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Abstract. Industrial spring manufacturers have increasingly high production
rates with ever finer dimensional requirements. Today, they use tensile tests to
evaluate the mechanical behavior of the wires they use to produce their springs.
However, this type of test is not easy to handle in an industrial context, because
of all the requirements needed for tensile testing, especially when it is done on
small diameter wires. Thus, spring manufacturers are interested in replacing the
conventional tensile testing by a much simpler and quicker testing. This work
proposes an empirical approach for mechanical behavior characterization of
small diameter wires, which relies on a three-point bending test and a material
isotropy assumption. This approach is designed to fit into an industrial process
because it offers a sufficiently accurate characterization of the wires for industrial
purpose, and it avoids the biases that can be introduced by the tensile testing
method. In this article, this characterization approach was applied to a cold-drawn
0.8mm wire, made of AISI 302 austenitic steel, with very satisfying results.
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1 Introduction

Small diameter wires are widely used in several industries. They can be found in sem-
iconductor packaging [1], electrical conducting wires [2], tire cords, springs, wire ropes
and suspension bridge cables [3]. They are therefore produced in extremely large quan-
tities in order to meet the demand. For example, spring manufacturers use spring form-
ing machines that can produce hundreds of thousands of springs per week, with wire
feed speed of 121 meter per minute [4]. The direct consequence of this very high pro-
duction rate is that manufacturers have to meet the demand expectations in terms of
both quantity and quality. According to the industry, the quality expectations may vary.
However, if we focus only on the spring manufacturers, the quality expectations are
very strong: the springs they manufacture are intended to satisfy geometrical, dimen-
sional and mechanical specifications. To achieve these demanding goals, spring manu-
facturers have to thoroughly characterize the mechanical behavior of the wires they use,
in order to find the right settings on their high speed forming machines.



Today, the mechanical behavior characterization is commonly done with tensile testing.
This method is a very efficient characterization method since it gives an accurate meas-
ure of Young’s Modulus, Yield Strength and Ultimate Strength. Moreover, tensile test-
ing is not sensitive to the severe microstructure radial anisotropy of cold-drawn wires
as the tensile effort is evenly distributed over the section. Last but not least, tensile
testing machines may appear to be very easy to handle and to integrate in an industrial
manufacturing process. Right after receiving a coil of cold-drawn wire from a supplier,
a spring manufacturer only needs to cut a portion of wire and run the tensile testing
machine to get an immediate mechanical behavior characterization of the wire.

However, there are situations when this perfectly seamless characterization process
becomes less efficient and accurate: one of those situations is when the wires have small
diameter. The first reason why traditional tensile testing becomes less accurate is be-
cause the elongation of wires with diameter inferior to 0.2 mm needs to be measured
with a more elaborate method than the contact extensometer method [5]. The conse-
quence of this need for adaptation is that it is time consuming, while the industrial pro-
cess requires a steady level of efficiency to meet the production rate. Spring manufac-
turers most often decide to lower the quality of their characterization method to keep
up the pace of production. But there is another reason why tensile testing loses its ac-
curacy with small diameter wires: the constraints generated by the clamps on the wire
can introduce damages on the wire during the testing. Indeed, to avoid the slippery of
the wire, the clamps apply pressure which gets closer to the ultimate strength of the
material as the diameter lowers. Consequently, small diameter wires break almost im-
mediately after reaching their yield resistance, and the fracture is located at the edge of
the clamps (see Fig.1).
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Fig. 1. Tensile test curve of a 0.8 mm wire.

This early fracture during tensile testing prevents spring manufacturers from having
a comprehensive idea of the mechanical behavior of the wire they will form. They miss
a significant part of the plastic behavior of their wire. This lack of accuracy during
tensile testing leads to a greater scrap rate of their forming machines. To avoid this
situation, spring manufacturers often use capstan-type grippers that consists of winding
the wire around grippers. This lowers the stress concentration but it is also time con-
suming as it requires more preparation than traditional tensile testing. If we add that
this adaptation is not sufficient for achieving a good reliability because it does not solve
the problem of measuring elongation (which stays equally hard on small diameter wires



with this method), we understand that spring manufacturers need a simpler solution to
characterize the mechanical behavior of their small diameter wires. This work explores
a characterization method for small diameter wires, which relies on a three-point bend-
ing test with both numerical and experimental approaches. All spring manufacturers
have machines to test the axial behavior of springs that can be easily exploited to per-
form three-point bending tests [6-7] (which was preferred over the four-point bending
test because it is easiest to handle in a manufacturing context). Moreover, the three-
point bending test is not sensitive to the wire diameter, since there is less stress concen-
tration. It was therefore decided to verify the relevance of the three-point bending test
in order to characterize wires which diameter is less than 1 mm. In this context, it is
preferable to work with a simplifying hypothesis of material isotropy. This paper will
show that the results obtained with this strong assumption [8] are still very satisfying.

2 Experimental and numerical details

2.1  Materials and testing

The material selected for this work is an austenitic steel wire whose diameter is 0.8 mm
and its steel grade is AISI 302. According to the European Standard NF EN 10270-3
[9], its Young’s Modulus is 185 GPa (heat treated) and its ultimate resistance is between
2100 and 2415 MPa. In other words, when spring manufacturers receive this wire, they
only have a vague knowledge of the mechanical characteristics of the wire, since the
European Standard gives very limited information and tensile testing obliterates a large
portion of the plastic behavior of the wire. The three-point bending test bench (see
Fig. 2) used in this study is the automatic Andilog Stentor Il 5000 bench (0.1 mm ac-
curacy per 300 mm travel). The loading pin is connected to a 50N sensor (0.05 N accu-
racy). The test bench directly includes 5 different sets of supporting pins in order to
enable tests of a large range of wire diameters without additional tuning. For the studied
wire of 0.8mm diameter, the first set of the supporting pins is selected. The supporting
pins were separated by a distance of 22.3 mm. The diameter of the pins is 3 mm.

Andilog Stentor IT 5000 bench

50N sensor

Loading pin
Set#1
Set #2 . .
set#3 + Supporting pins
Set #4 J>

" Set#5

Fig. 2. The experimental bench.



2.2 Numerical modeling

Finite Element calculations were carried out to simulate three-point bending tests.
The simulation model was designed to simulate the three-point bending test with the
most precise accuracy with an extremely fine mesh (the element size was 0.067 mm).
The simulation software used for this work is Abaqus in quasi-static with non-linear
geometry, with the following boundary conditions: longitudinal symmetry on the load-
ing pin, the center of the loading pin is fixed, longitudinal symmetry on the wire and
radial symmetry on the wire at contact point with the loading pin. Unlike in the exper-
imental test, the supporting pin moves and applies the deformation to the wire. The
interaction properties between the two pins and the wire allow finite sliding, and are
“hard contact” interactions (see Fig. 3).

Support pin

Deformation application plane

Loading pin

Fig. 3. The Finite Elements model of the three-point bending test.

3 Methodology

3.1  Experimental and numerical bending tests

The initial idea is to replace tensile testing by three-point bending testing. Conse-
quently, this approach must provide the same information on the mechanical character-
istics of the small diameter wires as tensile testing. In short, this approach has to esti-
mate a tensile stress-strain curve using a bending curve. To meet this expectation, the
objective is to find the simplest way to go from a bending curve to a stress-strain curve.
The first step consists in performing a three-point bending test on a 0.8mm diameter
wire.
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Fig. 4. Example of three-point bending curve obtained on the 0.8mm cold-drawn wire



Thanks to this test, a bending curve is obtained that plots the loading resistance of the
wire against the deflection (see Fig. 4). This bending curve can be seen as the input
information of this mechanical behavior characterization approach. The next step is to
notice that small diameter cold-drawn wires have stress-strain curves that are essen-
tially composed of four linear portions: the purely elastic portion at the beginning of
the curve, the purely plastic portion at the end of the curve and two elastoplastic por-
tions forming a triangle shape between the two portions mentioned before (see Fig. 5).
Estimating a four linear portion curve means estimating the position of three special
points. The first one is the point that marks the end of the purely elastic portion, known
as Yield Strength. The second one is the point that marks the start of the purely plastic
portion, known as the ultimate resistance. The last one is the middle point, which is
described in this work as the “elastoplastic point”. In order to estimate the position of
these three points, it is therefore needed to identify three points on the bending curve,
each one leading to its corresponding point on the stress-strain curve. The three remark-
able points on the bending curve are defined as follows.

Stress

Strain
Fig. 5. The traditional stress-strain curve with four pseudo-linear portions [10].

The end of the linearity point. This point is reasonably easy to measure, since it
marks the end of the first linear portion. However, a challenge lies in the end of the
linearity criterion, and by induction, in the linearity criterion. Indeed, determining a
linearity criterion by geometrical interpretation is always difficult. To perform this, the
best solution is to proceed by numerical simulation. With the three-point bending test
simulation model that was previously described and the exact same parameters that the
experimental test performed before (diameter of the wire, of the pins, distance between
the pins and isotropy hypothesis), a bending curve can be drawn. The next step is to
reverse engineer the linear criterion needed, because the elastic parameters we must
geometrically read are already known, since they are entered as an input of the simula-
tion (Yield Strength, Young’s modulus). The input parameters of this simulation were
chosen to achieve a bending curve very close to the bending curve obtained experimen-
tally. The input parameters are given in Table 1.



Table 1. Input parameters.

Stress (MPa) Plastic Strain | Young’s Modulus (GPa)  Poisson’s Ratio
1000 0 165 0.28

1811 0.004

2200 0.024

With this method, it was discovered that the best linear criterion is to gauge the lin-
earity of the points of the curve with the Pearson correlation coefficient r2 from the first
point of the curve. The end of the linearity is marked by the point whose r2 goes under
0.9995. With this method, the geometrically estimated Elastic Modulus is 164 GPa,
according to formula (1), calculating the bending elastic modulus [11]. And the elastic
modulus is evaluated from the bending curve obtained experimentally at about 166
GPa. It is important to underline that this bending modulus is significantly inferior to
the elastic modulus stated by the European Standard of 185 GPa. This gap can be ex-
plained by the material anisotropy of the cold-drawn wire. Indeed, the difference be-
tween bending and Young’s Modulus of anisotropic materials is well documented [12]
in the scientific fields were anisotropic materials are common. As the radial anisotropy
of cold-drawn wires (especially small diameter cold-drawn wire, with their strong re-
duction ratio) is also well documented [8], the difference between the measured bend-
ing elastic modulus and the Young’s Modulus of the wire is not a surprise. However, it
was decided to rely on the hypothesis of the isotropy of the wire studied in this work.
It is consequently assumed that the measured bending modulus is equal to the Young’s
Modulus of the wire. To measure the end of the linearity point, it was decided to draw
a line parallel to the linear portion identified before, offset by 0.036 mm. This offset
was chosen because it was equal to 0.1% of the deflection of the maximum load point.
The end of the linearity point is at the intersection of this line with the bending curve.
Its coordinates are thus 0.96 mm and 13.77 N.

F L3
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Where: F is the vertical load applied by the loading pin in N; L is the distance between
the two supporting pins in mm; | is the inertia moment of the section with respect to the

vertical axis in mm; % is the slope measured with the linearity criterion in Nmm™; E
is the bending elastic modulus in MPa.

The maximum load point. This point is easy to measure: it is only needed to read the
maximum load of the bending curve, which is 29.5 N on the bending curve experimen-
tally drawn. The deflection corresponding to this maximum point is read by calculating
the mean deflection of the portion of the curve where the load is superior to 99% of
29.5 N. This allows mitigating the risk of an inaccurate reading of the maximum load
point. The maximum load point is thus located at a 3.95 mm deflection.

The intermediate point. After several iterations, it was found that this point must be
measured at the intersection of the bending curve and a line starting from zero, with a



slope equal to 86% of the slope of the first linear portion. On the bending curve exper-
imentally drawn, this point is located at the coordinates 1.88 mm and 23.31 N.

3.2 From a bending curve to a stress-strain curve

Once the three remarkable points are measured on the bending curve, this approach
translates these points into the three remarkable points of a stress-strain curve. As a
reminder, these three remarkable points are: Yield Strength, elastoplastic point and ul-
timate resistance. At this point, the only known parameter is the Young’s Modulus,
which is estimated at 166 GPa. It therefore remains for us to calculate the coordinates
of the three remarkable points of the stress-strain curve.

Yield Strength. In order to translate the end of the linearity point that was previously
measured (0.96 mm and 13.77 N) into Yield Strength, the maximum stress associated
with this point of the bending curve is calculated as follows (2).
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Where: d is the diameter of the wire in mm; oy is the maximum stress MPa.

Thanks to equation (2), the maximum stress located at the surface of the wire is
calculated at 1527 MPa. One could think that Yield Strength is equal to 1527 MPa. It
is not: by doing the same calculation with the bending curve obtained by numerical
simulations, the flexural stress calculated from the end of the linearity point is 1721
MPa, while the model was set with a 1000 MPa Yield Strength. There is obviously a
difference between the apparent Yield Strength value (meaning the stress calculated at
the surface of the wire at the end of the linearity point of the bending curve) and the
real Yield Strength value. In the case of the numerical simulation of the 1000 MPa
Yield Strength wire, the ratio is 1.721/1. To ensure that this ratio between apparent and
real Yield Strength was maintained, independently of the Yield Strength that was set
up in the model.

Therefore, 12 other simulations of three-points bending tests were carried out, with
the exact same parameters, except for Yield Strength. The tested Yield Strength values
are as follows: 800 MPa, 850 MPa, 900 MPa, 950 MPa, 1050 MPa, 1100 MPa, 1150
MPa, 1200 MPa, 1500 MPa, 1600 MPa, 1700 MPa and 1900 MPa (this last Yield
Strength value implies that there is no elastoplastic point on the stress-strain curve). It
appears that the ratio is not constant for all the tested values (see Fig. 6), but it tends to
follow a second-degree polynomial distribution.



2000 ~
1800 A
1600 A R
1400 A

1200 A+ ‘.0"
[ 2
1000 - .0
P
------ e

800 +—@———F—T———

1200 1700 2200

Apparent Yield Strength (MPa)

Fig. 6. The evolution of the relation between apparent Yield Strength and real
Yield Strength.

This second-degree polynomial distribution is described by formula (3), with a Pear-
son’s coefficient of over 0,997. With this formula, the real Yield Strength was estimated
for all 12 numerical simulations, with a precision ranging from -2% to +4%. The accu-
racy of this formula was verified with three other numerical simulations, setting up
random values of Yield Strength (919 MPa, 1085 MPa and 1257 MPa). The apparent
Yield Strength was measured for each bending curve and formula (3) was used to esti-
mate the real Yield Strength values. Again, the results were satisfying, with very rea-
sonable errors (ranging from -0.1% to +0.6%). With these controls, the accuracy of this
Yield Strength estimation formula is quite good, at least in the case of 0.8 mm diameter
wires. Formula (3) allows to estimate that the experimentally tested wire has a 874 MPa
Yield Strength value.

Real Yield Strength (MPa)

0y = 47812 X 107 0 4% — 9.7844 X 107 0, +1.2070 X 103 3)

Where: g is the real Yield Strength in MPa; Tsapp is the apparent Yield Strength in
MPa.

Elastoplastic point. From the intermediate point measured on the bending curve at
1.88 mm and 23.31 N, it is possible to estimate the location of the elastoplastic point of
the stress-strain curve (the one that connects the two linear elastoplastic portions of the
curve, between the purely elastic and the purely plastic portions). As it is located close
enough to the end of the linearity point, it was decided to make the assumption that this
point is still in the elastic behavior portion. With this hypothesis, the tensile stress cor-
responding to this point can be calculated with formula (3), with the same operating
mode as for the Yield Strength estimation. With this assumption, the elastoplastic point
matches a 1952 MPa stress value. Concerning the strain value of elastoplastic point, it
is necessary to moderate the strong hypothesis on which relies the estimation of the
stress corresponding to the elastoplastic point with the estimation of the strain corre-
sponding to this same point. To do so, the Yield Strength that would correspond to the
same deflection as the one of the intermediate point (1.88 mm) is derived with the hy-
pothesis of purely elastic behavior. The elastic portion line is thus extended up to 1.88
mm. To this abscissa, the line matches a 27.04 N load, which corresponds to a 2999



MPa apparent Yield Strength and a 2664 MPa real Yield Strength. With this result, it
can be concluded that the 1952 MPa estimation of the elastoplastic stress value is equiv-
alent to 73% of the purely elastic stress for the same deflection of 1.88 mm. This ratio
allows us to estimate a value of the apparent elastic modulus, which is equal to 73% of
the elastic modulus of the wire. By doing so, the Hooke’s Law that specifies the elastic
behavior of a material can be used. With this assumption of pseudo-elasticity, the elas-
toplastic point can be located at the coordinates 1952 MPa and 0.016:

r_ Oelastoplastic
B =Ex Oelastic (4)
Where: gq5topiastic 1S the elastoplastic point corresponding strain; oegstopiastic iS the
elastoplastic point corresponding stress in MPa (1952 MPa in the case of the experi-
mentally tested wire); E is the elastic modulus of the elastic portion of the bending
curve in MPa (166 GPa here); g,,44:ic 1S the stress calculated at the intermediate point
deflection, with the assumption of pure elastic behavior, in MPa (2664 MPa here).

Ultimate strength. The ultimate strength is estimated with regard to two remarks that
can be made at the sight of the numerical simulations described earlier. The first is that
the ultimate strength stress value is proportional to the deflection position of the maxi-
mum load point of the bending curve, when all the other points of the stress-strain curve
are unchanged. Indeed, 22 numerical simulations of three-points bending tests were
performed, where the only varying parameter was the position of the ultimate strength
point, with a linear distribution of the points measured (see Fig. 7).
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Fig. 7. The linear evolution of the ultimate strength depending on the deflection at the maximum
load point of the bending curve, obtained with 22 numerical simulations where the only changing
parameter was the ultimate strength position.

The linear evolution is described by the formula (5). On the bending curve that was
drawn for the wire studied in this work, the dmaximum/intermediate ratio is 2.10 mm. The
ratio 0,,/0,14stopiastic 1S thus derived to be 1.21, corresponding to an ultimate strength
of 2366 MPa.

— T _ (.5492 -Imaximum_ 4 () 0577 (5)

Oelastoplastic intermediate
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Where: d,,qximum 1S the deflection of the maximum load point on the bending curve in
MM; diptermediate 1S the deflection of the intermediate point on the bending curve in
mm; g, is the ultimate strength in MPa.

Finally, the ultimate strength deflection is estimated thanks to an abacus created for
this work, based on the 22 numerical simulations conducted. Indeed, the 22 simulations
were made with three variations of second elastoplastic portion slope, which seems to
be responsible for the maximum load of the bending curve. These three slopes were
calculated as a function of the elastic modulus. 7 simulations were made with a second
elastoplastic portion slope equal to 6.76% of the elastic modulus, 7 simulations with a
second elastoplastic portion slope equal to 9.04% of the elastic modulus and 8 simula-
tions with a second elastoplastic portion slope equal to 11.00% of the elastic modulus
(see Fig.8). As it is possible to locate the 6,,/0.4st0piastic ratio at 1.21 and the maxi-
mum load over intermediate load at 1.27, the slope of the second elastoplastic portion
of the stress-strain curve of the wire studied in this work can be calculated: 5.6% of 166
GPa, which corresponds to a 9250 elastic modulus, and leads to an ultimate strength
strain of 0.0608. This marks the end of the stress-strain curve estimation. Table 2 sums
up the parameters obtained with the approach explained in this paper.

1,65 - 11,00%
1,55 A
81,45 4

1,05 — 77—
1,26 1,28 1,3 1,32
Maximum load/intermediate load

Fig. 8. The abacus allows estimating the slope of the second elastoplastic portion of the stress-
strain curve, as a function of the elastic modulus.

Table 2. The estimated stress-strain curve parameters.

Stress (MPa) Total Strain || Young’s Modulus (GPa)
874 0.0053 166

1952 0.0160

2366 0.0608

4 Results and discussions

To ensure the validity of this approach of the stress-strain curve estimation from a
bending curve, the reverse path was taken: a simulation of the three-point bending test
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was performed with the parameters seen in Table 2. The numerical estimated bending
curve obtained (see Fig. 9) was then compared with the one experimentally obtained.
It can be seen that the bending curve obtained by numerical simulations with this me-
chanical behavior characterization approach is very close to the experimental bending
curve. More precisely, the maximum load point is located at 29.75 N (+0.83% error)
and 3.88 mm (-1.80% error). However, this curve is only a proof that this empirical
approach is calibrated for the experimentally tested wire. To verify if this approach
gave good results on other three-points bending tests, the exercise was made with a wire
of the same diameter and same steel grade, but of a different batch. The idea was to
confront this approach with a bending curve sufficiently different (see Fig. 10).

30 H
25 A
20 A
15 4
10 4

Load (N)

o +—+—1r—r—1+—T7——7—"T"—"T—TTrTTTTTT
0 2 4 6 8 10

Deflection (mm)

Fig. 9. The experimental bending curve is red and the numerical bending curve is blue.
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Fig. 10. The experimental bending curve is orange and the numerical bending curve is blue
(Input parameters: Young’s Modulus 167 GPa ; coordinates of the 3 remarkable points: 811
MPa, 0.0049 total strain; 1755 MPa, 0.0143 total strain; 2226 MPa, 0.0408 total strain).

The orange curve is sufficiently different from the red curve (28.92 N maximum
against 29.5 N) but the estimation of the stress-strain curve gives a bending curve which
is really close to the rose curve: 28.83 N (-0.33% error) and 4.04 mm (+3.40% error)
for the maximum point. This approach seems to give a precise indication of the stress-
strain curve we might expect from a wire, with a simple and quick three-point bending
test. However, this approach was ran with wires of different diameters, and it obtained
poor results (the elastic behavior was well predicted but the plastic behavior was not).
The reasons for this divergence was investigated, and it was found that it is mostly
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caused by the formula (3), giving the real Yield Strength. Indeed, the distribution of the
real Yield Strength over the apparent Yield Strength is highly determined by the diam-
eter of the wire. This problem can be solved by running numerical simulations for a
large number of wire diameters, in order to give the right formulas to go from the three
remarkable points of the bending curve to those of the stress-strain curve.

5 Conclusion

As a conclusion, this work shows that it is possible to have an accurate idea of the
mechanical behavior of a small diameter wire without needing a complicated tensile
machine. This work shows that it possible to estimate with a fine level of precision (up
to only 3.40% error on the bending curve numerically obtained) the stress-strain curve
of awire, allowing every spring manufacturer to better understand the mechanical char-
acteristics of the wire they use. To summarize, the idea is to pick three remarkable
points on a three-point bending curve and to translate them into three remarkable points
of a stress-strain curve. Moreover, to improve accuracy of our approach for a given
manufacturing process, one calibration procedure from a tensile test can be performed
on the wire of the very first wire spool and only one rapid bending test is required on
each following spool to evaluate potential variations of wire material properties. This
approach is promising, because it is widely quicker to use for the manufacturer. Of
course, it needs to be explored wider for better accuracy and better versatility.

References

1. Cho, J.H., Kim, Y.W., Oh, K.H. et al. Recrystallization and grain growth of cold-drawn gold
bonding wire. Metall Mater Trans A 34, 1113-1125 (2003).
2. X Sauvage, L Renaud, B Deconihout, D Blavette, D.H Ping, K Hono, Solid state amorphiza-
tion in cold drawn Cu/Nb wires, Acta Materialia, Volume 49, Issue 3 (2001).
3. Liu, Shi Feng, et al., Studies of Annealing Process in Severely Cold Drawn Pearlitic Steel
Wires, Materials Science Forum, vol. 682, Trans Tech Publications, Ltd. (2011).
4. Baudrand New Tech.
5. Gondo, S., Suzuki, S., Asakawa, M. et al. Establishing a simple and reliable method of meas-
uring ductility of fine metal wire. Int J Mech Mater Eng 13, 5 (2018).
6. Afnor, Plastics — Determination of flexural properties, NF EN 1SO 178 (2019).
7. J. S. Stélken and A. G. Evans, A microbend test method for measuring the plasticity length
scale, Acta Materialia (1998).
8. J Toribio, F.J Ayaso, Anisotropic fracture behaviour of cold drawn steel: a materials science
approach, Materials Science and Engineering: Volume 343, Issues 1-2 (2003).
9. Afnor, Steel wire for mechanical springs - Part 3, NF EN 10270-3 (2001).
10. Carole Levrau. Compréhension et modélisation des mécanismes de lubrification lors du tré-
filage des aciers inoxydables avec des savons secs. Ecole Nationale Supérieure des Mines
de Paris (2006).
11. Petrescu, Irina Elena, Cristina Mohora , Constantin Ispas. The determination of young mod-
ulus for cfrp using three point bending tests at different span lengths, U.P.B. Sci. Bull (2013).
12. Spatz H., Vincent J., Young’s moduli and shear moduli in cortical bone, Proc. Lond. (1996).



