
HAL Id: hal-03891081
https://hal.science/hal-03891081

Preprint submitted on 9 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IRIS: Online Reconfiguration of Distributed NoSQL
Databases for Dynamic Workloads

Ashraf Mahgoub, Paul C Wood, Subrata Mitra, Folker Meyer, Somali
Chaterji, Saurabh Bagchi

To cite this version:
Ashraf Mahgoub, Paul C Wood, Subrata Mitra, Folker Meyer, Somali Chaterji, et al.. IRIS: Online
Reconfiguration of Distributed NoSQL Databases for Dynamic Workloads. 2022. �hal-03891081�

https://hal.science/hal-03891081
https://hal.archives-ouvertes.fr

IRIS: Online Reconfiguration of Distributed NoSQL Databases for Dynamic
Workloads

Ashraf Mahgoub(a), Paul Wood(a), Subrata Mitra(b), Folker Meyer(c), Somali Chaterji(a), Saurabh Bagchi(a)

Abstract
Reconfiguring NoSQL databases in the face of chang-
ing workload patterns is crucial for maximizing database
throughput. However, this is challenging because of the
large configuration parameter search space with com-
plex interdependencies among parameters. While state-
of-the-art systems can automatically identify close-to-
optimal configurations for static workloads, they suffer
for dynamic workloads. This happens due to the fol-
lowing two fundamental limitations. First, they do not
account for performance degradation due to database
restarting (often needed to apply the new configurations),
and second, they overlook the application’s availabil-
ity requirements during reconfiguration. Our solution,
IRIS, addresses both these shortcomings and we demon-
strate its effectiveness for a multi-tenant, global-scale
metagenomics pipeline called MG-RAST and an HPC
data analytics job queue, both of which have dynamically
changing workloads.We compare the benefit of IRIS in
throughput over the default, a static configuration, and a
theoretically ideal solution.

1 Introduction
Automatically tuning database management systems
(DBMSs) is challenging due to their underlying plethora
of performance-related parameters and that too with
complex interdependencies among subsets of these pa-
rameters. For example, MySQL has 100+ and Cassandra
has 50+ tuning parameters, and different parameter com-
binations can affect performance in different ways. Sev-
eral prior works like Rafiki [32], OtterTune [45], Best-
Config [50], and others [15, 43, 42], have solved the
problem of optimizing a DBMS when workload char-
acteristics relevant to the data operations are relatively
static. We call these “‘static configuration tuners”. How-
ever, these solutions do not perform a cost-benefit anal-
ysis (CBA) to assess when a configuration switch will
be globally beneficial, over a time horizon, and cannot
gracefully reconfigure a clustered set of database server

instances while maintaining user visible availability.
The drawback of static configuration tuners arises

from the observation that workload changes lead to new
optimal configurations. However, it is not always de-
sirable to switch to new configurations because the new
workload pattern may be short-lived. Each reconfigura-
tion action in clustered databases incurs costs because
the server instance often needs to be restarted for the
new configuration to take effect and there is degraded
throughput as a newly resurrected server instance is up-
dated with missed data records. In the case of dynamic
workloads, the new workload may not last long enough
for the reconfiguration cost to be recouped over a reason-
ably long time horizon. Fundamentally, this is where the
drawback of prior approaches lies—they are either silent
on when to reconfigure or perform a naı̈ve reconfigura-
tion whenever the workload changes.

We posit that an accurate CBA is crucial for determin-
ing whether or not to reconfigure the database. We show
that a naı̈ve reconfiguration, which is oblivious to the
reconfiguration cost, actually degrades the performance
for dynamic workloads in general and specifically for
metagenomics workloads from the MG-RAST produc-
tion system [48], relative to the state-of-practice of us-
ing a static tuner (Figure 1). For example, during peri-
ods of high dynamism in the read-write switches in MG-
RAST, naı̈ve reconfiguration degrades performance by a
substantial 61.8%.
Our System: IRIS
We develop an online reconfiguration system—IRIS—
for a NoSQL Cassandra cluster comprising of multiple
server instances. IRIS actively extracts information about
current and future workloads from a job scheduler or pre-
dictor and determines a long-horizon optimal reconfig-
uration plan through our proposed CBA scheme. IRIS
is applicable to dynamic workloads and works across a
range of workload changing patterns. When the work-
load changes, IRIS interacts with any existing static con-
figuration tuner (we use RAFIKI in our work because it is

1

already engineered to work with Cassandra), to quickly
provide the optimal point configurations for the new
workload and the estimated benefit from this new config-
uration. IRIS takes into consideration the possibility that
the new workload may be a short-term shift and the esti-
mated benefit from a reconfiguration might not be larger
than the cost incurred for such a change. Only if the
CBA indicates that the benefit outweighs the cost, does
IRIS initiate a distributed protocol to reconfigure the Cas-
sandra cluster. IRIS deals with different replication fac-
tors (RF) and consistency level (CL) requirements from
the cluster during the online reconfiguration and ensures
that the data remains continuously available through the
reconfiguration process, while obeying the required CL.
It does this by controlling how many Cassandra server
instances should be concurrently reconfigured.
Evaluation Cases: MG-RAST and Data Analytics
Workloads
For evaluation of our solution, we use real workload
traces from the metagenomics analysis pipeline, MG-
RAST [48, 9, 35]. MG-RAST provides software-as-a-
service, accessible through a RESTful API, which allows
many users to simultaneously upload their metagenomic
data (nucleotide or protein sequences) to the repository,
apply a pipeline of computationally intensive processes,
such as similarity search, and preferentially commit the
results back to the repository for shared use. As the
amount of data stored by MG-RAST has increased be-
yond the limits of traditional SQL stores (131 Tera base
pairs or roughly 20 PB as of January 2018), it relies on
a distributed NoSQL Cassandra database. Its workload
does not have any discernible daily or weekly pattern, as
the requests come from all across the globe and we find
that the workload can change drastically over a few min-
utes. This presents a challenging use case as only 5 min-
utes or less of lookahead is possible. The second use case
is a queue of data analytics jobs such as would be sub-
mitted to an HPC computing cluster. Here the workload
can be predicted (using say [19]) over long time horizons
(order of an hour) by observing the jobs in the queue and
leveraging the fact of recurring job patterns. In princi-
ple, IRIS can be used with other DBMS engines, with
little (e.g., ScyllaDB, a drop-in Cassandra replacement)
to large (e.g., in-memory databases) engineering effort,
provided that the system has workload-sensitive parame-
ters that can be updated externally.

To summarize, the main contributions of IRIS are:
1. We show that state-of-the-art static tuners when

applied to dynamic workloads provide suboptimal
configurations and degrade data availability.

2. IRIS performs cost-benefit analysis (CBA) to
achieve long-horizon optimized throughput for
clustered Cassandra instances.

3. IRIS executes a distributed protocol to gracefully

switch over the cluster to the new configuration
while respecting the data consistency guarantees
and keeping data continuously available to users.

4. We evaluate IRIS with 80 days of real MG-RAST’s
workload traces, running multiple Cassandra server
instances on the AWS Amazon cloud platform. We
compare our approach to existing baseline solu-
tions and show that IRIS optimizes performance
with no downtime. For example, compared to the
statically determined optimal configuration, IRIS
achieves 17.6% higher throughput during the write
bursts, typical in MG-RAST, and 25.7% higher ag-
gregate throughput in the HPC cluster case.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide an overview of our solution approach
IRIS. We provide a background on Cassandra and its
sensitivity to configuration parameters and on static con-
figuration tuners in Section 3. Then, we describe our
solution in Section 4. We provide details of the work-
loads and our implementation in Section 5. We give the
evaluation results in Section 6 and finally conclude.

2 Overview of IRIS

Here we give an overview of the workflow and the main
components of IRIS. We provide details of each step and
each component in Section 4. A schematic of the sys-
tem is shown in Figure 2. IRIS is used to improve the
performance of Cassandra, by selecting the performance-
sensitive parameters as the workload changes, and recon-
figuring the cluster, only when deemed opportune using
our CBA modeling.

Periodically, IRIS queries the Workload Predictor
(box 1 in figure) to determine if any future workload
changes exist that may merit a reconfiguration. The
prediction model, provided by the database administra-
tor (DBA), is initially trained from representative work-
load traces from prior runs of the application and in-
crementally updated with additional data as IRIS oper-
ates. With the predicted workload, IRIS queries a static
configuration tuner that provides the optimal configura-
tion for a single point in time for the predicted work-
load. This module may also require some initial train-
ing data from the system. The Dynamic Configuration
Optimizer (box 2) generates a time-varying reconfigu-
ration plan for a given lookahead time window by com-
bining the static, point solution information with the es-
timated, time-varying workload information. The recon-
figuration plan gives both the time points when recon-
figuration should be initiated and the new configuration
parameters at each such time point. The Controller (box
3) initiates a distributed protocol to “gracefully” switch
the cluster to new configurations in the reconfiguration
plan (Section 4.5). IRIS decides how many instances to
switch at a time such that data items always satisfy the

2

Figure 1: The effect of reconfiguration on the throughput of
the system. If the new workload persists for greater than a
certain duration (where the gain curve becomes positive), then
reconfiguration should be done, else it is better to stay with the
earlier configuration.

Figure 2: Workflow of IRIS. This shows the offline model building and the
online operation, as well as the new components that are introduced in our
system. It also shows the interactions with the Cassandra cluster and a static
configuration tuner, which comes from prior work.

user’s availability and consistency requirements.
Physically, IRIS is implemented as separate compo-

nents. The Workload Predictor is located at a point where
it can observe the aggregate incident workload, measured
either through a gateway or by querying each instance for
loadings. The Dynamic Configuration Optimizer runs
at a dedicated node close to the workload monitor. A
distributed component runs on each node to apply the
new reconfiguration plan. The reconfiguration plan is
re-calculated whenever the workload predictor predicts
a change in the future workload, but this is practically
limited by the computational capacity of the workload
predictor and the time constants of the dynamic configu-
ration optimizer and the controller.
Cost-Benefit Analysis in the Reconfiguration Plan
IRIS accrues benefits in throughput by implementing
optimal reconfigurations when the database workload
changes, boosting performance over static configura-
tions. Each reconfiguration has a cost, however, due
to changing parameters that require restarting or other-
wise degrading the database services, e.g., by flushing
the cache. The CBA in IRIS calculates the costs of imple-
menting a reconfiguration plan by determining the num-
ber, duration, and magnitude of degradations. If the over-
all throughput gains are greater than the cost to reconfig-
ure, then IRIS accepts the reconfiguration plan (which
is executed by the controller), else it rejects the plan.
This insight, and the resulting protocol design to decide
whether and when to reconfigure, is a fundamental con-
tribution of IRIS. Prior works in static configuration tun-
ing [32, 45, 50, 15, 43, 42] answer the question of what
configuration parameter set to use.

Now we give a specific example of this cost-benefit
trade-off from real MG-RAST workload traces to illus-
trate this argument. Consider the example shown in Fig-
ure 1 where we apply IRIS’s reconfiguration plan to a
cluster of 2 servers with an availability requirement that
at least 1 of 2 be online. The Cassandra cluster starts
with a read-heavy workload but with a configuration C1

(the Cassandra default), that favors a write-heavy work-
load and is therefore suboptimal. With this configura-
tion, the cluster provides a throughput of ∼40,000 op-
s/s, but a better read-heavy configuration C2 exists, pro-
viding ∼50,000 ops/s. The Cassandra cluster is recon-
figured to the new C2 configuration setting, using IRIS’s
controller, resulting in a temporary throughput loss due
to the transient unavailability of the server instances as
they undergo the reconfiguration, one instance at a time
given the specified availability. The two dips at 200
and 270 seconds correspond to the two server instances
being reconfigured serially. We plot, using the dashed
line, the gain (benefit minus cost) over time and see that
there is a crossover point for the duration of the new
workload pattern. If the predicted workload pattern lasts
longer than this threshold (190 seconds in our example),
there is a gain from the reconfiguration and the CBA
would approve the plan. Otherwise, the costs will out-
weigh the benefit, and any solution implemented with-
out the CBA risks degrading overall system performance.
Thus, a naı̈ve solution (a simple extension of all exist-
ing static configuration tuners) that always reconfigures
to the best configuration for the current workload will
actually degrade performance for any reasonably fast-
changing workload.

3 Background

Data Processing Model: In IRIS, we use a simple query
model sufficient to support our data processing applica-
tions. The computation is separate logically from the
database and the latter supports the standard operations
of select, insert, delete, and update. This is typical for
NoSQL databases and is in contrast to complex analytics
queries that are supported by more complex database en-
gines. From this perspective, our throughput is defined
as the number of simple queries per second. Our tar-
get applications are scheduled on compute clusters us-
ing batch job scheduling systems, such as PBS (Portable
Batch System) or Torque [24], and the computation gives

3

rise to the database operations.
Dynamic Workloads in Cassandra; Dynamic work-
loads in our pipeline have large swings in the relative
ratio of reads to writes, such as a phase of data up-
load followed by its read-based processing and then sub-
sequent result upload. The internals of Cassandra re-
spond to these types of workloads with algorithms that
are themselves tunable and replaceable. For example,
reads and writes may be cached in RAM with differ-
ent cache sizes, and the method by which data is com-
pacted on the disk may be altered (“Leveled” versus
“Size-Tiered” versus “Date-Tiered” [25, 8]). When the
workload is static, the performance-sensitive parameters
and their impact have been studied and described in sev-
eral prior works in [32, 45, 15, 43, 42], etc. For exam-
ple, it has been found that the best compaction strategy
for a read-heavy workload is leveled compaction, which
performs poorly for write-heavy workloads. The size-
tiered compaction strategy is recommended for the write-
heavy workloads [17]. In the dynamic case, a transition
from read-heavy to write-heavy may occur after some
time, and thus the optimal compaction strategy would
also change. Therefore, it would be impossible to find a
static configuration that would be optimal for every point
in time for a dynamic workload. IRIS is designed to con-
sider the benefit of switching parameters while account-
ing for the costs associated with each update.

4 Design of IRIS

IRIS seeks to answer the following two questions:
1. Which configurations to be used in the cluster and

when to switch? This is dependent on the work-
load in a lookahead period and the decision has to
be made based on predicted workload patterns.

2. How should we apply the reconfiguration steps?
The goal here is to minimize the transient impact
on the throughput of the system and maintain the
required data RF and CL.

The answer to the first question leads to what we call
a reconfiguration plan (Section 4.3). The answer to the
second question is given by our distributed protocol that
reconfigures the various server instances in rounds (Sec-
tion 4.5). Next, we describe the various components of
IRIS that we introduced earlier.

4.1 Workload Description and Forecasting
In a generic sense, we can define the workload at a par-
ticular point in time as a vector of various time-varying
features expressed by:

WWW (t) = {p1(t), p2(t), p3(t), ..., pn(t)} (1)

where the workload at time t is WWW (t) and pi(t) is the
time-varying i-th feature. These features may be directly
measured from the database, such as the rate of opera-
tions and the occupancy level of the database, or they

may come from the computing environment, such as the
number of users or jobs in a batch queue. For example,
for MG-RAST, two features captured the workload char-
acteristics: (1) the proportion of reads versus writes, i.e.,
the read ratio (RR) and (2) the key reuse distance (KRD)
triggered by the queries. From the computing environ-
ment, we also obtained the number of jobs in the cluster.

To forecast the workload, we discretized time into
sliced Td durations (= 30s in our experiments) to bound
the memory and the computational cost. We then pre-
dicted future workloads as:

WWW (tk+1) = fpred(WWW (tk),WWW (tk−1), ...,WWW (t0)) (2)

where k is the current time index into Td-wide steps. For
ease of exposition for the rest of the paper, we drop the
term Td , assuming implicitly that this is one time unit.
The function fpred is any function that can make such a
prediction, and in IRIS, we utilize an ARIMA model in
one experiment and a deterministic output from a batch
scheduler in another, i.e., a perfect fpred. However, more
complex estimators, such as neural networks [27], have
been used in other contexts and IRIS is modular enough
to use any such predictor. After the workload predictor
provides IRIS with future workload patterns, IRIS will
use a static configuration tuner, RAFIKI in our current
design, plus the CBA model to apply its long-horizon
optimization technique.

4.2 Adapting a Static Configuration Tuner
for IRIS

IRIS uses a static configuration tuner (RAFIKI), designed
to work with Cassandra, to output the best configuration
for any given workload. RAFIKI selects the top-k param-
eters in its configuration optimization method, which is
in turn determined by a significant drop-off in the impor-
tance score ([32] Section 3.4). In MG-RAST, the cut-
off is at 7 parameters, namely: (1) Compaction method
(2) Memory-table flush writes (3) Memory-table clean-
up threshold (4) Trickle fsync (5) Row cache size (6)
Concurrent writers (7) Memory heap space. These pa-
rameters vary with respect to how fast they can impact
the performance. For example, the compaction method
will cause every Cassandra instance to launch a full
compaction operation in the background, reading all its
SSTables and re-writing them to the disk in a new format.
This is a compute-intensive process and will degrade per-
formance for a long time horizon. The impact of other 6
parameters is observed immediately upon server restart
(changing row cache size does not even need a server
restart). We modify RAFIKI to find the best values of
these 6 parameters, while fixing the compaction method
to the best static value across all future workloads.

The database system has a set of critical performance-
determining configuration parameters CCC = {c1,c2, ...,cn}

4

and the optimal configuration CCCopt depends on the par-
ticular workload WWW (t) executing at that point in time. In
order to optimize performance across time, IRIS needs
the static tuner to provide an estimate of throughput for
both the optimal and the current configuration for any
workload that is seen in the system:

Hsys = fops(WWW (t),CCCsys) (3)

where Hsys is the throughput of the cluster of servers
(as observed by the client) with a configuration CCCsys
and fops(WWW (t),CCCsys) provides the system-level through-
put estimate. CCCsys has Ns×|CCC| dimensions for Ns servers.
Cassandra can achieve efficient load balancing across
multiple instances whereby each contributes approxi-
mately equally to the overall system throughput [28, 18].
Thus, we define a single server average performance as:

Hi =
Hsys

Ns
(4)

We argue that parameters such as RF and CL are se-
lected by the application owner based on her organiza-
tion’s availability and consistency requirements. These
should not be changed by any configuration engine and
IRIS does not vary these either but can work under differ-
ent RF/CL constraints, e.g., to decide how many servers
to reconfigure at a time (Section 4.5). However, if the
application owner changes these parameters mid-stream,
the static tuner in IRIS must itself adjust to such a change.

From these models of throughput, optimal configura-
tions can be selected for a fixed workload:

Copt(WWW (t)) = argmax
CCCsys

Hsys = argmax
CCCsys

fops(WWW (t),CCCsys) (5)

In general, CCCopt can be unique for each server, but in
IRIS, it is same across all servers, given our atomic re-
configuration policy in which all servers are run with the
same configuration and all servers must be reconfigured
in round i prior to reconfiguration of round i+1.The op-
timization in Eq. (5) can be solved using genetic algo-
rithms (e.g., RAFIKI) or nearest-neighbor interpolation
for an unseen workload (e.g., OtterTune or iTuned).
4.3 Dynamic Configuration Optimization
IRIS’s core goal is to maximize the total throughput
for a database system when faced with dynamic work-
loads. This introduces time-domain components into the
optimal configuration strategy CCCT

opt = CCCopt(WWW (t)), for all
points in (discretized) time till the lookahead TL. In this
section, we describe the mechanism that IRIS uses for
CBA modeling to construct the best reconfiguration plan
for evolving workloads. Such analysis prevents naı̈ve re-
configuration based solely on improvement due to a new
configuration suggested by a static tuner.

In general, finding solutions for CCCT
sys can become im-

practical since the possible parameter space for CCC is large

and the search space increases linearly with TL. For ex-
ample, if Td = 30 s and TL = 30 m, then there are TL

Td
= 60

decision points. If there are only two possible configu-
rations, we have 260 choices about what configuration to
choose and when. In reality, the configuration space is
larger, e.g., for MG-RAST, we used 7 parameters, some
of which are continuous, e.g., row cache size. If we take
an underestimate of each parameter being binary, then
the search space will have 27×60 points, an impossibly
large number for exhaustive search. We define a compact
representation of the reconfiguration points (∆’s) to eas-
ily represent the configuration changes. The maximum
number of switches within TL, say M, is bounded since
each switch takes a finite amount of time. The search
space for the dynamic configuration optimization is then
C(TL,M)×|CCCsys|. This comes from the fact that we have
to choose M points to switch out of all the TL time points
and at each point there are |CCCsys| possible configuration
options. We define the reconfiguration plan as:

CCC∆
sys = [TTT = {t1, t2, ..., tM},CCC = {C1,C2, ...,CM}] (6)

where tk is a point in time, k ∈ [0,TL] and Ck is the
configuration file to use at tk. Thus, the reconfiguration
plan gives when to perform a reconfiguration and at each
such point, what configuration to choose.

The objective for IRIS is to select the best configura-
tions for some period of optimization TL:

(CCC∆
sys)

opt = argmax
CCC∆

sys

B(CCC∆
sys,WWW)−L(CCC∆

sys,WWW) (7)

where CCC∆
sys is the reconfiguration plan, B is the bene-

fit function, and L is the cost (or loss) function, and WWW is
the time-varying workload description. Qualitatively, the
benefit summed up over the time window is the increase
in throughput due to the new optimal configuration op-
tion relative to the current configuration option. Like-
wise, the cost summed up over the time window is the
loss in throughput incurred during the transient period of
reconfiguration.

B = ∑
k∈[0,TL]

Hsys(WWW (k),CCCT
sys(k)) (8)

where WWW (k) is the k-th element in the time-varying
workload vector WWW and CCCT

sys is the time-varying system
configuration derived from CCC∆

sys.

L = ∑
k∈[1,M]

Hsys(WWW (tk),CCCk) ·Tr (9)

where CCCk the configuration specified by the k-th entry of
the reconfiguration plan CCC∆

sys, and Tr is the number of sec-
onds a single server is offline during reconfiguration. The
L function captures the opportunity cost for having each
of Ns servers offline for Tr seconds for the new work-
load but with the old configuration, i.e., the operations

5

that would have been completed if the servers remained
online and unadjusted. IRIS is general enough to work
with any reconfiguration cost, potentially even different
costs for different parameters, and these can be fed into
its optimization function (Eq. 5). In total Ns ·Tr seconds
of downtime occurs per server, thus from Eq. (4), we use
Hsys instead of Ns×Hi in our summation.

The objective is to maximize the time-integrated gain
(benefit – cost) of the reconfiguration from Eq. (7) and
IRIS is responsible for determining the optimal reconfig-
uration plan. The three unknowns in the optimal plan
are M, TTT , and CCC, from Eq. (6). If only R servers can
be reconfigured at a time (explained in Section 4.5 how
R is calculated), at least Tr ·Ns

R time must elapse between
two reconfigurations. This puts a limit on M, the max-
imum number of reconfigurations that can occur in the
look-ahead period TL.

A greedy solution for Eq. (7) that picks the first con-
figuration change with a net-increase in benefit may pro-
duce suboptimal CCC∆

sys over the horizon TL because it
does not consider the coupling between multiple suc-
cessive workloads. For example, considering a pairwise
sequence of workloads, the best configuration may not
be optimal for either WWW (t1) or WWW (t2) but is optimal for
the paired sequence of the two workloads. This could
happen if the same configuration gives reasonable per-
formance for WWW (t1) or WWW (t2) and has the advantage that
it does not have to switch during this sequence of work-
loads. This argument can be trivially extended to longer
sequences of workloads.

The value for TL should be bounded by the confidence
of the workload predictor. A value that is too large will
cause IRIS to include decision points with high errors,
and a value that is too small will cause IRIS to take almost
greedy decisions. In our use case, we simply set TL based
on the historical accuracy of the ARIMA model through
a simulation process, where we set the lower threshold
of 70% for the accuracy.

4.4 Finding Optimal Reconfiguration Plan
with Genetic Algorithms

We use a heuristic search technique (Genetic Algorithms
or GA) to find the optimal reconfiguration plan. Al-
though genetic algorithms, or meta-heuristics in general,
do not guarantee finding global optima, they are known
to converge to reasonable solutions quickly, especially in
non-convex search spaces. In such cases, there are few
alternatives and speedy decisions are critical. Our space
is non-convex because of the interdependence between
time and reconfiguration where the penalty for switching
may be amortized over the gap between reconfigurations,
and that the placement of each reconfiguration on the
timeline has a feedback effect on that amortization. So
local decisions about where to reconfigure are impacted

by other reconfiguration decisions in the same horizon
period. Therefore, we cannot apply greedy searches or
gradient descent-based searches on our space because we
are likely to get stuck in local optima.

The representation of the GA solution incorporates
two parts. First, the chromosome orientation, which is
simply the reconfiguration plan (Eq. 6). The second part
is the fitness function definition used to assess the quality
of different reconfiguration plans (chromosomes). For
this, we use the cost-benefit analysis as shown in Eq. 7
where fitness is the total operations for the TL window for
the tested reconfiguration plan and given workload. We
build a simulator to apply the individual solutions and to
collect the corresponding fitness values, which are used
to select the best solutions and to generate new solutions
in the next generation. We utilize MATLAB function GA,
with 0.8 crossover fraction and population size of 50. We
terminate the search process either after investigating all
possible values of M, or after 3 consecutive generations
with similar best solutions.

4.5 Distributed Protocol for Online Recon-
figuration

Cassandra and other distributed databases maintain high
availability through configurable redundancy parame-
ters, CL and RF. CL controls how many confirmations
are necessary for an operation to be considered success-
ful. RF controls how many replicas of a record exist
throughout the cluster. Thus, a natural constraint for
each record is RF ≥ CL. Therefore, at any time at most
RF−CL servers may be offline (due to reconfiguration
in our case) and beyond that, database requests will start
to fail. As a result, IRIS makes the design decision to
configure up to R = RF−CL servers at a time. In the
case where RF = CL, IRIS cannot reconfigure the sys-
tem, without harming data availability. However, we ex-
pect most systems with high consistency requirements
to follow a read/write quorum [21] with the minimum
CL that satisfies CL > RF

2 rather than RF=CL. Note that
IRIS reduces the number of available data replicas during
the transient reconfiguration periods by taking R servers
offline. Data that existed on the offline servers prior to
reconfiguration is not lost due to the drain step, but data
written during the transient phase has lower redundancy
until the reconfigured servers get back online.

In order to reconfigure a Cassandra cluster, IRIS per-
forms the following steps, R server instances at a time:
1. Drain: Before shutting down a Cassandra instance,
we flush the entire MemTable to disk by using Cassan-
dra’s drain tool “nodetool drain” and this ensures that
there are no pending commit logs to replay upon a restart.
2. Shutdown: Cassandra process is killed on the node.
3. Configuration file: Replace the configuration file
with new values of all the configuration parameters that

6

need changing.
4. Start: Restart Cassandra process on the same node.
5. Sync: IRIS waits for Cassandra’s instance to com-
pletely rejoin the cluster by letting a coordinator know
of where to locate the node and then synchronizing the
data through a node-level repair process [1]. In Cassan-
dra, writes for down nodes are cached by available nodes
for some period (denoted as max hint window in ms).
These cached writes (known as hinted handoffs) are re-
sent to the nodes when they rejoin the cluster. IRIS
achieves Tr � max hint window in ms, which is criti-
cal because if the timeout kicks in, no more writes are
cached and a manual repair is needed to bring back the
node’s data consistency.
The time that it takes to complete all these steps for one
server is denoted by Tr, and TR for the whole cluster,
where TR = Ns×Tr

R . During all steps 1-5, additional load
is placed on the non-reconfiguring servers as they must
handle the additional write and read traffic during the
outages. Step 5 is the most expensive and typically takes
60-70% of the total reconfiguration time, depending on
the amount of cached writes. We minimize step 4 prac-
tically by installing binaries from the RAM and relying
on the draining option rather than the commit log replay
in step 1, reducing pressure on the disk.
Availability vs. Throughput: IRIS-AGGRESSIVE
In IRIS, we maintain availability during the entire recon-
figuration period, while respecting the consistency guar-
antee. As the number of servers in the cluster grows,
IRIS suffers from longer reconfiguration periods because
of the sequence of steps where R = (RF – CL) servers
are reconfigured at each time step. At the limit, with
very large clusters, IRIS performs identically to the static
optimized configuration because the time for which any
workload persists is smaller than the time to reconfig-
ure the cluster. Therefore, we come up with a variant
of IRIS called IRIS-AGGRESSIVE, which reconfigures
R > (RF – CL) servers at each time step. In the limit,
it can reconfigure all server instances at the same time.
This does make the data unavailable for a transient time
during the reconfiguration, but completes the entire re-
configuration operation faster. This may therefore be
well suited to large clusters, fast changing workloads, or
non-interactive throughput-sensitive workloads. Never-
theless, IRIS-AGGRESSIVE is different from a naı̈ve so-
lution that reconfigures upon each workload change and
this shows up as a performance advantage (Figure 5).

5 Dataset and Implementation
5.1 MG-RAST Workload
For short-horizon reconfiguration plans, we use real
workload traces from MG-RAST. Users of MG-RAST
are allowed to upload “jobs” to its pipeline, with meta-
data to annotate job descriptions. In the upload phase,

0 2000 4000

Time (discrete seconds)

0

0.5

1

R
e

a
d

 R
a

ti
o

1 Job

0 2000 4000

Time (discrete seconds)

0

0.5

1
5 Concurrent Jobs

0 2000 4000

Time (discrete seconds)

0

0.5

1
10 Concurrent Jobs

Figure 3: Simulated Workload patterns for 1, 5, and 10 concurrent
jobs
data is uploaded in FASTA, FASTQ, and SFF formats,
followed by a data hygiene phase in which MG-RAST
performs tasks such as duplicate removal and sequence
similarity checking. All jobs are submitted to a computa-
tional queue, pending sufficient computational resources.
We analyzed 80 days of query trace from the MG-RAST
system from April 19, 2017 till July 9, 2017. From this
data, we make several observations: (i) Workloads’ read
ratio (RR) switches rapidly with over 26,000 switches in
the analyzed period. (ii) Majority (i.e., more than 80%)
of the switches are abrupt, from RR=0 to RR=1 or vice
versa. (iii) KRD (key reuse distance) is very large. (iv)
No daily or weekly workload pattern is discernible, as
expected for a globally used cyberinfrastructure.

5.2 Simulated Analytics Workload

For long-horizon reconfiguration plans, we simulate syn-
thetic workloads representative of batch data analytics
jobs, submitted to a shared HPC queue. We integrate
IRIS with a job scheduler (like PBS), that examines jobs
while they wait in a queue prior to execution. Thus,
the scheduler can profile the jobs waiting in the queue,
and hence forecast the aggregate workload over a looka-
head horizon, which is equal to the length of the queue.
One example of such a scheduler comes from [19],
which achieves very high accuracy in predicting exe-
cution times of jobs submitted to a Microsoft Cosmos
cluster. Thus, in this application IRIS is able to drive
long-horizon reconfiguration plans. Modeled on the jobs
in [19], each job is divided into phases: a write-heavy
phase resembling an upload phase of new data, a read-
heavy phase resembling executing analytical queries to
the cluster, and a third, write-heavy phase akin to com-
mitting the analysis results. However, some jobs can be
recurring (as shown in [3, 19]) and running against al-
ready uploaded data. These jobs will execute the analysis
phase directly, skipping the first phase. The size of each
phase is a random variable ∼ U(200,100K) operations,
and whenever a job finishes, a new job is selected from
the queue and added to the set of active jobs. We vary
the level of concurrency and have an equal mix of the
two types of jobs and monitor the aggregate workload.
Figure 3 shows the synthetic traces for three job sizes.

7

5.3 Workload Representation
IRIS’s simple yet sufficient workload model is WWW (t) =
{RR(t),KRD}. The definition of similarity is a differ-
ence of 0.1 in the RR, with the KRD being kept very
large to capture the relatively constant KRD seen here.
We also simplify the prediction system fops by construct-
ing a cached version with the optimal configuration CCCopt
for a subset of WWW and using nearest-neighbor lookups.

IRIS uses DNN-based RAFIKI [32] as its static config-
uration tuner. It trains RAFIKI based on the specs of the
AWS instances and training workload worth 60 days.

5.4 Testbed Setup
IRIS is designed for a clustered Cassandra setup. Both
our workloads use RF=3 and CL=1 for both reads and
writes. We evaluate IRIS on Amazon EC2 using in-
stances of size M4.xlarge with 4 vCPU’s and 16 GB of
RAM for both Cassandra servers and workload drivers
and provisioned IOPS (SSD) EBS for storage and high
network bandwidth (∼ 0.74 Gbits/s). Each node is
loaded with 6 GB of data initially (this is varied in Exper-
iment 5). We used multiple concurrent clients to saturate
the database servers and added the throughput of every
client for the output metric, the system-level throughput.

6 Experimental Results
Here we evaluate the performance of IRIS under the
short-horizon lookahead (MG-RAST) and long-horizon
lookahead (data analytics HPC jobs).

6.1 Baseline Comparisons
We compare the performance of IRIS to baseline config-
urations (1-5). We also consider 2 variants of IRIS (6-7).
(1) Default: The database administrator (DBA) simply
starts Cassandra with the default configuration parame-
ters. We find that by default Cassandra is configured to
favor write-heavy workloads.
(2) Static Optimized: Here, the static tuner (RAFIKI) is
queried to provide the one constant configuration that op-
timizes for the entire future workload. This is an imprac-
tically ideal solution since it is assumed here that the fu-
ture workload is known perfectly. However, non-ideally
no configuration changes are allowed dynamically.
(3) Naı̈ve Reconfiguration: Here, with a new workload,
RAFIKI’s provided reconfiguration is always applied, in-
stantiated by concurrently shutting down all server in-
stances, changing their configuration parameters, and
restarting all of them. Practically, this makes data un-
available and may not be tolerable in many deployments.
The static configuration tuners are silent about when the
optimal configurations determined by them must be ap-
plied and this baseline is a simplistic extension of all of
this prior work.
(4) ScyllaDB: We compare IRIS’s performance (with

Cassandra) to the self-tuning ScyllaDB in its vanilla
form. ScyllaDB is touted to be a much faster drop-in
replacement to Cassandra [40].
(5) Theoretical Best: This represents the theoretically
best achievable performance over the predicted workload
period. This is estimated by assuming Cassandra is run-
ning with the optimal configuration at any point of time
and not penalizing it the cost of reconfiguration. This
serves as an upper bound for the performance.
(6) IRIS with Oracle: Here we apply IRIS’s reconfigura-
tion plan for the new workload, assuming fully accurate
workload predictions.
(7) IRIS: This is our complete system. It uses ARIMA
modeling for the short-horizon workload prediction
(MG-RAST) and perfect prediction for the long-horizon
lookahead (HPC data analytics).

6.2 Experiment 1: MG-RAST Workload
We present our experimental evaluation with the work-
load traces (queries and data records) from 20 test days
of MG-RAST data. To zoom into the effect of IRIS with
different levels of dynamism in the workload, we seg-
ment the workload into 4 scenarios and present those re-
sults in addition to the aggregated ones.
ARIMA-based Prediction Model: We created 122,018
training samples composed of Td = 30 second steps
across the 60 days MG-RAST workloads. The model
was constructed using an ARIMA (20,1,20) model. The
complexity of the model (as p+q) was selected by min-
imizing the Bayesian information criterion (BIC), The
predictor is initialized with 500 samples of history and
the predictions are for 15 minutes into the future, pro-
viding a real-valued output. We categorize the test days
into 4: “Slow”, “Medium”, and “Fast”, by the frequency
of switching from the read- to the write-intensive work-
loads and this maps to the average read ratios shown in
Table 1. “Write” represents days with long write-heavy
periods. Table 1 shows the prediction accuracies (the ra-
tio of predictions within 10% of the actual) for the four
representative workload scenarios. Because of the lack
of application-level knowledge, in addition to the well-
known uncertainty in job execution times in genomics
pipelines [29], the ARIMA-based model only provides
accurate predictions for short time intervals. We notice
that the accuracy of the ARIMA-based model is high for
the “Slow” scenario, whereas it drops below 50% for
“Medium”, and it is always below 50% for the “Fast”
and “Write” scenarios. Because the “Slow” scenario is
the most common (observed 74% of time in the training
data), we use a value of TL < 5 minutes in IRIS.
Performance Comparison:

Now we show the performance of IRIS with respect to
the four workload categories. We first present the result
with the smallest possible number of server instances,

8

Table 1: Accuracy of the Workload Prediction. We use the three rep-
resentative workloads corresponding to different frequencies of work-
load switches.

Lookahead 1m 2m 5m 15m Num Switch RR
Slow 90.2% 83.6% 70.5% 70.5% 2 70%
Medium 77.0% 60.7% 14.8% 46.0% 4 59%
Fast 44.3% 39.3% 47.5% 39.3% 14 45%
Write 45.9% 59.0% 36.1% 37.7% 8 35%
Aggregate 64.4% 60.7% 42.2% 48.4%

4, run with MG-RAST’s parameters RF=3 and CL=1.
We show the result in terms of total operations for each
test workload as well as a weighted average “combined”
representation that models behavior for the entire MG-
RAST workload. Figure 4 shows the key result of our
paper with performance improvements for our test cases.

From Figure 4, we see that IRIS always outperforms
naı̈ve for total ops/s (average of 31.4%) and individu-
ally for read (31.1%) and write (33.5%) ops/s. IRIS
also outperforms the default for the slow and the mid
frequency cases, while it slightly under performs in the
fast frequency case with average improvement across
the 4 categories of 20.4%. The underperformance for
the fast case is due to increased prediction error. The
static optimized configuration (which for this workload
favors read-heavy pattern) has a slightly higher through-
put over IRIS by 6.3%. This is because the majority
of the selected samples are read periods (RR=1), which
hides the gain that IRIS achieves for write periods. How-
ever, we see that with respect to write operations, IRIS
achieves 17.6% higher throughput than the static opti-
mized configuration. Increased write throughput is crit-
ical for MG-RAST to support the bursts of intense and
voluminous writes. This avoids unacceptable queuing of
writes, which can create bottlenecks for subsequent jobs
that rely on the written shared dataset.

We observe that IRIS performs similar IRIS w/ Oracle
case in the slow and mid scenarios, which shows the im-
pact of the workload predictor. However, we notice that
in the fast scenario, IRIS shows a loss of 8% in compari-
son to the both the default and static optimized configu-
rations due to inefficient reconfigurations. Naı̈ve recon-
figuration has an even higher loss compared to default:
61.8%.

ScyllaDB has an auto-tuning feature that is supposed
to continuously react to changes in workload charac-
teristics and the current state (such as, the amount of
dirty memory state). Since the throughputs achieved by
Cassandra-default and ScyllaDB are different under dif-
ferent workload mixes, the reader should first calibrate
herself by looking at the “Default” and “ScyllaDB” bars.
ScyllaDB is claimed by its developers to outperform Cas-
sandra in all workload mixes by an impressive 10X [40].
However, this claim is not borne out here and only in
the read-heavy case (the “Slow” scenario) does ScyllaDB
outperform. In this case, IRIS is able to reconfigure Cas-
sandra at runtime and turn out a performance benefit over

ScyllaDB. We conclude that based on this workload and
setup, a system owner can afford to use Cassandra with
IRIS for the entire range of workload mixes and not have
to transition to ScyllaDB.

6.3 Experiment 2: HPC Data Analytics
Workload

In this set of experiments we evaluate the performance
of IRIS using HPC data analytics workload patterns de-
scribed in Section 5.2. We show the result in terms of
total operations for each test workload. Figure 6 shows
the result for the three levels of concurrency (1, 5, and
10 jobs). We see that IRIS outperforms the default for all
the three cases, with average improvement of 30%. In
comparison with static optimized configuration (which
is a different configuration in each of the three cases),
we note that IRIS outperforms for the 1 job and 5 jobs
cases by 18.9% and 25.7%, while it is identical for the 10
jobs case. This is because in the 10 jobs case, the major-
ity of the workload lies between RR=0.55 and RR=0.85,
and in this case, IRIS switches only once: from the de-
fault configuration to the same configuration as the static
optimized. In comparison to the theoretical best perfor-
mance, we notice that IRIS achieves within 9.5% of the
performance for all three cases. Finally, we notice that
IRIS achieves significantly better performance over the
naı̈ve approach by 27%, 13%, and 122% for the three
cases, while the naı̈ve approach can degrade the perfor-
mance even lower than the default by 32.9% (10 concur-
rent jobs). In comparison with ScyllaDB, IRIS is able
to reconfigure Cassandra at runtime and turn out a per-
formance benefit over ScyllaDB by 17.4% on average,
which leads to a similar conclusion as in MG-RAST
about the continued use of Cassandra.

6.4 Experiment 3: Scale-Out
Figure 5 shows the behavior of IRIS using the same
workload as in Experiment 2. We show a comparison
between IRIS and the static optimized configuration for
different cluster sizes under a weak scaling pattern, i.e.,
keeping the data per server fixed while still operating
at saturation. As we scale out, the benefit of IRIS’s re-
configuration plan over the static optimized configura-
tion decreases because the total time to reconfigure, TR,
grows linearly with Ns. For the quorum case (CL=2), the
total reconfiguration time is even longer as R is halved.
However, the loss at each reconfiguration point is lower
compared to CL=1 because only 1 server is taken offline.
Therefore, IRIS with Quorum is not significantly worse
than IRIS. One solution to reduce the total reconfigura-
tion time is to use the aggressive version of IRIS with
R = Ns. The aggressive setup performs much better with
scale because the TR becomes constant, independent of
Ns. Our results show that the aggressive case performs

9

Figure 4: Improvement for four different 30-minute test windows from MG-RAST real traces over the baseline solutions.

close to the ideal, paying only a one-time cost of shut-
ting down servers (concurrently) and restarting them.

Figure 5: Improvement with scale using 4, 8, and 32 servers. The the-
oretical best shows the upper limit of a perfect IRIS as it has no recon-
figuration cost. IRIS-AGGRESSIVE provides consistent gains across
scale because the reconfiguration plan does not change with scale–
R← Ns. Full IRIS has reduced gains since the number of serial steps
increases with the number of servers for a fixed RF and CL. The im-
pact of increased consistency requirements are shown with IRIS w/
Quorum.

6.5 Experiment 4: Noisy Workload Predic-
tions

Figure 6: Improvement for HPC data analytics workload with differ-
ent levels of concurrency.

We show how sensitive IRIS is to the level of noise in

the predicted workload pattern. In HPC queues, there are
two typical sources of such noise—an impatient user re-
moving a job from the queue and the arrival of hitherto
unseen (and therefore unprofiled) jobs. We use the HPC
workload with 5 concurrent jobs shown in Figure 3. We
add noise to the predicted workload pattern ∼ U(-R,R),
where R gives the level of noise. The resulting value is
bounded between 0 and 1. From Figure 7, we see that
adding noise to IRIS slightly reduces its performance.
However, such noise will not cause significant changes to
IRIS’s optimal reconfiguration plan. This is because IRIS
treats each entry in the reconfiguration plan as a binary
decision (i.e., reconfigure if Benefit ≥ Cost). So even
if the values of both Benefit and Cost terms change, the
same plan takes effect as long as the inequality still holds.
This allows IRIS to achieve significant improvements for
long-term predictions even with high noise levels.

Figure 7: Effect of noise to improvements with IRIS on simulated
workload with level of concurrency = 5. The percentage represents
the amount of noise added to the predicted workload pattern.

Now we show how sensitive IRIS is to noisy predic-
tions of the duration of a changed workload (Figure 8)
where we plot the gain of IRIS over a static optimized
configuration. We use a synthetic workload so as to

10

zoom in on the effect that we are trying to isolate. The
workload starts with a read heavy workload for 3 min,
switches to a write heavy workload for 3 min, and then
back to read heavy of 3 min. We generate the reconfigu-
ration plan for the synthetic workload, but then inject an
error in the prediction of the write heavy workload du-
ration using a random variable U(0,6 min). Expectedly,
the peak gain is achieved when the difference between
the actual workload and the predicted workload is close
to zero, while the gain becomes negative on both sides if
the difference is < -60 sec or > 80 sec. One interesting
observation is that the curve is not symmetric. This is be-
cause when the predicted duration of the new workload
(the write heavy workload) is too small (the right side on
the X-axis), then Cassandra runs a write heavy workload
with a read optimized configuration. On the other hand,
when the predicted duration is too large (the left side on
the X-axis), then Cassandra runs a read heavy workload
with a write optimized configuration. The latter has a
greater performance penalty than the former (47% com-
pared to 26%) and hence the IRIS performance is worse
on the left hand side on the X-axis.

Figure 8: Effect of noise in the workload predictor on improvements
due to IRIS. The gain degrades as the predictor becomes more error
prone but the curve is not symmetric around the zero point because
the mis-prediction costs in read-heavy vs. write-heavy are different.

6.6 Experiment 5: Greater Data Volume
We evaluate IRIS when the data volume per node in-
creases. We vary the amount of data loaded initially into
each node (in a cluster of 4 nodes) and measure the gain
over static optimized in Figure 9. We notice that the gain
from applying IRIS’s reconfiguration plan is consistent
with increasing the data volume from 3 GB to 30 GB.
We also notice that the gain increases for the case of
30 GB. This is because the static optimized configura-
tion for this workload uses the Size-Tiered compaction,
whereas the configurations applied by IRIS had the com-
paction method parameter set to Leveled compaction,
which can provide better read performance with increas-
ing data volumes. However, this benefit of Leveled com-
paction was not captured by RAFIKI predictions, which
was trained on a single node with 6 GB of data. This
can be addressed using either of two strategies: replac-
ing RAFIKI by a data volume-aware static tuner, or re-
training RAFIKI when a significant change in data vol-

ume per node occurs.

Figure 9: Effect on increasing data volume per node. We use a cluster
of 4 servers and compare the performance to the static optimized.
The results show that IRIS’s gain is consistent with increasing data
volumes per node.

6.7 Major Insights
We draw three key insights from these diverse results.
First, globally shared infrastructures with black-box jobs
only allow for short-horizon workload predictions. This
causes IRIS to take single-step reconfiguration plans and
limits its benefit over a static optimized approach (Fig-
ure 4). In contrast, when analytics jobs queue up and
their characteristics can be modeled well, IRIS achieves
significant benefit over both default and static optimized
cases (Figure 6). This benefit stays even when there is
significant uncertainty in predicting the exact job charac-
teristics (Figures 7 and 8). Second, Cassandra can be
used in preference to the recent popular drop-in Scyl-
laDB, an auto-tuning database, with higher throughput
across the entire range of workload types, as long as we
overlay a dynamic tuner, such as IRIS, atop Cassandra
(Figures 4 and 6). Third, as the number of server in-
stances increases, the reconfiguration time of IRIS in-
creases, thereby limiting its benefit. However, the IRIS-
AGGRESSIVE variant recovers most of the gains as its re-
configuration time stays constant with scale (Figure 5).

7 Discussion and Future Work
Some tuning parameters are data size dependent, such
as the row and key caches and the compaction method,
and thus some of IRIS’s performance is dependent on the
database size. IRIS does not address such concerns, say
by predicting the data-size dependent response of a con-
figuration, instead relying on RAFIKI to predict Eq. (3)–a
function that lacks data size as an input. We can address
this shortcoming by including data size as a parameter in
the modeling that IRIS does.

It is possible that a change in RF and CL will affect the
operation of IRIS. A change in either of these parameters
will doubtless change the net throughput of the Cassan-
dra cluster. However, we posit that the optimal configu-
ration parameter values will not change with the change
in these two parameters, up to a certain degree. This is
because within a bounded range of change, the work-

11

load as seen by each server instance will stay relatively
constant. However, if these parameters do change sig-
nificantly, then the above condition will no longer hold
and we may need to use a RAFIKI that has been specifi-
cally trained with these different (RF, CL) combinations.
In practice however, a Cassandra cluster generally uses
a fixed value of RF and of CL set to either 1 or RF/2
+ 1 (defined as LOCAL QUORUM); the former provides
the loosest form of consistency while the latter provides
strong consistency [2].

Currently, we enforce an atomic reconfiguration pol-
icy, which has the advantage that all server instances are
homogeneous in terms of their contribution to the sys-
tem throughput. The downside of this policy is that for
frequent workload changes, there may not be time to re-
configure all the server instances. So in these workload
scenarios, the server instances will continue to keep the
current configuration. This may be sub-optimal in that
it may be better to have the first fraction of the servers
run with the new configuration and the second fraction
with the earlier configuration. We leave it for future work
where reconfiguration decisions are made on a per-server
basis rather than atomically for the entire cluster.

8 Related Work
We categorize the related work under three major heads.
Reconfiguration in databases. Several works proposed
online reconfiguration for databases where the goal is
not to update the configuration settings, but to control
how the data is distributed among multiple server in-
stances [13, 7, 20, 16, 47]. Among these, Morphus [20]
targets MongoDB, a noSQL DBMS but cannot handle
Cassandra due to its peer-to-peer topology and hash-
based sharding. In general, data partitions appear more
suitable to online changes than updating configuration
parameters. [31] compares the performance of Casan-
dra to ScyllaDB, and Kemme et al. [26] proposed an
online reconfiguration approach for replicated databases
and focuses on efficient data transfer and fault-tolerance
and does not optimize for dynamic workload changes.
Tuba [6] reconfigures geo-replicated key-value stores by
changing locations of primary and secondary replicas to
improve overall utility of the storage system. A large
body of work also focused on choosing the best logi-
cal or physical design for static workloads of relational
databases [12, 10, 51, 22, 11, 44, 4, 38, 39]. Another
body of work attempts to improve performance for static
workloads by finding correct settings for DBMS perfor-
mance knobs [15, 14, 32, 50, 45] as discussed before.
In contrast, IRIS performs online reconfigurations of the
performance tuning parameters of distributed NoSQL
DBMS for dynamically changing workloads.
Reconfiguration in distributed systems and clouds. A
wealth of work has addressed the problem in the con-

text of traditional distributed systems [26, 5] and cloud
platforms [30, 49, 34, 33]. Some solutions present a the-
oretical approach, reasoning about correctness for exam-
ple [5], while some present a systems-driven approach
such as performance tuning for MapReduce clusters [30].
BerkeleyDB [37] models probabilistic dependencies be-
tween configuration parameters. A recent work, Smart-
Conf [46] provides a rigorous control-theoretic approach
to continuously tune a distributed application in an
application-agnostic manner, even as workloads change.
However, it cannot consider dependencies among the
performance-critical parameters and cannot handle cate-
gorical parameters. In contrast, IRIS considers the trade-
off of an online reconfiguration through CBA and can
handle dependencies among the performance-critical pa-
rameters as well as categorical parameters.
Reconfiguration in OS and other single-node stack.
There has been long-past work on this topic [41, 23, 36]
developing modularization techniques for OS for it to
be live upgraded, without causing application downtime.
The goals were to update code to adapt to changing
workloads [41] or to perform maintenance tasks, e.g.,
pinpoint performance problems [41, 36]. In contrast,
IRIS provides an online reconfiguration mechanism for
distributed NoSQL DBMS to optimize performance.

9 Conclusion
When faced with dynamic and fast-changing workloads,
NoSQL databases have to be tuned for achieving the
highest throughput. Current practice dictates that clus-
ters of Cassandra server instances be shut down for re-
configuration and while some prior works can provide
optimal configuration settings for any given workload,
they cannot perform online reconfiguration. Here we
presented IRIS to perform such online reconfiguration
while maintaining availability of the data records and re-
specting the consistency level requirements. We achieve
this through three techniques: a simple workload predic-
tor, which can predict the duration of the new workload
pattern, a CBA, and a distributed protocol to gracefully
switch over the cluster from the old to the new config-
uration. We apply IRIS to MG-RAST’s metagenomics
workload traces and see that it outperforms all prior tech-
niques either during the entire operation or during intense
write bursts, the latter typical in this application domain.
The gains are greater for a more predictable HPC data an-
alytics workload. Our work uncovers several open chal-
lenges. How to do anticipatory configuration changes for
future workload patterns? How to handle heterogene-
ity in the database cluster, i.e., one where each server
instance may have its own configuration and may con-
tribute differently to the overall system throughput? Fi-
nally, how should IRIS factor in configuration parameters
whose changes take effect only after a time lag?

12

References
[1] Cassndra Repair. http://cassandra.apache.org/doc/latest/

operating/repair.html.

[2] DATASTAX: How is the consistency level configured? .
https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/
dmlConfigConsistency.html. [Online; accessed 27-April-2018].

[3] AGARWAL, S., KANDULA, S., BRUNO, N., WU, M.-C., STO-
ICA, I., AND ZHOU, J. Re-optimizing data-parallel computing.
In Proceedings of the 9th USENIX conference on Networked Sys-
tems Design and Implementation (2012), USENIX Association,
pp. 21–21.

[4] AGRAWAL, S., NARASAYYA, V., AND YANG, B. Integrat-
ing vertical and horizontal partitioning into automated physical
database design. In ACM SIGMOD international conference on
Management of data (2004).

[5] AJMANI, S., LISKOV, B., AND SHRIRA, L. Modular software
upgrades for distributed systems. ECOOP 2006–Object-Oriented
Programming (2006), 452–476.

[6] ARDEKANI, M. S., AND TERRY, D. B. A self-configurable geo-
replicated cloud storage system. In OSDI (2014), pp. 367–381.

[7] BARKER, S. K., CHI, Y., HACIGÜMÜS, H., SHENOY, P. J.,
AND CECCHET, E. Shuttledb: Database-aware elasticity in the
cloud. In ICAC (2014), pp. 33–43.

[8] CASSANDRA, A. Compaction. http://cassandra.apache.org/doc/
latest/operating/compaction.html.

[9] CHATERJI, S., KOO, J., LI, N., MEYER, F., GRAMA, A.,
BAGCHI, S., AND CHATERJI, S. Federation in genomics
pipelines: techniques and challenges. Briefings in Bioinformatics
102 (2017).

[10] CHAUDHURI, S., AND NARASAYYA, V. Self-tuning database
systems: a decade of progress. In Proceedings of the 33rd in-
ternational conference on Very large data bases (2007), VLDB
Endowment, pp. 3–14.

[11] CHAUDHURI, S., AND NARASAYYA, V. R. An efficient, cost-
driven index selection tool for microsoft sql server. In VLDB
(1997).

[12] CURINO, C., JONES, E., ZHANG, Y., AND MADDEN, S.
Schism: a workload-driven approach to database replication and
partitioning. VLDB Endowment (2010).

[13] DAS, S., NISHIMURA, S., AGRAWAL, D., AND EL ABBADI, A.
Albatross: lightweight elasticity in shared storage databases for
the cloud using live data migration. VLDB Endowment (2011).

[14] DEBNATH, B. K., LILJA, D. J., AND MOKBEL, M. F. Sard:
A statistical approach for ranking database tuning parameters. In
IEEE International Conference on Data Engineering Workshop
(ICDEW) (2008).

[15] DUAN, S., THUMMALA, V., AND BABU, S. Tuning database
configuration parameters with ituned. Proceedings of the VLDB
Endowment 2, 1 (2009), 1246–1257.

[16] ELMORE, A. J., DAS, S., AGRAWAL, D., AND EL ABBADI,
A. Zephyr: live migration in shared nothing databases for elastic
cloud platforms. In ACM SIGMOD International Conference on
Management of data (2011).

[17] ENTERPRISE, D. Apache Cassandra 3.0: How is Data Main-
tained? http://docs.datastax.com/en/cassandra/3.0/cassandra/
dml/dmlHowDataMaintain.html, 2017.

[18] FEATHERSTON, D. Cassandra: Principles and application. De-
partment of Computer Science University of Illinois at Urbana-
Champaign (2010).

[19] FERGUSON, A. D., BODIK, P., KANDULA, S., BOUTIN, E.,
AND FONSECA, R. Jockey: guaranteed job latency in data paral-
lel clusters. In Proceedings of the 7th ACM European Conference
on Computer Systems (Eurosys) (2012), ACM, pp. 99–112.

[20] GHOSH, M., WANG, W., HOLLA, G., AND GUPTA, I. Mor-
phus: Supporting online reconfigurations in sharded nosql sys-
tems. IEEE Transactions on Emerging Topics in Computing
(2015).

[21] GIFFORD, D. K. Weighted voting for replicated data. In SOSP
(1979).

[22] GUPTA, H., HARINARAYAN, V., RAJARAMAN, A., AND ULL-
MAN, J. D. Index selection for olap. In IEEE International Con-
ference on Data Engineering (ICDE) (1997).

[23] HICKS, M., AND NETTLES, S. Dynamic software updating.
ACM Transactions on Programming Languages and Systems
(TOPLAS) 27, 6 (2005), 1049–1096.

[24] INC., A. E. PBS Professional Open Source Project. http://www.
pbspro.org/, 2018. [Online; accessed 1-May-2018].

[25] INC., D. Configuring compaction. https://docs.datastax.com/en/
cassandra/2.1/cassandra/operations/ops configure compaction t.
html.

[26] KEMME, B., BARTOLI, A., AND BABAOGLU, O. Online re-
configuration in replicated databases based on group communica-
tion. In Dependable Systems and Network (DSN) (2001), IEEE,
pp. 117–126.

[27] KOUSIOURIS, G., CUCINOTTA, T., AND VARVARIGOU, T. The
effects of scheduling, workload type and consolidation scenarios
on virtual machine performance and their prediction through opti-
mized artificial neural networks. Journal of Systems and Software
84, 8 (2011), 1270–1291.

[28] LAKSHMAN, A., AND MALIK, P. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Systems Re-
view 44, 2 (2010), 35–40.

[29] LEIPZIG, J. A review of bioinformatic pipeline frameworks.
Briefings in bioinformatics 18, 3 (2017), 530–536.

[30] LI, M., ZENG, L., MENG, S., TAN, J., ZHANG, L., BUTT,
A. R., AND FULLER, N. Mronline: Mapreduce online perfor-
mance tuning. In Proceedings of the 23rd international sym-
posium on High-performance parallel and distributed computing
(2014), ACM, pp. 165–176.

[31] MAHGOUB, A., GANESH, S., MEYER, F., GRAMA, A., AND
CHATERJI, S. Suitability of nosql systemscassandra and scyl-
ladbfor iot workloads. In Communication Systems and Networks
(COMSNETS), 2017 9th International Conference on (2017),
IEEE, pp. 476–479.

[32] MAHGOUB, A., WOOD, P., GANESH, S., MITRA, S., GER-
LACH, W., HARRISON, T., MEYER, F., GRAMA, A., BAGCHI,
S., AND CHATERJI, S. Rafiki: A Middleware for Parame-
ter Tuning of NoSQL Datastores for Dynamic Metagenomics
Workloads. In Proceedings of the 18th International ACM/I-
FIP/USENIX Middleware Conference (2017), pp. 1–13.

[33] MAJI, A. K., MITRA, S., AND BAGCHI, S. Ice: An inte-
grated configuration engine for interference mitigation in cloud
services. In EEE International Conference on Autonomic Com-
puting (ICAC) (2015).

[34] MAJI, A. K., MITRA, S., ZHOU, B., BAGCHI, S., AND
VERMA, A. Mitigating interference in cloud services by mid-
dleware reconfiguration. In ACM International Middleware Con-
ference (2014).

[35] MEYER, F., BAGCHI, S., CHATERJI, S., GERLACH, W.,
GRAMA, A., HARRISON, T., TRIMBLE, W., AND WILKE, A.
Mg-rast version 4lessons learned from a decade of low-budget
ultra-high-throughput metagenome analysis. Briefings in Bioin-
formatics 105 (2017).

13

http://cassandra.apache.org/doc/latest/operating/repair.html
http://cassandra.apache.org/doc/latest/operating/repair.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlConfigConsistency.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlConfigConsistency.html
http://cassandra.apache.org/doc/latest/operating/compaction.html
http://cassandra.apache.org/doc/latest/operating/compaction.html
http://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlHowDataMaintain.html
http://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlHowDataMaintain.html
http://www.pbspro.org/
http://www.pbspro.org/
https://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_configure_compaction_t.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_configure_compaction_t.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_configure_compaction_t.html

[36] OBERTHÜR, S., BÖKE, C., AND GRIESE, B. Dynamic online
reconfiguration for customizable and self-optimizing operating
systems. In Proceedings of the 5th ACM international confer-
ence on Embedded software (2005), ACM, pp. 335–338.

[37] OLSON, M. A., BOSTIC, K., AND SELTZER, M. I. Berkeley db.
In USENIX Annual Technical Conference (1999), pp. 183–191.

[38] PAVLO, A., JONES, E. P., AND ZDONIK, S. On predictive mod-
eling for optimizing transaction execution in parallel oltp sys-
tems. VLDB Endowment (2011).

[39] RAO, J., ZHANG, C., MEGIDDO, N., AND LOHMAN, G. Au-
tomating physical database design in a parallel database. In
ACM SIGMOD international conference on Management of data
(2002).

[40] SCYLLADB. Scylla vs. Cassandra benchmark. http://www.
scylladb.com/technology/cassandra-vs-scylla-benchmark-2/,
October 2015.

[41] SOULES, C. A., APPAVOO, J., HUI, K., WISNIEWSKI, R. W.,
DA SILVA, D., GANGER, G. R., KRIEGER, O., STUMM, M.,
AUSLANDER, M. A., OSTROWSKI, M., ET AL. System support
for online reconfiguration. In USENIX Annual Technical Confer-
ence (2003).

[42] SULLIVAN, D. G., SELTZER, M. I., AND PFEFFER, A. Us-
ing probabilistic reasoning to automate software tuning, vol. 32.
ACM, 2004.

[43] TRAN, D. N., HUYNH, P. C., TAY, Y. C., AND TUNG, A. K. A
new approach to dynamic self-tuning of database buffers. ACM
Transactions on Storage (TOS) (2008).

[44] VALENTIN, G., ZULIANI, M., ZILIO, D. C., LOHMAN, G.,
AND SKELLEY, A. Db2 advisor: An optimizer smart enough to
recommend its own indexes. In IEEE International Conference
on Data Engineering (ICDE) (2000).

[45] VAN AKEN, D., PAVLO, A., GORDON, G. J., AND ZHANG, B.
Automatic database management system tuning through large-
scale machine learning. In Proceedings of the 2017 ACM In-
ternational Conference on Management of Data (2017), ACM,
pp. 1009–1024.

[46] WANG, S., LI, C., HOFFMANN, H., LU, S., SENTOSA, W.,
AND KISTIJANTORO, A. I. Understanding and auto-adjusting
performance-sensitive configurations. In International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2018).

[47] WEI, X., SHEN, S., CHEN, R., AND CHEN, H. Replication-
driven live reconfiguration for fast distributed transaction pro-
cessing. In USENIX Annual Technical Conference (2017).

[48] WILKE, A., BISCHOF, J., GERLACH, W., GLASS, E., HAR-
RISON, T., KEEGAN, K. P., PACZIAN, T., TRIMBLE, W. L.,
BAGCHI, S., GRAMA, A., ET AL. The mg-rast metagenomics
database and portal in 2015. Nucleic Acids Research 44, D1
(2015), D590–D594.

[49] ZHANG, R., LI, M., AND HILDEBRAND, D. Finding the big
data sweet spot: Towards automatically recommending configu-
rations for hadoop clusters on docker containers. In Cloud Engi-
neering (IC2E), 2015 IEEE International Conference on (2015),
IEEE, pp. 365–368.

[50] ZHU, Y., LIU, J., GUO, M., BAO, Y., MA, W., LIU, Z., SONG,
K., AND YANG, Y. Bestconfig: Tapping the performance poten-
tial of systems via automatic configuration tuning. In Symposium
on Cloud Computing (SoCC) (2017).

[51] ZILIO, D. C., AND SEVCIK, K. C. Physical database design
decision algorithms and concurrent reorganization for parallel

database systems. PhD Thesis Citeseer, 1999.

14

http://www.scylladb.com/technology/cassandra-vs-scylla-benchmark-2/
http://www.scylladb.com/technology/cassandra-vs-scylla-benchmark-2/

	Introduction
	Overview of Iris
	Background
	Design of Iris
	Workload Description and Forecasting
	Adapting a Static Configuration Tuner for Iris
	Dynamic Configuration Optimization
	Finding Optimal Reconfiguration Plan with Genetic Algorithms
	Distributed Protocol for Online Reconfiguration

	Dataset and Implementation
	MG-RAST Workload
	Simulated Analytics Workload
	Workload Representation
	Testbed Setup

	Experimental Results
	Baseline Comparisons
	Experiment 1: MG-RAST Workload
	Experiment 2: HPC Data Analytics Workload
	Experiment 3: Scale-Out
	Experiment 4: Noisy Workload Predictions
	Experiment 5: Greater Data Volume
	Major Insights

	Discussion and Future Work
	Related Work
	Conclusion

