ΓS ]-module gk defines a functor D from the one-object groupoid • with End(•) = ΓS

to Ch≥0(k), such that D(•) = gk, and D(ΓS) acts on gk by the adjoint action. Then Zn is∏
i0→···→in

D(in) (all ik’s are equal to the object • here, but keeping the difference helps to clarify the

process). Let dk be the k-th face map from Γn+1
S to Γn

S , in other words, dk maps (i0 → · · · → in+1)
to (j0 → · · · → jn) by ”covering up” ik. Then the corresponding D(jn) → D(in+1) is the identity
map if k ̸= n+ 1, and is D(in → in+1) if k = n+ 1.

By [Dug08, Proposition 19.10], holim∆ Z is quasi-isomorphic to the total complex of the alter-
nating double complex defined by Z. Since each Zn is concentrated on degree 0, the total complex
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is simply

· · · →
∏
Γn
S

gk →
∏
Γn+1
S

gk → . . .

and the alternating sum
∏
Γn
S

gk →
∏

Γn+1
S

gk is exactly the one which computes the group cohomology.

We deduce holim∆X gk ≃ C•(ΓS , gk), and hence (+1 arises from the degree-shifting) tisDefS =
H i+1(ΓS , gk) for all i ∈ Z.

(2) From Lemma 2.54 and

sDef□S (A) = hofib∗(sDefS(A)→ sHomsSets/BG(k)
(∗,BG(A))),

we get the long exact sequence

tisDef□S → tisDefS → tisHomsSets/BG(k)
(∗,BG(−)) [1]→ . . . .

In the proof of (1), we know tisDefS = H i+1(ΓS , gk) (∀i ∈ Z) and

tisHomsSets/BG(k)
(∗,BG(−)) =

{
gk if i = −1;
0 if i ̸= −1.

So the conclusion follows from the above long exact sequence; note by Lemma 2.54 all maps there
are natural ones.

□

By Lurie’s criterion 2.52, the functor tisDef□S is always pro-representable, while the functor sDefS can’t
be pro-representable unless H0(ΓS , gk) = 0. If G has a nontrivial center Z, we need a variant sDefS,Z of
the functor sDefS , in order to allow pro-representability.

3.1.3. Modifying the center. We follow [GV18, Section 5.4] for this modification. Define PG = G/Z, then the
short exact sequence 1 → Z(A) → G(A) → PG(A) → 1 yields a fibration sequence BG(A) → BPG(A) →
B2Z(A). Indeed, given a simplicial group H and a simplicial sets X with a left H-action, we can form
the bar construction N∗(∗, H,X) at each simplicial degree (see [Gil13, Example 3.2.4]), which gives the
bisimplicial set ([p], [q]) 7→ Hq

p × Xp =: Nq(∗, Hp, Xp). Consider the action Z(A) × G(A) → G(A), and
the corresponding simplicial action NpZ(A)×NpG(A)→ NpG(A) (note that N∗Z(A) is a simplicial group
because Z(A) is abelian). We identify for each p ≥ 0,

BG(A)p = Np(∗, ∗, NpG(A)),

BPG(A)p = Np(∗, NpZ(A), NpG(A)),

and we put

B2Z(A)p = Np(∗, NpZ(A), ∗)

(with diagonal face and degeneracy maps). The desired fibration is given by the canonical morphisms of
simplicial sets which in degree p are:

Np(∗, ∗, NpG(A))→ Np(∗, NpZ(A), NpG(A))→ Np(∗, NpZ(A), ∗).
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The functor sDefS,Z : O\sArt/k → sSets is defined by the homotopy pullback square (here the base
maps are those induced from BG(k)→ BPG(k)→ B2Z(k))

sDefS,Z(A) //

��

sHomsSets/B2Z(k)
(∗, B2Z(A))

��
sHomsSets/BPG(k)

(BΓS ,BPG(A)) // sHomsSets/B2Z(k)
(BΓS , B

2Z(A)).

Then sDefS,Z is formally cohesive becasue it is the homotopy pullback of formally cohesive functors. Observe
that sDefS,Z and sDefS coincide when Z is trivial.

Remark 3.11. Note the construction sDefS,Z is functorial both in ΓS and G.

Consider the diagram

sDefS(A) //

��

∗

��
sDefS,Z(A) //

��

sHomsSets/B2Z(k)
(∗, B2Z(A))

��
sHomsSets/BPG(k)

(BΓS ,BPG(A)) // sHomsSets/B2Z(k)
(BΓS , B

2Z(A)).

By above discussions, the lower square and the combined square are homotopy fiber squares, so is the upper
square (see [Hir09, Proposition 13.3.15]). Now we can calculate the tangent complex of sDefS,Z .

Lemma 3.12. We have

tisDefS,Z =

{
H0(ΓS , gk)/zk if i = −1;
H i(ΓS , gk) otherwise.

Proof. Using the above homotopy fiber square, the proof is similar to Lemma 3.10. □

Since we’ve made the assumption H0(ΓS , gk) = zk, the functor sDefS,Z is pro-representatble.

Lemma 3.13. sDefS,Z fits into the fiber sequence

sDef□S (A)→ sDefS,Z(A)→ sHomsSets/BPG(k)
(∗,BPG(A)).

Proof. Consider the diagram

sDef□S (A) //

��

sDefS(A) //

��

sDefS,Z(A)

��
∗ // sHomsSets/BG(k)

(∗,BG(A)) //

��

sHomsSets/BPG(k)
(∗,BPG(A))

��
∗ // sHomsSets/B2Z(k)

(∗, B2Z(A)).
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It suffices to apply [Hir09, Proposition 13.3.15] twice. Since the right composed square and the lower square
are homotopy fiber squares, so is the upper right square. Then since the left square is also a homotopy fiber
square, we deduce that the upper composed square is a homotopy fiber squares. □

Similar results of this section hold for the derived universal (framed) deformation functors for Γv → G(k).
In this case we just replace the subscript S by v in our notations. Note even after modifying the center, the
functor sDefv,Z is generally not pro-representable, as generally H0(Γv, gk) ̸= zk.

3.2. Derived local deformation problem. Let v be a finite place of F . Following [GV18, Definition
9.1], a derived local deformation problem at v means a functor O\sArt/k → sSets equipped with a natural
transformation to sDefv,Z : O\sArt/k → sSets (note the center-modification here). Let Dv be a local
deformation problem and let Rv be the framed deformation ring for Dv (so Rv is a quotient of R□

v ). It’s
natural to try to associate a derived local deformation problem to Dv.

Note the conjugation action of ker(G(A) → G(k)) on a lifting Γv → G(A) together with the functorial
cofibrant replacement c induce a cosimplicial object [p] 7→ c(Rv ⊗ONpG) ∈ O\sCR/k. To take into account
the continuity, we regard Rv as a pro-Artinian object in the following.

Definition 3.14. Associated to Dv, we define

(1) sD□
v : O\sArt/k → sSets to be the functor A 7→ sHomO\sCR/k(c(Rv), A);

(2) sDv : O\sArt/k → sSets to be the functor which sends A ∈ O\sArt/k to the fixed fibrant replace-

ment in sSets/BG(k) of the diagonal of ([p], [q]) 7→ HomO\sCR/k(c(Rv ⊗ONpG), A
∆[q]).

The definition of sDv is inspired by the simplicial bar construction (one may compare with [GV18, Lemma
5.7]). The natural ∆-equivariant map c(ON•G)→ c(Rv ⊗ON•G)→ c(Rv) induces

sD□
v (A)→ sDv(A)→ sHomsSets/BG(k)

(∗,BG(A))

for A ∈ O\sArt/k, which is a fibration sequence by [Lan15, Lemma 4.6.6]. Using the long exact sequence
for homotopy groups, one sees that sDv preserves homotopy pullbacks, since this is the case for sD□

v and
sHomsSets/BG(k)

(∗,BG(−)). Then we deduce

Lemma 3.15. sDv is formally cohesive.

Now we construct the natural transformation sDv → sDefv.

Proposition 3.16. There is a natural transformation sDv → sDefv making the diagram

sD□
v (A) //

��

sDv(A) //

��

sHomsSets/BG(k)
(∗,BG(A))

sDef□v (A) // sDefv(A) // sHomsSets/BG(k)
(∗,BG(A)).

commutative up to weak equivalence. Here the first vertical arrow is induced from R□
v → π0R□

v → Rv.

Remark 3.17. When the representing ringR□
v for sDef□v is homotopy discrete, the map sDv(A)→ sDefv(A)

is the natural one induced from the quotient map R□
v → Rv. Note the homotopy discreteness of R□

v is
equivalent to the conjecture below [GV18, (1.5)] which says R□

v is a complete intersection ring of expected
dimension. Here we don’t need R□

v to be homotopy discrete, which illustrates in a certain sense the comment
of loc. cit. that one of the advantages of the derived deformation ring is to circumvent the conjecture
mentioned above.
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Proof. Fix A ∈ O\sArt/k. We write Z = sDefv(A) and write X for the bisimplicial set ([p], [q]) 7→
HomO\sCR/k(c(Rv ⊗ ONpG), A

∆[q]). Note X can be viewed as a simplicial object in sSets through [p] 7→
Xp = sHomO\sCR/k(c(Rv ⊗ONpG), A). By [Hir09, Theorem 15.11.6], diagX is naturally isomorphic to the
realization |X|, or in other words the coend X⊗∆op ∆ where ∆ is the cosimplicial standard simplex.

So it suffices to construct a sSets-morphism X⊗∆op ∆ → sDefv(A), or equivalently a system of sSets-
morphisms ∆n → sHomsSets(Xn, Z) which is ∆-compatible in [n]. Given [n] ∈ ∆, we construct ∆n

k →
HomsSets(Xn ⊗∆k, Z) by induction on k: for k = 0 a map [0]→ [n] gives naturally Xn → X0 → Z where
the second arrow is induced from sDef□v (A)→ sDefv(A); for k > 0, each of the (k+1) maps Xk → X0 → Z
factors through sDef□v (A)→ sDefv(A), so we can choose a morphism Xk ⊗∆k → Z such that for [l]→ [k]
with l < k it is compatible with Xk ⊗∆l → Xl ⊗∆l → Z via the embedding ∆l → ∆k, and Xn ⊗∆k → Z
associated to [k] → [n] is the composition Xn ⊗ ∆k → Xk ⊗ ∆k → Z. Thus we get a sSets-morphism
∆n → sHomsSets(Xn, Z), and this construction is clearly ∆-compatible in [n]. It’s direct to check that the
map sDv(A)→ sDefv(A) make the above diagram commutative up to weak equivalence. □

We will always take the center-modification into account. For this it suffices to replace G by PG = G/Z
in Definition 3.14, and henceforth we will instead write sDv for the fibrant replacement of the diagonal
of ([p], [q]) 7→ HomO\sCR/k(c(Rv ⊗ ONp(PG)), A

∆[q]) to simplify our notations. Analogous to the above
proposition and using Lemma 3.13, we have the following:

Corollary 3.18. There is a natural diagram

sD□
v (A) //

��

sDv(A) //

��

sHomsSets/BPG(k)
(∗,BPG(A))

sDef□v (A) // sDefv,Z(A) // sHomsSets/BPG(k)
(∗,BPG(A)).

which is commutative up to weak equivalence and whose rows are fiber sequences.

Remark 3.19. In some cases we can define the derived local deformation problem more arithmetically. For
the unramified condition, see the example on [GV18, Page 91]. For the (nearly) ordinary condition, one
can also define the derived local deformation functor directly by replacing the role of G by its Borel B, and
under the regularity and dual regularity conditions (see [Til96, Propostion 6.2 and Propostion 6.3]), this
definition coincides with the one using the framed ring (see discussions after [CT20, Definition 2.13]).

Lemma 3.20. When A ∈ AlgO is regarded as a constant simplicial ring, π0sDv(A) is isomorphic to Dv(A).

Proof. For A ∈ AlgO, we have (the canonical base point is omitted for brevity)

π1sHomsSets/BPG(k)
(∗, BPG(A)) ∼= ker(PG(A)→ PG(k)),

and it acts by conjugation on π0sD□
v (A) ∼= Dv(A).

Moreover, We have the sequence of maps

π1sHomsSets/BPG(k)
(∗, BPG(A))→ π0sD□

v (A)→ π0sDv(A)

such that π0sD□
v (A) → π0sDv(A) is surjective and two elements of π0sD□

v (A) have the same image if and
only if they are in the same orbit for the π1sHomsSets/BPG(k)

(∗, BPG(A))-action. The conclusion follows

easily. □

Recall Rv is said to be formally smooth if it’s a power series ring over O.
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Lemma 3.21. Suppose Rv is formally smooth, then we have

tisDv =

 H0(Γv, gk)/zk if i = −1;
Lv if i = 0;
0 if i > 0.

Proof. By Lemma 2.39, we have the long exact sequence

0→t−1sD□
v → t−1sDv → t−1sHomsSets/BPG(k)

(∗,BPG(−))

→t0sD□
v → t0sDv → t0sHomsSets/BPG(k)

(∗,BPG(−))

→t1sD□
v → t1sDv → t1sHomsSets/BPG(k)

(∗,BPG(−))
→ . . . .

Since sD□
v = sHomO\sCR/k(c(Rv),−) and Rv is formally smooth, tisD□

v in concentrated on degree 0, where

it is L̃v = HomCNLO(Rv, k ⊕ k[0]). On the other hand

tisHomsSets/BPG(k)
(∗,BPG(A))

is gk/zk concentrated on degree −1. Hence tisDv fits into the exact sequence

0→0→ t−1sDv → gk/zk

→L̃v → t0sDv → 0

→0→ t1sDv → 0

→ . . .

where all maps are natural, and the conclusion follows. □

3.2.1. Some local deformation problems. We discuss some local deformation problems for ρ̄ : Γv → G(k) for
specific groups used in this paper and [TU21].

3.2.2. Minimal deformations. Let v ∈ S\Sp. We would like to formulate a deformation condition which
controls the ramifications and is formally smooth (or liftable in [CHT08]).

For general linear groups, the minimal conditions are defined in [CHT08, Section 2.4.4]. It’s noted by
[Boo19] that the key feature to define a lifting ρ to be minimal is to require ρ(τ) to have ”the same unipotent
structure” as ρ̄(τ) (for τ ∈ Iv). In loc. cit. the author reinterpreted the definition of [CHT08] using unipotent
orbits, and then defined analogously the minimal conditions for symplectic and orthogonal similitude groups.

Let’s illustrate some ideas for G = GLN . We say ρ̄ : Γv → GLN (k) is minimal if ρ̄(Iv) contains a regular
unipotent element. Let JN be the standard Jordan block of size N (note JN is regular nilpotent) and

tv : Iv → Zp be the character defined by τ(ϖ
1/pn

v )

ϖ
1/pn
v

= ζ
tv(τ)
pn (for n ≥ 1 and τ ∈ Iv). Without loss of generality,

we can suppose ρ̄(τ) = exp(tv(τ)JN ), and we say a lifting ρ : Γv → G(A) of ρ̄ is minimal if there exists
gv ∈ ker(GLN (A)→ GLN (k)) such that gvρ(τ)g

−1
v = exp(tv(τ)JN ).

We writeDmin
v for the framed minimal deformation functor at v, then by [TU21, Lemma 1] the representing

ring is a power series ring in N2 variables over O, in other words, Dmin
v is formally smooth and for Lv ⊆

H1(Γv, gk) associated to Dmin
v we have dimk Lv − dimk H

0(Γv, gk) = 0 (see also [CHT08, Corollary 2.4.21]).
Note the unframed deformation ring doesn’t exist unless p ̸ | qiv − 1 for all 1 ≤ i ≤ N − 1.

For symplectic and orthogonal similitude groups, the minimal deformation condition is defined in [Boo17,
Chapter 4] using the classification of nilpotent orbits by the Bala-Carter data (see [Boo17, Definition 4.4.2.1]).
By [Boo17, Proposition 4.4.2.3], Dmin

v is formally smooth and dimk Lv−dimk H
0(Γv, gk) = 0 for these groups.
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3.2.3. Ordinary deformations. In the ordinary case G is allowed to be arbitrary. Let B = TN ⊆ G be a
Borel subgroup scheme (T is a maximal split torus and N is the unipotent radical of B, and all these groups
are defined over O). Let Φ be the root system associated to (G,T ) and Φ+ the subset of positive roots
associated to (G,B, T ).

Let v ∈ Sp. A representation ρ̄ : Γv → G(k) is call ordinary if there exists ḡv ∈ G(k) such that ρ̄ takes
values in ḡ−1

v B(k)ḡv. We require the following regularity and dual regularity conditions:
(Regv) for any α ∈ Φ+, α ◦ χv ̸= 1, and
(Reg∗v) for any α ∈ Φ+, α ◦ χv ̸= ω.
The framed nearly ordinary deformation functor Dn.o

v is defined such that ρ ∈ Dn.o
v (A) if and only if there

exists gv ∈ G(A) which lifts ḡv such that ρ takes values in g−1
v · B(A) · gv. Note that this implies that

the homomorphism χρ,v : Γv → T (A) given by gv · ρ · g−1
v lifts χv. A lifting ρ ∈ Dn.o

v (A) is called ordinary
of weight µ if after conjugation by gv, the cocharacter ρ|Iv : Iv → T (A) = B(A)/N(A) is given (via the

Artin reciprocity map recv) by µ ◦ rec−1
v : Iv → O×

v → T (A), and we write Dord,µ
v for the framed ordinary

deformation functor of weight µ. We also define Dord
v to be the framed ordinary deformation functor without

fixing the weight µ. By [TU21, Lemma 2], the functors Dn.o
v , Dord,µ

v and Dord
v are all formally smooth, and

one has dimk Lv − dimk H
0(Γv, gk) = [Fv : Qp](dimG− dimB).

3.2.4. Fontaine-Laffaille deformations. Let v ∈ Sp be unramified. For G = GLN , we write DFL
v for the

framed Fontaine-Laffaille deformation functor (i.e., ρ ∈ DFL
v (A) if there exists a ϕ-filtered A-module M free

of rank N over A, such that ρ is isomorphic to Vcrys(M)). By [CHT08, Corollary 2.4.3], DFL
v is formally

smooth and one has dimk Lv − dimk H
0(Γv, gk) = [Fv : Qp](dimG− dimB).

For a symplectic or orthogonal similitude group, the Fontaine-Laffaille condition with fixed similitude
lifting is defined in [Boo17, Definition 3.2.1.2], and when the Fontaine-Laffaille weights are multiplicity-free,
[Boo17, Definition 3.2.1.3] proved that DFL

v is formally smooth with dimk Lv − dimk H
0(Γv, g

′
k) = [Fv :

Qp](dimG− dimB).

3.3. Derived deformation functor with local conditions. Let S = (S, {Dv}v∈S) be a global deforma-
tion problem (see Definition 1.2) and let DS be the deformation functor of type S.

Definition 3.22. The derived deformation functor of type S is defined to be the homotopy limit

sDS = sDefS,Z ×h∏
v∈S sDefv,Z

∏
v∈S

sDv.

Since each functor on the right hand side is formally cohesive, so is sDS .

Lemma 3.23. When A ∈ AlgO is regarded as a constant simplicial ring, we have π0sDS(A) ∼= DS(A).

Proof. We fix compatible base points. Firstly, from the fiber sequence

sDef□S (A)→ sDefS,Z(A)→ sHomsSets/BPG(k)
(∗, BPG(A))

and H0(ΓS , gk) = zk, we see π1sDefS,Z(A) is trivial. On the other hand, from the diagram

sD□
v (A) //

��

sDv(A) //

��

sHomsSets/BPG(k)
(∗, BPG(A))

sDef□v (A) // sDefv,Z(A) // sHomsSets/BPG(k)
(∗, BPG(A)),
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we deduce that π1sDefv,Z(A) doesn’t contribute to π0sDS(A). Note every functor defining sDS has the
desired π0, so π0sDS(A) is the fiber of

DefS(A)⊕
⊕
v∈S
Dv(A)→

⊕
v∈S

Defv(A),

and the conclusion follows. □

From now on we suppose every representing ring Rv for Dv is formally smooth. By Lemma 2.39 and
Lemma 3.21, the tangent complex of sDS fits into the exact sequence

0→t−1sDS → H0(ΓS , gk)/zk ⊕
⊕
v∈S

H0(Γv, gk)/zk →
⊕
v∈S

H0(Γv, gk)/zk

→t0sDS → H1(ΓS , gk)⊕
⊕
v∈S

Lv →
⊕
v∈S

H1(Γv, gk)

→t1sDS → H2(ΓS , gk)→
⊕
v∈S

H2(Γv, gk)

→t2sDS → 0.

Hence t−1sDS = 0 and sDS is pro-representable, say by RS .

Lemma 3.24. tiRS ∼= H i+1
S (ΓS , gk) for i ≥ 0.

Proof. This follows directly by comparing the above exact sequence with the exact sequence

0→H0
S(ΓS , gk)→ H0(ΓS , gk)→ 0

→H1
S(ΓS , gk)→ H1(ΓS , gk)→

⊕
v∈S

H1(Γv, gk)/Lv

→H2
S(ΓS , gk)→ H2(ΓS , gk)→

⊕
v∈S

H2(Γv, gk)

→H3
S(ΓS , gk)→ 0.

□

By Remark 1.5, tiRS is concentrated on degrees 0, 1 when ρ̄ has an enormous image and ζp /∈ F .

Remark 3.25. Without the assumption that every Rv is formally smooth, the functor sDS is still pro-
representable, but tiRS ∼= H i+1

S (ΓS , gk) no longer holds for i ≥ 1. We expect a modified version of π∗RS ∼=
TorS∞

∗ (R∞,O) holds in this case.

Remark 3.26. Let Σ be a non-empty subset of S. It’s natural to define the derived Σ-framed deformation
of type S (see [ACC+18, Page 112]) as

sDΣ
S = sDefS,Z ×h∏

v∈S sDefv,Z
(
∏

v∈S\Σ

sDv ×
∏
v∈Σ

sD□
v ).

Indeed, here it is not even necessary to modify the center. But in order to have π0sDΣ
S (A) ∼= DΣ

S (A) for
constant ring A, we need to suppose H0(Γv, gk) = zk for v ∈ Σ (this is true for minimal conditions). Then
the functor sDΣ

S is pro-representable (say by RΣ
S ) and the natural transformation (up to weak equivalence)

sDΣ
S →

∏
v∈Σ sD□

v induces AΣ → RΣ
S (up to weak equivalence) where AΣ = ⊗̂v∈ΣRv is regarded as a

pro-Artinian ring.
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Under the assumption that every Rv (v ∈ S) is formally smooth, it’s not difficult to prove that the relative
tangent complex t(RΣ

S , A
Σ) (see [GV18, Definition 4.1]) satisfies

ti(RΣ
S , A

Σ) ∼= H i+1
S,Σ(ΓS , gk)

for i ≥ 0 (see [ACC+18, (6.2.22)] for H∗
S,Σ(ΓS , gk)).

3.3.1. Relative derived deformations. Let B ∈ ArtO and let ρB : ΓS → G(B) be a fixed lifting of type S.
[TU21] considered the derived deformation functor of type S over ρB (denoted by sDS,B). Essentially it’s
the functor sDS restricted to sSets/BG(B). Note ρB induces a map RS → π0RS → B, and with this specified
map, RS , as a pro-object in O\sArt/B, represents sDS,B.

We calculate πisDS,B(B⊕M [n]) instead of the tangent complex, where M is a finite module over B and
M [n] means the Dolk-Kan of the chain complex M concentrated on degree n. In fact the procedures of
proving Lemma 3.10 and Lemma 3.24 can be genralized directly, and one finds

πisDS,B(B ⊕M [n]) ∼= Hn−i+1
S (ΓS , gB ⊗B M) (∀i, n ≥ 0),

where gB = Lie(G/O)⊗OB. Moreover, by the discussions in Section 2.2.4, the complex C∗+1
S (ΓS , gB⊗BM)

is quasi-isomorphic to [LRS/O ⊗RS B,M ] (here RS is regarded as a pro-object to take into account the
continuity).

3.4. Taylor-Wiles descent. Now we are able to generalize [GV18, Theorem 14.1]. We follow the approach
of [GV18], but make minor modifications to fit our more general situation.

We keep the settings in Section 1. Recall that ζp /∈ F and ρ̄ is supposed to have an enormous image.
Write Q = (Qm)m≥1 for a system of disjoint allowable Taylor-Wiles data (see Definition 1.6) such that each
Qm is of level m and cardinal r ≥ dimk H

1
S(ΓS , g

∗
k), and write Γm = ΓS∪Qm , Dm = DSQm

and Rm = RSQm
.

Let

sDm = sDefS∪Qm,Z ×h∏
v∈S sDefv,Z

∏
v∈S

sDv.

Note we don’t put the derived unconditional deformation condition for v ∈ Qm for it’s not formally
smooth, but as Lemma 3.23, it’s easy to see that π0sDm(A) ∼= Dm(A) for A ∈ ArtO. Moreover, t−1sDm is
obviously trivial so sDm is pro-representable, say by Rm.

Let’s fix m ≥ 1. By the definition of allowable Taylor-Wiles data, we have H2
SQm

(Γm, gk) = 0. Hence we

have the exact sequence (see Remark 1.5, note Lv = H1(Γv, gk) for v ∈ Qm)

0→H1
SQm

(Γm, gk)→ H1(Γm, gk)
Am−−→

⊕
v∈S

H1(Γv, gk)/Lv

→0→ H2(Γm, gk)
Bm−−→

⊕
v∈S∪Qm

H2(Γv, gk)→ 0.(1)

In particular, Bm is an isomorphism.
We use sDefurv to denote the derived local deformation functor for the unramified condition. For a Taylor-

Wiles prime v, recall that ρ̄|Γv : Γv → G(k) is conjugated to some ρ̄Tv : Γv → T (k). We write sDefTv (resp.
sDefT,urv ) for the derived universal deformation functor for ρ̄Tv : Γv → T (k) (resp. ρ̄Tv |Γv/Iv : Γv/Iv → T (k)).
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Lemma 3.27. Let v be a Taylor-Wiles prime. In the natural commutative diagram

sDefS //

��

sDefurv

��

sDefT,urv
∼oo

��
sDefS∪{v} // sDefv sDefTv ,

∼oo

the first square is a homotopy pullback square, and the arrows with ∼ are objectwise weak equivalences.

Proof. See [GV18, Section 8.2] for the first statement, and [GV18, Section 8.3] for the second. □

We thus obtain a homotopy pullback square up to weak equivalences

sDefS //

��

sDefT,urv

��
sDefS∪{v} // sDefTv .

In order that the functors involved are pro-representable, we need to modify their centers as in Section 3.1.3.

We use sDefTv,T (resp. sDefT,urv,T ) to denote the functor obtained from sDefTv (resp. sDefT,urv ) by modifying

the center (the cumbersome notations just say that the center of T is T itself). By Remark 3.11 we have
the commutative diagram

sDefS,Z //

��

sDefT,urv,T

��
sDefS∪{v},Z // sDefTv,T .

Lemma 3.28. The above diagram is a homotopy pullback square.

Proof. The diagram is a homotopy pullback square if and only if the sequence

0→t0sDefS,Z → t0sDefT,urv,T ⊕ t0sDefS∪{v},Z → t0sDefTv,T

→t1sDefS,Z → t1sDefT,urv,T ⊕ t1sDefS∪{v},Z → t1sDefTv,T

→ . . .

is exact. This follows from the homotopy pullback square before modifying the center and the fact that
modifying the center doesn’t change ti for i ≥ 0. □

By repeating the procedure of adding Taylor-Wiles primes, we can replace v by a Taylor-Wiles datum
Qm. Moreover, by applying

−×h∏
v∈S sDefv,Z

∏
v∈S

sDv

to the first vertical arrow, we can replace sDefS,Z → sDefS∪Qm,Z by sDS → sDm. The following corollary
is clear:
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Corollary 3.29. Let Qm be a Taylor-Wiles datum. Then we have the homotopy pull back square

sDS //

��

∏
v∈Qm

sDefT,urv,T

��
sDm

//
∏

v∈Qm
sDefTv,T ,

and consequently we have an objectwise weak equivalence

sDS
∼→ sDm ×h∏

v∈Qm
sDefTv,T

∏
v∈Qm

sDefT,urv,T .

Now we pass to the level of rings. In Section 2.1.6 we defined the ”derived” tensor product ⊗ for simplicial
commutative rings; this can be extended for pro-objects in O\sArt/k indexed by natural numbers (we have
to take the Postnikov truncations for O\sArt/k is not closed under the tensor product, and then we can
suppose the resulting pro-ring is nice for convenience, see discussions around [GV18, Definition 3.3]), with
the property that R1⊗R3

R2 is a pro-objects of O\sArt/k representing the homotopy pullback of

sHomO\sCR/k(R1,−)→ sHomO\sCR/k(R3,−)← sHomO\sCR/k(R2,−).

We say a mapR → S between pro-O\sArt/k objects is a weak equivalence if it induces a weak equivalence
on represented functors after applying level-wise cofibrant replacements (see [GV18, Definition 7.4]), and
we say a pro-object R of O\sArt/k is homotopy discrete if the map R → π0R is a weak equivalence.

Let Sm (resp. Surm ) be a pro-object of O\sArt/k which represents
∏

v∈Qm
sDefTv,T (resp.

∏
v∈Qm

sDefT,urv,T ).
By Lemma 2.44 applying to the weak equivalence

sDS
∼→ sDm ×h∏

v∈Qm
sDefTv,T

∏
v∈Qm

sDefT,urv,T ,

there is a weak equivalence of representing rings RS → Rm⊗Sm
Surm (note Lemma 2.44 allows us to reverse

the arrrow). This map between pro-O\sArt/k objects is an isomorphism in the pro-homotopy category by
[GV18, Lemma 3.14], so the isomorphism π∗RS → π∗(Rm⊗Sm

Surm ) of pro-graded O-algebras is well-defined.

Lemma 3.30. The pro-objects Surm and Sm are homotopy discrete.

Proof. Note [GV18, Lemma 7.5] asserts that a pro-object R of O\sArt/k such that bi = dimk t
iR is zero

except for i = 0, 1 is homotopy discrete if and only if the complete local ring associated to π0R is isomorphic
to a quotient of O[[X1, . . . , Xb0 ]] by a regular sequence of length b1.

By Lemma 3.13, Sm and Surm represent the derived framed deformation functors
∏

v∈Qm
sDefT,□v and∏

v∈Qm
sDefT,ur,□v . Hence it suffices to show the classical (framed) universal deformation ring Σv (resp. Σur

v )

for ρ̄Tv : Γv → T (k) (resp. ρ̄Tv |Γv/Iv : Γv/Iv → T (k)) where v is a Taylor-Wiles prime is a complete intersection
ring of expected dimension.

(1) For Σur
v , it’s easy to see that bi = dimk t

isDefT,urv,T vanishes for i ̸= 0, and b0 = dimk H
1
ur(Γv, tk) = n.

So it suffices to show Σur
v
∼= O[[X1, . . . , Xn]]. But Σ

ur
v is the classical universal deformation ring for

DefT,urv , which is represented by O[[X∗(T )⊗ Ẑ]] ∼= O[[X1, . . . , Xn]] (see [Til96, Proposition 4.2]).
(2) For Σv, we have

bi = dimk t
isDefTv,T =

{
dimk H

i+1(Γv, tk), if i ≥ 0;
0, if i < 0.
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So b0 = 2n, b1 = n and bi = 0 for i ̸= 0, 1. It suffices to check that Σv is isomorphic to
O[[X1, . . . , X2n]]/(Y1, . . . , Yn) for a regular sequence (Yi). By [Til96, Proposition 4.2], the classical

representing ring for DefTv is isomorphic to O[[X∗(T ) ⊗ F
∗,(p)
v ]] (here (p) means the pro-p comple-

tion). Recall ∆v is the Sylow p-subgroup of (k∗v)
n. We have X∗(T ) ⊗ F

∗,(p)
v

∼= ∆v × Ẑn and hence

Σv
∼= O[[X∗(T )⊗ F

∗,(p)
v ]] ∼= O[∆v][[X1, . . . , Xn]] as expected.

□

Let Σur
m = O[[X1, . . . , Xnr]] and Σm = O[∆Qm ][[X1, . . . , Xnr]] (here ∆Qm =

∏
v∈Qm

∆v). For convenience
we also use Σur

m and Σm to denote the associated pro-Artinian rings. Then the above lemma just says that
Sm is weakly equivalent to Σm and Surm is weakly equivalent to Σur

m .
Note that Iv → Γv → Gal(k̄v/kv) for v ∈ Qm induces O[∆Qm ]→ Σm → Σur

m .

Lemma 3.31. The commutative diagram

O[∆Qm ] //

��

Σm

��
O // Σur

m

induces a homotopy pullback square of represented functors after cofibrant replacements.

Proof. It suffices to note that Σm is obtained from O[∆Qm ] by adding nr free variables, and Σur
m is obtained

from O by adding nr free variables. □

Recall in Section 1 we’ve defined Sm = S∞/Jm which is a quotient of O[∆Qm ]. Also we’ve introduced
S̄m = Sm/pm, R̄m = Rm⊗O[[∆Qm ]] S̄m and a constant c(m) such that R̄m → EndO(H

∗(C∗
m)) factors through

R̄m/m
c(m)

R̄m
. Without loss of generality, we may suppose R̄m/m

c(m)

R̄m
← S̄m → O/pm forms a compatible

projective system for m ∈ N∗. We remark that the cohomology of locally symmetric space is not involved

explicitly here, but finally we will need R∞ ∼= lim←−m
R̄m/m

c(m)

R̄m
, which is true only if the numerical coincidence

holds (see the proof of Corollary 1.15 (3)).
For each m ≥ 1 we have (still apply Lemma 2.44 to reverse the weak equivalences)

fm : RS
∼→Rm⊗Σm

Σur
m

∼→Rm⊗O[∆Qm ]O → R̄m/m
c(m)

R̄m
⊗S̄m
O/pm =: Cm.

We have TorS∞
∗ (R∞,O) ∼= π∗(R∞⊗S∞

O) ∼= lim←−m
π∗(R̄m/m

c(m)

R̄m
⊗S̄m
O/pm) as graded commutative O-

algebras. Here the first isomorphism follows from Section 1.4 and the second isomorphism follows from
[GV18, Lemma 7.6].

For each n > m, there is a natural map

en,m : Cn = R̄n/m
c(n)

R̄n
⊗S̄n
O/pn → Cm = R̄m/m

c(m)

R̄m
⊗S̄m
O/pm,

but a prior, the maps fm : RS → Cm (m ≥ 1) don’t form a compatible system under en,m, and we have to
do another patching so that en,m ◦ fn (n > m) are compatible modulo homotopy. The key observation is
that tRS is finite dimensional, so each homotopy class of maps RS → Cm as pro-O\sArt/k objects is indeed
finite (see [GV18, Page 100]).

Consider the projective system of homotopy classes of maps RS → Cm (m ≥ 1) induced from en,m, then
we can choose a subsequence of (fm) such that en,m ◦ fn is homotopic to fm for every fn, fm (n > m) in
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that subsequence. Without loss of generality, we may simply suppose (fm)m≥1 is such a sequence, and then
(fm)m≥1 induces hocolimm sHomO\sCR/k(Cm,−)→ sHomO\sCR/k(RS ,−).

Now we prove π∗RS ∼= TorS∞
∗ (R∞,O). Let’s recall the setting:

(1) G is a connected reductive algebraic group defined over a number field F and G = LG;
(2) p is an odd prime number which is very good for G and satisfies ζp /∈ F ;
(3) ρ̄ : ΓS → G(k) is an absolutely irreducible Galois representation associated to some cuspidal auto-

morphic representation occuring in H∗(XU
G, Ṽλ(O))m which fits our assumption (Resm);

(4) we assume the conjectures (Galm) and (Vanm).

Theorem 3.32. With the above notations, there is an isomorphism of graded commutative O-algebras
π∗RS ∼= TorS∞

∗ (R∞,O) (where π∗RS is defined as the projective limit). Moreover, H∗(XU
G, Ṽλ(O))m is a

graded π∗RS-module freely generated by Hq0+ℓ0(XU
G, Ṽλ(O))m.

Remark 3.33. We have supposed special types of local deformation problems in (Vanm), but essentially
what we require are:

(1) the numerical coincidence dimk H
1
S(ΓS , gk)− dimk H

1
S⊥(ΓS , g

∗
k) = −ℓ0 holds;

(2) the local deformation problems have formally smooth framed representing rings.

Proof. We will prove the first assertion and the second is an immediate consequence.
By above discussions, it suffices to prove

hocolimm sHomO\sCR/k(Cm,−)→ sHomO\sCR/k(RS ,−)

is a weak equivalence of natural transformations, and by Lemma 2.53 it suffices to show

ti(hocolimm sHomO\sCR/k(Cm,−))→ tisHomO\sCR/k(RS ,−)

is an isomorphism for all i ≥ 0.

For m ≥ 1, tCm fits into the exact triangle tCm → t(R̄m/m
c(m)

R̄m
)⊕ t(O/pm)→ tS̄m, and by taking colimits

over m we get the following exact sequence:

ti(hocolimm sHomO\sCR/k(Cm,−))→ tiR∞ → tiS∞
[1]→ . . . ,

so the Euler characteristic for t(hocolimm sHomO\sCR/k(Cm,−)) is dimR∞ − dimS∞. On the other hand,

by Lemma 3.24, the Euler characteristic for t(sHomO\sCR/k(RS ,−)) is dimk H
1
S(ΓS , gk)−dimk H

1
S⊥(ΓS , g

∗
k),

which is equal to dimR∞ − dimS∞ by Lemma 1.10. We also find that both tangent complexes are concen-
trated on degrees 0 and 1. Thus it suffices to show tiCm → tiRS is an isomorphism for i = 0 and a surjection

for i = 1, or equivalently by Lemma 3.31, ti(R̄m/m
c(m)

R̄m
⊗Σ̄m

Σ̄ur
m) → ti(Rm⊗Σm

Σur
m) is an isomorphism for

i = 0 and a surjection for i = 1, where Σ̄m = Σm ⊗O[∆Qm ] S̄m and Σ̄ur
m = Σur

m/pm.
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Consider the following commutative diagram with exact rows:

0 // t0(R̄m/m
c(m)

R̄m
⊗Σ̄m

Σ̄ur
m) //

j1

��

t0(R̄m/m
c(m)

R̄m
)⊕ t0Σ̄ur

m
//

f

��

t0Σ̄m

g

��
0 // t0(Rm⊗Σm

Σur
m) // t0Rm ⊕ t0Σur

m
// t0Σm

// t1(R̄m/m
c(m)

R̄m
⊗Σ̄m

Σ̄ur
m) //

j2

��

t1(R̄m/m
c(m)

R̄m
)⊕ t1Σ̄ur

m

��
// t1(Rm⊗Σm

Σur
m)

γ // t1Rm ⊕ t1Σur
m

h // t1Σm,

The maps f , g are clearly isomorphisms. By a diagram chasing, it suffices to show h is an isomorphism.
Note t1Σur

m = 0 and t1Σm
∼=

∏
v∈Qm

H2(Γv, tk) ∼=
∏

v∈Qm
H2(Γv, gk), so it remains to prove t1Rm

∼=∏
v∈Qm

H2(Γv, gk). As Lemma 3.24, we have the exact sequence

0→t0Rm → H1(Γm, gk)→
⊕
v∈S

H1(Γv, gk)/Lv

→t1Rm → H2(Γm, gk)→
⊕
v∈S

H2(Γv, gk)→ 0.

By comparing it with the exact sequence (1), we conclude t1Rm
∼=

∏
v∈Qm

H2(Γv, gk). □

Remark 3.34. The formal smoothnesses for local deformation rings play an essential role (especially in
Lemma 3.24) in the above calculations. A natural question is to genralize the result without the formally
smooth assumptions (for example firstly for local complete intersection rings). However, we do not yet have
a clear answer to this question.

4. Examples

4.1. General linear groups. We keep the notations of the previous section. Suppose F is a number
field with r1 real places and r2 complex places, and consider the locally symmetric spaces associated to
ResFQGLN . The maximal compact subgroup of GLN (R) is O(N) and the maximal compact subgroup of
GLN (C) is U(N), so we have{

2q0 + ℓ0 = (N2 − N(N−1)
2 )r1 + (2N2 −N2)r2 − 1 = N2+N

2 r1 +N2r2 − 1;
ℓ0 = (N − [N2 ])r1 + (2N −N)r2 − 1 = (N − [N2 ])r1 +Nr2 − 1,

and consequently q0 = [N
2

4 ]r1 +
N2−N

2 r2.
We suppose

(1) πv is minimal for v ∈ S\Sp;
(2) either πv is regular ordinary for every v ∈ Sp, or p is unramified in F and λτ,1 − λτ,n < p− n for all

τ .

In [HLTT16] the authors proved that there exists a Galois representation ρπ : ΓS → GLN (O) associated
to π such that ρ̄ = ρπ (mod ϖ) satisfies (Resm). In the ordinary case, we suppose ρ̄|Γv is regular and dual
regular (see Section 3.2.1, and these are called distinguishability and strong distinguishability assumptions
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in [TU21, Page 3-4]). Let Dmin
v , Dord

v and DFL
v be the minimal, ordinary and Fontaine-Laffaille local

deformation functors respectively (see Section 3.2.1), then we have

Proposition 4.1. The functors Dmin
v , Dord

v and DFL
v are liftable, and the framed representing rings for

these functors are formally smooth. Moreover, for Dord
v and DFL

v , we have dimk Lv − dimk H
0(Γv, gk) =

[Fv : Qp]
N(N−1)

2 ; for Dmin
v , we have dimk Lv − dimk H

0(Γv, gk) = 0.

Let S to be the global deformation problem for ρ̄ : ΓS → LG(k) which is simultaneously either ordinary
or Fontaine-Laffaille for v ∈ Sp, and minimal for v ∈ S\Sp. Let’s check the condition dimk H

1
S(ΓS , gk) −

dimk H
1
S⊥(ΓS , g

∗
k) = −ℓ0 (see Lemma 1.4):

Lemma 4.2. Let the notations be as above. Then

−1 +
∑
v | ∞

dimk H
0(Γv, gk)−

∑
v∈S

(dimk Lv − dimk H
0(Γv, gk)) = ℓ0

holds if and only if the action of complex conjugation on gk is odd for every real place of F .

Proof. By the above proposition we have
∑
v∈S

(dimk Lv − dimk H
0(Γv, gk)) = n2−n

2 r1 + (n2 − n)r2. So the

condition is equivalent to
∑
v | ∞

dimk H
0(Γv, gk) = [n

2+1
2 ]r1 + n2r2. But for each v real, H0(Γv, gk) is at least

[n
2+1
2 ], so we must have the equality, which is exactly the oddness condition. □

Now it remains to check (Galm) and (Vanm) for Theorem 3.32. To the author’s knowledge. the hypothesis
(Vanm) is still far from reach except for GL3 over Q and GL2 over F where F satisfies r1 + r2 ≤ 2 (or
q0 ≤ 2), where it can be solved using the congruence subgroup problem (see [PR10]). For the hypothesis
(Galm), in [ACC+18, Theorem 2.3.7], the authors construct a map ΓS → GLN (T/I), where I is a nilpotent
ideal, with desired characteristic polynomials for v /∈ S. In subsequent sections 3,4,5 of [ACC+18], the
local-global compatibilities are established for minimal, Fontaine-Laffaille and ordinary places, given some
additional restrictions listed there. The nilpotent ideal I is eliminated in [CGH+20, Theorem 6.1.4] under
the assumption that p splits completely in F , however, the local-global compatibility hasn’t been established
yet.

4.2. Orthogonal similitude groups. Consider the locally symmetric spaces associated to the orthogonal
similitude groups GSOa,b over Q. Recall that

GOa,b(R) = {g ∈ GLa+b(R) | gt
(
ida 0
0 −idb

)
g = λ

(
ida 0
0 −idb

)
for some λ ∈ R∗},

and GSOa,b is the connected component of the identity in GOa,b (so GSOa,b = GOa,b if a+ b is odd).
We still have Theorem 3.32 once all necessary hypotheses are verified. But when a+ b is small, it seems

more convenient to approach Theorem 3.32 via the special (local) isomorphisms listed in [Hel01, X.6.4] and
[MY90], for the auxiliary group under the isomorphism is often better understood.

It’s easy to see that GSOa,b is abelian when a+b ≤ 2, and the center Z(GSOa,b) consists of scalar matrices
when a+ b > 2. In the second case, the invariants q0 and ℓ0 satisfy{

q0 = [ab2 ];

ℓ0 = [a+b
2 ]− [a2 ]− [ b2 ].
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4.2.1. Derived deformation rings under Langlands transfers. Let’s discuss how the derived deformation rings
behave under Langlands transfers in general.

Let G and H be a connected reductive linear algebraic group over Q. As in the introduction, we fix a
finite set of finite places S ⊇ Sp of F , an open compact group U = US × US = (

∏
v∈S Uv) × (

∏
v/∈S Uv)

with Uv ⊆ H(Ov) and each Uv (v /∈ S\Sp) hyperspecial maximal. Suppose πH is a cuspidal automorphic

representation occuring in H∗(XU
H , Ṽλ(O))m where m is a non-Eisenstein maximal ideal and we make the

assumption (Resm) for the residual representation ρ̄H : ΓS → LH(k). Suppose the Langlands transfer
r : LH → LG is established, then there exists an automorphic πG in the global L-packet defined by πH and
r, and the residual representations ρ̄G : ΓS → LG(k) satisfy ρ̄G = r ◦ ρ̄H .

Let DG (resp. sDG) be the deformtion functor (derived deformtion functor) with suitable local conditions
for ρ̄G, and we define similarly DH (resp. sDH) with compatible local conditions. Then there is a natural
map DH → DG (resp. sDH → sDG) induced by r, and hence a morphism RG → RH (resp. RG → RH up
to weak equivalence) between the deformation rings (resp. derived deformation rings).

In the following we will take H = GSOa,b with a + b = 4 or 6. Note then Ĥ = GSpina+b. Recall that
GSpin4 can be identified with

{(A,B) ∈ GL2 ×GL2 | det(A) = det(B)},

and GSpin6 can be identified with the subgroup of GL1 ×GL4 defined by the exact sequence

1→ GSpin6 → GL1 ×GL4 → GL1 → 1

with GL1 ×GL4 → GL1 is given by (λ, g) 7→ λ−2 det(g).
For H = GSO3,1 and G = ResFQGL2 where F is a quadratic imaginary field, the transfer is induced by the

natural inclusion GSpin4 ↪→ GL2×GL2. Let ΓF,S be the Galois group of the maximal S-ramified extension

of F and let Gal(F/Q) = {1, c}. Then LG = (GL2 ×GL2)⋊ {1, c} and LH = Ĥ ⋊ {1, c}, and the complex

conjugation c acts by exchanging the components in GL2×GL2. Note Ĥ can be identified with the subgroup

{


a1 0 b1 0
0 a2 0 b2
c1 0 d1 0
0 c2 0 d2

 | a1d1 − b1c1 = a2d2 − b2c2}

of GSp4, and the action of c is extended to the conjugation action by


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ∈ GSp4.

Lemma 4.3. For H = GSO3,1 and G = ResFQGL2, the map DefH → DefG between unconditional deforma-
tion functors is an isomorphism.

Proof. We also use c to denote the complex conjugation of ΓS .
Let’s first consider the functor DefG. Let A ∈ ArtO and suppose ρG : ΓS → LG(A) is a lifting of ρ̄G.

For σ ∈ ΓF,S , we write ρG(σ) = ((Mσ, Nσ), 1). Note ρG(c) = ((X,X−1), c) for some X ∈ GL2(A), and
without loss of generality up to conjugation we may suppose X is the identity matrix. Then it’s easy to see
Nσ = Mcσc, so the deformation of ρG is uniquely determined by the deformation for ΓF,S → GL2.

For DefH , we can only conjugate ρG(c) = ((X,X−1), c) to either ((

(
1 0
0 1

)
,

(
1 0
0 1

)
), c) or ((

(
1 0
0 −1

)
,

(
1 0
0 −1

)
), c).

But still the deformation of ρG is uniquely determined by the deformation for ΓF,S → GL2. □
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Lemma 4.4. For H = GSO3,1 and G = ResFQGL2, the map sDefH → sDefG between unconditional derived
deformation functors is a weak equivalence.

Proof. It suffices to check sDefH → sDefG induces a weak equivalence on tangent complexes. Write hk and
gk for the Lie algebras of LH and LG respectively (note hk is a direct summand of gk), then it suffices to
show H i(ΓS , hk) ↪→ H i(ΓS , gk) is an isomorphism for i = 1, 2.

For i = 1 the isomorphism follows from the above lemma. Note also the isomorphism for i = 0 and
the Euler characteristics χ(ΓS , hk) = χ(ΓS , gk) (the subspace fixed by c in gk lies in hk), so H2(ΓS , hk) ↪→
H2(ΓS , gk) is also an isomorphism. □

Similarly, the above lemmas hold for H = GSO2,2 and G = GL2 ×GL2 as well.
In the case H = GSO3,3 and G = GL4, these groups are split so we can identify LH with GSpin6 and

identify LG with GL4. The transfer r : GSpin6 → GL4 is given by the second projection

GSpin6 ⊆ GL1 ×GL4 → GL4.

Lemma 4.5. For H = GSO3,3 and G = GL4, the map DefH → DefG between unconditional deformation
functors is an isomorphism.

Proof. Let A ∈ ArtO and let ρH : ΓS → GSpin6(A) be a lifting of ρ̄H : ΓS → GSpin6(k). Suppose ρH(σ) =
(λσ,Mσ). IfMσ is given, then there is a unique choice for such λσ since λ2

σ and λσ (mod mA) are determined.
□

Lemma 4.6. For H = GSO3,3 and G = GL4, the map sDefH → sDefG between unconditional derived
deformation functors is a weak equivalence.

Proof. It suffices to check sDefH → sDefG induces a weak equivalence on tangent complexes. Write hk and
gk for the Lie algebras of LH and LG respectively, then it’s easy to see hk ∼= gk, so H i(ΓS , hk)→ H i(ΓS , gk)
is an isomorphism for i = 1, 2, and the conclusion follows. □

The local conditions for ρH : ΓS → LH(A) should be essentially defined by the corresponding local
conditions for ρG : ΓS → LG(A). So in the cases

(1) H = GSO3,1 and G = ResFQGL2, or
(2) H = GSO2,2 and G = GL2 ×GL2, or
(3) H = GSO3,3 and G = GL4,

we have the following:

Corollary 4.7. The map sDH → sDG is a weak equivalence, and so is RG → RH . In particular, the map
π∗RG → π∗RH is an isomorphism of graded commutative O-algebras.

If we could relate H∗(XU
H , Ṽλ(O))m and H∗(XV

G , Ṽλ(O))m, then we are able to deduce Theorem 3.32 for
H if it is known for G. In the following we study the case GSO3,1.

4.2.2. The case GSO3,1. Write H = GSO3,1 and G = ResFQGL2 where F is an imaginary quadratic field.
By the preceding calculations, we know the q0 and ℓ0 for both groups coincide. We define ϕ : G → H as
follows:

Let W = {x ∈ M2(F ) | x = xct}, then det : W → Q is a quadratic form of signature (1, 3), so GO3,1

can be identified with the group of orthogonal similitudes of W . Let A be the kernel of the norm map
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N : ResOF
Z Gm → Gm. Note that W comes with a structure over OF , we have the following commutative

diagram of algebraic group schemes over Z with exact rows over algebraically closed fields:

0 // A // ResOF
Z Gm

N //

��

Gm
//

��

0

0 // A // ResOF
Z GL2

ϕ // GSO3,1
// 0.

Here ϕ is induced by associating g ∈ ResOF
Z GL2 to the endomorphism x 7→ gxgct on W , and the vertical

maps are natural inclusions. Note the similitude character of ϕ(g) is det(g) det(g)c.
Let U = US×US = (

∏
v∈S Ul)×(

∏
v/∈S Ul) be an open compact subgroup of Hf such that each Uv (v /∈ S)

is hyperspecial maximal. We define Vl to be the inverse image of Ul under GL2(Zl ⊗Z OF ) → GSO3,1(Zl)
and define V =

∏
l Vl. Note the Langlands transfer r :

LH → LG induces a map between the spherical Hecke
algebras H(GS , V S)→ H(HS , US) via the Satake isomorphisms

C∞
c (H(Ql)//Ul)

∼→ C[T̂H ]W (Ĥ,T̂H)(C)

and

C∞
c (G(Ql)//Vl)

∼→ C[T̂G]
W (Ĝ,T̂G)(C).

Let λ be a dominant weight for GSO3,1 and let Vλ be the irreducible algebraic representation of GSO3,1 of

highest weight λ. By regarding Vλ as an irreducible algebraic representation of ResOF
Z GL2 via ϕ : Res

OF
Z GL2 →

GSO3,1, we get a natural map H∗(XU
H , Ṽλ(O)) → H∗(XV

G , Ṽλ(O)). We make the assumption that we can
choose F such that V → U is surjective (note Vl → Ul is surjective for l unramified in F ). The following
proposition should be known by [HST93] and [Mok14], nevertheless we will give a proof.

Proposition 4.8. The natural map H∗(XV
G , Ṽλ(O)) → H∗(XU

H , Ṽλ(O)) is an isomorphism, and we have
the commutative diagram of Hecke actions

H(HS , US) H(GS , V S)

H∗(XU
H , Ṽλ(O)) H∗(XV

G , Ṽλ(O)).∼

Corollary 4.9. H∗(XU
H , Ṽλ(O))m is a graded π∗RH-module which is freely generated by H2(XU

H , Ṽλ(O))m
(note q0 + ℓ0 = 2 here).

Remark 4.10. Once the isomorphism between locally symmetric spaces and the compatibility with the
Langlands transfer are established, it’s easy to see that (Galm) and (Vanm) for πG implies those for πH .
Together with the theory of Calegari-Geraghty we know (here SH

∞ and RH
∞ are limiting rings associated to

H constructed by the Taylor-Wiles method, and same for SG
∞ and RG

∞)

(1) H∗(XU
H , Ṽλ(O))m → H∗(XV

G , Ṽλ(O))m is an isomorphism;

(2) H∗
m(X

V
G , Ṽλ(O))m is a graded module freely generated by Hq0+ℓ0(XV

G , Ṽλ(O))m over Tor
SG
∞

∗ (RG
∞,O);

(3) H∗
m(X

U
H , Ṽλ(O))m is a graded module freely generated by Hq0+ℓ0(XU

H , Ṽλ(O))m over Tor
SH
∞

∗ (RH
∞,O).

So we should have Tor
SH
∞

∗ (RH
∞,O) ∼= Tor

SG
∞

∗ (RG
∞,O). In general it’s seemingly more convinient to compare

the derived deformation rings.
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We return to the commutative diagram of algebraic group schemes over Z with exact rows over alge-
braically closed fields:

0 // A // ResOF
Z Gm

N //

��

Gm
//

��

0

0 // A // ResOF
Z GL2

ϕ // GSO3,1
// 0.

For a field extension E/Q, we have H1(Gal(Ē/E), (Ē ⊗Q F )∗) = H1(Gal(Ē/E),GL2(Ē ⊗Q F )) = 0 by
Hilbert’s Theorem 90, so we obtain the commutative diagram with exact rows

0 // A(E) // (E ⊗Q F )∗
N //

��

E∗ //

��

H1(Gal(Ē/E), A(Ē)) // 0

0 // A(E) // GL2(E ⊗Q F )
ϕ // GSO3,1(E) // H1(Gal(Ē/E), A(Ē)) // 0.

Therefore GSO3,1(E) = E∗ϕ(GL2(E ⊗Q F )), and

0→ A(E)→ GL2(E ⊗Q F )→ GSO3,1(E)→ E∗/N(E ⊗Q F )∗ → 0

is exact. The above argument also applies for the adele ring A since H1(Gal(Q̄l/Ql), A(Z̄l)) = 0 for every
unramified l, so GSO3,1(A) = A∗ϕ(GL2(AF )) and we have the commutative diagram with exact columns
and rows

(2) 0

��
0 // A(Q) //

��

GL2(F )
ϕ //

��

GSO3,1(Q) //

��

Q∗/NF ∗ //

��

0

0 // A(A) // GL2(AF )
ϕ // GSO3,1(A) // A∗/NA∗

F
//

��

0

Gal(F/Q)

��
0.

Proposition 4.11. There is a bijection between cuspidal automorphic representations πH of GSO3,1(A) and
pairs (πG, χ) of a cuspidal automorphic representation πG of GL2(AF ) and a grossencharacter χ : Q∗\A∗ →
C∗ such that χ ◦N is the central character of πG.

Proof. This follows directly from the above discussion (see also [HST93, Proposition 1]). Note that πH
corresponds to ({f ◦ ϕ | f ∈ πH}, χπH ), where χπH is the central character of πH . For the other direction,
the pair (πG, χ) corresponds to the set of functions f : GSO(Q)\GSO(A) → C such that f ◦ ϕ ∈ π and the
central character of f is χ. □

Now we prove Proposition 4.8.
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Proof. Let πH be a cuspidal automorphic representation of GSO3,1(A) and let πG be the cuspidal automor-
phic representation of GL2(AF ) obtained as in the above proposition. Following [HST93, Section 3], the
association πH 7→ πG is compatible with the transfer r, so it is also compatible with the Hecke morphism
H(GS , V S)→ H(HS , US).

It remain to show the map XV
G → XU

H induced from ϕ is an isomorphism. From the commutative diagram

0 // A(R) //

��

C∗ N //

��

R∗ //

��

R∗/NC∗ //

��

0

0 // A(A) // GL2(AF )
ϕ // GSO3,1(A) // A∗/NA∗

F
// 0,

we deduce an exact sequence

0→ A(A)/A(R)→ GL2(AF )/C∗ → GSO3,1(A)/R∗ → A∗/(NA∗
F · R∗)→ 0,

which admits a compatible faithful left action from

0→ A(Q)→ GL2(F )→ GSO3,1(Q)→ Q∗/NF ∗ → 0.

Note that Q∗\A∗/(NA∗
F · R∗) is trivial. Following the proof of the snake lemma, we obtain a sequence of

maps

A(Q)\A(A)/A(R) ↪→ GL2(F )\GL2(AF )/C∗ ↠ GSO3,1(Q)\GSO3,1(A)/R∗

such that the second arrow is surjective and each of its fiber is isomorphic to A(Q)\A(A)/A(R) (note the
isomorphism is not canonical in general, but here A(A) lies in the center of GL2(AF ) so it’s canonical). Now
consider the compatible right action from

0→
∏
l

A(Zl)→
∏
l

Vl →
∏
l

Ul → 0.

It’s easy to see that A(Q)\A(A)/(A(R) ·
∏

l A(Zl)) is trivial, so the induced map XV
G → XU

H is an isomor-
phism. □
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