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Abstract. In aeronautics, the first design stages usually involve to solve a constrained multi-disciplinary
optimization problem. The Bayesian optimization strategy is a way to solve such a complex system. This
approach requires to evaluate the objective function and the constraints quite a few times. Evaluations
are generally performed using numerical models that can be computationally expensive. To alleviate the
overall optimization cost variable information sources can be used to make the evaluations. Typically
we are dealing with cheap low fidelity models to explore the design space and expensive high fidelity
models for exploitation. In the following work, a mono-fidelity Bayesian optimization method and its
multi-fidelity counterpart are compared on two analytical test cases and on an aerostructural drone
design constrained optimization problem. The multi-fidelity strategy allows to divide the computational
cost by 1.3 compared to the mono-fidelity one on these test cases.

Keywords: Drone design - Multi-disciplinary optimization - Constrained Bayesian optimization - Vari-
able fidelity - Surrogate models - Kriging - Gaussian process.

1 Introduction

In the first design steps, drone design optimization relies on multidisciplinary numerical models. These models
capture the interactions between the different disciplines (aerodynamic, structure, operations, ...) which play
a role in the drone overall performance. It follows that a single evaluation of the model is computationally
expensive. Moreover, the complexity of the coupled system does not encourage us to take advantage of the
analytical gradients. The high computational cost of a single evaluation implies that finite differences or
complex step methods traditionally used in order to approximate the gradient can not be considered, hence
classical gradient based optimization methods can not be used and the model is considered as a black-box
function for which no information (regularity properties, derivative, ...) are available. Similarly the use of
evolutionary optimization algorithms is not allowed due to the large number of function evaluations required.
Then the focus is made on gradient-free surrogate-based optimization methods [12]. This involves to replace
the initial model to optimize with a cheaper one, called metamodel or surrogate model. To construct this
surrogate, gaussian processes (GP) [26] [19] interpolation framework also called kriging [21] is very powerful.
Indeed, it allows not only to provide a prediction (which is the mean of the GP) but also the uncertainty
of this prediction (the variance of the GP). In fact, the approach takes advantage of the gaussian vectors
conditional distribution in order to determine the posterior distribution of the GP knowing some realizations
of the initial model called design of experiments (DoE). This gives us a first surrogate model to approximate
the initial model. Then it is improved via an iterative process that adds observations to the DoE according
to a certain rule that tries to define the most interesting point to evaluate at each iteration doing a trade-off
between exploitation and exploration. This rule is called the acquisition function and the whole process
defined Bayesian optimization (BO) methods [13] whose first implementation was EGO in [16]. When the
cost of evaluating the initial model is so important that even the previous BO method becomes intractable,
multi-fidelity BO methods can be useful. These kind of methods use various levels of code, the highest fidelity
(HF) code being the initial model and the lowest ones being some cheapest to evaluate approximations of
the HF model. The benefit of multi-fidelity BO methods is that, depending on the case, the evaluation at the
point to add to the DoE can be done using different codes: with a very precise but very expensive one or with
less precise but less expensive codes. In Section 2 the kriging and Bayesian optimization methodology are



introduced. Section 3 focuses on the extension of this methodology to multi-fidelity. Section 4 and Section 5
present respectively some analytical test cases and a drone design case in order to illustrate and validate the
proposed approach.

2 State of the Art

Let s the function defined in Eq. (1) that can only be evaluated in order to be optimized

s: 2CRI=R
x =y =s(x)

2.1 Gaussian Processes interpolation / kriging method

The function s is considered to be the realization of a gaussian process Z ~ GP(u,k) with prior mean
p: 2 — R and covariance kernel k : 22 — R. The covariance kernel has d + 1 hyperparameters § = {02 =
6o, (0;)i=1,....a}- The overall prior variance o2 is a scaling factor. The # parameters are the correlation lengths
in each direction. Let suppose that [ observations of the function s are gathered in a DoE D = {xy, Yk }r=1,...
where z;, € 2 and y, = s(x,). The GP conditioned by D defines for each point z € 2 a random variable y2
which follows a gaussian distribution

vy ~Pyl(D,z)) = GP((1, k)|(D,2)) = N (i), (6(2))?)

If no information on the GP mean p is available, it is assumed to be unknown, then y is supposed to be the
zero constant function: we talk about ordinary kriging. Else, if there is a known trend in the data, it can be
modeled using a deterministic basis of functions. The prior mean of the GP at a point x can be written as:

pa)= > Befulx) (2)
k=1,

with fr the k-th basis function and (i the coeflicient associated to the k-th basis function. In this case

we talk about universal kriging. Lets denote p = (u(zo) ... u(a:l))T, k(z) = (k(zo, ) ... k:(xl,az))T, Y =
T

(yo - yl)T and K = (k(xz,x])> = oR the covariance matrix on all the sampling points (K
i,j=1,...,1

depends on 6) where R is the correlation matrix. Then using the gaussian vector conditional rule, it follows

) = () + KTK (Y — )

the subsequent expressions: {&(1’) (k) — kTKflk)%

The posterior mean [ represents the surrogate model that approximates our function s. An indication
on this surrogate model accuracy is given by the posterior standard deviation &. Note that the kriging kind
of surrogate model has been selected specifically because it allows to have the variance expression on all the
design space. This information is crucial using a Bayesian optimization strategy described in Section 2.2. To
know the variance information using other kinds of surrogate models (radial basis function, neural networks,
polynomial approximation, ...) would have required to perform a bootstrap method [11]. Therefore several
metamodels should have been constructed in parallel to approximate the variance. Associated computation
effort would have then led to an almost intractable method. GPs are parameterized by the kernel hyperparam-
eters that need to be estimated. The maximum likelihood estimation method with a likelihood concentration
process is used in this goal [24]. Dealing with high dimensional problems when using a kriging method raises
additional difficulties. The number of hyperparameters increases with the dimension and their estimation is
harder to optimize. One way to tackle these difficulties is the use of Partial Least Squares (PLS) [6] [23]. The
PLS method finds a linear relationship between input variables and the output variable by projecting input
variables onto a new space of lower dimension. The latent variables are linear combinations of the initial
ones. KPLS defines a new covariance kernel which uses a lower number of hyperparameters [6] [7] and will
be used in the Bayesian strategy described in the following..



2.2 Bayesian optimization

Bayesian optimization [13]is a global optimization strategy usually applied to optimize expensive to evaluate
black-box functions. It consists in building a surrogate model of the objective function and then iteratively
enriching this surrogate model with objective function evaluations to explore the design space and ensuring
that the surrogate is precise enough in the optimal area.

Unconstrained BO Let the following unconstrained optimization problem:

z* = argmin s(z) with 2 C R? (3)
€N

where s : 2 — R is the objective function introduced in Eq. (1). The efficient global optimization [16]
called EGO constructs a GP of the objective function s using an initial DoE. Then the optimal solution is
found by enriching iteratively the DoE and the GP. This enrichment is based on a trade-off, the exploration
of the design space (2 and the exploitation of the GP model to find the minimum. The strategy involves
the resolution of an optimization sub-problem to determine the next point to evaluate. This sub-problem is
defined via an acquisition function o : R* — R to maximize

Tnegt = argmax  «(x) (4)
zeS?

There exists an extensive literature on acquisition functions [25] [13]. Some well known criteria are recalled
in the following.

— Expected Improvement (ET): The EI computes the expected improvement of the current minimum value
in the DoE by adding an evaluation.

apr(r) = El(z) = E(I(x)) = E(max(0, fmn — y;) (5)
where fiin = min (s(z)) with Xp is the input set of the DoE D. In the case where y2 follows a gaussian

r€Xp
law, y2 ~ N (ji(z), (6(x))?), the EI(z) criterion is analytical:

0 if &(z) =0
Bl(@) = api(@) = (fmin—mx))@(’W) +&<w)¢<’w> else v

where @ and ¢ represent respectively the A'(0,1) cumulative distribution function and the probability
density function. The first term of the expression is the exploitation term, it increases when fi(x) de-
creases while the second term is the exploration term, it increases when the GP is not precise, ie when
&(x) is large.

— Watson and Barnes 2 (W B2): W B2 criterion [29] tries to regularize the ET by adding the mean fi(x):
awp2(z) = agpr(z) + i(z) (7)
Appendix C shows the six first iterations of the BO process on a one dimensional test case using the
EGO algorithm.
Constrained BO (CBO) Let the following constrained optimization problem:

x* =argmin s(xz) such that g(z) >0 and h(z)=0 (8)
€S

where the constraints are defined by



— g: R = R™ (m inequality constraints)
— h:R? — RP (p equality constraints)

The CBO algorithm is quite similar as the one of the unconstrained BO approach except that the
optimization sub-problem solved to enrich the DoE takes into account the constraints. The associated sub-
problem can take two forms: it can be unconstrained and tries to optimize an adapted function which gathers
the constraints and the classical criterion [14]; or it can be constrained and optimizes one of the previous
acquisition functions with some feasibility criteria associated to the constraints g and h [4]. Here the focus
is made on constrained optimization sub-problem methods. The optimization sub-problem is of the form

Tnest = argmax afx) with x € 2, N2, (9)
zes?

where (2, and §2, are respectively the feasible domains defined by the two feasibility criteria: oy, : RY — RP
and oy : R? — R™. To construct the feasibility criteria, the approaches named Super Efficient Global
Optimization (SEGO) [28] and the Super Efficient Global Optimization coupled with Mixture Of Experts
(SEGOMOE) [3] [2] [4] use the posterior means of the GPs that modelize the constraints as feasibility
criterion: oy, = fi, and oy = fiy. The feasible domains are 2, = {z, a)(z) = 0} and 2, = {z, ay(z) > 0}.

3 MFSEGO methodology

Using various information sources can be useful to alleviate the computation cost to build an accurate
surrogate model or to perform an optimization. The SEGO type approaches are now extended to multi-
fidelity and denoted in the following by MFSEGO.

3.1 Multi-fidelity kriging

Making assumptions in order to link the different fidelity levels is a way to simplify multi-fidelity problems.
A discrepancy function 0 that captures the difference between the high fidelity (HF') and low fidelity (LF')
levels and a scaling factor p are considered in [17]

far(x) = pfrr(x) +6(x) such that  frp L4 (10)

Le Gratiet [20] proposed to add the LF function to the basis function set (h;);=1.., used in the universal
kriging regression term (see Eq. (2)) to get:

ua) = X (o) + dofur (@ (11)

1=1,...,p

B, is an estimation of p done at the hyperparameters estimation step (see Section 2.1). Using a nested
DokE structure: Dgr C D, the independence between the high and low fidelity of the surrogate model is
assumed. Then the HF surrogate model mean and variance can be expressed as:

£ _ 2.9 9
Opp = pP°0Lp +0}

{ ﬂHF = p:aLF + ,aé (12)
Le Gratiet’s approach can then be extended to L + 1 fidelity levels. Let us denote the fidelity levels fo, ..., fL
sorted from the lowest to the highest (we still consider a nested DoE structure: D, C Dy_; C ... C Dy).
The following recursive formulation can be written Vk =1, ..., L:

{

= pr—1fk—1 + fis,
R " 13
— R GE 52 (13)

Q=

k
2
k



In this case, p is considered as a constant but it can depends on x. Then we have p :  — p(z). This have
been implemented in the toolbox SMT [8].

To learn the multi-fidelity model, the lowest fidelity level is learnt first, then the relationships (scaling
factor p and discrepancy function §) between every successive fidelity level are consecutively learnt. Since
the variances can be expressed in closed form, the contribution of each fidelity level to the total variance of
the multi-fidelity model can be deduced too. Denotlng o2, .(k, ) the variance contribution of the k" fidelity
level at the point x, with the notation 050 = 02 and assuming that Hﬁ;i p? =1, we have:

cont(k .13 - O'(;k H p] (14)

g

3.2 Multi-fidelity Bayesian optimization

With a multi-fidelity Bayesian optimization process, when a point is added to the DoE, not only the most
promising point has to be decided, but also the fidelity level to which evaluate it. Splitting the problem of
finding the point and the fidelity level in two successive steps has been proposed in [20]. First the point is
found using a classical acquisition function as in the mono-fidelity Bayesian optimization (see Section 2.2).
Then the variance contribution knowledge at each fidelity level gives some information to smartly decide
the fidelity level to choose. The principal advantage of the multi-fidelity Kriging formulation presented in
Section 3.1 lies in the fact that the variance contribution of each fidelity level can be known analytically. On
the other side the main drawback is that it requires a nested DoE structure.

Let cg, ..., c1, be respectively the querying costs of all the fidelity levels fo, ..., fr. Let us denote O’Ted(k x*)
the variance reduction of the high fidelity model when the point z* is evaluated with all the fidelity levels
<k

J?ed(k7x*) Zai H pj (15)

A criterion to choose the level of enrichment can be written as

2 k *
t = arg max 707'6‘2( )

(16)
ke0,...L  (Doig¢i)?

This two step approach MFSEGO [22] combining Eq. (9) and Eq. (16) is described in a pseudo-code in

Appendix E and in Figure 5 of the Appendix F. It is now applied on different test cases and compared to

SEGO.

4 Analytical cases

To start, the SEGO and MFSEGO methods have been confronted on two analytical test cases. The Branin
and Sasena test cases are two different problems with a 2D objective function (2pranin = [0;1]%) and
Dsasena = [0;5)% respectively) with a single constraint. The cost ratio between high and low fidelity is
arbitrarily fixed to % = 5. The tolerance on the constraints and the reference solutions for these two
analytical test cases are detailed in Table 1. The HF and LF expressions of the objective function and

constraint for the Branin and Sasena cases are given in Appendices A and B.

Table 1: Tolerance on the constraints and the reference solutions for the Branin and Sasena cases

optimal objective value refsor e |tol constraint
Branin 24.863 (0.498,0.401)[0.5% le ?
Sasena -1.172 (2.745,2.352)|0.5% le™?

For all the test cases, 10 SEGO runs and 10 MFSEGO runs were made. Mono-fidelity and multi-fidelity
runs share the same initial HF' DoE. For the multi-fidelity runs, a LF DoE twice the size of the HF DoE is



added. For all the optimization runs the squared exponential kernel with a constant trend is chosen to build
the kriging model. The size of the initial DoE and the budget are summed up in Table 3 for each test case.
Given the reference solution, a convergence criterion for the mean (over the 10 runs) of the objective value
at the best valid point §22i? is defined by:

—valid

Ypest — fHF(refsol)
fHF(refsol)

For both mono and multi-fidelity strategies, the number of H F iterations and the total cost required to reach
the convergence criterion (see Eq. (17)) are compared for each test case. Results are summed up in Tables 4
and 5 and convergence illustrations are given in Figure 3. Note that for the Branin case it is possible to
go slightly below the reference solution because a tolerance on the constraint is considered. For Sasena test
case, in the mono-fidelity case, the budget allocated to the simulation is not enough to reach the convergence
criterion from Eq. (17). This issue can be explained by the fact that a run did not converge to the global
minimum. On Figure 3(b) the median of the best valid value at each HF iteration is considered. Unlike
the mean, the median converges even when the optimization is performed with mono-fidelity. Even if the
convergence rate of the median is quite the same for mono and multi-fidelity, the multi-fidelity approach
seems more robust. In the end, to reach the convergence criterion of the best valid objective mean value for
the Branin and the Sasena test case, MFSEGO methodology allows to divide the SEGO total cost by 1.25
and 1.40 respectively.

<e (17)

5 Drone design test case

With the goal of designing a fixed-wing drone, a drone design test case is introduced. It relies on the K75
of Elecnor Deimos, a drone from specific class of about 80 kg MTOW and 35 kg payload mass available at
ONERA and illustrated on Figure 1. The K75 delivered to ONERA in April 2018 is the first in the series,
it is commercialized by Elecnor Deimos under the name D80-Titan [1, 5].

Fig. 1: Hlustration of a K75 drone.

The focus is made on the aerostructure part which involves two disciplines, aerodynamic and structure.
Two aerostructural models were developed for the K75 using OpenAeroStruct (OAS) [15] [10] [9], each one
associated to a different discretization of the wing and tail meshes (see Table 2 and Figure 2). In our models,
two flight points were considered: cruise flight (load factor = 1) and maneuvering (load factor = 9). The HF
and the LF models have been evaluated on 200 points chosen randomly in the design space in order to make

an estimation of the cost ratio: % =4.27.

Table 2: HF and LF mesh dimensions
HF wing mesh|HF' tail mesh|LF wing mesh|LF tail mesh
Chordwise dim 5 5 3 2
Spanwise dim 25 13 9 5

The K75 problem to solve is the following:

min wing, ... () r € R
zes?
CLcruise =0.5 CLmaneuver =05
h th Wlngfailure, cruise < 0 Wlngfailure, maneuver < 0
such that . .
tallfailure7 cruise < 0 tallfailure, maneuver < 0
WingboxX,oume — flelyolyme > 0 fuelmassfuelbum —



(a) K75 LF mesh (b) K75 HF mesh
Fig.2: LF and HF meshes of the K75

The objective function is the mass of the wing. The 15 design variables and their associated bounds are
summarized in Table 6 in Appendix D. Eight constraints are considered: two constraints to ensure a certain
lift coefficient value in cruising flight as in maneuvering, four failure constraints to ensure that neither the
wing nor the tail will break, whether in cruising flight or during maneuvering. These constraints compare the
Von mises stress to the yield stress divided by a fixed coefficient (chosen here equal to 2.5) that acts as a safety
margin. To simplify the optimization problem, the individual nodal failure constraints are aggregated using
a Kreisselmeier-Steinhauser (KS) function [30]. Next, a constraint that ensures that the wingbox has enough
internal volume for the fuel and a constraint that ensures that the fuel burn is equal to the fuel mass are
added. The tolerances on these constraints are fixed to 1073 except for the failure constraints for which the
tolerances are fixed to 10~7. Due to the high number of design variables for the K75 case, the kriging with PLS
method introduced in Section 2.1 and its multi-fidelity version are used with 3 latent variables. For each test
case, a gradient based optimization algorithm called Sequential Least SQuares Programming (SLSQP) [18§]
is used to solve the enrichment optimization sub-problem from Eq. (9) with the WB2 acquisition function
(see Eq. (7)). The reference value used in the K75 case, is the optimal value obtained by solving the same
optimization problem with the SLSQP algorithm on the HF mesh. It is equals to 12.4245 and € = 0.5% in
this case too. In the end, to reach the convergence criterion of the best valid objective mean value for the
K75 test case, MFSEGO methodology allows to divide the SEGO total cost by 1.32.

K75 results are sum up in Tables 4 and 5 and the convergence is illustrated on Fig 3(d).

Table 3: Maximum budget and initial DoE size.

size initial DoE (mono-fi)|size initial DoE HF' (multi-fi)|size initial DoE LF (multi-fi)|budget
Branin 5 5 10 50
Sasena 5 5 10 50
K75 50 50 100 200

Table 4: HF evaluations needed to satisfy the convergence criterion from Eq. (17) and maximum number of
LF evaluations over the 10 runs.

HF evals (mono-fidelity) HF evals (bi-fidelity)|max LF evals over the 10 runs (bi-fidelity)
Branin case 16 7 29
Sasena case|Don’t have enough budget to converge 27 61
K75 case 131 70 144

Table 5: Total cost (one computational unit is equivalent to the cost of one HF evaluation) needed to satisfy
the convergence criterion for each test case.

Branin Sasena K75

Mono-fidelity 16 greater than 55 131

Multi-fidelity |7 + 22 = 12.8/ 27 + & = 39.2{70 + +4L = 08.8

4.27
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Fig. 3: Comparison of SEGO and MFSEGO methods on the Branin, Sasena and K75 test cases.

6 Conclusion

In this work, mono and multi-fidelity Bayesian methods, SEGO and MFSEGO have been confronted. First,
the two approaches were compared on analytical models. Next, a more complex test case involving aerostruc-
tural models of the K75 drone has been considered. The MFSEGO algorithm reduces the required number
of HF evaluations and the total cost needed so that the mean value (over 10 runs) of the objective function
at the best valid point has a 0.5% relative accuracy. In the Branin, Sasena and K75 cases, MFSEGO allows
to respectively divide the total cost by at least 1.25, 1.40 and 1.32 compared to SEGO. Future works deal
with different research axis like using more than two fidelity levels, using other criteria [27] to determine the
enrichment point and the enrichment level or using more complicated multi-disciplinary drone models by
adding other components like operations or propulsion to the already implemented disciplines (aerodynamic
and structure). As our multi-fidelity strategy can be extended to N fidelity levels, we could also study the
effects of employing more than two levels.

Acknowledgements

The PhD is funded by the defense innovation agency (AID) and by the ”Direction Générale de I’Armement”
(DGA) as part of the CONCORDE project. This work is also supported by ONERA internal research
project dedicated to multidisciplinary and multi-fidelity design optimization, namely MUFIN and is part of
the activities of ONERA - ISAE - ENAC joint research group.



[1]
2]

[3]

References

Page du d80 titan sur le site web d’elecnor deimos, https://elecnor-deimos.com/project/d80-titan/
Bartoli, N., Bouhlel, M.A., Kurek, I., Lafage, R., Lefebvre, T., Morlier, J., Priem, R., Stilz, V., Regis,
R.: Improvement of efficient global optimization with application to aircraft wing design. In: 17th
ATAA /ISSMO Multidisciplinary analysis and optimization conference. p. 4001 (2016)

Bartoli, N., Lefebvre, T., Dubreuil, S., Olivanti, R., Bons, N., Martins, J.R., Bouhlel, M.A., Morlier,
J.: An adaptive optimization strategy based on mixture of experts for wing aerodynamic design op-
timization. In: 18th ATAA/ISSMO Multidisciplinary Analysis and Optimization Conference. p. 4433
(2017)

Bartoli, N., Lefebvre, T., Dubreuil, S., Olivanti, R., Priem, R., Bons, N., Martins, J.R., Morlier, J.:
Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing
design. Aerospace Science and technology 90, 85-102 (2019)

Boucher, Y., Amiez, A., Barillot, P., Chatelard, C., Coudrain, C., Déliot, P., Riviere, N., Riviere, T.,
Roupioz, L.: Terriscope: An optical remote sensing research platform using aircraft and uas for the
characterization of continental surfaces. International Archives of the Photogrammetry, Remote Sensing
& Spatial Information Sciences (2018)

Bouhlel, M.A., Bartoli, N., Otsmane, A., Morlier, J.: Improving kriging surrogates of high-dimensional
design models by partial least squares dimension reduction. Structural and Multidisciplinary Optimiza-
tion 53(5), 935-952 (2016)

Bouhlel, M.A., Bartoli, N., Regis, R.G., Otsmane, A., Morlier, J.: Efficient global optimization for high-
dimensional constrained problems by using the kriging models combined with the partial least squares
method. Engineering Optimization 50(12), 2038-2053 (2018)

Bouhlel, M.A., Hwang, J.T., Bartoli, N., Lafage, R., Morlier, J., Martins, J.R.R.A.: A python sur-
rogate modeling framework with derivatives. Advances in Engineering Software p. 102662 (2019).
https://doi.org/https://doi.org/10.1016 /j.advengsoft.2019.03.005

Chaudhuri, A., Jasa, J., Martins, J.R., Willcox, K.E.: Multifidelity optimization under uncertainty for
a tailless aircraft. In: 2018 ATAA Non-Deterministic Approaches Conference. p. 1658 (2018)

Chauhan, S.S., Martins, J.R.: Low-fidelity aerostructural optimization of aircraft wings with a simplified
wingbox model using openaerostruct. In: International Conference on Engineering Optimization. pp.
418-431. Springer (2018)

Efron, B., LePage, R.: Introduction to bootstrap. Wiley & Sons, New York (1992)

Forrester, A.L., Sébester, A., Keane, A.J.: Multi-fidelity optimization via surrogate modelling. Proceed-
ings of the royal society a: mathematical, physical and engineering sciences 463(2088), 3251-3269 (2007)
Frazier, P.I.: A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811 (2018)
Hernandez-Lobato, J.M., Gelbart, M.A., Adams, R.P., Hoffman, M.W., Ghahramani, Z.: A general
framework for constrained bayesian optimization using information-based search (2016)

Jasa, J.P., Hwang, J.T., Martins, J.R.: Open-source coupled aerostructural optimization using python.
Structural and Multidisciplinary Optimization 57(4), 1815-1827 (2018)

Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions.
Journal of Global optimization 13(4), 455-492 (1998)

Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 63(3), 425-464 (2001)

Kraft, D.; et al.: A software package for sequential quadratic programming (1988)

Krige, D.G.: A statistical approach to some basic mine valuation problems on the witwatersrand. Journal
of the Southern African Institute of Mining and Metallurgy 52(6), 119-139 (1951)

Le Gratiet, L.: Multi-fidelity Gaussian process regression for computer experiments. Ph.D. thesis, Uni-
versité Paris-Diderot-Paris VII (2013)

Matheron, G., de Géostatistique Appliquée, T., Tome, I.: Mémoires du bureau de recherche géologiques
et miniéres, n. 14. Ed. Technip, Paris (1962)



7

A

Meliani, M., Bartoli, N., Lefebvre, T., Bouhlel, M.A., Martins, J.R., Morlier, J.: Multi-fidelity efficient
global optimization: Methodology and application to airfoil shape design. In: ATAA aviation 2019 forum.
p- 3236 (2019)

Ng, K.S.: A simple explanation of partial least squares. The Australian National University, Canberra
(2013)

Pavlyuk, D.: Computing the maximum likelihood estimates: concentrated likelihood, em-algorithm
Priem, R.: Optimisation bayésienne sous contraintes et en grande dimension appliquée a la conception
avion avant projet. Ph.D. thesis, ISAE-SUPAERO (2020)

Rasmussen, C.E., Williams, C.: Gaussian processes for machine learning, vol. 1 (2006)

Sacher, M., Le Maitre, O., Duvigneau, R., Hauville, F., Durand, M., Lothodé, C.: A non-nested infill-
ing strategy for multifidelity based efficient global optimization. International Journal for Uncertainty
Quantification 11(1) (2021)

Sasena, M.J.: Flexibility and efficiency enhancements for constrained global design optimization with
kriging approximations. Ph.D. thesis, Citeseer (2002)

Watson, A.G., Barnes, R.J.: Infill sampling criteria to locate extremes. Mathematical Geology 27(5),
589-608 (1995)

Wrenn, G.A.: An indirect method for numerical optimization using the Kreisselmeier-Steinhauser func-
tion, vol. 4220. National Aeronautics and Space Administration, Office of Management ... (1989)

Appendices

Branin case definition

The HF and LF functions and constraints of the Branin problem are:

(1529 — 5) — 6)?

3o

5.1
fBram’n,HF(Cmel) = (15551 - m * (151’0 — 5)2 +

! (18)
+10((1 — 8—) cos(15z9 — 5) + 1) + 5(15z0 — 5)
™
FBranin.Lr(T0,21) = fBranin.gF (o, v1) — cos(0.52¢) — o (19)
gBranin,HF(xval) = —Tor1 + 0.2 < 0 (20)
gBranin,LF(xmxl) = —Tox1 — 07371 + 03370 <0 (21)
B Sasena case definition
The HF and LF functions and constraints of the Sasena problem are:
fSasena,HF(an-Tl) =2 + 0.01(1‘1 — 1‘3)2 + (1 — .130)2 + 2(2 — 331)2 (22)
+ 7sin(0.52¢) sin(0.7zox1)
Fsasena, L7 (20, 71) = fsasena, (70, 71) + exp(zg) — x5 (23)
. 0
9Sasena, HF (%0, 1) = —sin(zg — z1 — §) <0 (24)
9Sasena, LF(T0, 1) = gSasena, HF (T0, 1) + 0.221 — 0.7 + 2oz < 0 (25)
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C Illustration of the BO process

The six first iterations of the EGO algorithm on a one dimensional unconstrained objective function are
presented in Figure 4.

(d) iteration 3 (e) iteration 4 (f) iteration 5

—————————— Kriging surrogate model (p)

_— Real function

Opposite of the Expected Improvement

-

° New point to add
- - ° DoE points
L v L = = _ 3 o confidence interval around the Kriging prediction
(g) iteration 6 (h) legend

Fig. 4: Tllustration of the Bayesian optimization process on a one dimensional unconstrained case: s(z) =
xsin(3w(z 4 0.1)).
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D K75 design variables table

Table 6: Design space and unit of the design variables

design space |unit
3 wingbox spar thickness control points along wing span|[0.001, 0.01]3 m
3 wingbox skin thickness control points along wing span|[0.001,0.01]*| m
3 wingbox spar thickness control points along tail span [[0.001,0.01]*| m
3 wingbox skin thickness control points along tail span |[0.001, 0.01]3 m
angle of attack cruise flight [0,15] deg
angle of attack maneuver [—15,15] |deg
fuelmass [0, 50] kg

E MFSEGO methodology pseudo-code

Algorithm 1 MFSEGO algorithm

Compute initial DoE using LHS
while (maximum budget is not reached) and (yp2i?
Learn LF Kriging surrogate model (fio and &3)
for k=1...L do
Learn pr—1 and fis,

> fHF(Tefsol) + tOl) do

Deduce jix and 67 and so the k-th fidelity level Kriging surrogate model

end for
Choose Zpert that optimizes acquisition function (Eq 9)
Select the level of enrichment ¢ (Eq 16)
for [ =0...t do
Add (Zneat; fi(Tnest)) to the DoE

end for
valid __

Ybest
end while

return ypolid

min Yvalid
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F MFSEGO methodology diagram

Compute initial DoE for each of the L+1

fidelity levels

l

/

Build/Rebuild Multi-fidelity
Kriging model

\

Build 0-th fidelity Kriging model

For k =1 ...L : Build k-th fidelity
Kriging model by learning (k-1)-th
scaling factor and k-th discrepancy
function

N2

~/

l

- A
Is the budget reached ?

\ J

1 Yes

e 3 ~
End of the algorithm
-> Return best valid point

\. J

No

For k=0 .. [:add (¥ next. Tnexe) 1O
the k-th DoE

) 1
Vs
For k=0 ... {:Run the k-th level
model
Yiemext = Fie(Xnext)
AN
-
Optimize fidelity criterion to find the
highest level to be evaluated [
.
1
-
Optimize acquisition function to find
Xnext
\

Fig. 5: MFSEGO methodology diagram
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