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Abstract

This work proposes exact solution approaches for the m-machine robust per-

mutation flow shop problem, where operation processing times are uncertain

and vary in a given interval. Following the concept of budgeted uncertainty,

the objective is to obtain a robust scheduling that minimizes the total weighted

completion time of the restricted worst-case scenario, in which only a subset of

operation processing times will deviate to worst-case values. We develop several

robust counterpart formulations, which can be used to derive optimal solutions

for medium-sized problem instances by using a Column-and-Constraint Gener-

ation algorithm. The efficacy of the solution methods is validated through ex-

periments on three sets of randomly-generated instances. Finally, a case study

for the maintenance schedule of Brazilian oil platforms is presented.

Keywords: Scheduling, Robust Optimization, Permutation Flow Shop, Total

Weighted Completion Time, Offshore platform maintenance

1. Introduction

In the context of the Oil and Gas industry, maintenance scheduling plays

a very important role (Ribeiro et al., 2011; Zarei et al., 2014; Fernandez Perez
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et al., 2018). One major challenge is related to programmed shutdown and

maintenance of oil platforms. Due to existing policies, in such schedules, a well-

defined set of operations must have their order of execution respected. These

tasks have to be performed on all equipment associated with a specific oil well

and include, for example, substitution of previously-installed provisional repairs,

corrosion removal, replacing damaged paint, and servicing pipes and water re-

injection pumps. Moreover, since maintenance tasks have to be executed on

every oil-well connected to the platform, they all have to be closed simultane-

ously. Oil wells will only reopen for production at the end of the process, as

soon as their associated maintenance operations finish.

The aforementioned process can be characterized as a permutation flow shop

scheduling (Pinedo, 2016) in which oil-wells are represented by jobs, and main-

tenance tasks by machines. Each oil-well is closed at the start of the schedule,

while its associated equipment undergoes a series of maintenance tasks that al-

ways follow the same order. The aim is to find a schedule that minimizes the

loss of oil production associated with each oil well’s flow rate and for how long

it remained closed, i.e., the total weighted completion time (TWCT) objective.

Such optimization generates huge financial gains, as more oil will be produced,

in the order of thousands of dollars.

The TWCT criterion is usually associated with production environments

where inventory levels and manufacturing cycle times are of critical concern.

With particular interest on the minimization of inventory or holding costs, some

production environments aim to minimize the total completion time, assuming

all jobs are equal in importance. On specific contexts, however, the importance

or value of each job may not be the same. For example, jobs may have different

unit costs and holding costs. As is the case for the oil industry, the cost criterion

of each job will depend on its completion time and also on its weight.

Solving this scheduling problem considering real-world characteristics is al-

ready a challenging task, which demands efficient solution approaches (Ho &

Chang, 1991; Rajendran & Ziegler, 1997). Furthermore, job processing times

are subject to uncertainty and no probability distribution is known. A viable
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alternative, adopted here, consists in applying Robust Optimization to obtain

a schedule hedging against worst-case scenarios.

Assuming processing times are uncertain and vary in a given interval, the ob-

jective of the present work is to provide efficient solutions for the m-machine Ro-

bust Permutation Flow Shop with the total weighted completion time objective

(RPFS-TWCT). The only information required is the lower and upper bounds

of processing times, which can be obtained from historical data. We are inter-

ested in a job permutation that minimizes the worst-case cost, for any possible

realization of job processing times under the budgeted uncertainty set (Bertsi-

mas & Sim, 2004). Unlike other robust optimization models, which provide only

one conservative solution, the budgeted approach allows the adjustment of the

solution’s level of conservatism according to the decision-maker’s risk-aversion.

Concerning uncertain processing times, scheduling problems that minimize

the total weighted completion time have been studied from various viewpoints

as, for example, single-machine scheduling heuristics (Allahverdi et al., 2014),

single-machine branch-and-bound (Pereira, 2016), m-machine heuristics based

on probabilistic analysis (Kaminsky & Simchi-Levi, 1998a), as well as stability

analysis methods (N. Sotskov. et al., 2011; Lai et al., 2018). To the best of

our knowledge, this is the first work to treat the m-machine robust permutation

flow shop problem under budgeted uncertainty, which minimizes the worst-case

weighted sum of job completion times. The solution method is partly based on

a previous work (Levorato et al., 2022), developed for the two-machine robust

permutation flow shop problem, with the makespan objective.

This text adopts the following structure. Section 2 introduces the classi-

cal deterministic Permutation Flow Shop Problem, minimizing total weighted

completion time. The m-machine Robust Permutation Flow Shop Problem is

presented in Section 4, together with seven proposed Robust Counterpart (RC)

formulations. Our exact solution approach based on Column-and-Constraint

Generation (C&CG) is explained in Section 5. An important enhancement to

the solution method, which uses a combinatorial branch-and-bound in the mas-

ter phase of C&CG, is discussed in Section 6. The experimental results are
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shown in Section 7, based on extensive computational experiments on three sets

of randomly-generated problem instances. Section 8 brings a case study applied

to the oil and gas industry, using real data from the operation history of two

Brazilian oil platforms. Finally, Section 9 brings the final discussions.

2. The deterministic Permutation Flow Shop Problem

This section presents the Permutation Flow Shop Problem (PFSP) to min-

imize the Total Weighted Completion Time (TWCT), also known as total

weighted flow time (Pinedo, 2016). For the sake of simplicity, we will refer

to this problem as PFSP-TWCT. Following the well-known α|β|γ1 notation for

scheduling problems, established by Graham et al. (1979), this problem is de-

noted as F |prmu|
∑

wjCj . Since job processing time values are assumed to be

known in advance, we will use the term deterministic when referring to this

version of the problem.

The problem can be stated as follows. Consider a production planning pro-

cess consisting of a set of jobs J = [n] to be executed in a set of machines

M = [m]2. Each job i ∈ J has an associated weight wi and a non-negative

processing time pr,i on machine r ∈ M, forming the matrix P ∈ R+
M×J. Each

job must be processed without preemption on each machine in the same order.

At any time, a machine cannot handle more than one job. Also, at any time,

a job can only be processed on one machine. We assume intermediate storage

between successive machines is unlimited. The permutation flow shop’s partic-

ularity is that the sequence in which the jobs are to be processed is the same for

all machines. Such sequence is defined by a permutation σ : {1, . . . , n} −→ J,
with σ(j) indicating the jth job to be executed. We call Σ the set of all permu-

tations of n jobs, hence σ ∈ Σ. Consider an operation Or,σ(j), concerning the

execution of the jth job on machine r. Its completion time, denoted by Cr,σ(j),

1Where α represents the machine environment, β stands for job characteristics, and γ
symbolizes the objective function. In our case: the flow shop problem, single job permutation,
minimizing total weighted completion time.

2We use the notation [n] = {1, . . . , n}.
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can be defined by the recurrence:

Cr,σ(j) =


pr,σ(j) if r = 1 and j = 1,

Cr,σ(j−1) + pr,σ(j) if r = 1 and j > 1,

Cr−1,σ(j) + pr,σ(j) if r > 1 and j = 1,

max(Cr,σ(j−1), Cr−1,σ(j)) + pr,σ(j) if r > 1 and j > 1.

The completion time of a job i is defined as its completion time on the last

machine Cm,i. The objective is to find a job sequence that minimizes the total

weighed completion times on the final machine, i.e., a permutation σ minimizing

φ(σ) =
∑

j∈{1,...n} wσ(j)Cm,σ(j).

The problem was proved strongly NP-hard by Garey et al. (1976) for in-

stances with two or more machines, when all job weights are equal. It was also

studied from the viewpoint of probabilistic analysis (Kaminsky & Simchi-Levi,

1998b), stability approach (Sotskov & Lai, 2012), heuristics (Gelders & Sam-

bandam, 1978; Miyazaki & Nishiyama, 1980; Rajendran & Ziegler, 1997; Wang

et al., 2013), combinatorial branch-and-bound (Chung et al., 2002), MIP-based

branch-and-bound (Yang & Wang, 2011; Vo & Lenté, 2014) and approximation

algorithms (Nagarajan & Sviridenko, 2009). Finally, exact solutions can be ob-

tained with MILP techniques, by adapting the objective function of existing

flowshop formulations. For an in-depth description of each MILP model, we

refer to the excellent works of (Tseng et al., 2004; Tseng & Stafford, 2008).

3. Literature review of the flow shop under uncertainty

This section provides an overview of the flow shop problem with uncertain

processing times, concerning Stochastic and Robust Optimization approaches.

In a survey of 100 papers that study uncertainty in different variations of

flow shop scheduling problems, González-Neira et al. (2017) listed the most

common uncertain parameters (i.e., processing times and machine breakdowns),

along with the approach used to deal with uncertainty. Most works are related

to Stochastic Optimization, including heuristics (Dodin, 1996; Elmaghraby &

Thoney, 1999; Baker & Trietsch, 2011; Framinan & Perez-Gonzalez, 2015),

simheuristics (Ferone et al., 2016), probabilistic hybrid heuristics (Laha &
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Chakraborty, 2007), branch-and-bound (Balasubramanian & Grossmann, 2002),

and simulation (Framinan et al., 2018).

It should be noted that Stochastic Optimization approaches model random

parameters with probability distributions, which may be hard to infer in certain

cases. Additionally, improving the expected value of a metric may not be the

best choice for processes involving only a small number of trials. In other words,

the benefits of optimizing the expected value shall only be visible in the long

term, after a large number of observations.

Robust Optimization techniques, on the other hand, require no assumptions

on the underlying probability distribution of uncertain data. They also enable

the incorporation of different approaches toward risk. The remainder of this

section will present a detailed review of existing works that apply RO to flow

shop scheduling problems.

3.1. Robust Optimization approaches

When solving robust scheduling problems, the objective is to optimize a

performance measure taking into account the worst-case scenario, under a wide

range of possible realizations of processing times. Two optimization criteria can

be used in robust scheduling (Aissi et al., 2009). The first and simplest one

is the minimax or absolute robust criterion. In a minimization problem, the

solution is found by minimizing the highest cost over all possible scenarios.

The other criterion is called minimax regret, and aims to find the least

maximum regret over all possible scenarios. Regret can be either defined as the

difference or the ratio between the resulting cost of the candidate decision and

the cost of the decision that would have been taken if uncertain input data were

known in advance (before the decision time, i.e., before solving the problem).

Regarding the uncertain nature of input data, scenarios represent the set

of possible realizations of processing times. When applying RO, there are two

usual ways of defining the scenario set. In the discrete case, an explicit scenario

list is given, i.e., one processing time matrix Pλ for each scenario λ. In the

interval case, a range [pLr,i, p
U
r,i] of lower and upper bounds of processing times
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is defined for each operation Or,i concerning job i executing on machine r.

Tables 1 and 2 summarize existing works regarding the Robust Permutation

Flow Shop Problem with the makespan objective and robust scheduling prob-

lems with the TWCT objective, respectively, in terms of optimization criterion,

solution approach (heuristics or exact methods), the number of machines, and

how processing time uncertainty was represented (discrete or interval).

Even though several solution methods have been developed for the Ro-

bust PFSP with the classical makespan objective (most of them for the 2-

machine case, as seen on Tab. 1), the same is not true for the TWCT objec-

tive (Tab. 2). To our knowledge, considering robust scheduling with weighted

and unweighted versions of the total completion time objective, works about

the robust flow shop are nonexistent, and only the single-machine scheduling

problem (SMSP) has been addressed. Based on the minimax regret criterion,

2-approximation (Kasperski & Zieliński, 2008), heuristics (Daniels & Kouvelis,

1995) and branch-and-bound (Daniels & Kouvelis, 1995; Pereira, 2016) algo-

rithms were proposed for the single-machine robust scheduling problem, while

heuristics (Yang & Yu, 2002; Allahverdi et al., 2014), stability analysis meth-

Criterion Heuristics / Approximation Exact methods
Minimax Regret 2 machines: Greedy (Kouvelis et al., 2000)D, I 2 machines:

3 machines: Evolutionary (Ćwik & Józefczyk, 2015)I Branch & Bound

m machines: Constructive (Ćwik & Józefczyk, 2018)I (Kouvelis et al., 2000)D, I

Scatter Search (Józefczyk & Siepak, 2013)I 2 jobs: O(m) (Averbakh, 2006)I

Minimax 2 machines: PTAS (Kasperski et al., 2012)D –
Minimax, 2 machines: SA and IG (Ying, 2015)I 2 machines: Column-and-Constraint
Budgeted uncertainty Generation (Levorato et al., 2022)I

Tab. 1 Summary of algorithms listed in the literature review regarding the Robust PFSP
makespan objective with processing time uncertainty (table adapted from Levorato et al.
(2022)). For each work, we specify how processing time uncertainty was represented: a D
means discrete scenario set; an I means interval scenario set.

Criterion Heuristics / Approximation Exact methods
Minimax Regret Single machine: 2-approx (unweighted version) Single machine: Branch & Bound

(Kasperski & Zieliński, 2008)I and heuristics (Pereira, 2016)I and Branch & Bound
(unweighted version) (Daniels & Kouvelis, 1995)I (unweighted version)(Daniels & Kouvelis, 1995)I

Minimax Single machine: Heuristics (Allahverdi et al., 2014)I, Single machine: Stability analysis
(Yang & Yu, 2002)D (N. Sotskov. et al., 2011; Lai et al., 2018)I,

Dynamic Programming O(2n) (Yang & Yu, 2002)D,
Branch & Cut(de Farias et al., 2010)D

Minimax, Single machine: Heuristics (unweighted version) Single machine: MILP(Tadayon & Smith, 2015)I,
Budgeted uncertainty (Lu et al., 2014)I MILP(unweighted version)(Lu et al., 2014)I

Tab. 2 Summary of algorithms listed in literature review, regarding robust scheduling prob-
lems with the TWCT objective and processing time uncertainty. For each work, we specify
how processing time uncertainty was represented: a D means discrete scenario set; an I means
interval scenario set.
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ods (N. Sotskov. et al., 2011; Lai et al., 2018), dynamic programming (Yang &

Yu, 2002) and branch-and-cut (de Farias et al., 2010) were developed for the

SMSP / minimax optimization criterion. Finally, simple iterative improvement

(SII) and simulated annealing (SA) heuristics (Lu et al., 2014), along with MILP

models (Lu et al., 2014; Tadayon & Smith, 2015) were developed for the SMSP

with minimax budgeted uncertainty.

As mentioned in the introduction, to the best of our knowledge, this is the

first research that applies budgeted uncertainty (Bertsimas & Sim, 2004) to the

m-machine robust permutation flow shop. Existing works on flow shop and

budgeted uncertainty are related to either single or two-machine variants of the

problem. In Bougeret et al. (2019), the complexity of the robust single-machine

scheduling problem, with the TWCT objective and budgeted uncertainty, was

shown to be weakly NP-hard if the budget parameter Γ = 1 and strongly NP-

hard for Γ > 1. Regarding the two-machine robust flow shop problem with the

makespan objective, budgeted uncertainty and processing time intervals, Ying

(2015) developed two metaheuristic algorithms to solve the problem (SA and

IG), but with the makespan objective. Finally, in a recent work (Levorato et al.,

2022), an exact solution approach was developed for the makespan problem,

based on Column-and-Constraint Generation.

4. The Robust PFSP to minimize the total weighted completion time

Different optimization criteria can be used to search for a robust solution.

This work focuses on the minimax or absolute robust criterion: the robust de-

cision looks for a solution that minimizes the highest objective value over all

possible scenarios, following a predefined uncertainty set.

This section starts with a definition of the RPFS-TWCT problem (Sec-

tion 4.1), followed by the uncertainty set adopted in this work, based on bud-

geted uncertainty (Section 4.2). Then, seven robust counterpart formulations

are proposed (Section 4.3), based on well-known Mixed-Integer Linear Program-

ming (MILP) formulations for the deterministic problem.
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4.1. Problem statement

Assume the matrix of individual processing times P = {pr,i, r ∈ M, i ∈ J}

contains uncertain data. A scenario λ is defined as a realization of uncertainty

and, for each possible λ, there is a unique matrix of processing times denoted as

Pλ = {pλr,i, r ∈ M, i ∈ J}. Let Λ be the set of all possible scenarios λ. Whenever

a matrix of processing times Pλ is known, an instance of the deterministic PFS-

TWCT is defined.

Let φ(σ,Pλ) be the total weighted completion time of a sequence σ ∈ Σ

given a scenario λ ∈ Λ. The objective of the RPFS-TWCT is to find a job

permutation σ ∈ Σ that minimizes the maximum possible total weighted

completion time over all scenarios λ ∈ Λ:

RPFS-TWCT: min
σ∈Σ

max
λ∈Λ

{φ(σ,Pλ)}. (1)

For any sequence σ ∈ Σ, the value

Z(σ) := max
λ∈Λ

{φ(σ,Pλ)} (2)

is called the worst-case total weighted completion time or robust cost for σ. A

maximizer in (2) is called a worst-case scenario for σ.

Remark that the RPFS-TWCT problem is NP-hard for m ≥ 2, following the

complexity of the deterministic problem.

4.2. Budgeted uncertainty set for the RPFS-TWCT problem

In Ying (2015), the three classical Robust Counterpart (RC) optimization

models (Soyster, 1973; Ben-Tal & Nemirovski, 2000; Bertsimas & Sim, 2004) are

compared in terms of the number of variables and required constraints, and if the

respective formulation is linear or not. When compared to the other RC mod-

els (Soyster, 1973; Ben-Tal & Nemirovski, 2000), the so-called budgeted uncer-

tainty model (Bertsimas & Sim, 2004) fits best for robust scheduling problems,

by providing a linear formulation that allows adjusting the level of conservatism

of the robust solution, without resulting in a substantial increase in problem

size. The inclusion of a budget parameter provides a compromise between ro-

bustness and optimality. It is possible to adjust the number of coefficients that
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simultaneously take their largest variations, based on application knowledge.

For the case of oil-well maintenance, the problem which will be analyzed in the

case study section, it is known that the probability of all maintenance tasks

simultaneously deviating to their worst-case execution times is low.

Next, the budget uncertainty set for the RPFS-TWCT problem is defined.

Consider two positive processing time matrices P={pr,i, r ∈ M, i ∈ J} and

P̂={p̂r,i, r ∈ M, i ∈ J}, that represent the nominal value of and the maximum

allowed deviation of P, respectively. The processing time of each operation Or,j

lies in the interval [pr,j , pr,j + p̂r,j ]. In order to apply budgeted uncertainty, we

introduce the budget parameter Γ ∈ Z+ :0 ≤ Γ ≤ mn, which denotes the max-

imum number of operations whose uncertain processing times can reach their

worst-case values. The discrete budgeted uncertainty set of operation processing

times, denoted as UΓ, can be defined as follows:

UΓ =

{
P = {pr,i} | pr,i = pr,i + δr,i p̂r,i, δr,i ∈ {0, 1},∀r ∈ M,∀i ∈ J;

m∑
r=1

n∑
i=1

δr,i ≤ Γ

}
, (3)

Given the uncertainty set UΓ, each scenario λ is described by one of the

infinite matrices in this set. For a given scenario λ, let δλr,i be the value defining

the deviation of the processing time regarding the execution of job i ∈ J on

machine r ∈ M, i.e., pλr,i = pr,i + δλr,ip̂
λ
r,i. Therefore, considering all jobs and

machines, the total number of operations whose processing time can deviate to

its maximum value is limited to Γ. When Γ = 0, the problem is equivalent

to the nominal problem, i.e., the deterministic PFSP-TWCT. If Γ = mn, we

obtain the box uncertainty set (Soyster, 1973). For a given value of Γ, there are(
mn
Γ

)
possible worst-case scenarios, given the budgeted uncertainty set UΓ.

4.3. Robust counterparts

A number of MILP models were proposed in the literature for the PFSP. We

now present the robust counterparts for the PFSP-TWCT, based on the follow-

ing seven formulations: Wilson (Wilson, 1989); TBA (Turner & Booth, 1986);

Wagner-WST2; TS2 and TS3 (Tseng & Stafford, 2008); Manne (Jr & Tseng,

1990) and Liao-You (Liao & You, 1992). In their original definition, the first five
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models rely on assignment constraints in order to find the position occupied by

each job in the schedule, while the last two apply disjunctive inequalities with

Big-M reformulation to determine if a job appears either before or after another

job in the sequence. For more details on the rationale behind each deterministic

PFSP model, including illustrative diagrams, we refer the reader to Tseng &

Stafford (2008).

It is worth noting that the first five models were further adapted for the

TWCT objective. Such adaptation involved additional constraints based on

the Big-M method to appropriately calculate the variables which represent the

completion time of each job i on the last machine. These variables, which are

not present in the original models, had to be defined for the correct calculation

of total weighted completion time.

4.3.1. Robust Counterpart for Wilson PFS Model

Wilson (1989) proposed a MILP model for the makespan-minimizing flow

shop scheduling problem, by applying sets of inequality constraints, based on

start time variables, of each job on each machine. In this work, we derived

a two-stage robust counterpart of his model, for the total weighted completion

time objective, with the following decision variables:

Zi,j =

{
1, if σ(j) = i (job i occupies position j in the sequence σ),
0, otherwise.

Bλ
r,j = start time of job σ(j) (in position j) on machine Mr given scenario λ.

Fλ
i = completion time of job i on machine Mm in scenario λ.

y = highest (worst-case) total weighted completion time, given all scenarios λ ∈ Λ.

Based on the above definitions, variables Zi,j are in the first stage, and

variables Bλ
r,j and Fλ

i are in the second stage of this robust counterpart. The

two-stage robust counterpart of Wilson model for the RPFS-TWCT can be
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formulated as follows:

Min y (4)

st
∑n

i=1 wiF
λ
i ≤ y, λ ∈ Λ, (5)

Bλ
1,1 = 0, λ ∈ Λ, (6)

Bλ
1,j +

∑n
i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,j = Bλ

1,j+1, j = 1, . . . , n− 1, λ ∈ Λ, (7)

Bλ
r,1 +

∑n
i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,1 = Bλ

r+1,1, r = 1, . . . ,m− 1, λ ∈ Λ, (8)

Bλ
r,j +

∑n
i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,j ≤ Bλ

r+1,j , r = 1, . . . ,m− 1, j = 2, . . . , n, λ ∈ Λ, (9)

Bλ
r,j +

∑n
i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,j ≤ Bλ

r,j+1, r = 2, . . . ,m, j = 1, . . . , n− 1, λ ∈ Λ, (10)

Fλ
i ≥ Bλ

m,j +
(
pm,i + p̂m,iδ

λ
m,i

)
Zi,j −Q(1− Zi,j), i = 1, ..., n, j = 1, ..., n, λ ∈ Λ, (11)∑n

i=1 Zi,j = 1, j = 1, . . . , n, (12)∑n
j=1 Zi,j = 1, i = 1, . . . , n, (13)

Zi,j ∈ {0, 1}, i, j = 1, . . . , n, (14)

Bλ
r,j ≥ 0, r = 1, . . . ,m, j = 1, . . . , n, λ ∈ Λ, (15)

Fλ
i ≥ 0, i = 1, . . . , n, λ ∈ Λ, (16)

y ≥ 0. (17)

The objective function (4) and constraint (5) state that this formulation aims to

find a robust schedule for the processing of n jobs that minimizes the weighted

sum of completion times (i.e., total weighted completion time) of the worst-case

scenario, among all possible scenarios λ ∈ Λ. Constraints (6)-(10) guarantee

that the robust schedule is feasible and that start time variables are appropri-

ately calculated, for each scenario λ. Constraints (11) are used to determine

the completion time of job i on the last machine m, for each scenario λ. In

these constraints, assume Q is a large-enough number. The same assumption

is made in all other formulations, using a big-M value Q. Constraints (12) and

(13) are the classical assignment constraints, ensuring, respectively, that each

job is assigned to one and only one sequence position, and that each sequence

position is filled by one and only one job. Finally, constraints (14)-(17) define

the domain of the variables.
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4.3.2. Robust Counterpart for TBA PFS Model

Relying on the assignment constraints of Wilson model, Turner & Booth

(1986) derived a MILP formulation for the PFSP, here called Turner–Booth

alternative (TBA) model. After deriving an equivalent mathematical expres-

sion for start time variables, in terms of processing and idle times of each job,

the authors applied variable substitution techniques, significantly reducing the

number of model constraints. We derived a two-stage robust counterpart of this

model, for the TWCT objective, with decision variables Zi,j , F
λ
i and y, as well

as the new ones described below:

Xλ
r,j = idle time on machine Mr before the start of job in sequence position j given

scenario λ.

Based on the above definitions, variables Zi,j are in the first stage, and

variables Xλ
r,j and Fλ

i are in the second stage of this robust counterpart. The

two-stage robust counterpart of TBA model for the RPFS-TWCT can be for-

mulated as follows:

Min y (18)

st (5), (12), (13), (14), (16), (17),

Xλ
1,j = 0, j = 2, . . . , n, λ ∈ Λ, (19)∑n
i=1

(
pr−1,i + p̂r−1,iδ

λ
r−1,i

)
Zi,1 +

∑j−1
q=1

∑n
i=1

(
pr,i − pr−1,i

)
Zi,q

+
∑j−1

q=1

∑n
i=1

(
p̂r,iδ

λ
r,i − p̂r−1,iδ

λ
r−1,i

)
Zi,q +

∑j
s=2

(
Xr,s −Xr−1,s

)
−

∑n
i=1

(
pr−1,i + p̂r−1,iδ

λ
r−1,i

)
Zi,j ≥ 0, r = 2, . . . ,m, j = 2, . . . , n, λ ∈ Λ, (20)

Fλ
i ≥

∑m−1
r=1

∑n
ℓ=1

(
pr,ℓ + p̂r,ℓδ

λ
r,ℓ

)
Zℓ,1 +

∑j
q=1

∑n
ℓ=1

(
pm,ℓ + p̂m,ℓδ

λ
m,ℓ

)
Zℓ,q

+
∑j

s=1 Xm,s −Q(1− Zi,j), i = 1, . . . , n, j = 1, . . . , n, λ ∈ Λ, (21)

Xλ
r,j ≥ 0, r = 1, . . . ,m, j = 1, . . . , n, λ ∈ Λ. (22)

The objective function (18) and constraints (5), (12) and (13) are as defined

in the previous formulation. Constraints (19)-(20) guarantee that the robust

schedule is feasible and that idle time variables are appropriately calculated, for

each scenario λ. Constraints (21) are big-M constraints used to determine the

completion time of job i on the last machine m, for each scenario λ. For an

illustrative diagram, we refer the reader to Fig. 2 in (Tseng & Stafford, 2008,

p. 1376). Finally, constraints (14), (16), (17) and (22) define the domain of the

variables.
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4.3.3. Robust Counterpart for WST2 PFS Model

Wagner (1959) proposed an all-integer programming model for a three-

machine deterministic flow shop, later extended to a m-machine MILP model

by Stafford (1988), and commonly named in the literature as Wagner model. In

2002, based on this model and works from other authors, Stafford and Tseng

released an improved model called WST and, later on, a second version called

WST2 (Tseng & Stafford, 2008), which enforces the initial condition that all

jobs are processed on the first machine without any in-sequence machine idle-

ness. In our research, we derived a two-stage robust counterpart of the WST2

model, for the TWCT objective, with decision variables Zi,j , X
λ

r,j , F
λ
i and y as

described in the previous formulations, and variables Y λ
r,j :

Y λ
r,j = idle time of job in sequence position j after it finishes processing on machine Mr

given scenario λ.

Variables Zi,j are in the first stage, and variables Xλ
r,j , Y

λ
r,j and Fλ

i are in the

second stage of this robust counterpart. The WST2 model for the RPFS-TWCT

can be formulated as follows:

Min y (23)

st (5), (12), (13), (14), (16), (17), (22),

Xλ
1,1 = 0, λ ∈ Λ, (24)∑n
i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,j+1 +Xλ

r,j+1 + Y λ
r,j+1 =

∑n
i=1

(
pr+1,i + p̂r+1,iδ

λ
r+1,i

)
Zi,j

+Xλ
r+1,j+1 + Y λ

r,j , r = 2, . . . ,m− 1, j = 2, . . . , n− 1, λ ∈ Λ, (25)∑n
i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,j+1 + Y λ

1,j+1 =
∑n

i=1

(
p2,i + p̂2,iδ

λ
2,i

)
Zi,j

+Xλ
2,j+1 + Y λ

1,j , j = 2, . . . , n− 1, λ ∈ Λ, (26)∑n
i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,2 +Xλ

r,2 + Y λ
r,2 =

∑n
i=1

(
pr+1,i + p̂r+1,iδ

λ
r+1,i

)
Zi,1

+Xλ
r+1,2, r = 2, . . . ,m− 1, λ ∈ Λ, (27)∑n

i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,2 + Y λ

1,2 =
∑n

i=1

(
p2,i + p̂2,iδ

λ
2,i

)
Zi,1 +Xλ

2,2, λ ∈ Λ, (28)∑n
i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,1 +Xλ

r,1 = Xλ
r+1,1, r = 1, . . . ,m− 1, λ ∈ Λ, (29)

Fλ
i ≥

∑j
p=1

∑n
x=1

(
pm,x + p̂m,xδλm,x

)
Zx,p +

∑j
p=1 X

λ
m,p −Q(1− Zi,j),

i = 1, . . . , n, j = 1, . . . , n, λ ∈ Λ, (30)

Y λ
r,j ≥ 0, r = 1, . . . ,m, j = 1, . . . , n, λ ∈ Λ. (31)

The objective function (23) and constraints (5), (12) and (13) are as defined in

the first formulation. Constraints (24)-(29) guarantee that the robust schedule
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is feasible and that idle time variables are appropriately calculated, for each

scenario λ. (30) are big-M constraints used to determine the completion time

of job i on the last machine m, for each scenario λ. Finally, constraints (14),

(16), (17), (22) and (31) define the domain of the variables.

4.3.4. Robust Counterpart for TS2 PFS Model

The TS2 MILP model for the regular flow shop is based on an earlier model

with the same name that was developed by Tseng & Stafford Jr (2001) for the

sequence-dependent setup times flow shop problem. This model uses the job

ending or completion time variables employed in other scheduling models, which

eliminates the need for the X and Y variables used in Wagner-WST2 model.

Besides adapting the TS2 model to the TWCT objective, we also derived a

two-stage robust counterpart with variables Zi,j , F
λ
i and y as described in the

first formulation, along with variables Eλ
r,j :

Eλ
r,j = completion time of job in sequence position j after it finishes processing on ma-

chine r given scenario λ.

Variables Zi,j are again in the first stage, while variables Eλ
r,j and Fλ

i are in

the second stage of this robust counterpart. The two-stage robust counterpart

of TS2 model for the RPFS-TWCT can be formulated as:

Min y (32)

st (5), (12), (13), (14), (16), (17),

Eλ
r,j+1 ≥ Eλ

r,j +
∑n

i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,j+1, r = 2 . . . ,m, j = 1, . . . , n− 1,

λ ∈ Λ, (33)

Eλ
r+1,j ≥ Eλ

r,j +
∑n

i=1

(
pr+1,i + p̂r+1,iδ

λ
r+1,i

)
Zi,j , r = 1 . . . ,m− 1,

j = 2, . . . , n, λ ∈ Λ, (34)

Eλ
1,j+1 = Eλ

1,j +
∑n

i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,j+1 j = 1, . . . , n− 1, λ ∈ Λ, (35)

Eλ
r+1,1 = Eλ

r,1 +
∑n

i=1

(
pr+1,i + p̂r+1,iδ

λ
r+1,i

)
Zi,1, r = 1, . . . ,m− 1, λ ∈ Λ, (36)

Eλ
1,1 =

∑n
i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,1 λ ∈ Λ, (37)

Fλ
i ≥ Eλ

m,j −Q(1− Zi,j) i = 1, . . . , n, j = 1, . . . , n, λ ∈ Λ, (38)

Eλ
r,j ≥ 0, r = 1, . . . ,m, j = 1, . . . , n, λ ∈ Λ. (39)

The objective function (32) and constraints (5), (12) and (13) are as defined in

the first formulation. Constraints (33)-(37) guarantee that the robust schedule
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is feasible and that completion time variables are appropriately calculated, for

each scenario λ. Constraints (38) are big-M constraints used to determine the

completion time of job i on the last machine m, for each scenario λ. Finally,

constraints (14), (16), (17) and (39) define the domain of the variables.

4.3.5. Robust Counterpart for TS3 PFS Model

Using an approach similar to the one applied in the TBA model, Tseng &

Stafford (2008) proposed a MILP formulation for the PFSP called TS3. By

applying variable substitution on Wilson model, the start time variable, for

a given r and j, is replaced by an expression that combines the sum of the

processing times of jobs in sequence positions 1 through j−1 on machine 1, and

the sum of the processing times of the job in position j on machines 1 through

r − 1, incremented of job’s idle times (following each of these same machines).

To apply Robust Optimization, we derived a two-stage robust counterpart of

the TS3 model, adapted to the TWCT objective, with variables Zi,j , F
λ
i , Y

λ
r,j

and y as previously defined.

As in previous formulations, variables Zi,j are in the first stage, while vari-

ables Y λ
r,j and Fλ

i are in stage two. The two-stage robust counterpart of TS3

model can be formulated as follows:

Min y (40)

st (5), (12), (13), (14), (16), (17), (31),

Y λ
r,1 = 0, r = 1, . . . ,m− 1, λ ∈ Λ, (41)∑n
i=1

(
p1,i + p̂1,iδ

λ
1,i − pr,i − p̂r,iδ

λ
r,i

)
Zi,j−1

+
∑r−1

q=1

∑n
i=1

(
pq,i + p̂q,iδ

λ
q,i

)(
Zi,j − Zi,j−1

)
+

∑r−1
q=1

(
Yq,j − Yq,j−1

)
≥ 0, r = 2, . . . ,m, j = 2, . . . , n, λ ∈ Λ, (42)

Fλ
i ≥

∑j
q=1

∑n
i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,q +

∑m
r=2

∑n
i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,j

+
∑m−1

r=1 Yr,j −Q(1− Zi,j), i = 1, . . . , n, j = 1, . . . , n, λ ∈ Λ. (43)

The objective function (40) and constraints (5), (12) and (13) are as defined

in the first formulation. Constraints (41)-(42) guarantee that the robust sched-

ule is feasible and that idle time variables are appropriately calculated, for

each scenario λ. Constraints (43) are big-M constraints used to determine the
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completion time of job i on the last machine m, for each scenario λ. Finally,

constraints (14), (16), (17) and (31) define the domain of the variables.

4.3.6. Robust Counterpart for Manne PFS Model

Manne (Manne, 1960) proposed a dichotomous-constraints integer program-

ming model for the general job shop problem. The model assures that, for two

jobs i and k, only one of each pair of completion-time subtraction constraints can

hold, i.e., job i either precedes job k somewhere in the processing sequence, or it

does not, thus implying that job k precedes job i. Later, Stafford and Tseng (Jr

& Tseng, 1990) adapted this model to a permutation flow shop (makespan ob-

jective). Based on this last model, we developed its robust counterpart, adapted

for the TWCT objective, with variables y as described in the first formulation,

along with the following decision variables:

Di,k =

{
1, if job i is scheduled any time before job k
0, otherwise.

Cλ
r,i completion time of job i on machine r given scenario λ.

In this two-stage RO formulation, Di,k are the first-stage variables, while

Cλ
r,i are second stage ones. The robust counterpart for Manne PFS model can

be formulated as follows.

Min y (44)

st
∑n

i=1 wiC
λ
m,i ≤ y, λ ∈ Λ, (45)

Cλ
1,i ≥ p1,i + p̂1,iδ

λ
1,i, i = 1, . . . , n, λ ∈ Λ, (46)

Cλ
r,i − Cλ

r−1,i ≥ pr,i + p̂r,iδ
λ
r,i, r = 2, . . . ,m, i = 1, . . . , n, λ ∈ Λ, (47)

Cλ
r,i − Cλ

r,k +QDi,k ≥ pr,i + p̂r,iδ
λ
r,i, r = 1, . . . ,m,

i = 1, . . . , n− 1, k = i+ 1, . . . , n, λ ∈ Λ, (48)

Cλ
r,i − Cλ

r,k ≤ Q(1−Di,k)− (pr,k + p̂r,kδ
λ
r,k), r = 1, . . . ,m,

i = 1, . . . , n− 1, k = i+ 1, . . . , n, λ ∈ Λ, (49)

Cλ
r,i ≥ 0, r = 1, . . . ,m; i = 1, . . . , n, λ ∈ Λ, (50)

Di,k ∈ {0, 1}, i = 1, . . . , n− 1, k = i+ 1, . . . , n, (51)

y ≥ 0. (52)

The objective function (44) and constraints (45) represent the worst-case

total weighted completion time objective, i.e., the minimization of the maximum

sum of the weighted completion time of all jobs on the last machine, given all
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scenarios λ ∈ Λ. Constraints (46) insure that the completion time of each job on

machine 1 occurs no earlier than the duration of that job’s processing time on

machine 1. Constraints (47) insure that each job’s completion time on machine

r is no earlier than the job’s completion time on machine r − 1 plus the job’s

processing time on machine r (with or without deviation). Constraints (48)

and (49) are the paired disjunctive constraints, which insure that job i either

precedes job k or follows job k in the sequence, but not both. Finally, constraints

(50)-(52) define the domain of the variables.

4.3.7. Robust Counterpart for Liao-You PFS Model

Liao & You (1992) made algebraic combinations of each pair of Manne

disjunctive inequality constraints. As a result, they obtained one equality

constraint associated to a surplus variable, qr,i,k, related to the precedence

relationship of jobs i and k on machine r. To ensure feasibility, a second

constraint was added to impose an upper bound on these surplus variables.

Based on Liao-You model (makespan objective), we developed its robust

counterpart, adapted for the TWCT objective, with variables y as described

in the first formulation, along with the following additional decision variables:
Sλ
r,i start time of job i on machine r given scenario λ.

qλr,i,k surplus time related to the precedence relationship of jobs i and k on machine r
given scenario λ.

In this two-stage RO formulation, Di,k are, as in the previous model, the

first-stage variables, while Sλ
r,i and qλr,i,k are on the second stage. The robust
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counterpart for Liao-You PFS model can be formulated as follows.

Min y (53)

st (51), (52),∑n
i=1 wi(S

λ
m,i + pm,i + p̂m,iδ

λ
m,i) ≤ y, λ ∈ Λ, (54)

Sλ
r,i + pr,i + p̂r,iδ

λ
r,i ≤ Sλ

r+1,i, r = 1, . . . ,m− 1, i = 1, . . . , n, λ ∈ Λ, (55)

Sλ
r,i − Sλ

r,k +QDi,k − (pr,k + p̂r,kδ
λ
r,k) = qλr,i,k, r = 1, . . . ,m,

i = 1, . . . , n− 1, k = i+ 1, . . . , n, λ ∈ Λ, (56)

Q− (pr,i + p̂r,iδ
λ
r,i)− (pr,k + p̂r,kδ

λ
r,k) ≥ qλr,i,k, r = 1, . . . ,m,

i = 1, . . . , n− 1, k = i+ 1, . . . , n, λ ∈ Λ, (57)

Sλ
r,i ≥ 0, r = 1, . . . ,m; i = 1, . . . , n, λ ∈ Λ, (58)

qλr,i,k ≥ 0, r = 1, . . . ,m; i = 1, . . . , n− 1, k = i+ 1, . . . , n, λ ∈ Λ. (59)

The objective function (53) and constraints (54) represent the worst-case

total weighted completion time objective, i.e., the minimization of the maximum

sum of the weighted completion time of all jobs on the last machine, given all

scenarios λ ∈ Λ. Constraints (55) insure that each job’s start time on machine

r+1 is no earlier than the job’s start time on machine r plus the job’s processing

time on machine r (with or without deviation). Constraints (56) and (57) are

the paired disjunctive constraints, which insure that job i either precedes job k

or follows job k in the sequence, but not both. Finally, constraints (51), (52),

(58) and (59) define the domain of the variables.

RC Model Binary variables Continuous variables Constraints
Wilson

O(n2) O(λmn) O(λ(n2 +mn))
TBA
WST2
TS2
TS3
Manne O(n2) O(λmn) O(λmn2)
Liao-You O(n2) O(λmn2) O(λmn2)

Tab. 3 Size complexity of the robust counterpart MILP models.

Tab. 3 presents the size complexity of each robust counterpart MILP model

presented in this section. The number of binary variables remains the same of

the original deterministic models, as they consist of first-stage variables. Also

observe that the number of continuous variables as well as the number of con-
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straints grow proportionally to the number of scenarios λ, as expected in robust

counterpart formulations. Finally, the number of constraints in the assignment-

based models (first five models in Tab. 3) is now quadratic in n, due to the

calculation of the weighted completion time of each job, which requires the use

of n2 big-M constraints.

Solving each of the aforementioned models, for all possible scenarios λ ∈ Λ,

is unrealistic. Therefore, in the next section, we will describe an algorithm capa-

ble of obtaining optimal results for the RPFS-TWCT problem under budgeted

uncertainty, by considering a subset of relevant scenarios. Based on a robust

counterpart model and a chosen budget parameter Γ, the solution algorithm will

iteratively generate the necessary scenarios (and associated model constraints),

so that the Λ set will be expanded at each step. This results in the progressive

construction of a robust model which will ultimately solve RPFS-TWCT under

budget uncertainty level Γ, and for a specific set of input parameters P and P̂.

It is also worth noting that, by varying the value of Γ when solving each robust

counterpart model through this procedure, it is possible to obtain a family of

robust solutions with different degrees of conservativeness.

5. Column-and-Constraint Generation applied to the RPFS-TWCT

This section presents an exact method for solving RPFS-TWCT under bud-

geted uncertainty. Our approach is based on a cutting plane procedure for

two-stage RO problems, called Column-and-Constraint Generation (C&CG),

recently applied in the efficient solution of robust scheduling problems (Ruiz

Duarte et al., 2020; Silva et al., 2020; Levorato et al., 2022). Besides gener-

ating new constraints, as usual in this kind of method, each cutting plane of

C&CG is also associated with a set of new decision variables for the recourse

problem (Zeng & Zhao, 2013).

Given one of the robust counterparts presented in Section 4, the main idea is

to relax it into a master problem (MP) where each robust constraint is written

only for a finite subset of the uncertainty set, i.e., for a Θ ⊆ Λ. Then, given a
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feasible solution to the MP, this solution is checked for feasibility over the whole

set Λ, by solving a separation subproblem (SP). If the SP solution indicates

that one or more robust constraints become infeasible, the uncertainty set is

expanded by adding one or more scenario vectors to Θ. Whenever the mas-

ter problem is augmented, according to the column-and-constraint generation

procedure, the process is repeated.

For the RPFS-TWCT problem, the MP solution represents a permutation

σ where σ(j) is the order in which job j is executed. The separation problem is

then solved by the worst-case procedure, which, given the sequence σ, returns

the highest possible total weighted completion time under uncertainty set UΓ.

Since the uncertainty set UΓ, defined in Section 4, is polyhedral, the number of

possible extreme solutions that can be fetched by the procedure is finite, and

the C&CG algorithm certainly terminates (Zeng & Zhao, 2013).

5.1. C&CG algorithm

We describe the solution method in a general way that can be applied to

any two-stage RO formulation from Section 4.3. Following the structure of

the C&CG method, we define the Master Problem (MP) by choosing an ap-

propriate 2-stage RO formulation. Considering Θ = {λ1, . . . , λv} ⊆ Λ a sub-

set of scenarios, let Fmodel and Rmodel be the set of corresponding first-stage

and recourse decision variables of the RC model, respectively. For instance,

FWilson = {Zi,j,∀i, j = 1, . . . , n} and RWilson = {B(λ)
r,j ,F

(λ)
r,j ,∀λ ∈ Θ, r =

1, . . . ,m, j = 1, . . . , n}. The master problem (MP) is solved iteratively, with

each step generating a subset of problem constraints and associated recourse

variables R, regarding one newly-generated scenario λv ∈ Θ. The subset of

scenarios Θ is iteratively enlarged by solving the associated subproblem at each

iteration.

In order to generate the scenarios defined by Θ, we assume that an oracle can

obtain an optimal solution to the worst-case subproblem, based on the current

MP solution. At iteration v, for a given value of MP first-stage decision variables
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F , the subproblem SP is defined as:

(SP) Z(σ) = max
λv∈Λ

φ(σ,Pλv ) (60)

where job permutation σ is derived using MP optimal values of first-stage vari-

ables F at iteration v (either Z
(v)
i,j or D

(v)
i,j , depending on the RC model). The

oracle used to find the optimal solution λ∗
(v) for (SP) is the worst-case MILP

described in Section 5.2.

The C&CG method is presented in Algorithm 1, where LB denotes the

lower bound, UB denotes the upper bound, v is the iteration counter, and Θ

is the set of worst-case scenarios generated by the method. The procedure

starts by considering Θ with a single scenario in which no operation presents

processing time oscillation, and stops whenever the tolerance of optimality ϵ ∈

R+ is reached. It returns the optimal solution value of the robust problem, along

with the first-stage variables F∗, which represent the optimal permutation σ∗.

5.2. C&CG subproblem: worst-case evaluation based on a MILP model

Solving the SP problem in (60) consists in determining the worst-case real-

ization under the budgeted uncertainty set UΓ, for a specific sequence of jobs

σ = {σ(j), j = 1, . . . , n}. From equation (2), given a protection level Γ and

a schedule σ, we extend the definition of worst-case total weighted completion

time or robust cost to Z(σ,Γ) with the equation:

Z(σ,Γ) := max
Pλ∈ UΓ

{φ(σ,Pλ)}. (61)

We assume that parameter Γ, from the budgeted uncertainty set, is a non-

negative integer. Since any worst-case realization will use as much budget of

uncertainty as possible, we can expect that, for the optimal solution of (61),

with worst-case scenario λ∗
(v),

∑m
r=1

∑n
i=1 δ

λ∗

r,i = Γ.

The worst-case scenario, and associated robust cost, can be obtained by

solving the following proposed SP MILP. As input parameters, besides the pro-

cessing time matrices pr,i and p̂r,i, the SP MILP requires the budget parameter

Γ along with the sequence of jobs σ∗, provided by the current Master Problem

solution F∗. Since the proposed SP MILP relies on an assignment-based formu-
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Algorithm 1: Column-and-constraint generation algorithm

Set LB = −∞, UB = +∞, v = 1,Θ = {λ(0) : δ
(0)
r,i = 0, ∀r = 1, . . . ,m, i = 1, . . . , n};

while (UB − LB)/LB > ϵ do
if model=Wilson then Solve the MP defined in Section 4.3.1 with Λ := Θ ;
if model=TBA then Solve the MP defined in Section 4.3.2 with Λ := Θ ;
if model=WST2 then Solve the MP defined in Section 4.3.3 with Λ := Θ ;
if model=TS2 then Solve the MP defined in Section 4.3.4 with Λ := Θ ;
if model=TS3 then Solve the MP defined in Section 4.3.5 with Λ := Θ ;
if model=Manne then Solve the MP defined in Section 4.3.6 with Λ := Θ ;
if model=Liao-You then Solve the MP defined in Section 4.3.7 with Λ := Θ ;
Let (F∗

(v), y∗, R∗
model) be the MP optimal solution ;

Update LB := max
[
LB, y∗

]
;

Call the oracle to solve subproblem (SP) in (60) with F := F∗
(v) ;

Let (Z∗
(v), λ

∗
(v)) be the SP optimal solution value and associated worst-case

scenario, respectively ;

Update UB := min
[
UB, Z∗

(v)

]
;

if (UB − LB)/LB > ϵ then
Create recourse decision variables R(v) for scenario λ∗

(v) on MP ;

Update Rmodel := Rmodel ∪ {R(v)} ;

if model=Wilson then Generate MP constraints (5)-(11),(15)&(16) for λ∗
(v) ;

if model=TBA then Generate MP constraints (5),(16),(19)-(22) for λ∗
(v) ;

if model=WST2 then Generate MP constraints (5),(16),(22),(24)-(31) for λ∗
(v) ;

if model=TS2 then Generate MP constraints (5),(16),(33)-(39) for λ∗
(v) ;

if model=TS3 then Generate MP constraints (5),(16),(31),(41)-(43) for λ∗
(v) ;

if model=Manne then Generate MP constraints (45)-(50) for λ∗
(v) ;

if model=Liao-You then Generate MP constraints (54)-(59) for λ∗
(v) ;

Update Θ := Θ ∪ {λ∗
(v)} and set (v) := (v + 1) ;

Return UB, F∗
(v) ;

lation, an equivalent input matrix of assignment values z∗i,j needs to be derived

in the following way:

z∗i,j =

 1, if σ∗(j) = i (job i occupies position j in the sequence σ∗)

0, otherwise.
.

Problem variables

∆r,i =

 1, if job i will have its processing time deviated on machine r

0, otherwise.

Cr,j = completion time of job σ(j) (in position j) on machine r.

Er,j = receives the value corresponding to min(Cr,j−1, Cr−1,j).

Ar,j = contains the value of | Cr,j−1 − Cr−1,j |.

Dr,j = (binary) models the disjunction used to calculate Ar,j as an absolute value.

The worst-case MILP is stated as follows:
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Max
∑n

i=1 wi
∑n

j=1 Cm,jz
∗
i,j (62)

st C1,1 =
∑n

i=1(p1,i + p̂1,i∆1,i)z
∗
i,1, (63)

C1,j = C1,j−1 +
∑n

i=1(p1,i + p̂1,i∆1,i)z
∗
i,j , j = 2, . . . , n, (64)

Cr,1 = Cr−1,1 +
∑n

i=1(pr,i + p̂r,i∆r,i)z
∗
i,1, r = 2, . . . ,m, (65)

Er,j ≤ Cr,j−1, j = 2, . . . , n, r = 2, . . . ,m, (66)

Er,j ≤ Cr−1,j , j = 2, . . . , n, r = 2, . . . ,m, (67)

Ar,j ≥ Cr,j−1 − Cr−1,j , j = 2, . . . , n, r = 2, . . . ,m, (68)

Ar,j ≥ −(Cr,j−1 − Cr−1,j), j = 2, . . . , n, r = 2, . . . ,m, (69)

Ar,j ≤ Cr,j−1 − Cr−1,j +QDr,j , r = 2, . . . ,m, j = 2, . . . , n, (70)

Ar,j ≤ −(Cr,j−1 − Cr−1,j) +Q(1−Dr,j), r = 2, . . . ,m, j = 2, . . . , n, (71)

Cr,j ≤
∑n

i=1(pr,i + p̂r,i∆r,i)z
∗
i,j + Er,j +Ar,j , r = 2, . . . ,m, j = 2, . . . , n, (72)∑m

r=1

∑n
i=1 ∆r,i ≤ Γ , (73)

∆r,i ∈ {0, 1}, r = 1, . . . ,m, i = 1, . . . , n, (74)

Cr,j ≥ 0, r = 1, . . . ,m, j = 1, . . . , n, (75)

Ar,j ≥ 0, Er,j ≥ 0, Dr,j ∈ {0, 1}, r = 1, . . . ,m, j = 1, . . . , n, (76)

The objective function (62) states that, given a fixed job permutation z∗i,j , this

formulation aims to find a worst-case processing time scenario that maximizes

the weighted sum of completion times, among all possible scenarios defined by

UΓ. Constraints (63)-(64) are used to determine the completion time of the jobs

on the first machine, while constraints (65) define the completion time of the first

job on each machine r. For each machine r and job position j, constraints (66)

and (67) are used to calculate the minimum value between the completion time

of the previous job on the same machine (Cr,j−1) and the completion time of

the same job on the previous machine (Cr−1,j). Constraints (68)-(69), together

with disjunctive constraints (70)-(71) are used to determine the absolute value

of the difference between Cr,j−1 and Cr−1,j . These absolute values are used to

define the completion time Cr,j . Constraints (72) ensure that the completion

time Cr,j is bounded by the processing time of job σ∗(j) (in position j) on

machine r, plus the maximum of Cr,j−1 and Cr−1,j , which is equivalent to the

minimum of these two variables (Er,j) plus the absolute difference between the
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same two variables (Ar,j). Constraints (73) define the budget of uncertainty re-

garding the maximum allowed processing time deviations
∑m

r=1

∑n
i=1 ∆r,i given

the execution of all jobs i on all machines r. Finally, constraints (74)-(76) define

the domain of the variables.

We employed two strategies to improve the performance of the SP worst-case

MILP model. First, we adopted a problem-specific method when calculating

Big-M values, where each Q value varies according to the constraint it belongs

to. Second, in order to strengthen the formulation, the following valid inequality

was added, improving solution times by a factor of 10:

Ar,j = Cr,j−1 + Cr−1,j − 2× Er,j . (77)

The optimal solution of this MILP model, represented by ∆∗
r,i values, consists

in a valid worst-case scenario λ∗ under budget uncertainty set UΓ. Remark that

∆∗
r,i values are used to define δλr,i values for the scenario added to set Θ, and

used in the robust counterparts of the 2-stage RO models.

In the experiments shown in Section 7, the convergence of the C&CG method

was also accelerated by generating multiple worst-case scenarios at each itera-

tion, whenever possible.

Our computational experiments have evidenced that the limits of the pro-

posed C&CG solution method lie in the solution of the Master Problem. In

particular, we observed a high proportion of time spent when solving Master

Problems for instances with 15 jobs and 5 machines. Nonetheless, for the oil

and gas maintenance problem at hand, improved solutions are needed for in-

stances of this size. Therefore, in the next section, we will propose an algorithm

enhancement to overcome this limitation.

6. Hybrid C&CG Method

Unsurprisingly, the C&CG will suffer of computational limitation as instance

size grows, in particular when solving the Master Problem. For this reason, we

devise an improved MP solution method, which brings a combinatorial branch-

and-bound inside the MILP solver tree structure.

25



With this new approach, we implemented an alternative Master Problem

solution method for assignment-based and dichotomous-based Robust Counter-

parts. Similarly to the method presented in Algorithm 1, the alternative MP

solution method relies on a RC model invoked in an iterative way, based on a

list of C&CG cuts provided. We denote as Hybrid C&CG Method the C&CG

solution method that incorporates this new MP solution technique. The main

advantage relies on the alternative branching strategy employed, which provides

new information used to prune nodes, as well as a powerful combinatorial lower

bound.

The implementation of the hybrid C&CG method was based on the CPLEX

solver 20.1. Based on its branch callback, we developed a combinatorial branch-

and-bound emulation similar to Rubin (2014), which will be described next.

6.1. Branching strategy

Consider the search tree of the classic flow shop combinatorial branch-and-

bound (Lageweg et al., 1978), depicted in Fig. 1(a). The root node (at level

0) represents the null schedule. A given node N at level s represents a partial

schedule σ = (σ(1), . . . , σ(s)) of size s, indicating that job σ(j) occupies the

Root node
σ=∅

s = 1
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s = 1
σ=(2)

s = 1
σ=(n)

...

...
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no
 c

ut *

no cut

*
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ut *
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σ=(1,3)

*
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Meta
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...

...
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...

...
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...

......

...

(b) Emulated search tree

Root node
σ=∅

s = 1
σ=(1)

s = 1
σ=(2)

s = 1
σ=(n-1)

s = 1
σ=(n)

s = 2
σ=(1,2)

s = 2
σ=(1,3)

s = 2
σ=(1,n)

...
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... ... ...

... ... ...

(a) Original search tree

...

...

s = 2
σ=(1,2)

Fig. 1 (a) Search tree of the deterministic flow shop combinatorial branch-and-bound. (b)
Diagram illustrating how flow shop multi-way branching was performed in CPLEX.
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j-th position on each machine, for 1 ≤ j ≤ s, where 1 ≤ s ≤ n. Let U be the set

of jobs that are not included in the partial schedule σ, i.e., unscheduled jobs.

By placing any unscheduled job i in position (s + 1), we produce a child node

σi = (σ(1), . . . , σ(s), i), in level s+ 1.

It is clear that the flow shop search tree requires several branches at each

node. However, CPLEX allows the creation of at most two branches at a node.

To circumvent this limitation and produce more than two branches, we must

emulate multi-way branching by binary branching. To accomplish that, instead

of generating the branching tree of Fig. 1(a), we create a branching structure

following the diagram in Fig. 1(b). Consider an arbitrary node N from Fig. 1(a).

The new branching scheme produces exactly the same offsprings of each original

node, but in multiple levels. In this case, one branch is always one of the children

to be created (here called a permutation branch), while the second branch is a

duplicate of the parent node N, which we call a meta node.

Whenever a new permutation branch is created, an unscheduled job i will

be fixed in position j of the partial permutation σ. This new partial permuta-

tion has to be reflected, in some way, on the node information manipulated by

CPLEX, via a set of node cuts. For the flow shop MILP RC models at hand,

this means one or more binary variables must have their bounds fixed. Observe

that the other branch created, which contains the meta node, will receive no

additional node cuts associated to it, but will receive additional information

about the partial sequence generation.

For assignment-based flow shop RC models, variables Z will be fixed:

• Job i occupies sequence position j:

Zi,j := 1; (78)

• Job i cannot occupy any other position k rather than position j:

Zi,k := 0,∀k ̸= j; (79)

• No other job ℓ ̸= i can occupy position j:

Zℓ,j := 0,∀ℓ ̸= i. (80)

For dichotomous-based flow shop RC models, partial order variables D will
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be fixed:

• Set all jobs ℓ that come before job i in partial permutation σ:

Dℓ,i := 1, Di,ℓ := 0,∀ℓ ∈ σ, (81)

• All jobs ℓ that have not been scheduled yet will necessarily come after job i:

Di,ℓ := 1, Dℓ,i := 0,∀ℓ ∈ U. (82)

6.2. Improved lower bound

When solving the Master Problem, at each node of the B&B tree, in addition

to the branching strategy above, an extended combinatorial lower bound can

be applied as an additional criterion to prune nodes. Consider the MP is being

solved at iteration v of the hybrid C&CG method. At this point, a set of v − 1

C&CG cuts (i.e., violated scenarios λ) has already been generated and applied

to the MP RC model, as explained in Section 5.1. The list of existing C&CG

cuts can be then used to calculate the following combinatorial lower bound

LBMP :

LBMP = max
λ∈Λ

LBdet(P
λ), (83)

where LBdet is the lower bound of the deterministic PFSP-TWCT, assuming

scenario λ and processing time matrix Pλ.

To calculate (83), we applied the tight lower bound for the deterministic

problem described by Chung et al. (2002). These authors developed a branch

and bound algorithm to solve the m-machine permutation flowshop problem,

which assumes that a partial permutation is defined at each step. In their work,

they considered two possible objectives: the unweighted and weighted total

flow-time (i.e., TWCT). Their solution method efficiently handles test problems

with n ≤ 15, thanks to an improved machine-based lower bound, together with

a dominance test for pruning nodes.

It is worth noting that, despite the overhead from the combinatorial branch-

and-bound emulation, the use of the lower bound LBMP to prune nodes has

proved to be essential to the performance gains obtained with this new Master

Problem solution method.
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7. Experimental results

We conducted extensive experiments to assess the performance of the C&CG

solution method as well as the proposed Robust Counterpart formulations.

7.1. Test instances

In the flow shop literature, there is no set of benchmark instances for the

total weighted completion time objective. In order to verify the effectiveness of

the proposed algorithms, our experiments were based on three instance sets3 ob-

tained by adapting a robust PFSP instance generator described by Ying (2015).

(i) Two-machine robust PFSP instances with 10 jobs (10x2). In

his work, Ying (2015) proposed six groups of instances, each one with

a different number of jobs n ∈ {10, 20, 50, 100, 150, 200}. The expected

processing time pr,i (r = 1, 2; i = 1, . . . , n) is an integer drawn from the

uniform distribution [10, 50] and the largest processing time deviation is

set as a fixed ratio of the expected processing time (i.e., p̂r,i = αpr,i), with

α ∈ {10%, 20%, 30%, 40%, 50%}. Ten instances were generated for each

combination of n and α, for a total of 300 test instances.

(ii) Robust PFSP instances with 3, 4 and 5 machines. Following the

instance generation algorithm of Ying (2015), we generated random in-

stances with sizes n×m ∈ {10× 3, 10× 4, 10× 5, 15× 5}. Ten instances

were generated for each combination of m × n and α, for a total of 200

test instances.

(iii) Robust PFSP instances with random processing time devia-

tions. For each instance of the previous two sets with variability level

α = 10%, we generated 4 new instances with distinct variability levels

αr,i for each operation Or,i. First, we define a maximum variability level

αmax ∈ {30%, 50%, 100%, 200%}. Then, in each generated instance, the

variability level αr,i of each operation Or,i is drawn from a uniform distri-

3All test instances and results are available at https://github.com/levorato/RPFS_

Budget_TWCT.
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bution in the interval [0, αmax). Therefore, the maximum processing time

deviation of each operation equals p̂r,i = αr,ipr,i. The idea behind this

new set is to generate instances whose operation processing time deviation

follow a completely random behavior, when compared to the previous sets.

This way, we will be able to assess the impacts of such behavior on the

solution method.

Since all instances above are related to themakespan objective, no job weight

information is available. Thus, for each instance, job weights (wj , ∀j ∈ J)

were randomly generated, according to a uniform distribution in the interval

[1, 100]. These values are based on the job weight distribution from the real-

world instances studied in Section 8.

7.2. Computational environment and model observations

The C&CG algorithm was coded in Julia 1.6.0. CPLEX solver 20.1 was

used to solve the Master Problems (MP) and Gurobi solver 9.1 was used to

solve the subproblems SP, since it obtained improved performance in preliminary

experiments. The MILP time limit was set to 7,200 s and the number of threads

was set to 16. All experiments were conducted on a workstation with an Intel

Xeon® CPU E5640 @2.67GHz with 32 GB RAM, under Ubuntu 18.04 LTS. In

the C&CG algorithm, optimality gap tolerance ϵ was set to 10−8.

In the literature (Tseng & Stafford, 2008), empirical tests have shown that

the top 3 best performing PFSP MILP models are, in this order: TS3, TBA

and Wilson. In this work, we will observe that the performance obtained with

the PFSP robust counterparts is rather different to the existing performance of

deterministic PFSP MILP models.

7.3. Comparative performance of the Robust Counterpart models

With a particular interest in examining the impact of the budget of uncer-

tainty parameter on scheduling performance, when solving each instance, we

tested the RPFS-TWCT RC models by varying Γ according to ten ratios (10,

30



Model

Variable

% Best    Per
formance

% Solved
10x2

% Solved
10x3

% Solved
10x4

% Solved
10x5 % Solved Avg. % gap

Median
iterations Median time

Manne
Liao-You
Wilson
TS2
TS3
TBA
WST2 1,143.74

883.80
334.56
436.48
276.03

85.32
88.10

5.00
5.00
5.00
4.00
5.00
5.00
5.00

2.09
1.76
1.65
3.08
2.33
0.08
0.07

80.22
82.06
89.28
90.78
88.38
94.47
94.67

66.44
69.67
86.78
85.67
80.89
90.11
90.89

69.67
71.44
78.11
85.22
83.56
91.89
91.67

86.78
87.78
92.67
95.67
95.00
96.44
96.56

98.00
99.33
99.56
99.89
99.33
99.44
99.56

0.14
0.51
4.95
6.03

13.78
34.38
45.70

GeneralModelStatsNoHybrid

Sum of Value broken down by Variable vs. Model. The view is filtered on Model and Variable. The Model filter has multiple members selected.
The Variable filter has multiple members selected.
Tab. 4 Robust PFSP C&CG performance comparison, given all RC models and instances
solved. % Best Performance is the percentage of instances where the model achieved shorter
execution time (ties included); % Solved contains the percentage of instances solved within
the time limit; % Solved < n × m > represents the percentage of solved instances of size
n × m; Avg. % Gap is the average percentage gap of solutions from instances not solved to
optimality; Median time is the median execution time, in seconds; Median iterations is the
median of the number of iterations performed.

20, 30, 40, 50, 60, 70, 80, 90 and 100%) of operations with uncertain processing

times, rounded to their floor values.

Tab. 4 summarizes the obtained results with a performance comparison of

the RC models. In this table, we present medians to mitigate the effect of in-

stances not solved within the time limit. Manne C&CG is the one that solves the

majority of the instances. It also obtains the lowest average % gap for instances

not solved to optimality. The % Best Performance measurement indicates that

the Manne RC model solved 46% of instances with the best performance, fol-

lowed by Liao-You, that solved 34%, and Wilson, with 14%. Measurements %

Solved 10 × 4 and % Solved 10 × 5 reveal that the RC models which rely on job

assignment constraints solved less instances to optimality within the time limit.

The %Solved and Median time measurements also favor the dichotomous-based

RC models.

A second and deeper analysis, grouped by instance size, presents, in Tab. 5,

the average performance of each RC model, including average run time values.

When using average, the results of all instances (even outliers) are taken into

account. Standard deviation is also included as a secondary measure. Addition-

ally, the average number of iterations and its standard deviation are listed. As

we could expect, these results show that, as instance size grows, the RC models

become harder to solve, as seen on the smaller percentage of solved instances

and increased average execution time, mainly the Avg. MP time. In fact, our

results show that this is especially true for the assignment-based RC models. As
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Instance size Measure

ModelType  /  Model
Dichotomous-based

Manne Liao-You
Assignment-based

Wilson TS2 TS3 TBA WST2
10x2 % Best Performance

% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Std. dev. of iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time

10x3 % Best Performance
% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Std. dev. of iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time

10x4 % Best Performance
% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Std. dev. of iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time

10x5 % Best Performance
% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Std. dev. of iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time

546.95
105.37

0.95
104.42

66.12
8.64
0.00
0.00

99.44
17.43

532.32
113.79

0.85
112.94

56.32
7.69
0.00
0.00

99.56
36.83

1,354.99
666.47

0.37
666.10

2.47
3.98
0.85
0.78

98.00
0.11

944.73
376.07

0.51
375.57

4.71
3.93
0.68
0.52

99.33
1.23

604.03
210.67

0.55
210.11

16.31
4.57

11.39
5.78

99.56
0.78

802.44
316.95

0.39
316.55

3.53
3.81
0.00
0.00

99.89
12.90

618.42
137.43

0.38
137.05

19.00
5.60
0.18
0.07

99.33
31.10

1,386.44
486.82

9.19
477.63

67.38
17.70

0.21
0.04

96.44
32.26

1,317.86
424.00

7.35
416.65

76.10
18.87

0.00
0.00

96.56
49.65

2,559.65
2,305.87

3.47
2,302.40

4.18
5.71
1.68
1.23

86.78
0.00

2,440.00
2,157.40

5.53
2,151.87

3.36
5.62
8.64
2.26

87.78
0.00

2,104.25
1,280.56

4.36
1,276.20

5.21
6.17
1.71
1.20

92.67
8.15

2,005.33
1,387.32

8.13
1,379.19

7.62
6.20
1.63
1.20

95.67
6.85

1,888.22
1,153.05

8.97
1,144.08

7.72
6.21
9.66
4.88

95.00
6.78

2,018.60
976.31

46.19
930.11

77.97
24.42

0.35
0.11

91.89
60.27

2,047.19
1,022.92

52.43
970.49

69.66
23.26

0.33
0.12

91.67
30.26

2,881.46
3,573.12

28.33
3,544.79

3.48
6.25
2.89
2.25

69.67
0.48

2,819.48
3,429.51

34.56
3,394.95

3.78
6.57
2.79
2.20

71.44
0.31

2,828.57
2,578.52

53.68
2,524.83

6.47
7.73
2.51
2.04

78.11
4.13

2,568.41
2,278.23

43.88
2,234.34

6.80
7.75
2.34
1.98

85.22
2.09

2,643.78
2,124.98

48.41
2,076.57

18.05
10.11

2.20
1.65

83.56
10.11

2,166.21
1,112.08

229.35
882.73
100.17

32.64
0.26
0.08

90.11
29.10

2,086.74
1,003.53

196.24
807.29
109.28

35.26
0.16
0.04

90.89
66.95

2,878.93
3,834.10

298.72
3,535.38

4.75
5.93
5.82
2.37

66.44
0.00

2,916.78
3,420.57

177.76
3,242.81

6.61
6.79
1.64
1.16

69.67
0.32

2,523.15
2,057.77

206.78
1,850.99

4.90
6.72
1.40
1.11

86.78
7.09

2,532.00
2,251.50

280.31
1,971.19

12.17
8.03
1.65
1.10

85.67
1.04

2,726.14
2,412.85

208.22
2,204.63

12.70
8.23
1.56
1.15

80.89
4.40

SpecificModelStatsNoHybrid

ZN(LOOKUP(SUM([Value]), 0)) broken down by ModelType and Model vs. Instance size and Measure. The view is
filtered on Instance size and Measure. The Instance size filter has multiple members selected. The Measure filter
keeps 10 members.

Tab. 5 Robust PFSP C&CG performance comparison, for each instance size n×m and RC
model. % Best Performance is the percentage of instances where the model achieved shorter
execution time (ties included); % Solved contains the percentage of instances solved within
the time limit; Avg. % Gap and Std. dev. of % Gap are the mean and standard deviation
of the percentage gap of solutions from instances not solved to optimality; Avg. iterations
and Std. dev. of iterations are the mean and standard deviation of the number of iterations
performed; Avg. time MP(SP) is the average time to solve the Master(Sub) Problem; Avg.
time and Std. dev. of time are the mean and standard deviation in solution time (in seconds),
respectively.

instance size grows, the harder to solve these models at each C&CG iteration,

with more time spent at each iteration and less iterations performed on average.

A complementary investigation, based on the α and αmax parameters, is

portrayed in Tab. 6. In this context, we explore solution statistics regarding the

four best performing models, when solving 10 × 5 instances. It is possible to

note the decrease of model performance as the α and αmax values grow. This

can be observed in the % Solved, Avg. % gap and Avg. time rows, from columns

α = 10% until α = 50%, and from columns αmax = 30% until αmax = 200%.

32



Instance .. Model Variable
Alpha

α=10% α=20% α=30% α=40% α=50% αᵐᵃˣ=30% αᵐᵃˣ=50% αᵐᵃˣ=100% αᵐᵃˣ=200%
10x5 Manne % Best Performance

% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time

Liao-You % Best Performance
% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time

TS2 % Best Performance
% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time

Wilson % Best Performance
% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time

1,350.03
851.52
214.94
636.58

12.36
0.08
0.57

98.00
67.01

861.10
455.43

89.68
365.75

8.82
0.00
0.00

100.00
65.98

1,419.05
506.97

81.86
425.11

24.29
0.00
0.00

96.00
80.21

719.07
164.85

13.88
150.97

6.71
0.00
0.00

99.00
60.61

2,960.42
2,573.06

575.86
1,997.19

82.81
0.20
0.06

73.00
38.89

3,052.05
2,454.41

457.65
1,996.76

95.02
0.11
0.03

73.00
75.00

2,531.63
1,366.27

215.03
1,151.25

57.25
0.00
0.00

85.00
82.14

1,401.65
447.12
103.91
343.21

20.02
0.00
0.00

96.00
75.00

1,007.64
212.14

13.34
198.80

10.02
0.00
0.00

98.00
55.10

1,532.42
950.05
253.15
696.90

12.19
0.66
0.85

97.00
32.99

1,258.07
577.11
110.64
466.47

8.77
0.12
0.10

97.00
27.84

1,426.31
569.67

98.86
470.81

23.08
0.00
0.00

96.00
16.67

723.47
192.55

13.57
178.98

5.20
0.00
0.00

99.00
25.25

3,027.40
2,750.46

640.74
2,109.72

80.75
0.27
0.10

72.00
58.33

3,060.68
2,618.46

537.54
2,080.92

86.26
0.19
0.06

72.00
23.61

2,593.14
1,585.13

270.29
1,314.84

49.77
0.01
0.00

84.00
17.86

1,419.79
515.59
120.31
395.28

17.30
0.00
0.00

96.00
22.92

1,021.04
249.71

19.05
230.66

10.47
0.00
0.00

98.00
40.82

3,084.71
3,374.87

249.46
3,125.41

8.94
2.50
2.46

70.00
0.00

2,468.36
1,927.04

126.85
1,800.18

7.47
1.41
1.63

86.00
2.33

2,337.84
1,622.87

73.83
1,549.04

10.37
0.29
0.19

91.00
1.10

1,182.24
685.06

15.98
669.08

4.76
0.00
0.00

99.00
3.03

2,697.30
3,676.05

542.74
3,133.31

11.20
1.14
0.89

70.00
0.00

2,696.03
3,264.63

465.72
2,798.91

11.61
0.63
0.55

75.00
0.00

2,545.68
2,559.38

496.12
2,063.25

8.20
0.33
0.22

83.00
0.00

2,030.54
1,938.76

354.42
1,584.34

5.99
0.00
0.00

97.00
2.06

1,404.58
1,214.85

197.62
1,017.22

3.76
0.00
0.00

100.00
0.00

3,098.39
3,605.27

289.86
3,315.41

11.00
2.46
2.18

62.00
0.00

2,529.15
2,073.81

132.49
1,941.32

7.26
1.77
1.93

85.00
4.71

2,319.08
1,577.11

68.82
1,508.29

8.53
0.37
0.23

91.00
6.59

1,265.93
770.20

22.32
747.88

4.70
0.00
0.00

99.00
9.09

2,836.88
3,609.79

352.45
3,257.35

13.13
1.10
1.17

68.00
5.88

2,903.50
3,368.97

349.65
3,019.32

9.12
0.76
0.79

70.00
5.71

2,764.50
2,941.17

321.46
2,619.72

8.42
0.55
0.68

76.00
1.32

2,777.29
2,470.60

203.90
2,266.70

7.98
0.34
0.34

80.00
1.25

1,944.91
1,298.74

133.02
1,165.72

3.90
0.12
0.07

97.00
3.09

StatsPerAlphaNoHybrid

ZN(LOOKUP(AVG([Value]), 0)) broken down by Alpha vs. Instance size, Model and Variable. The view is filtered on Alpha, Instance size, Variable and Model. The Alpha filter keeps 9
members. The Instance size filter keeps 10x5. The Variable filter keeps 9 members. The Model filter keeps Liao-You, Manne, TS2 and Wilson.
Tab. 6 Robust PFSP C&CG performance comparison for instance size 10× 5, grouped by α
and αmax values, and RC model. % Best Performance is the percentage of instances where
the model achieved shorter execution time (ties included); % Solved contains the percentage of
instances solved within the time limit; Avg. % Gap is the average percentage gap of solutions
from instances not solved to optimality; Avg. iterations is the average number of iterations
performed; Avg. time MP(SP) is the average time to solve the Master(Sub) Problem; Avg.
time and Std. dev. of time are the mean and standard deviation in solution time (in seconds),
respectively.

Instance	size Variable
Model

TS2 Wilson Liao-You Manne Liao-You-Hybrid Manne-Hybrid Wilson-Hybrid TS3-Hybrid

15x5 %	Best	Performance
%	Solved
Avg.	%	gap
Std.	dev.	of	%	gap
Avg.	iterations
Std.	dev.	of	iterations
Avg.	MP	time
Avg.	SP	time
Avg.	time
Std.	dev.	of	time 5,902.38

9,870.92
780.12

9,090.81
3.20
5.82
7.20
5.00
48.22
36.34

5,902.10
9,813.64
920.33

8,893.31
3.63
5.83
7.39
5.29
47.33
36.61

5,755.23
10,332.97

988.21
9,344.76

2.48
5.91
5.53
3.59
41.67
26.95

5,220.83
11,436.49

640.71
10,795.78

1.85
4.76
6.19
4.04
31.78
5.59

3,302.32
13,320.34
2,101.60
11,218.73

1.49
3.31
8.42
4.62
14.15
0.00

2,907.75
13,516.42
1,834.73
11,681.69

1.23
3.00
10.15
6.16
12.98
0.00

2,849.15
13,635.67

358.64
13,277.03

0.87
3.05
11.75
7.46
6.90
0.00

1,222.25
14,124.64
3,050.96
11,073.67

0.73
2.14
14.53
20.13
5.71
0.00

SpecModelSWithHybrid-15x5

Sum	of	Value	broken	down	by	Model	vs.	Instance	size	and	Variable.	The	view	is	filtered	on	Variable,	Model	and	Instance	size.	The	Variable	filter	excludes	#	instances	solved,	95%	CI	of	%
gap	and	Null.	The	Model	filter	excludes	7	members.	The	Instance	size	filter	keeps	15x5.
Tab. 7 Robust PFSP C&CG performance comparison, for instance size 15 × 5, RC mod-
els TS2, Wilson, Liao-You and Manne, along with Hybrid C&CG models Liao-You-Hybrid,
Manne-Hybrid, Wilson-Hybrid, and TS3-Hybrid. % Best Performance is the percentage of
instances where the model achieved shorter execution time (ties included); % Solved contains
the percentage of instances solved within the time limit of 14400s; Avg. % Gap and Std. dev.
of % Gap are the mean and standard deviation of the percentage gap of solutions from in-
stances not solved to optimality; Avg. iterations and Std. dev. of iterations are the mean and
standard deviation of the number of iterations performed; Avg. time MP(SP) is the average
time to solve the Master(Sub) Problem; Avg. time and Std. dev. of time are the mean and
standard deviation in solution time (in seconds), respectively.

According to our experiments, the Liao-You and Manne robust counter-

parts are the ones that perform best when solving the RPFS-TWCT problem.

Regarding the % Best Performance measure, these two RC models dominate
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every other model, regardless of the α(αmax) value. Together with the % Solved

measure, this indicates that the dichotomous-based RC models are the best

choice when solving 10 × 5 instances. The possible reason is related to how

the objective function is calculated in each robust counterpart model. In all

assignment-based RC models (namely Wilson, WST2, TBA, TS2 and TS3),

when calculating the total weighted completion time, we multiply the weight

of job i by its corresponding completion time. However, in these models, there

are no variables representing the completion time of job index i. Instead, they

represent the completion time of job in position k. To properly calculate the

objective function, the adopted solution involves the creation of an auxiliary

variable Fi, representing the completion time of job i (on the last machine

Mm). Then, in order to calculate each value of Fi, it is necessary to apply

several Big-M constraints, which make the MILP model relaxation weaker.

On the other hand, the Liao-You and Manne robust counterparts, which are

based on disjunctive constraints, directly offers these variables which represent

the completion time of job index i, so the only Big-M constraints in the model

are the ones already present in the original model.

Finally, when solving the 15× 5 instances, the largest ones in the test-bed,

we perceived a drastic performance reduction of the algorithm. For this reason,

besides extending the time limit parameter to 14, 400 seconds, we chose to solve

these instances with the four best performing RC models so far: Manne, Liao-

You, TS2 and Wilson. As shown in Tab. 7, the percentage of solved instances

drops from 98% to 14% when applying the best-performing Manne RC model.

Also, when analyzing the % gap of instances not solved to optimality, the average

% gap is considerably higher in all models, as well as its variance. We can see

that, for these instances, the C&CG algorithm was not able to perform more

than 3 iterations on average.

7.4. Hybrid C&CG method performance

We will now discuss the performance of the hybrid algorithm enhancement,

designed to overcome the performance limitation observed when solving the
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C&CG master problems. In our experiments, the hybrid method was first used

to solve both 10× 4 and 10× 5 instances, using all seven RC models presented

in section 4.3 as a basis. The obtained results were then used to select the four

best-performing hybrid models: the two dichotomy models (Liao-You-Hybrid

and Manne-Hybrid) and theWilson-Hybrid and TS3-Hybrid assignment models.

Finally, these hybrid RC models were used to solve the larger 15× 5 instances.

The additional results obtained with the new hybrid solution method are

depicted in the last four columns of Tab. 7. The TS3-Hybrid model reached the

best performance, for solving the highest proportion of instances to optimality

(48%), and also for obtaining the lowest average gap (5.00%) of instances not

solved to optimality, when compared to the other RC models. Moreover, the

performance of Wilson-Hybrid and TS3-Hybrid models are practically equiva-

lent (Wilson-Hybrid achieved 47% of instances solved to optimality and 5.29%

of average gap). In general, all four hybrid solution methods achieved drastic

performance improvements when compared to the initial solution method re-

sults, where the best-performing conventional C&CG algorithm, Manne, had

obtained only 14% of instances solved to optimality, along with an average %

gap (standard deviation of % gap) of 4.62 (8.42), respectively.

One possible answer to the obtained results may be found in how the hy-

bridization of the solution method works. The partial permutation σ is built

iteratively, using the same job fixation order of the combinatorial branch-and-

bound method, i.e., fixing one job at a time, from left to right. Given this

solution representation, whenever a new job k is fixed in the partial permuta-

tion, new cuts have to be added to the existing MILP model of the corresponding

node in the B&B tree, in order to make the solutions from combinatorial B&B

and MILP compatible. Experimental data shows that, in the case of Wilson-

Hybrid and TS3-Hybrid methods, the cuts added to each node, which are based

on the job assignment binary variables Zi,j , turn out to be stronger than the

cuts added to the Liao-You-Hybrid and Manne-Hybrid RC models, which are

based on the job precedence variable Di,k.
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8. Case study on two real instances

In this section, we assess the quality and level of robustness of scheduling

solutions for two real problem instances, the first one representing a platform

with 9 oil-wells and 4 maintenance tasks (9× 4) and the second one a different

platform with size 15× 5. The processing time matrices p and p̂ were obtained

from the available operation history. The following solution methods were used:

• Det: deterministic PFSP solution (Wilson, 1989) withP={pr,i}, r ∈ M, i ∈ J.

• RPFS(Γ): TS3-Hybrid RPFS solution method, described in Section 6. The

Γ parameter is used to control the level of the conservativeness of the robust

model. Rounded to the floor value of the fraction of the number of operations

m×n, it varies from 5% to 100%, with 5% intervals. The robust counterpart

model with Γ = 0% is equivalent to Det, while the one with Γ = 100%

is the deterministic model that is entirely risk-averse and overestimates all

parameters. The other values of Γ model intermediate risk aversions.

• SimGRASP: stochastic PFSP simheuristic method from Ferone et al.

(2016), properly modified to find the schedule that minimizes the expected

total weighted completion time. SimGRASP is a modified GRASP meta-

heuristic that incorporates Monte Carlo Simulation to solve the PFSP with

random processing times. Given its stochastic nature, we obtained 25 inde-

pendent runs for each instance file. Then, for result comparison purposes,

for each independent run, we calculated the robust cost Z at each Γ pro-

tection level. Finally, we stored, for each instance, the smallest and largest

robust costs found within these 25 simheuristic executions. We call them

SimGRASP-Min(25) and SimGRASP-Max(25).

We assessed the robustness of each obtained solution σ by calculating the

robust cost at different protection levels Γ, using the worst-case MILP model

defined in Section 5.2. Fig. 2 depicts the robust cost Z(σ,Γ) of each solution σ

under different protection levels Γ. For clarity of the graphs, the robust costs

for some protection levels were omitted.

Observe that, as the protection level Γ increases, so does the robust cost, i.e.,
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the total weighted completion time (TWCT) of the worst-case scenario defined

by the protection level. In other words, higher values of Γ are equivalent to a

greater quantity of operations with deviated processing times, which directly

impacts the solution cost Z(σ,Γ). In the case studies from Fig. 2, the extreme

cases occur whenever Γ ≥ 60%, yielding the highest robust costs.

From the viewpoint of the decision-maker at the oil company who needs to

hedge against worst-case maintenance costs, it would be preferable to obtain a

solution method that performs well under different protection levels. With this

in mind, in the two graphs presented, we identify which scheduling method (and

respective solution) presents the best (smallest) robust cost, considering all Γ

values. Regarding the first graph (9× 4 instance), note that RPFS(10) offers

improved protection against worst-case scenarios for 10% ≤ Γ ≤ 20%, while

RPFS(25) is the best-performing robust solution considering 25% ≤ Γ ≤ 35%.

Finally, RPFS(50) is indicated for higher protection levels Γ ≥ 45%. We also

highlight the disappointing worst-case performance of both the nominal solu-

tion Det and the stochastic method. The vast distance between the robust

costs of the stochastic method, i.e., SimGRASP-Min(25) and SimGRASP-

Max(25), reveals a significant exposure to the realization of worst-case scenar-

ios, which is represented by the highlighted area in the graph.

In its turn, the larger instance (15×5) presents a distinct behavior in robust

cost differences between distinct protection levels. In Fig. 2(b), we can observe

that RPFS(50) presents the best overall protection against worst-case scenar-

ios, considering Γ ≥ 20%. Once again, the solutions Det and SimGRASP-

Max(25) present high robust costs. In particular, for Γ = 30%, the robust

cost provided by RPFS(35) is 2% cheaper than Det and 3% cheaper than

SimGRASP-Max(25).

In summary, the choice of a robust solution depends on the instance and the

desired protection level. The examples above illustrate how RPFS can provide

a pool of robust schedules, depending on the value of Γ. With these options, the

decision-makers can choose one of the schedules based on their risk preferences.

Also, remark that, if the stochastic heuristic method is chosen, depending on
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the solution returned by the algorithm, the worst-case performance may be

weak, as can be seen on the robust costs achieved by SimGRASP-Max(25).

Indeed, neither SimGRASP nor the deterministic models have the objective

of minimizing the worst-case TWCT.

8.1. Analysis based on Monte-Carlo simulation

As a complementary analysis, we evaluate the expected behavior of obtained

problem solutions. The TWCT distribution of the obtained robust schedules

was simulated by subjecting the processing time matrix to random perturba-

tions. In particular, in each Monte Carlo simulation run, the (actual) processing

time p̃r,i,∀r ∈ M, i ∈ J, was independently drawn from a predefined probability

distribution, yielding a random processing time matrix P̃ . For this purpose, we
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Fig. 2 Robust cost of deterministic, RPFS and SimGRASP solutions versus protection level
Γ%. All presented RPFS solutions are optimal.
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used lognormal, symmetric triangular, and uniform distributions in [p− p̂, p+ p̂]

to generate random processing times. We generated 10, 000 processing time

matrices P̃ . Then, for each RPFS(Γ) solution σΓ, obtained with a specific pro-

tection level Γ, we processed the set of all corresponding TWCT values φ(σΓ, P̃ )

obtained through simulation on P̃ . The same was made for the solutions re-

turned by Det and SimGRASP-Min(25).

We first focus on simulation results presented in Fig. 3(a). Regarding the

9 × 4 instance, we can observe that, in the long run, the TWCT performance

of RPFS(5), RPFS(10) and RPFS(25) are equivalent to SimGRASP, a

method specialized at optimizing the expected TWCT. On the other hand, as

stated in the worst-case analysis of Fig. 2(a), not all schedules are sufficiently

immune against worst-case scenarios. For instance, if the decision-maker as-

sumes an intermediate protection level of Γ ≤ 35%, the two most appropriate

schedules, with smallest robust costs, are RPFS(25) and RPFS(10).
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Fig. 3 Probability distributions of TWCT value for RPFS(Γ), Det and SimGRASP solutions,
according to simulation results from lognormal, triangular, and uniform distributions for un-
certain processing times.
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Measure
Method

RPFS(5) RPFS(10, 20) RPFS(15) RPFS(20) RPFS(25,30,35) RPFS(40, 45) RPFS(50,...,100) Det SimGRASP
D

is
tr

ib
ut

io
n

lo
gn

or
m

al
E(𝜑(σ))
SD(𝜑(σ))
VaR(𝜑(σ))
CVaR(𝜑(σ))
Max(𝜑(σ))

tr
ia

ng
ul

ar

E(𝜑(σ))
SD(𝜑(σ))
VaR(𝜑(σ))
CVaR(𝜑(σ))
Max(𝜑(σ))

un
if

or
m

E(𝜑(σ))
SD(𝜑(σ))
VaR(𝜑(σ))
CVaR(𝜑(σ))
Max(𝜑(σ))

52,028 52,340 51,647 52,340 51,548 54,375 54,221 51,774 52,254
6,619 6,606 6,820 6,606 6,941 6,749 6,772 6,841 6,725
63,528 63,812 63,712 63,812 63,939 66,126 65,959 63,751 63,972
66,839 67,319 67,344 67,319 67,843 69,442 69,447 67,677 67,532
79,857 82,729 83,287 82,729 82,151 83,973 82,780 84,934 86,193
65,110 65,854 64,481 65,854 64,435 68,049 67,890 65,121 65,599
6,739 6,687 7,176 6,687 7,392 6,893 6,946 7,027 6,865
76,531 77,215 76,973 77,215 77,362 79,567 79,620 77,399 77,372
79,360 80,181 80,060 80,181 80,801 82,532 82,649 80,683 80,383
90,901 94,283 93,286 94,283 93,362 96,123 96,399 96,200 97,623
68,566 69,399 67,838 69,399 67,730 71,538 71,426 68,739 69,143
9,153 9,066 9,706 9,066 9,878 9,331 9,414 9,432 9,280
83,425 84,246 83,831 84,246 84,266 86,717 86,839 84,490 84,393
86,487 87,533 87,398 87,533 88,013 90,096 90,223 88,086 87,699
98,076 100,090 100,462 100,090 102,587 102,107 102,600 101,782 102,039

MIN-MAX-V
Max
Min
Neither

Tab. 8 Simulation summary for instance 9× 4 with RPFS(Γ), Det and SimGRASP solutions
after 10, 000 simulation runs under lognormal, triangular, and uniform distributions of opera-
tion processing times. Minimum and maximum values, for each row, are highlighted. Similar
robust solutions for different Γ values are grouped in the same column (e.g., RPFS(10, 20)).

When analyzing the 15×5 instance in Fig. 3(b), the following robust solutions

present expected TWCT performance quite similar to SimGRASP:RPFS(5),

RPFS(15) and RPFS(35). Taking the worst-case evaluation into account and

considering a protection level 15% ≤ Γ ≤ 40%, these three robust solutions

also provide better protection against worst-case costs, when compared to the

stochastic solution method.

Finally, Tab. 8 presents some statistics related to the simulation of process-

ing times of the 9 × 4 instance. In this analysis, whenever the same robust

solution has been obtained for more than one Γ parameter value, their (equiv-

alent) statistics were reported in the same column. Given 10, 000 processing

time matrices P̃ obtained after simulation runs, let φ(σ) be the random cost

(TWCT ) of scheduling σ, which depends on the realization of P . E(φ(σ)) and

SD(φ(σ)) are empirical estimations of expectation and standard deviation of

φ(σ), respectively. Also, V aR(φ(σ)) and CV aR(φ(σ)) are the value-at-risk and

conditional value-at-risk of φ(σ), respectively, both at 95% confidence level.

In other words, V aR(φ(σ)) is equivalent to the 0.95 quantile of φ(σ), while

CV aR(φ(σ)) represents the average of the largest 5% values of φ(σ). Finally,

Max(φ(σ)) is the maximum observed φ(σ) in the simulation.

Observe that RPFS(25,30,35) has the least E(φ(σ)) in all distributions.

When analyzing the largest observed TWCT, RPFS(5), has the lowest

Max(φ(σ)) for lognormal, triangular and uniform distributions. The best solu-
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tions for Det and SimGRASP did not provide minimum values for any mea-

sure of the simulated distributions. Indeed, SimGRASP presented the worst

values for the largest observed TWCT in lognormal and triangular distributions.

Also, by analyzing the smallest maximum TWCT obtained in triangu-

lar distribution simulations, the value Max(φ(σ)) observed for scheduling

RPFS(25,30,35) is 4.3% cheaper than SimGRASP, and, at the same time,

its expected TWCT is 1.8% less than the stochastic schedule. Following these

observations, the decision-maker of the oil company can evaluate the hedge

provided by the obtained robust solutions, and choose a specific solution (and

associated protection level) that does not cause a significant increase in the ex-

pected solution cost, when compared to stochastic and deterministic solutions.

8.2. Evaluating hedge value and price of robustness

Given a protection level Γ, besides robust cost Z, two other measures can be

used to evaluate performance: hedge value H and price of robustness η, defined

as:

H(Γ) = Z(σ̄∗,Γ)−Z(σ∗
Γ,Γ), (84)

η(Γ) = φ(σ∗
Γ, P )− φ(σ̄∗, P ), (85)

where σ∗
Γ is the optimal solution of RPFS(Γ), σ̄∗ is the optimal solution of

Det(P=), and φ(.) is the TWCT function.

The first measure, H(Γ), represents the value gained from adopting the ro-

bust sequence σ∗
Γ, instead of the optimal nominal sequence σ̄∗ in the occurrence

of the worst-case scenario associated with protection level Γ. A visual interpre-

tation of H(Γ) can be made in Fig. 2, by analysing to the robust cost difference

between the solutions from Det (σ̄∗) and RPFS(Γ) (σ∗
Γ) methods, at each pro-

tection level Γ. The second measure, η(Γ) is defined as the price paid by the

decision-maker for employing the robust sequence σ∗
Γ in place of the optimal

nominal sequence σ̄∗ in the scenario of nominal processing times (when P = P ,

i.e., no processing time deviations). In other words, H(Γ) can be seen as the

regret of employing sequence σ̄∗ in the worst-case scenario, and η(Γ) represents

the trade-off between robustness and optimality.
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Γ %

Instance Name  /  Measure
9 x 4

η % H %
15 x 5
η % H %

0
5
10
15
20
25
30
35
40
45
50
55
60
70
80
90
100 4.22%

4.22%
4.22%
4.22%
4.39%
4.36%
4.23%
4.26%
3.92%
3.97%
3.85%
3.73%
2.30%
1.02%
2.24%
4.69%
0.00%

6.87%
6.87%
6.87%
6.87%
6.87%
6.87%
6.87%
7.47%
7.47%
2.28%
2.28%
2.28%
2.97%
1.95%
2.97%
2.11%
0.00%

1.42%
1.42%
1.43%
1.55%
1.64%
1.63%
1.77%
1.87%
1.98%
1.95%
1.90%
2.33%
1.72%
1.75%
0.82%
1.62%
0.00%

4.86%
4.86%
4.86%
4.86%
4.91%
5.35%
4.58%
4.97%
4.74%
3.47%
5.70%
4.50%
4.86%
2.72%
1.69%
1.81%
0.00%

Tab. 9 Relative robustness price η(Γ)% and hedge value H(Γ)% for instances 9×4 and 15×5.

Γ %

Distribution  /  Measure
lognormal
ω Δ𝜂

triangular
ω Δ𝜂

uniform
ω Δ𝜂

5
10
15
20
25
30
35
40
45
50
55
60
70
80
90
100 4.7%

4.7%
4.7%
4.7%
4.7%
4.7%
4.7%
5.0%
5.0%
-0.4%
-0.4%
-0.4%
1.1%
-0.2%
1.1%
0.5%

12.1%
12.1%
12.1%
12.1%
12.1%
12.1%
12.1%
13.5%
13.5%
52.2%
52.1%
52.2%
34.5%
53.9%
34.5%
44.6%

4.3%
4.3%
4.3%
4.3%
4.3%
4.3%
4.3%
4.5%
4.5%
-1.1%
-1.1%
-1.1%
1.1%
-1.0%
1.1%
0.0%

9.0%
9.0%
9.0%
9.0%
9.0%
9.0%
9.0%
10.9%
10.8%
62.0%
62.0%
62.0%
31.3%
68.5%
31.3%
49.7%

3.9%
3.9%
3.9%
3.9%
3.9%
3.9%
3.9%
4.1%
4.1%
-1.5%
-1.5%
-1.5%
1.0%
-1.3%
1.0%
-0.3%

15.8%
15.8%
15.8%
15.8%
15.8%
15.8%
15.8%
17.1%
17.1%
63.6%
63.6%
63.6%
36.0%
67.4%
36.0%
52.6%

Tab. 10 Simulation results for instance 9 × 4, for different protection levels Γ ∈
{5%, 15%, . . . , 100%}. Comparison is based on two measures: (i) ω(Γ) is the % of simu-
lated scenarios (over a total of 10,000) where RPFS(Γ) obtained smaller TWCT cost when

compared to Det(P=); (ii) ∆η(Γ) = Avgλ∈S
[
φ(σ∗

Γ,Pλ)−φ(σ̄∗,Pλ)

φ(σ̄∗,Pλ)

]
is the average relative cost

difference between RPFS(Γ) and Det(P=), given all simulated scenarios λ.

Tab. 9 displays the relative price of robustness η(Γ)% =
φ(σ∗

Γ,P )−φ(σ̄∗,P )

φ(σ̄∗,P )

and hedge value H(Γ)% =
Z(σ̄∗,Γ)−Z(σ∗

Γ,Γ)
Z(σ∗

Γ,Γ)
for various protection levels, based

on the two instances from this case study. Among the schedules obtained when

solving RPFS with different Γ levels, the best ones, which maximize hedge value

H(Γ)%, are RPFS(5) for instance 9× 4, and RPFS(25) for instance 15× 5.

Based on the simulation framework presented in Section 8.1, we close this
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section with a further analysis of the actual cost overhead of robust solutions

in the long run. Two performance measures are calculated for instance 9 × 4,

as shown in Tab. 10. The obtained results show that, for the protection lev-

els Γ used in the study, robust solutions RPFS(15), RPFS(25), RPFS(30),

and RPFS(35) present two important characteristics: (i) high proportion of

cheapest solutions (ω(Γ) > 50%), and (ii) smaller expected costs, i.e., nega-

tive relative cost difference ∆η(Γ). All in all, RPFS provides a pool of robust

schedules decision-makers can choose based on their risk preferences.

9. Concluding remarks

This work provided an exact solution method for the m-machine robust per-

mutation flow shop problem to minimize the total weighted completion time.

The models developed in this work are based on budgeted uncertainty, a power-

ful tool for handling robustness and the trade-off between cost and risk, avoiding

the over-conservativeness of the conventional robust scheduling approaches.

As main contributions, besides proposing a set of benchmark instances for

the problem, we developed seven robust counterpart formulations, coupled

with an exact solution method based on Column-and-Constraint Generation

(C&CG). Additionally, we implemented a hybrid C&CG method which relies

on two strategies to enhance the processing of larger problem instances. First, a

branching strategy used in the combinatorial branch-and-bound for scheduling

problems. Second, a new lower bound for the robust problem, based on an exist-

ing bound used in the deterministic case. Computational experiments suggest

that the improved algorithm can handle test problems with n ≤ 15, reaching the

same instance-size limit of the best-performing deterministic solution methods.

Despite the longer average processing time required to solve the larger 15 × 5

instances, good-quality solutions were obtained by the hybrid C&CG based on

the TS3 formulation, with 48% of the instances solved to optimality. For the

remaining solutions, average gaps of 5% were obtained.

We have also assessed the cost of the solutions returned by the robust model
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and compared them to deterministic and stochastic solutions. According to

simulations based on three probability distributions, our solution method was

capable of protecting against worst-case scenarios, with just a small overhead

in the expected solution cost.

Experimental results indicate the feasibility of applying this robust solution

method to real-world problem instances, such as the ones from the oil and gas

industry, whose current solutions are obtained through methods that disregard

either uncertainty or the impact of worst-case scenarios. Based on their risk

preferences, decision-makers can then choose an appropriate schedule from a

pool of robust solutions, with different levels of exposure to uncertainty.

Future research may attempt to develop efficient heuristics to the problem,

which largely depends on the solution of the worst-case problem. Given that

the robust problem is NP-hard, this would be particularly important, and our

exact approach could therefore play a useful role in evaluating the performance

of any heuristic.
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