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Introduction 

Osteosarcoma is the most common primary malignant tumor of bone, which occurs 
most often in children and young adults between the ages of 10 and 20 during a growth 
spurt, while with a second peak in incidence in those over the age of 50 [1,2]. Localized 
osteosarcoma presenting in up to 80% of patients is amenable to cure, however, the outcome 
for patients with metastases, commonly in lung and other bones, is dismal unless surgery 
of metastases is feasible [3,4]. Although the surgical resection of the primary tumor is the 
mainstay treatment for osteosarcoma, the overall survival of patients treated with surgery 
alone remains low [5]. Neoadjuvant and adjuvant chemotherapies (cisplatin, doxorubicin and 
ifosfamide, or high-dose methotrexate) incorporated into many treatment protocols followed 
by surgical resection of disease triple the 5-year survival rate to 65-70% in patients with 
localized tumor [6-9]. However, due to the undetectable microscopic metastases at the time 
of presentation, up to 35% of these patients who have been successfully resected, eventually 
develop metastases [10,11]. Finally, the long-term outcomes for patients with metastases or 
relapsed osteosarcoma remained unfortunately unchanged over the past 30 years, with an 
overall 5-year survival rate of ~ 20% [12,13].

Osteosarcoma is not a common cancer with a worldwide incidence of 3.4 cases per 
million people per year [5,14]. Thus, the rarity of the disease itself is one of the obstacles to 
develop and conduct large scale clinical trials for osteosarcoma with novel therapeutic agents 
despite international collaborative efforts, both in children and adult patients. During the last 
two decades, intensive genome-wide genetic and epigenetic studies have been performed 
in osteosarcoma to understand the mechanisms for progression and metastasis [7,8,15]. 
Potential therapeutic targets including tumor suppressors, oncogenes, as well as histone 
demethylase and non-coding RNAs have been reported as their expressions are dysregulated 

Crimson Publishers
Wings to the Research

Mini Review

*1Corresponding author: Guoqiang 
HUA.,INSERM (French National Institute of 
Health and Medical Research), Faculté de 
Chirurgie Dentaire de Strasbourg, France
 
Submission:  April 25, 2019
Published:  May 15, 2019

Volume 1 - Issue 3

How to cite this article: F Bornert, A 
Aguilar, J Gantzer, J-E Kurtz, N Benkirane-
Jessel and G HUA. From 3D Cell Culture 
System to Personalized Medicine in 
Osteosarcoma.  Innovations Tissue Eng 
Regen Med. 1(3).ITERM.000511.2019. 

Copyright@ Guoqiang HUA, This article is 
distributed under the terms of the Creative 
Commons Attribution 4.0 International 
License, which permits unrestricted use 
and redistribution provided that the 
original author and source are credited.

1Innovation in Tissue Engineering & Regenerative Medicine

Abstract

Osteosarcoma is the most common primary bone malignancy presenting typically during childhood 
and adolescence. However, few improvements of the survival outcomes for osteosarcoma patients 
have been achieved since the last three decades. Despite the rarity of the diagnosis, the complexity of 
tumor microenvironment and the genetic heterogeneity of osteosarcoma remain the major obstacles 
to understanding the mechanisms involved in tumor progression and metastasis, and to screening the 
pharmacologically active molecules for better drugs. Compared to the 2D cell culture system, 3D cell 
culture system is much closer to the in vivo physiological condition in tumor. Thus, 3D cell culture 
system could be a powerful technique to screen therapeutic agent towards personalized medicine in 
osteosarcoma.
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in tumor tissues or cell lines [16-25]. However, few of these targets 
have been validated for phase I clinical trials due to the highly 
complicated genetic and epigenetic heterogeneity in osteosarcoma. 
Therefore, a better pre-clinical drug screening system is urgently 
required. 

From 2D cell culture models to 3D cell culture models

Since last several decades, in vitro cell-based assays have been 
widely employed in the drug discovery process, because they are 
simple, fast, versatile, easily reproducible and cost-effective as 
compared to animal models. Most of these cell culture-based drug 
screening assays are 2D monolayers of cells grown in plastic plates 
adapted for cell attachment and growth. Although these 2D cell 
models are still effectively used in some drug pre-clinical screening, 
more and more evidence reveal that they are not good models 
for certain diseases such as cancer, because lack of tissue-specific 
architecture, they cannot reflect the complex microenvironment for 
cells encountered in tumor [26,27].

Carcinogenesis is a complex and dynamic process including 
initiation, progression, and metastasis that also involves the tumor 
microenvironment (TME). The TME is composed of extracellular 
matrix (ECM), stromal cells (such as fibroblasts, myofibroblasts, 
neuroendocrine cells, adipose cells and immune-inflammatory 
cells), and lymphatic vascular networks [28,29]. It is reported to 
play an important role to direct functional differentiation of organs 
and dictate proper tissue function and structure [30]. Thus, to 
elucidate the TME becomes a critical key to understand tumor 
progression and metastasis and to screen anti-cancer agents. For 
that purpose, 3D cell culture models have been developed since the 
last decade and have been demonstrated to model the dynamic cell-
cell and cell-ECM interactions, and mimic the natural TME [31-33].

3D osteosarcoma cell culture systems

Several different methods have been reported to successfully 
form 3D osteosarcoma cell culture [34]. In general, in vitro 3D 
osteosarcoma cell cultures are formed with or without special 
scaffold.

The main purpose of using biocompatible scaffolds are to help 
cell adhesion without modification [35]. The natural scaffolds used 
in 3D cell culture systems are typical components of ECM such as 
collagen, elastin, laminin, fibrin, gelatin, matrigel or hydrogels [36]. 
These biodegradable materials are derived from natural sources, 
like chitosan, silk, alginate, hyaluronic acid, heparin and chondroitin 
sulfate, and can promote cell interaction properties, adhesion and 
signaling. In addition, a synthetic scaffold, polyethylene glycol 
diacrylate (PEGDA) hydrogel, has also been used to encapsulate 
tumor cells [37]. 

As for scaffold-free systems, different techniques have been 
developed to favor spontaneous cell aggregation. In order to 
prevent cell monolayer formation to adhesive surface, liquid 
overlay technique has been used to form cell spheroids with special 
low and ultralow binding plates or traditional cell culture plates 

precoated with either agar/agarose or poly-HEMA [38-43]. Another 
most used and suitable system is called “hanging drop” technique. 
The conventional “hanging drop” technique contains two steps: 
droplets of fluid containing suspended cells are deposited on the 
non-adhesive lid of cell plates, then the lid is inverted over the plate 
[44]. With the gravity, the cells precipitate to the bottom of the drop 
and form the spheroid in each drop. More recently, commercialized 
Gravity Plus 3D culture plates make the “hanging drop” easier and 
more reliable and convenient, permitting long term analysis of 3D 
cultures following different treatment [45,46].

3D cell culture, a path to personalized treatment in 
osteosarcoma

Current in vitro 3D cell culture techniques indeed reveal 
physio pathological state of TMEs closer to the reality, and the data 
obtained are comparable to the in vivo models. Several reports have 
demonstrated that a higher chemoresistance was observed in 3D 
osteosarcoma cell spheroids as compared to the conventional 2D 
monolayer cultures, which is due to a reduction in drug permeability 
to the much more densified core of osteosarcoma spheroids, and 
is also associated with the TME which plays a physical barrier 
function [38,45,47]. These observations are highly consistent with 
the development of chemoresistance in osteosarcoma patients 
upon chemotherapy [48], which indicate that the osteosarcoma 
spheroids could effectively be used to evaluate the sensitivity of 
novel therapeutic targets to current chemotherapy.

Although prominent results have been obtained with spheroid 
models, they are mainly focused on the interaction between cancer 
cells and the ECM which could not completely reflect the complexity 
and heterogeneity of osteosarcoma TME. Importantly, one in vitro 
3D vascularized tumor model has been established by combining 
the 3D osteosarcoma spheroids with the 2D endothelial cells 
and successfully created a vascular network [46]. Osteosarcoma 
is considered as a highly vascularized bone tumor with early 
metastatic dissemination through intra-tumoral blood vessels [49]. 
This promising vascularized spheroid model could be useful to 
screen novel targets against tumor vascularization and metastasis. 

Inflammatory microenvironment could also promote the 
development of tumors via promoting angiogenesis and metastasis, 
subverting adaptive immune responses, and altering responses to 
hormones and chemotherapeutic agents [50,51]. The expression 
of several pro-inflammatory cytokines or chemokines have been 
shown to be increased in 3D osteosarcoma spheroids [41,46,52-55]. 
However, no immune-inflammatory cells have been yet introduced 
to the present 3D osteosarcoma spheroid models. Therefore, more 
complex 3D osteosarcoma cell culture models, including tumor cells, 
fibroblasts, endothelial and immune-inflammatory cells, should be 
developed to simulate the physio pathological microenvironment 
in osteosarcoma. 

With the exponentially increased genomic information in 
the last decade and the new diagnostic and research approaches, 
such as 3D cell culture models, the term personalized medicine 
is now used to tailor therapy with the best response and highest 
safety margin to ensure better patient outcome (Figure 1) [56]. 
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Although challenges are still presented for personalized medicine 
in osteosarcoma, today’s 3D cell culture models are the first step 
towards the automatic, high throughput and standardized 3D 

spheroid or organoid platforms for pre-clinical drug screening 
systems dedicating to personalized medicine.

Figure 1: Global approach from 3D cell culture system to personalized medicine in Osteosarcoma.

Strategy: After Incisional or liquid biopsy, cells are cultivated in 3D well-organized spheroids (organoids) and 
then several chemotherapy drugs can be screened. The best candidate will be selected to treat the patient.
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