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ABSTRACT

This paper presents Versus, which is the first automatic method for generating comparison tables 
from knowledge bases of the Semantic Web. For this purpose, it introduces the contextual reference 
level to evaluate whether a feature is relevant to compare a set of entities. This measure relies on 
contexts that are sets of entities similar to the compared entities. Its principle is to favor the features 
whose values for the compared entities are reference (or frequent) in these contexts. The proposal 
efficiently evaluates the contextual reference level from a public SPARQL endpoint limited by a 
fair-use policy. Using a new benchmark based on Wikidata, the experiments show the interest of the 
contextual reference level for identifying the features deemed relevant by users with high precision 
and recall. In addition, the proposed optimizations significantly reduce the number of required queries 
for properties as well as for inverse relations. Interestingly, this experimental study also shows that 
the inverse relations bring out a large number of numerical comparison features.
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1. INTRoDUCTIoN

A comparison table (see Table 1) is a double-entry table with entities to compare in columns and 
comparison features in rows. The comparison table is a particularly useful tool for decision making 
by isolating the common points and major differences between compared entities. Therefore, this 
analytical technique is popular in science to compare works, in culture to compare art works or 
in commerce to compare products or services. For instance, the SocialCompare website1 uses 
crowdsourcing to build a varied spectrum of comparison tables. The participants build a list of 
features for each entity and then, they construct tables by manually selecting the compared entities 
and the comparison features. The need to compare entities goes far beyond that. DBpedia, that is one 
of the largest hubs of the Semantic Web, was established around producing a queryable knowledge 
graph derived from Wikipedia content that’s able to answer questions like “ What have Innsbruck 
and Leipzig in common? ”2.
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Despite the intensive use of comparison tables in real life, to the best of our knowledge, there is no 
method to automate the choice of the set of features for a given set of entities to compare. Automating 
the construction of comparison tables has several advantages. On the one hand, it makes it possible 
to create objective comparison tables, based on publicly available data. On the other hand, it also 
makes it possible to build comparison tables for fields where this type of analysis is not carried out 
due to a lack of expertise.

In this paper, the aim is to automate the process of generating a comparison table for a set of 
entities by querying a knowledge base (KB). For instance, starting from Ada Lovelace and Alan 
Turing, an end user wants to obtain a comparison table like the one presented by Table 1, built from 
Wikidata (the last column is the value of crl, a measure explained later). Beyond persons, the goal 
is to compare any type of entities, such as places (countries, cities), objects (tapestries, statues), 
institutions (universities, political parties), events (tournaments, festivals) and so on. Unfortunately, 
there is no theoretical framework for the design of comparison tables to determine if a feature is 
interesting for comparing entities. This task is non-trivial: according to the experiments carried 
out, in 17% of the cases a human evaluator does not know whether a feature is interesting or not for 
comparing the entities presented to him/her (see Section 7 for details). In Table 1, it seems natural 
to use gender to compare two persons. Besides, specifying that Turing was a member of the Royal 
Society is interesting only because it is two English scientists who are compared. Thus, the main 
challenge is to formalize the notion of interesting comparison feature. In addition, it is important 
to benefit from the huge knowledge bases available on the Semantic Web such as DBpedia (Auer 
& al., 2007), YAGO (Suchanek & al., 2007) or Wikidata (Vrandečić & Krötzsch, 2014) but this 
raises a problem of robustness and efficiency. Indeed, these knowledge bases are relatively reliable 
but they suffer from incompleteness (Razniewski & al., 2016; Zaveri & al., 2016). For this reason, 
it would be desirable that a feature considered interesting at a given moment remains so despite the 
subsequent addition of facts. For instance, in Table 1, completing Ada Lovelace’s religion should 
not affect the fact that “religion” is an interesting comparison feature. Furthermore, rather than 
downloading and centralizing data, it is more relevant to directly query public SPARQL endpoints 
to build the comparison tables. This has the advantage of guaranteeing an optimal level of values 
freshness. Nevertheless, the fair-use policy of these public endpoints, which cut off queries that are 
too expensive, raises optimization needs (Soulet & Suchanek, 2019).

This is the first method for generating a comparison table for a given set of entities, without 
any information other than the knowledge base. The proposed entity-centric approach leads to the 
following contributions:

• It defines a new interestingness measure, called contextual reference level (crl), in order to judge 
if a feature is relevant for comparing a given set of entities. Its principle is to favor the features for 
which the given entities have values frequently used by other sets of similar entities, called contexts.

Table 1. A comparison table of Ada Lovelace and Alan Turing as running example

FeaturesEntities Ada Lovelace Alan Turing crl

sex or gender female male 0.908

spoken language English English 0.472

member of Royal Society 0.205

field of work mathematics, computing mathematics, logic, cryptanalysis, 
cryptography, computer science 0.110

manner of death natural causes suicide 0.100

religion ? atheism 0.015
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• It designs and implements Versus, an algorithm to select the contexts and how to efficiently 
evaluate the contextual reference level of a feature while minimizing the number of queries to 
the knowledge base. The idea is to estimate bounds and to interrupt the computation as soon as 
its interest or its absence of interest is guaranteed.

• It evaluates Versus on a publicly available benchmark, named Comparison Feature Benchmark 
(CFB), that the authors developed to assess the quality of comparison features. CFB relies on 
comparison tables built from Wikidata and manually evaluated. On this benchmark, the contextual 
reference level leads, with equal precision, to better recall and better accuracy than the state-of-
the-art baselines including automatic facet generation. In addition, the optimized evaluation is 
significantly faster than a basic implementation, as it requires fewer queries.

This paper is an extended version of Giacometti & al. (2021), with the proofs of crl’s and Versus’ 
properties (Sections 4 and 5), and considering not only the entities properties (outgoing links) but 
also their inverse properties (incoming links) as comparison features. As inverse properties require 
a way to show a lot of values, a new display is proposed to keep readable the comparison tables (see 
Section 6). Moreover, all results of the experimental study (in Section 7) are updated.

The rest of the paper is organized as follows. Section 2 presents related work. Section 3 formalizes 
the problem. Sections 4 and 5 introduce the contextual reference level and the Versus algorithm. 
Section 6 explains the strategy for dealing with inverse properties. The experiments in Section 7 
evaluate the approach qualitatively and quantitatively.

2. ReLATeD WoRK

To the best of our knowledge, there is no work to build a comparison table of a set of entities. It 
could be possible to resort to machine learning methods that learn to rank Resource Description 
Framework (RDF) properties (Dessi & Atzori, 2016). Unfortunately, it would be difficult to gather 
feedback specific to the problem of comparison table building, to build a training dataset. Besides, as 
the ranking of the properties depends on the compared entities (for example, “located in” is relevant 
for only 84.3% of comparison tables in the used benchmark), this would require the construction of 
a training dataset of considerable size to cover all cases.

Most techniques that compare two entities in a knowledge base rely on a similarity measure 
(Anyanwu & al., 2005; d’Amato & al., 2009). Such measures are relevant for estimating the 
resemblance between two entities, but they do not explicitly give the comparison features (Tversky, 
1977). In this direction, Petrova & al. (2017) builds relation paths in knowledge bases between two 
entities to identify all similarities and differences. Unfortunately, no interestingness measure filters 
out irrelevant paths leading to too many attributes (including irrelevant ones like identifiers). The 
tasks closest to ours are the infobox template generation (Saez & Hogan, 2018; Wu & Weld, 2008) 
and the facet extraction (Feddoul & al., 2019; Hahn & al., 2010; Oren & al., 2006; Tzitzikas & al., 
2017). First, an infobox is a set of attribute-value pairs describing an entity. The choice of attributes 
is based on a template defined for each class (grouping a set of entities). For instance, persons3 
are described by their name, birth date, nationality, highlights and so on. Many templates have 
been produced collaboratively by Wikipedia contributors, but methods have also been proposed to 
automatically refine these templates for more specific classes (Saez & Hogan, 2018; Wu & Weld, 
2008). More recently, Saez & Hogan (2018) proposed an unsupervised metric-based method that 
favors frequent attributes with popular values with respect to the PageRank. Unfortunately, as for 
(Petrova & al., 2017), most of the attributes of the infoboxes describe one entity in a singular way 
and therefore cannot be used to compare several entities. For instance, image or notable works are 
not features that can be shared by two persons.

Second, faceted search consists of restricting a collection of entities by selecting only those 
with a certain value for a given attribute, called facet (Tzitzikas & al., 2017). A relevant facet has 
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frequently shared values among the observed entities. Typically, facets are temporal (publication 
date, birth date), spatial (conference location, birthplace), personal (author, friend), material (subject, 
color) or energetic (activity, action) attributes (Tzitzikas & al., 2017). There are a few automatic 
facet extraction methods. For a given class, Hahn & al. (2010) extracts from the infobox templates 
the attributes whose values are frequently observed. Similarly, Oren & al. (2006) measures the 
quality of an attribute by favoring frequently used attributes whose values are few and uniformly 
distributed. Recently, Feddoul & al. (2019) proposes very similar measures to extract facets but a 
preprocessing method groups the quantitative values (which the authors do not consider in this paper) 
and a postprocessing method filters out the redundant facets. These methods mainly derive attributes 
for a limited number of classes containing a lot of entities. Evaluating very similar entities (like Ada 
Lovelace and Alan Turing) requires considering smaller groups of much more specific entities (e.g., 
persons employed by the University of Cambridge). Therefore, the main limitation of automatic facet 
extraction methods is to miss some very specific but very relevant features. Finally, unlike the facets 
used for navigation, it does not matter if a comparison feature has a lot of values in the knowledge 
base with an unbalanced distribution.

3. PRoBLeM STATeMeNT

A knowledge base on a set of relations   and a set of constants   (representing entities and 
values) is a set of facts K R E E⊆ × × . The facts are written in the form r s o,( ) ∈  , where r  
is the relation, s  is the subject and o  is the object. For instance, religion (Turing, atheism) indicates 
that Alan Turing was an atheist4. Given a relation r , r s o− ( ) ∈1 ,   means that r o s,( ) ∈   where 
r−1  is the inverse property of r. Besides, r s ( )  (or more simply, r s( )  when the knowledge base 
  is clear) is the set of objects associated to the subject s  for the relation r  in  . For instance, 
field of work (Turing) returns the set {mathematics, logic, computer science, cryptanalysis, 
cryptography} in Wikidata.

The notion of comparison table is formalized as follows:

Definition 1 (Comparison table): Given a knowledge base  , the comparison table of a set of 
entities E ⊆   by a set of features F ⊆   is a table with F  rows and E  columns where 

each cell intersecting a feature f  and an entity e  contains the values f e o f e o( ) = ∈ ( ) ∈{ }E K: , .

Definition 1 limits the comparison features to the relations of the compared entities. With this 
definition, to use relation paths (Feddoul & al., 2019; Petrova & al., 2017) of greater length (such as 
“the country of the birthplace”), it would be necessary to enrich the knowledge base. Table 1 illustrates 
Definition 1 with the comparison table of the set of entities E = { }Lovelace Turing,  by the set of 
features F = …{ }sex or gender spoken language, , . The cell at the intersection of field of work 
and Turing contains the values field of work (Turing).

An interestingness measure m : ,R E R E E× × → 



× ×( )2 2 0 1  evaluates the interest m f E, ,( )  of 
using the relation f  as a feature for comparing the entities of E  in the knowledge base  .

Definition 2 (Interesting feature): Given a KB  , a set of entities E ⊆  , an interestingness 
measure m : ,R E R E E× × → 




× ×( )2 2 0 1  and a threshold γ ∈ 

0 1, , an interesting feature f ∈   

(for m  and γ ) satisfies m f E, ,( ) ≥ γ .
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Given a KB  , a set of entities E , an interestingness measure m  and a threshold γ , the goal 
is to extract all the interesting features F f m f E= ∈ ( ) ≥{ }R K: , , γ  to build a readable comparison 
table of E  by F . 

For this purpose, this paper addresses three challenges. The first challenge consists in defining an 
interestingness measure that estimates the relevance of a feature from a knowledge base (see Section 
4). The second challenge is to evaluate this measure by minimizing the number of SPARQL queries 
(see Section 5). The third challenge is to display cleverly the cells to make it readable (see Section 6).

4. CoNTeXTUAL ReFeReNCe LeVeL oF A FeATURe

4.1 Definition
Intuitively, to understand and to be able to interpret a comparison table, a feature is interesting if 
the values describing the compared entities are known by the user. In psychology, it is well known 
that the user needs at least one reference value to compare two values (Tversky, 1977). In particular, 
if these values are too rare (or even only characterize one compared entity), the user of the table is 
unlikely to know them because he has never been confronted with them. Sometimes such values 
provide valuable information about the entity, but they do not help to compare the entities with each 
other. For instance, the place of burial of Ada Lovelace is Hucknall Church St Mary Magdalene while 
that of Alan Turing is Woking Crematorium. There is no particular conclusion to draw from this 
difference (except perhaps that Alan Turing was atheist unlike Ada Lovelace, but the feature religion 
is much better suited to underline this point). Of course, this notion of reference value is dependent 
on the compared entities: even if there are only few people who are members of the Royal Society, 
this feature makes sense to compare two persons employed by the University of Cambridge. This is 
the key idea of the interestingness measure defined later on: it evaluates the relevance of a feature 
according to entities that are similar to the compared entities, for instance those “being employed by 
Cambridge” or those “speaking English” for Ada Lovelace and Alan Turing. Definition 3 formalizes 
this idea by introducing the notion of context:

Definition 3 (Context): Given a set of entities E ⊆   and a relation-object couple r o,( ) ∈ ×R E  
such that E r o⊆ ( )−1 , the context   for E  stemming from r o,( )  is the set of entities r o E− ( )1 \ . 


E

 denotes the set of all contexts for E .

Intuitively, a context   is a set of entities that are similar but different from the entities of E  
with respect to a relation-object couple r o,( )  shared by all the entities of E . For the comparison 
table provided by Table 1, an example of context is the set of entities having English as spoken 
language (here, the relation-object couple is (spoken language, English)). Naturally, the classes of 
the knowledge base are conducive to contexts. For example, all persons (i.e., entities with couple 
(instance of, human)) could constitute a context for Lovelace and Turing.

Given a set of entities E ⊆  , a feature f ∈   and a context  ∈ 
E

, the more the set of values 
f e( )  for an entity e E∈  describes the entities of  , the more this feature f  is likely to provide 
interesting values for a user who wants to compare entities in E . From this intuition, given an entity 
e E∈ , the interest of a feature f  should increase with the probability of observing the values in 
f e( )  in the set of values f s( )  of similar entities s ∈  : Pr |f s f e s( ) ∩ ( ) ≠ ∅ ∈



 . Then, given 

a set of entities E e e
P

= …{ }1
, ,  and a context  ∈ 

E
, the contextual reference level of a feature 
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f , denoted by crl f EC K, ,( ) , is defined as the probability of observing the values f e
i( )  of at least 

one entity e E
i
∈  in the set of values f s

i( )  of similar entities s
i
∈  :

crl f E f s f e f s f e s
P PC K C, , Pr ... | ,...( ) = ( )∩ ( ) ≠ ∅( )∨ ∨ ( )∩ ( ) ≠ ∅( ) ∈

1 1 1
,,

Pr

s

e E f s f e

P

i i i

∈





= ∃ ∈( ) ( ) ∩ ( ) ≠ ∅( )
C

                     || s
i
∈




C

 

It is indeed a probability because if a similar entity s
i
 shares features with several entities in E , it is counted 

only once. In practice, entities belong to several relevant contexts. For example, for Ada Lovelace and Alan 
Turing, there are contexts stemming from four couples (see below for details): (field of work, mathematics), 
(employer, Univ. of Cambridge), (occupation, computer scientist) and (spoken language, English). For this 
reason, the definition of crl f EC K, ,( )  considers a set of contexts   = …{ }1

, ,
K

 as follows:

Definition 4 (Contextual reference level): Given a set of entities E e e
P

= …{ } ⊆1
, ,   and a set of 

contexts   = …{ } ⊆1
, ,

K E
 , the contextual reference level of a feature F  is defined as:

crl f E e E k K f s f e s
i i

k
i i

k
C K, , ... |( ) = ∃ ∈( ) ∃ ∈  

( ) ( ) ∩ ( ) ≠( ) ∈Pr 1 ∅ CC
k






 

It is important to note that the compared entities in E  play a very strong role in this definition 
because they limit the choice of   in the set of potential contexts 

E
. The fourth column of Table 

1 indicates the crl of each feature computed from Wikidata in the four contexts mentioned above. 
For instance, 0.908 corresponds to the probability of observing the value female or male (respectively 
stemming from Ada Lovelace or Alan Turing for e

i
) as sex or gender of an entity s

i
 that is a 

mathematician or an employee of Cambridge or a computer scientist or an English speaker. With 
Definition 4, it is possible to directly calculate the crl of a feature with a SPARQL query. However, 
this statistical query would often be too costly not to be interrupted by the fair-use policy of public 
SPARQL endpoints (Soulet & Suchanek, 2019). Nevertheless, this definition implicitly assumes that 
the entities s

i
k  are identically and independently drawn in the different contexts 

k
. With this i.i.d. 

assumption, the following property rewrites the contextual reference level:

Property 1: Given a set of entities E ⊆  , a set of contexts  ⊆ 
E

 and a feature f ∈  , one has:

crl f E f s f e s
e E

C
C C C C

K C, , Pr ) |( ) = − − ( )∩ ( ) ≠ ∅ ∈



( ) = −

∈ ∈ ∈
∏∏ ∏1 1 1 1−− ( )( )crl f EC K, ,  

Proof: Let   be a knowledge base, f ∈   be a feature and E ⊆   be a set of entities, one has the 
following equalities:

crl f E e E k K f s f e s C
i i

k
i i

k
C K, , Pr ...( ) = ∃ ∈( ) ∃ ∈  

( ) ( ) ( ) ≠ ∅( ) ∈1 ∩
kk

C i i
k

ik
e E f s f e







= − − ∃ ∈( ) ( ) (∈                     1 1C Pr ∩ )) ≠ ∅( ) ∈



( )

= − − −

∏
∏ ∈ ∈

s C
i
k

k

C e Ek i
                     1 1 1C ∏∏ − ( ) ( ) ≠ ∅ ∈



( )( )






1 Pr f s f e s C

i
k

i i
k

k
∩

                      = − − ( ) ( ) ≠ ∅ ∈



( )∈ ∈∏∏1 1

C e E i
k

i i
k

kk i
f s f e s CC Pr ∩
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The Morgan’s law is used for the first two rows. Then, simplifying the expression proves the 
soundness of Property 1.

Interestingly, each probability Pr f s f e s( ) ∩ ( ) ≠ ∅ ∈



  can easily be calculated independently 

by a low-cost SPARQL query. The experimental section shows that in practice, the error rate of this 
kind of query is under 0.5%. In addition, considering Property 1, it is easy to see that the crl increases 
with the probability Pr |f s f e s( ) ∩ ( ) ≠ ∅ ∈



  and that its range is 0 1,


 . The crl of the feature f  

is zero when no entity among those of the contexts   has a common value with the entities of E . 
Conversely, crl f EC K, ,( )  is equal to 1 as soon as a value in f e( )  is shared by all the entities of at 
least one context  .

4.2 Quality Criteria Analysis
Properties 2-4 present three quality criteria that a well-behaved interestingness measure for evaluating 
features should satisfy. First, the following property proves that the contextual reference level is 
monotone with respect to contexts:

Property 2: Given a KB  , a feature f  and a set of entities E , one has crl f E crl f EC CK K, , , ,( ) ≤ ( )'
 

if the two sets of contexts satisfy  ⊆ ⊆' �
E

.
Proof: Let   be a knowledge base, f ∈   be a feature and E ⊆   be a set of entities. Let  ⊆ 

E
 

and  ' ⊆ �
E

 be two sets of contexts such that  ⊆ ' , one has the following equalities:

crl f E f s f e s C
C e E

C

C
C

C

K
'

'

, , Pr |( ) = − − ( )∩ ( ) ≠ ∅ ∈



( )

= −
∈ ∈

∈

∏∏

∏

1 1

1
ee E

C e E

f s f e s C

f s f e
∈

∈( ) ∈

∏

∏ ∏

− ( )∩ ( ) ≠ ∅ ∈



( )

× − ( )∩ (

1

1

Pr |

Pr
'\C C

)) ≠ ∅ ∈



( )

≥ − − ( )∩ ( ) ≠ ∅ ∈



( )

≥
∈ ∈
∏∏

|

Pr |

s C

f s f e s C

crl
C e E

1 1
C

CC Kf E, ,( )

 

Interestingly, the addition of a new context favors the emergence of new interesting features (e.g., 
if a new relation is added to the knowledge base). However, this may also raise problems of redundancy 
between contexts (see below). The following property goes further by showing that contextual reference 
level is also robust against incompleteness for the feature f :

Property 3: Given two KBs   and ' , a set of contexts  ⊆ 
E

 and a feature F  such that 
f e f e ( ) ⊆ ( )'

 for each e E∈ , one has crl f E crl f EC CK K, , , ,( ) ≤ ( )' .
Proof: Let  ⊆ 

E
 be a set of contexts, f ∈   be a feature and   and '  be two knowledge bases 

such that f e f e ( ) ⊆ ( )'
 for every entity e E∈ , one has the following equalities:
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crl f E f s f e s C
C e E

C

C
C

K KK, , ' Pr |
' '( ) = − − ( )∩ ( ) ≠ ∅ ∈



( )

≥ −
∈ ∈
∏∏1 1

1
∈∈ ∈
∏∏ − ( )∩ ( ) ≠ ∅ ∈



( )

≥ ( )
C

K K

C K
e E

f s f e s C

crl f E

1 Pr |

, ,

 

The passage from the first equation to the second one is due to the fact that 
f s f e f s f e   ( ) ∩ ( )( ) ⊆ ( )∩ ( )( )' '

. Consequently, Pr |
' '
f s f e s C ( ) ∩ ( ) ≠ ∅ ∈



  is greater or equal 

to Pr |f s f e s C ( ) ∩ ( ) ≠ ∅ ∈



 .

This property underlines that the value of crl is always underestimated when some facts are 
missing. If new facts are added in the knowledge base, then the contextual reference level of a feature 
can only increase (if the context C� remains unchanged). For this reason, the extracted features will 
remain interesting for crl  if the knowledge base is completed. In Table 1, the feature religion was 
selected despite the lack of value for Ada Lovelace. Whatever the value could be stated, this feature 
would remain interesting for crl .

Finally, the next property proves that the contextual reference level of a feature f  is zero when 
it is an identifier (i.e., an injective function f x f y x y( ) = ( ) ⇒ = ):

Property 4: Given a set of entities E  and a set of contexts  , one has crl f EC K, ,( ) = 0  for any 
feature F  that is an identifier.

Proof: Let   be a knowledge base, E ⊆   be a set of entities and  ⊆ �
E

 be a set of contexts. Let 
f ∈   be an identifier, i.e., f e f e e e

1 2 1 2( ) ∩ ( ) ≠ ∅ ⇒ = . For any entity e E∈  and any context 
C C∈ , one has e C∉  (see Definition 3 in the submission). Consequently, f s f e( ) ∩ ( ) = ∅  

for s ∈   and Pr |f s f e s C( ) ∩ ( ) ≠ ∅ ∈



  equals zero.

Interestingly, an identifier F  is not relevant for comparing entities because by definition all 
values of F  uniquely identifies an entity. For instance, for a set of countries, the property GeoNames 
ID is not an interesting feature w.r.t. 

5. VeRSUS: A MeTHoD FoR eXTRACTING INTeReSTING FeATUReS

5.1 overview
The overall idea is to analyze each relation f  that describes at least one entity in E  to determine 
whether it is an interesting feature in  : crl f EC K, ,( ) ≥ γ . Algorithm 1 sketches this process. First, 
the set F  that will contain all the interesting features is initialized with the empty set (Line 1) and 
the set of all the candidate relations 

E
 gathers the relations that describe at least one entity in E  

(Line 2). After, each relation in 
E

 is separately processed (Lines 3-6). Line 4 selects the set of 
contexts  ⊆ 

E
 without considering the relation f  (see Algorithm 2). This set of contexts is 

immediately used by Algorithm 3 in order to decide whether the relation f  is an interesting feature 
for the entities in E . If f  is really interesting for crl , it is added to the set of interesting features F. 
Finally, this set is returned at Line 7.

The rest of this section details Lines 4 and 5 based respectively on Algorithms 2 and 3 Context 
selection gives the method for selecting the set of contexts. Of course, this choice is decisive in the 
calculation of the contextual reference level. Next sections also present an efficient algorithm for 
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evaluating the contextual reference level. Indeed, the naive evaluation of the contextual reference 
level is expensive, as for each feature, it requires to calculate ×E  queries for the numerators and 
  queries for the denominators (see Definition 4).

5.2 Context Selection

This step aims to select a small number of relevant contexts among all the contexts of 
E

 that may 
be redundant. Indeed, in the case where a large number of contexts in   are correlated, the contextual 
reference level might be abnormally overestimated (see Property 2). For example, since all employees 
of the University of Cambridge are necessarily humans, the context stemming from (instance of, 
human) does not provide additional information, but it increases the contextual reference level. It is 
however important to keep a set of contexts that cover all the specificities of the entities similar to 
E: ∩

E
. For example, the context stemming from (occupation, computer scientist) is important 

because it distinguishes Ada Lovelace and Alan Turing from mathematicians at the University of 
Cambridge who have not contributed in computer science. In this way, one of the smallest sets of 
contexts * ⊆ 

E
 is chosen so that it characterizes the same set of entities as 

E
 by intersecting: 

  
* argmin∈ ∩ = ∩{ }⊆ 

E E
: . The exact resolution of this problem is NP-hard and it would 

require a large number of knowledge base queries. Therefore, Algorithm 2 proposes a heuristic 
algorithm, which eliminates superfluous contexts from the smallest one to the largest one.

Given a knowledge base  , a set of entities E  and a feature f , Algorithm 2 returns a set 
of contexts  . Line 1 builds the set of contexts 

E
 except it excludes the context stemming 

from the feature f (i.e., r f≠ ). The contexts are then sorted from the smallest to the largest 
(Line 2) to favor the removal of overly general contexts. The loop (Lines 3-5) iterates over each 
context 

i
 starting with the smallest one. Line 4 tests whether the intersection of contexts without 


i
 gives the same set of entities as with 

i
. If this is the case, it means that this context does 

Algorithm 1. Versus: extracting the set of interesting features w.r.t. crl

Algorithm 2. Selecting a set of contexts



International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

10

not provide any specificity and it is discarded from  . Once the loop is completed, Line 6 returns 
the set of non-redundant contexts.

Table 2 presents the relation-object couples r o,( )  from which contexts are computed 
considering Ada Lovelace and Alan Turing. After having been sorted by ascending cardinality 
in Wikidata (i.e., r o E− ( )1 \ ), the two redundant contexts were eliminated by Lines 3-7 of 
Algorithm 2. For example, the restriction “instance of human” does not delete any entity among 
those belonging to all other contexts. It is important to note that the interest of an approach 
centered on entities is to consider contexts that do not depend only on classes (i.e., there are 
other relations than instance of). However, the number of contexts in   remains reasonable in 
practice (9 at most in all experiments, see Figure 1). Most often, the iteration of Lines 3-5 removes 
few contexts (1.61 in average), but in some cases, many redundant contexts are eliminated (for 
example, 168 in the most extreme case).

5.3 efficient evaluation of the Contextual Reference Level
Rather than calculating the exact contextual reference level of a feature, the idea is to do a partial 
calculation of this value in order to only determine whether crl f EC K, ,( )  is greater than γ . It 
is easy to see that the complement to 1 of the contextual reference level (i.e., 1− ( )crl f EC K, , ) 

Table 2. Relation-object couples common to Ada Lovelace and Alan Turing

Relation r Object o r o E− ( )1 \

field of work mathematics 2,018

employer Univ. of Cambridge 3,129

occupation computer scientist 7,943

described by source Obalky knih.cz 47,563

spoken language English 165,714

instance of human 6,389,426

Figure 1. Distribution of comparison tables w.r.t their context size
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decreases with each multiplication by a factor of the form 1− ( )∩ ( ) ≠ ∅ ∈



( )Pr |f s f e s  . With 

this observation, it is possible to derive a lower bound for the contextual reference level. In the 
process of calculation, when this lower bound exceeds the threshold γ , one has the guarantee 
that crl f EC K, ,( ) ≥ γ . Conversely, it is possible to derive an upper bound of the contextual 

reference level by using Pr f s f e s( ) ∩ ( ) ≠ ∅ ∈



,   as an upper bound of the joint probability 

Pr ,f s f e s( ) ∩ ( ) ≠ ∅ ∈



 . The following property formalizes these two bounds:

Property 5: Given a knowledge base  , the contextual reference level of a feature f  for the entities 
E  is bounded for any S C⊆ ×E :

crl f E f s f e s
e

e

C
C S

C

K C, , Pr |

[

,

,

( ) ≥ − − ( )∩ ( ) ≠ ∅ ∈



( )

≤ −
( )∈

( )

∏1 1

1
∈∈

( )∈ ×( )

∏ − ( )∩ ( ) ≠ ∅ ∈



( )

×∏ −
∈ (

S

C C S

C

E

1

1

Pr |

:

, \

f s f e s

s f s

e E

min )) ∩ ( ) ≠ ∅{ }{ }











f e

optimistic factor

, C

C

 

Proof: Let   be a knowledge base, f ∈   be a feature and E ⊆   be a set of entities. Let S C⊆ ×E  
be a set, one has:

crl f E C e f s f e s CC K S, , , Pr |( ) = − ( )∈ − ( )∩ ( ) ≠ ∅ ∈



( )∏1 1

                × ( )∈ ×( ) − ( )∩ ( ) ≠ ∅ ∈



( )∏

C e E f s f e s C, \ Pr |C S 1
 

As:

∏( )∈ ×( ) − ( )∩ ( ) ≠ ∅ ∈



( ) ∈  C e E f s f e s C, \ Pr | ,C S 1 0 1  

it proves the lower bound. Now, let us consider the upper bound. It is easy to see that:

min

Pr

s f s f e C

C

s C f s f e

C

f s f e

∈ ( )∩ ( ) ≠ ∅{ }{ }
≥

∈ ( )∩ ( ) ≠ ∅{ }

≥ ( )∩ ( ) ≠ ∅

 : , :

|| s C∈





 

leading to overestimate the contextual reference level.
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Algorithm 3 benefits from these bounds for efficiently evaluating if crl f EC K, ,( )  ≥  γ . More 
precisely, Lines 1 and 2 respectively initialize the product p  and the optimistic factor o  discussed 
above by considering all the couples in ×E . The loops of Lines 3 and 4 enumerate the different 
entities e E∈  and the different contexts  ∈ . At each iteration, Line 5 refines the calculation of 
p  taking into account the probability Pr |f s f e s( ) ∩ ( ) ≠ ∅ ∈



  while Line 7 updates o . If the 

current contextual reference level is higher than the threshold γ , Line 6 returns true  because 1− p  
is a pessimistic approximation of the final contextual reference level. Conversely, Line 8 returns 
false  when the upper bound 1− ×p o  is lower than γ .

Let us illustrate Algorithm 3 with the computation of the contextual reference level of two features 
for Ada Lovelace and Alan Turing with a threshold γ = 0 01.  illustrated by Table 3. The probability 
of having an entity with a natural death (like Ada Lovelace) among those who studied mathematics 
is 0.025. From this evaluation, it is certain that manner of death is an interesting feature because its 
exact contextual reference level exceeds the lower bound 1 1 0 025− −( ).  which is higher than the 
threshold γ . In this case, this avoids the evaluation of 7 queries that would have been necessary for 
the exact calculation of the contextual reference level. For the feature student of, the optimistic factor 
after the first evaluation is equal to 0.998. It is therefore sure that the contextual reference level of 
this feature is at most equal to 1 1 0 0 998 0 002− −( )× =. .  which is lower than the threshold γ . 

Algorithm 3. Computing the contextual reference level of a relation

Table 3. Computation of crl of two features for Ada Lovelace and Alan Turing

Entities E
Contexts  


Field of work Employer Occupation Spoken language

manner of death
Lovelace 0.025 0.018 0.017 0.038

Turing 0.002 0.001 0.002 0.003

student of
Lovelace 0,000 0,000 0,000 0,001

Turing 0,001 0,000 0,000 0,001
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Again, the contextual reference level computation can be interrupted (Line 8) avoiding the evaluation 
of 7 queries.

6. DISPLAyING CoMPARISoN TABLeS WITH INVeRSe PRoPeRTIeS

In a Web knowledge base, an entity is described not only by its properties (outgoing links) but also 
by its incoming links which show its role as object of properties. Versus can easily deal with both 
properties and inverse properties. In Table 1, the comparison table is particularly readable because 
each cell contains a small number of values (maximum 5 values, for the fields of work of Alan 
Turing). Unfortunately, sometimes there are so many values in a cell that you cannot display them 
all. For example, generating a comparison table taking into account inverse properties of Paris and 
New York results in several comparison features whose number of values is very large (Table 4).

As can be seen in Table 4, the inverse properties are particularly conducive to the emergence of 
comparison features with cells containing many values. Of course, it would be possible to show only 
part of these values. It could be possible to select the k  most interesting values according to a criterion 
to be defined. However, the intuition is that when a feature leads to a large number of values the 
comparison between the entities is more quantitative than qualitative. For example, the end user does 
not want to compare 2 by 2 the entities with a work location in Paris or New York, but just the quantity 
of these work locations for the two cities. The emergence of these numerical features is even particularly 
interesting for carrying out a compensatory analysis.

7. eXPeRIMeNTS

After presenting the evaluation benchmark in the next subsection, the experiments carried out aim 
to answer the following three questions: Does the contextual reference level really isolate the best 
features? (Q1); What is the gain of the optimized evaluation? (Q2) and What is the impact of inverse 
properties? (Q3). Versus is implemented in Java using the Jena library to query the public Wikidata 
SPARQL endpoint. Versus was run on Windows 10 with an Intel core i7 processor and 32 GB of RAM. 
Due to the few operations performed on the client side, the execution times correspond essentially 
to the processing time of SPARQL queries on the server side5. Although execution times vary with 
server load and available data, they shape the behavior of the approaches. Note that the source code 
of Versus, the evaluation tool and the results are available on the website https://lovelace-vs-turing.
com and on github.com/asoulet/versus.

7.1 Comparison Feature Benchmark (CFB)
As comparison table generation is a new problem, the authors had to develop a benchmark, named 
Comparison Feature Benchmark (CFB). Its twofold objective is to constitute a reference dataset to 
compare the speed of different approaches and a gold standard to assess the quality of the discovered 

Table 4. Some features of the comparison table of Paris and New York with a lot values

Features Nb val. for Paris Nb val. for New York

Inverse of narrative location (P840) 2640 4893

Inverse of work location (P937) 20404 2154

Inverse of residence (P551) 1214 2379

Inverse of filming location (P915) 668 1289

… … …

https://lovelace-vs-turing.com
https://lovelace-vs-turing.com
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comparison features. This section starts by describing the method to select from Wikidata the sets of 
entities to be compared with their candidate comparison features. For simplicity, only pairs of entities 
are considered. Then, this section explains how the quality of the candidate comparison features have 
been manually evaluated.

First, 1,000 types T
i
 ( i ∈ 


1 1000.. )  are randomly drawn from Wikidata that have between 

10k and 1k instances. This random sample guarantees to cover a wide variety of entities (person, 
place, objects, events and so on) in order to best reflect Wikidata diversity. Second, for each 
type T

i
, the two entities e

i
1  and e

i
2  that have the highest degree of incoming facts (i.e., maximizing 

deg e s r s e e T
i( ) = ∈ ( ) ∈ ∧ ∈{ }E K: , ) are selected. This in-degree ranking favors popular 

entities of the type T
i
. For instance, the entities Paris (Q90) and London (Q84) are selected for 

the type city (Q515). Then, for each pair of entities E e e
i i i
= { }1 2, , the set F

i
 contains all the 

relations r
j
∈   that have URI as objects and that are a direct property of Wikidata (by using 

the prefix https://www.wikidata.org/prop/direct/) and r e
j i

1( )  or r e
j i

2( )  is not empty (note that 

the inverse properties are not considered in this benchmark). Thus, F
i
is the set of candidate 

comparison features to compare entities in E
i
. Finally, for each pair of entities E e e

i i i
= { }1 2, , 

the benchmark CFB stores all the facts r e o
j i

k
i
k,( )  ( k ∈ { }1 2, ) where r F

j i
∈  and o

i
k  is an object 

randomly drawn from the values in r e
j i

k( )  (if r e
j i

k( )  is the empty set, then o
i
k  is null). For each 

type T
i
 ( i ∈ 


1 1000... )  this process builds a comparison table with F

i
 rows and two columns 

to compare e
i
1  and e

i
2 . Figure 2 indicates the number of comparison tables with the number of 

candidate comparison features. Note that the slices are non-linear.
Second, 1,195 candidate features (out of the 11,852, or about 10%) were drawn at random and 

evaluated manually by one of the 6 evaluators. Each time, it was asked if the candidate feature 
was relevant to compare the pair of entities (by selecting in CFB the facts and the evaluator can 
answer “No”, meaning that the feature is not relevant (44.9% of the evaluations), “Yes” (37.9%) 
or “I don’t know” (17.2%). Only 80 evaluations were common, of which 74 agreed. It leads to 
a Cohen’s kappa coefficient of 0.832 that corresponds to an almost perfect agreement (Landis 

Figure 2. Distribution of comparison tables

https://www.wikidata.org/prop/direct/
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& Koch, 1977). This evaluation was carried out using the tool available at the website https://
lovelace-vs-turing.com (see Figure 3).

7.2 Q1: Quality of the extracted Features
Figures 4 and 5 respectively report the precision-recall results (ignoring “I don’t know” evaluations) 
and the number of comparison features. First, this experiment benefits from the CFB benchmark 
described in the previous section for comparing the contextual reference level used by Versus (denoted 
by ) with the metric used by automatic facet generation (Oren & al., 2006) (denoted by Facet). For 
the facet-oriented metric, the type of the two entities (see above) is used to define the collection on 
which the metric is computed. There are also two baselines: the all method (Petrova & al., 2017) 
that selects all the candidate features of the benchmark and the infobox method that selects all the 
candidate features present in at least one of the Wikipedia infoboxes of the entities . Figure 4 reports 
the precision, recall and accuracy for these methods by varying the minimum threshold for crl and 
Facet. For the reasons mentioned in related work, the precision of all and infobox, less than 50%, 
is catastrophic. When the precision of Facet is better than that of the recall of Facet is dramatically 
low (less than 20 features are extracted). Overall, the contextual reference level is much better than 

Figure 3. Evaluation tool used by annotators

Figure 4. Precision, recall and accuracy for crl, Facet, infobox and all

https://lovelace-vs-turing.com
https://lovelace-vs-turing.com
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facet-oriented metric with comparable precision but higher recall and higher accuracy. This result is 
not surprising because, unlike Facet, Versus brings out features specific to the two compared entities.

The precision of the contextual reference level, always above 76%, is generally high with regard 
to the baselines whose precision is less than 50%. Interestingly, this precision increases with the 
minimum contextual reference level threshold (from 76% for γ = 0 0001.  to 86% for γ = 0 05. ). 
This demonstrates the ability of crl to isolate the most relevant features. However, the recall decreases 
very quickly with the minimum contextual reference level threshold. This is explained by the decrease 
in the number of interesting features with γ  as shown in Figure 5. With γ = 0 1. , the left-hand side 
graph indicates that a comparison table contains only three features on average. However, the right-
hand side graph shows strong disparities depending on the initial number of candidate features 
describing the entities (note that slices are non-linear). In practice, to have a good compromise, it 
seems appropriate to set γ  with a value less than 0.1.

7.3 Q2: efficiency of the Method
This section assesses the efficiency gain of the optimized method (Versus benefiting from Property 
5) with a baseline where the exact value of the contextual reference level is calculated (baseline 
based on Property 1). Unlike the previous section where the benchmark prevented the use of inverse 
properties, this new experiment is now exploiting them. It is important to note that the Facet method 
(that only requires 8,061 ms per comparison table) is much faster than Versus.

Figure 6 indicates the number of SPARQL queries required to build the 1,000 comparison tables 
of the benchmark. For γ = 0 01. , the left-hand side figure shows that the number of queries increases 
linearly with the number of candidate features to be tested. This result is expected because the number 

Figure 5. Number of interesting features per comparison table

Figure 6. Efficiency of Versus vs baseline w.r.t. query number and execution time
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of contexts (between 1 and 7) is relatively independent of the number of features. Overall, Versus is 
always efficient.

The right-hand side chart in Figure 6 details the average execution time to construct a comparison 
table according to the number of features. Unlike the number of queries, the execution time of the 
construction of a comparison table does not increase linearly with the number of features. In addition, 
the standard deviations are very high. This phenomenon is explained by the fact that not all queries 
have the same complexity. For instance, it is more expensive to evaluate a query with the person as 
context than with the country as context because the latter contains fewer entities. In particular, very 
few queries ( ) have an execution time that exceeds the limit of the fair-use policy of Wikidata and 
fail as shown by the error rates on Figure 7.

7.4 Q3: Qualitative Analysis of the Features
This section briefly analyzes the impact of adding the inverse properties as potential comparison 
features. As explained in Section 6, a comparison feature is transformed into a numerical feature if 
an entity has at least 10 values   for this feature.

Of course, the addition of the inverse properties significantly increases the number of comparison 
features, which is interesting to give the end user additional information to compare the entities. 
Nevertheless, it should be noted that the number of features resulting from inverse properties is minority 
(812, that is only 20.4% of the features). This result was expected since it was already observed in 
other related problems of the literature describing the entities (infoboxes, facet generation).

Of all the comparison features, 560 (or 14.1%) are numerical ones. Without the inverse properties, 
there were only 3.3% of numerical features. This high increase is a good reason for using a specific 
display. Moreover, the numerical values   are generally tens for non-inverse properties while they are 
of the order of several thousands for inverse properties, making it impossible to be displayed by list.

8. CoNCLUSIoN

This paper presented a generation method of comparison tables from the Semantic Web. To this 
end, it introduced a measure that evaluates whether a feature has values for the compared entities 
which are sufficiently common among other similar entities. One has broken down the computation 

Figure 7. Query error rate
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of the contextual reference level into several low-cost SPARQL queries so that it satisfies the fair-
use policy of Wikidata public endpoint. Finally, this computation is also optimized in Versus to 
reduce this number of queries. Experiments on the built benchmark show the good precision of the 
contextual reference level for isolating the most relevant features. Interestingly, this entity-centric 
approach has a higher recall and accuracy than a baseline using facet-oriented metric, which relies 
on classes. Moreover, thanks to the presented optimization, Versus is faster than a naive approach. 
Interestingly, the experiments also investigated the impact of inverse properties on the construction 
of comparison tables. They lead to a non-negligible number of features, which lend themselves well 
to a display in the form of a count.

In future work, it would be interesting to investigate other kinds of interestingness measures 
not based on the contextual reference level, but on the contrary, on exceptionality. If such measures 
are likely to have a weak recall, they could be used in addition to the contextual reference level for 
extracting unexpected features. Instead of evaluating each feature one by one, it would also be relevant 
to extract an interesting set of features so as to avoid redundancies. This would be essential to combine 
several endpoints from the Linked Open Data cloud that necessarily contain repeated information.
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