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ABSTRACT

Deep learning is considered as a disruptive method in the field
of mineralogy and hyperspectral imaging. Many techniques
exist to gain mineralogical information. Amongst them pow-
der X-Ray diffraction (XRD) is very popular and powerful,
while hyperspectral imaging is used in many applications
such as Earth observation. A key issue for both XRD and
hyperspectral imaging is not only to identify the endmembers
constituting a mixture but also quantify the abundance of
each endmember. In this study, we propose neural network
(NN) training losses specifically designed for proportion in-
ference. Extensive experiments illustrate that the proposed
approach allows validated NN architectures to be trained to
infer accurately on proportions.

Index Terms— Proportion inference, Hyperspectral Un-
mixing, X-Ray Diffraction, Neural Networks, Dirichlet dis-
tribution.

1. INTRODUCTION

Determining the nature of the mineral phases and their pro-
portions in soil, sediments, and engineered materials is fun-
damental to understand and predict the chemical and me-
chanical properties of the studied materials. Such deter-
mination is most efficiently done with the help of powder
X-ray diffraction (XRD). Methods such as the widely used
Rietveld method [1] allow for an accurate and fast determi-
nation of the nature, crystal structure, and proportion of most
mineral phases in samples. However, this method requires
preliminary qualitative examination of XRD patterns to qual-
itatively identify all mineral phases, which may be extremely
time consuming or even virtually impossible in case of large
datasets such as those acquired during XRD-Computed To-
mography [2]. There is therefore a genuine need to develop
a method that allows for the identification and quantification
of all phases contained in a mineralogical assemblage. As
for many fields, several recent contributions involve deep NN
(DNN) [3] for mineral identification [4, 5], providing promis-
ing results for robust identification of mineralogical phases
even in the presence of slight variations in crystallographic

parameters (e.g. crystal size, morphology, and shape, and
lattice parameters). In this work we focus on the proportion
inference of mineral phases. That is given a XRD patterns,
we infer the proportion of each involved phase.

While the XRD was our main motivation to introduce a
method for proportion inference based on NN, other fields of
application such as hyperspectral unmixing (HU) appear to
be highly relevant. The HU aims at identifying the spectral
signatures of the endmembers (i.e. the components) and their
abundance vector (proportions are referred as abundances in
the HU literature). This task is challenging and has been ad-
dressed in many contributions. Bioucas-Dias et al. [6] and
Tordache et al. [7] propose an overview of many existing so-
Iutions. The most common methods are the SUnSAL algo-
rithm [8] or methods derived from Non-negative matrix fac-
torization (NMF). Wang and Jia [9] introduce an extended
Support Vector Machine (eSVM). Likewise, solutions involv-
ing NN are gaining popularity spurred by growth in computa-
tional resources. Auto Associative NN combined with Mul-
tilayer Perceptron have been proposed in [10]. Recent works
focus on CNN architectures to solve the problem of abun-
dance and endmember inference [11, 12].

In this work, we introduce a new training loss for NN-
based proportion inference. This loss relies on a likelihood
maximization for Dirichlet variates. The proposed model-
ing shares similarities with the work of Sensoy et al [13] that
uses Dirichlet variates for assessing classification uncertainty
in the context of evidential learning [14]. Our experimen-
tal results show that training a NN architecture that has been
proven successful for XRD classification or HU, with the pro-
posed loss, yields to robust proportion inference.

2. METHODS

In the sequel, K > 2 represents the number of classes. We
denote A = {x = (z1,..,2x) € RE|z; >0, j =
1,..., K, and ZjK:l x; = 1} the K-dimensional simplex,
that is, the set of proportion vectors. We consider a training
dataset D = {(x;,yi),t = 1,..., Np}, where each input
signal x; lives in R¢ and y: € Ak is its associated ground-



truth proportion vector. Given a similar input signal x we aim
at inferring its corresponding component proportions y using
a NN.

Classification is usually performed by maximizing the
likelihood of a multinomial distribution parameterized by
the NN response using a softmax layer. Here we will per-
form proportion regression maximizing the likelihood of the
Dirichlet distribution parameterized by a € (0, 00)%.

We denote f(-|0) : R — RX a NN with parameters 6,
and a; = f(x;/0) € RE the NN output corresponding to
the input x;. One should define the relationship between the
output vector a and the Dirichlet parameters a = ¢(a), where
¢ must comply with the strictly positive constraint of ce. It
should also be strictly increasing such that an output vector
a with large values is mapped to a Dirichlet distribution with
low variability. As in [13], we consider ¢(a) = ReLU(a) +
1 that satisfies both conditions. We thus associate with any
input data x; the random variable

Pi = (P7,177PZK) NDII‘(az), (1)
where a; = ¢(a;) = ReLU(f(x;|0)) + 1. The proportion
prediction y; is given by the mean of the Dirichlet distribution
Dir(e;), that is,
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2.1. Likelihood functions for proportion regression
2.1.1. Mean square error & Dirichlet

From the Dirichlet model previously introduced, we must
provide a loss function to train the NN. One can first think
at minimizing the Mean Square Error (MSE). That is for any
input data x;, minimizing the expectation of the squares of
the errors between y; and P;, the random variable associated
with the input data x; in Eq. (1). This loss function £7(8)
is expressed as follows,

L3 0) =E(| yi =P [*) =l yi — 3 I + Var(P;) (2)
where Var(P;) = Zjil Var(P;;). We will refer to this loss
as "MSE & Dirichlet".

2.1.2. Cross-entropy & Dirichlet

An alternative is the cross-entropy (CE) loss between y; and
P, given by

where 1) is the digamma function. This loss will be named
"CE & Dirichlet".

2.1.3. Alternative losses without Dirichlet modeling

We also consider three alternative losses. The first, named
"MSE", computes the naive MSE using the positive part of the
network output: £; =|| y; — ReLU(a;) ||?. The second, "CE
& SoftMax", evaluates the cross-entropy using the Softmax
of the network output £; = — E;il yij log(Softmax(a;;)).
And finally the third, "MSE & proportion", defines the loss
L =|yi—yi||* where y;; = %,and a; = RelL.U(a;)+1.
This loss corresponds to the first term of Eq. (2), that is the
"MSE & Dirichlet" loss without the variance term.

2.2. Evaluation metrics

Let T = {(xi,y:),4 = 1,..., Ny} denote the testing set,
where N7 is the number of labeled data in each data set. To
quantity the performance of the networks, we consider three
metrics: the standard Root Mean Square Error (RMSE), to-
gether with the Mean Maximum Absolute Error MMAE) and
the Rate of Recovered Support (RRS) defined respectively as,

1
MMAE = — Z Cmax |y — vijl,
T (x“yi)ETJE{L“-’K}
1 A
RRS=+— > 1(supp(y) = supp. (1)),

T (xi,yi)ET
where supp(y) = {j € {1,..., K}, y > 0} and supp.(y) =
{7 e{l,...,K}, y; > ¢}, fore € (0,1). In the following
experiments we will set e = 0.01, that is, a class is considered
present if its estimated proportion is greater than 1%.

3. EXPERIMENTAL SETUP

3.1. Mineral phase identification from X-Ray diffraction

The elastic scattering of photoelectrons from an X-ray beam
results in a scattered beam that is most commonly measured
as a function of the scattering angle 6. The intensity of the
scattered beam depends on three main components: the polar-
ization factor, the structure factor, and the interference func-
tion [15]. Other parameters influence the diffracted intensity,
for example atomic agitation, which is here accounted for by
the Debye-Waller factor (isotropic agitation factor).

We recall that our goal is to find the proportions of the
different phases given an XRD patterns. To this aim, a syn-
thetic database of XRD patterns was generated using the sim-
plest system of equations, i.e. by assuming that the crystals
are perfectly 3D-ordered, have isotropic size, and have no lat-
tice defect, resulting in 6000 XRD patterns of pure material
for the phases Calcite [16], Dolomite [17], Gibbsite [18] and
Hematite [19]. Then, 15000 XRD synthetic patterns of mix-
tures were created by combining one to four of the different
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Fig. 1: Examples of XRD patterns: One from the simulated
database (22% Calcite, 74% Gibbsite, 0.03% Dolomite, 0%
Hematite), and one from real experiments (80% Calcite, 20%
Gibbsite, 0% Dolomite, 0% Hematite).

mineral phases with a given proportion vector. Examples of
XRD patterns are displayed in Fig. 1.

In addition, several real XRD patterns were acquired.
Phase quantification from XRD data in real material samples
usually requires a preliminary step of qualitative identifica-
tion. We recorded 24 XRD patterns on pure minerals and on
assemblages that are mixtures of the same mineral phases as
in the synthetic dataset. XRD patterns were acquired on mi-
cronized powders, with a Bruker DS diffractometer, equipped
with a LynxEye XE detector and a Cu anode (A = 1.5418 A).
The proportions of each phase was quantified by successive
weightings. Data were collected in a continuous scan mode,
averaged every 0.04 °26, and modelled with the Profex soft-
ware [1].

We trained a convolutional NN (CNN) following the
architecture proposed in [20] for dimensionality and space
group classification from XRD patterns. For each of the five
loss functions introduced in Section 2, we trained the CNN
five times using 100 epochs (with the same initialization) and
retained the most efficient network in terms of MMAE on the
validation among all epochs.

3.2. Hyperspectral images

HU deals with inference proportion from spectral signatures.
We used the Jasper Ridge and Urban images to conduct ex-
periments on real data for which a ground-truth is provided!.
The Jasper Ridge image has four endmembers: Road, Soil,
Water and Tree. We analyzed a sub-image of 100x100 pixels
for which the ground-truth has been established. On this im-
age, the original spectra have 224 channels, but atmospheric
effects and water vapour affect some spectral bands. Hence
we reduced the data to 198 channels. Urban is a 307x307
pixels image with a spectral length of 162 (some channels

IRetrieved from https://rslab.ut.ac.ir/data
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(a) Jasper Ridge (b) Urban
Fig. 2: Splits of the hyperspectral images for training and
testing (RGB images obtained by averaging spectral bands).

were removed as for Jasper Ridge). We used the six ground-
truth classes (Asphalt, Grass, Tree, Roof, Metal and Dirt). We
splitted each image into three parts to constitute the training,
validation and tests sets as shown in Fig. 2, in order to have
a test set that is as independent as possible from the training
set.

We used the 1D CNN architecture proposed in [11] for
abundance estimation. As for the XRD experiment, the CNN
was trained five times for each loss, and the reported results
are the ones for the model with minimal MMAE over all
epochs on the validation set.

4. NUMERICAL RESULTS

4.1. Results on synthetic and real XRD data

The performance of the different trained models on the syn-
thetic and the 24 real XRD patterns are reported in Table 1.

For XRD simulated data, the loss functions MSE &
Dirichlet and MSE & prop. provide the best results. It is
worth mentioning that comparison with Rietveld refinement
(detailed below) was not performed since the numerical ap-
proaches for building simulated data are, for 3D-ordered
structures, close to those of the Rietveld software.

Analysing real XRD patterns allows to compare our re-
sults with the Rietveld refinement [1], which is probably
the currently most used method for phase quantification and
structure refinement. Two types of refinements were per-
formed: in the first one, all geometrical and crystallographic
parameters were allowed to vary. In the second, the refine-
ment parameters were limited to the same as those considered
when creating the database (norm of lattice vectors, Debye-
Waller factors, and isotropic crystallite size). The first refine-
ment is hence assumed to be representative of the state of the
art while the second one allows for an objective comparison
with our NN method. It is not suprising that both standard
and constrained Rietveld refinements are more efficient than
our methods since the network was only trained on simu-
lated data. Despite this, the CE & Dirichlet loss provides
satisfying performance, in particular in terms of MMAE and



Table 1: Results for XRD (measures in percentage)

Table 2: Results for HU

Simulated data Real data
Loss function RMSE MMAE RRS RMSE MMAE RRS
MSE & Dirichlet 2.1 1.75 914 8.6 10.85 87.5
CE & Dirichlet 2.4 2.68 93.6 6.5 7.63 87.5
CE & Softmax 3.1 245 942 133 15.66 87.5
MSE 2.3 245 90.8 11.7 17.46 79.2
MSE & prop. 2.1 1.80 90.5 8.7 11.27 83.3
Stand. Rietveld Depends on the sample 1.3 2.07 100
Const. Rietveld (see text 4.1) 1.7 3.12 100

RMSE. This confirms the interest of a NN-based method for
XRD analysis. Indeed real data are affected by uncertainties
from instrumental parameters (e.g. detector efficiency, source
brightness, etc.). This makes the analysis of these real data
harder than that of simulated data and explains the perfor-
mance gap. It is the authors’ belief that the NN methods can
still be improved by introducing an experimental function
in simulated data which would take into account this count-
ing uncertainty. Introducing real data from the same device
should also improve the efficiency of the NN.

4.2. Results on hyperspectral unmixing data

The five proposed loss functions introduced in Section 2
were compared with three competitive methods. The first one
is the SUnSAL algorithm [8], a constrained sparse regres-
sion method? based on the alternating direction method of
multipliers. It allows to obtain the fractional abundance of
components in each pixel of an hyperspectral image, with-
out using ground-truth data. We also compare our method
with two deep-learning based methods: HyperAE? [21] and
UnDIP* [22]. HyperAE proposes a NN autoencoder that
extracts both the endmembers spectral signatures and the
fractional abundances in each pixel. UnDIP is a two steps
algorithm that first extracts the endmembers using a geomet-
ric method, and second estimates the abundances using deep
image prior.

Table 2 summarizes the experiments on both Jasper Ridge
and Urban images. Results obtained on the Jasper Ridge ba-
sis highlight the effectiveness of the proposed two loss func-
tions, namely MSE & Dirichlet and MSE & prop. The three
other losses also perform well on the error measurements and
the RRS. The SUnSAL, UnDIP and HyperAE methods per-
form relatively poorly compared to the proposed NN models.
These results can be illustrated by comparing the ground-truth
abundances and the predicted ones. Fig. 3 depicts the ground-
truth (first row) and the absolute difference between this truth
and the prediction obtained with the two best performing loss
functions MSE & Dirichlet (second row) and MSE & prop.

2https://github.com/Laadr/SUNSAL
3https://github.com/dv-fenix/HyperspecAE
“https://github.com/BehnoodRasti/UnDIP

Urban
MMAE RRS

Jasper Ridge
RMSE

Loss function RMSE MMAE  RRS

MSE & Dirichlet 4.5 5.68 557 25 2.34 80.3

CE & Dirichlet 54 7.77 511 29 3.09 71.8
CE & Softmax 4.9 6.48 43.7 4.0 3.87 59.5

MSE 5.1 8.13 59.7 33 421 74.0
MSE & prop. 4.2 5.45 56.1 23 2.37 80.3
SUnSAL 197 2889 175 78 7.83 51.4
HyperAE 36.3 54.79 6.7 25.9 32.18 37.5
UnDIP 28.1 52.0 0.7 18.8 22.7 15.1
(a) Tree (b) Water (c) Dirt (d) Road
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Fig. 3: For each classes of Jasper Ridge: ground-truth (GT)
(1%t row), absolute difference between GT and prediction
with Dirichlet & MSE (2"¢ row) and MSE & prop (37 row).

(third row). We can visually note that the results are quite
good and very close for both methods. As expected, the areas
where the predictions reach 30% of error (in yellow) are the
borders between different endmembers.

The results on the Urban dataset, also reported in Table 2,
are quite similar to those obtained on Jasper Ridge. Again,
MSE & Dirichlet and MSE & prop. provide the best results
in terms of minimum errors and maximum RRS.

5. CONCLUDING REMARKS

We have proposed a NN training loss based on Dirichlet mod-
eling that allows to quantify phases in a mixture. The pro-
posed method has been successfully applied on synthetic and
real XRD and HU data. One of the strengths of our method
is its ease of use. Indeed there is no need to create a specific
architecture for the network. One can use a validated NN that
is appropriate for the studied data, and train the model with
the Dirichlet loss function for proportion inference.

The results on real XRD patterns are still not as efficient as
for the Rietveld method, the current gold standard in quantita-
tive phase analysis. However, results on simulated data show
that the proposed method is very suitable. We think also that
its performance can be improved on real data provided a better
training set. Another significant advantage of our NN-based
alternative method is its ability to quickly and automatically
analyze large amounts of signals. This would undoubtedly
be a key advantage in the case of XRD-computed tomogra-
phy [2], which typically contains millions of XRD patterns.
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