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Abstract 

Increasing the penetration of variable and uncertain renewables and electric vehicles in power systems may give rise 

to problems (such as network congestion and commitment mismatches) if not controlled strategically. This demands 

control solutions in the form of energy management strategies for active distribution networks which would control 

the connected distributed energy resources and storage units in real-time to address the mentioned challenges. 

Centralized strategies may fail to serve this purpose for large-scale distribution networks due to their inherent 

shortcomings like vulnerability to single point of failures and large computing times. Unlike centralized approaches, 

decentralized control strategies show more potential. This paper presents one such solution, based on an adaptive 

multi-agent system, to control a large-scale distribution network in real-time. Its performance is compared with the 

results obtained with the corresponding centralized optimization problem, modeled as a mixed integer linear 

programming problem. Both the centralized version and the decentralized multi-agent version of the problem under 

consideration are presented and a case study is designed for the comparison. The comparison shows that the designed 

multi-agent system produces a near-optimal solution in real-time while the centralized optimization strategy struggles 

in terms of computational complexities for larger distribution networks. 
 
Keywords: Active distribution networks; adaptive real-time control; electric vehicles; computational complexity; multi-agent system. 

Nomenclature 

𝑃𝑎(𝑡)   Bus a active power at time t 

𝑃𝑃𝑉,𝑎(𝑡)    Bus a PV production at time t  

𝑃𝑙𝑜𝑎𝑑,𝑎(𝑡)  Bus a load active power at time t 

𝑃̃𝐸𝑉,𝑎(𝑡)   Bus a planned EV active power at time t 

∆𝑃𝐸𝑉,𝑎(𝑡)  Bus a change in planned EV active power at time t 

𝑉𝑎(𝑡)   Bus a voltage at time t 

𝐼𝑎𝑏(𝑡)   Bus a to b electrical current at time t 

𝑆𝑜𝐶𝑎(𝑡)   Bus a EV’s state of charge at time t 

𝑆𝑜𝐶𝑎,𝑚𝑖𝑛  Bus a EV’s minimum state of charge at time t 

𝑆𝑜𝐶𝑎,𝑚𝑎𝑥   Bus a EV’s maximum state of charge at time t 
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𝑆𝑜𝐶𝑎,𝑚𝑖𝑛,𝑑𝑒𝑝𝑎𝑟𝑡   Bus a EV’s desired state of charge at its departure time 

𝑆𝑜𝐻𝑎(𝑡)   Bus a EV’s state of health at time t 

𝐸𝑏𝑎𝑡,𝑎   Bus a EV’s battery capacity 

𝑃𝐸𝑉,𝑐ℎ𝑟𝑔,𝑎(𝑡)  Bus a EV’s charging active power at time t 

𝑃𝐸𝑉,𝑑𝑖𝑠𝑐ℎ𝑟𝑔,𝑎(𝑡)  Bus a EV’s discharging active power at time t 

𝑃𝐸𝑉,𝑎,𝑚𝑎𝑥  Bus a EV’s rated active power 

𝑃𝐵𝑅𝑃   Active power consumption/production in the BRP perimeter 

𝑃̃(𝑁)   Active power commitment of the BRP during imbalance settlement period N 

N   Ongoing BRP imbalance settlement period 

𝑃̃𝑃𝑉(𝑡)   Planned day-ahead active PV production at time t 

𝑃̃𝑙𝑜𝑎𝑑(𝑡)   Planned day-ahead active load consumption at time t 

𝑃̃𝐸𝑉(𝑡)   Planned day-ahead active EV power at time t 

𝑒𝑃𝑉(𝑡)   Error in the predicted day-ahead PV forecast at time t 

𝑒𝑙𝑜𝑎𝑑(𝑡)   Error in the predicted day-ahead load forecast at time t 

𝐶𝑟𝑙(𝑡)   Criticality of the line agent at time t 

𝐶𝑟𝑖,𝑙(𝑡)   Incremental criticality of the line agent at time t 

𝐶𝑟𝑏(𝑡)   Criticality of the bus agent at time t 

𝐶𝑟𝑖,𝑏(𝑡)   Incremental criticality of the bus agent at time t 

𝐶𝑟𝐵𝑅𝑃(𝑡)  Criticality of the BRP agent at time t 

𝐶𝑟𝐸𝑉(𝑡)   Criticality of the EV agent at time t 

𝐶𝑟𝑎𝑛𝑡(𝑡)   Criticality of the antagonistic agent at time t 

𝐼(𝑡)   Electrical current at time t 

𝐼𝑚𝑎𝑥   Electrical current rated value 

𝑉(𝑡)   Voltage at time t 

𝑉𝑚𝑎𝑥   Voltage rated value 

𝑉𝑢   Voltage nominal value 

𝑡𝑎,𝑑𝑒𝑝𝑎𝑟𝑡   EV a departure time 

𝑡𝑟𝑝𝑒𝑟𝑖𝑜𝑑    Time remaining before the end of the current BRP imbalance settlement period 

𝐾𝑙    Line agent’s incremental criticality tuning parameter 

𝐾𝑏   Bus agent’s incremental criticality tuning parameter 

𝐾𝐵𝑅𝑃    BRP agent’s tuning parameter  

ℎ   Weighting function for the antagonist request 

𝜂𝑐ℎ𝑟𝑔   Charging efficiency of the EV 

𝜂𝑑𝑖𝑠𝑐ℎ𝑟𝑔   Discharging efficiency of the EV 

𝜂𝑃𝑉    Efficiency of the PV production 

𝐼𝑟𝑟(𝑡)   Irradiance value at time t 

𝐴   Area of the PV panels 

Introduction 

The growth in adoption of distributed energy resources 

(DERs) and electrical vehicles (EVs) has opened the door 

to carbon-free energy systems but uncontrolled grid 

connections of such resources may give rise to issues such 

as voltage limit violations and electrical line congestions. 

The impact is not limited to only local levels, as due to 

imperfect forecasts, consumption/production mismatches 

can be observed on a global level. Different actors are 

playing different roles in the present energy markets and 

are responsible for managing these issues. The distribution 

system operator (DSO) must ensure the reliable operation 

of the distribution network while the balance responsible 

party (BRP) is financially responsible for the energy 

mismatches between the planned and the real-time 

consumption/production. Each BRP has a set of loads and 

power sources in its perimeter, called the balance 

perimeter (BP). The BRP submits a day-ahead power 

consumption/production schedule to the transmission 

system operator (TSO). The BRP schedule is defined on a 

sub-hourly basis (soon to be harmonized to a quarter-

hourly basis in Europe), known as the imbalance 

settlement period. The BRP is paid by the TSO if the 
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production is more during the day compared to the 

submitted schedule, and vice versa.  

To reduce the cost of such imbalances, a BRP can 

utilize flexible entities (such as EVs) connected within its 

perimeter. But such control must not result in the violation 

of the constraints of other market actors, and/or should 

limit the degradation of other actors’ objectives. These 

interactions of different market actors, at different levels, 

with possibly conflicting objectives, make the problem 

even harder. Grid reinforcement may solve the issues of 

local voltage/current constraints. However, it may be very 

expensive and time-consuming. Hence, flexible solutions 

may be preferred to tackle these challenges. Different 

approaches have been proposed in the literature which can 

be categorized as centralized and decentralized strategies. 

The major shortcomings of centralized approaches are 

their vulnerability to single point of failures, high 

communication overhead, dramatic growth of the solver 

time as the number of system variables and constraints are 

increased, and privacy concerns over the sharing of data to 

a third party. Decentralized approaches can tackle these 

drawbacks.  

The multi-agent paradigm is particularly suitable to 

design decentralized systems. This paradigm is very 

flexible and can be easily adapted to the needs of 

decentralized applications. Multi-agent systems have been 

used in a wide range of fields and applications [1]. A multi-

agent system is composed of several entities called agents. 

The definition of an agent often varies between 

researchers, fields, and applications. Russel and Norvig in 

[2] defined it as, “An agent is anything that can be viewed 

as perceiving its environment through sensors and acting 

upon that environment through actuators.” A more shared 

vision of the agent notion is the following, “An agent is an 

encapsulated computational system that is situated in some 

environment and that is capable of flexible, autonomous 

action in that environment to meet its design objectives.” 

[3], [4]. Some commonly recognized and important 

properties of agents include autonomy (they control their 

behavior), reactivity (they respond and act in a timely 

fashion), proactiveness (they can take the initiative and 

opportunistically adopt new goals), locality (agents have a 

local perception of their environment) and social ability 

(they can cooperate with other agents to satisfy the 

designed objectives) [3], [4]. Based on these properties, a 

multi-agent system can be designed to distribute data and 

control (decentralization), execute agents asynchronously, 

be open or closed (agents can freely enter and exit the 

system), and be composed of homogeneous and/or 

heterogeneous agents.  Not all of these features are 

necessarily required in all applications and are often 

partially present. For example, a multi-agent system may 

not be homogeneous (a few different types of agents) or 

may be partially decentralized with a hierarchical 

structure, etc. In the literature on energy management, a 

range of strategies using multi-agent systems (MASs) 

combined with different optimization and machine 

learning algorithms (to implement decision-making 

capabilities in the agents) have been suggested. 

The concepts of multi-agent systems have been used to 

tackle a variety of smart grid challenges such as optimal 

microgrid planning under uncertainty [5], frequency and 

voltage control [6], power management [7], decentralized 

control of autonomous polygeneration microgrids [8], 

coordination of EV charging [9], and optimal energy 

scheduling for the EVs aggregator [10].  In [11], a 

hierarchical MAS is implemented to find optimal charging 

strategies for EVs. No DERs were considered in this study. 

In [12], a hierarchical MAS is presented to control the EV 

charging while avoiding congestion in the system. In this 

study, vehicle-to-grid (V2G) functionality was not 

considered. Habibdoost et al. [13] have applied 

hierarchical MAS heuristics to minimize the cost of 

supporting a micro-grid using EVs, in case of an outage. 

However, no DSO constraints were considered in this 

study. In [14], a hierarchical agent-based control system to 

coordinate the charging of EVs is presented. Mocci et al. 

[15] have implemented a hierarchical MAS using a 

quadratic solver to incorporate demand response and 

coordinated EV charging in distribution grids. However, 

in all these works, computational complexities remain a 

problem when applied to large-scale networks. Hence, 

these solutions, [11-15] may not scale well due to the 

hierarchical architecture of the designed systems.  

Wang et al. [16] have used MAS combined with graph 

theory to achieve the consensual trade-off between EV 

charging losses minimization and increased available 

share of V2G power. Network issues such as congestion 

management and voltage regulation have not been 

considered. In [17-19], MASs are modeled to tackle such 

issues in the presence of storage. However, the computing 

times of such models increase exponentially as the states 

in the model increase. In [20], [21], MASs using game 

theory are designed for efficient management of power 

flows in buildings with DERs and for optimal allocation of 

battery storage on the distribution side respectively. 

However, convergence can be a problem for such systems 

when applied to a very large-scale network. Shirzeh et al. 

[22] use a multi-agent system to manage DERs and storage 

systems for energy management in the smart grid. 

However, these solutions, [16-22], may not be scalable due 

to the inherent shortcomings of the applied learning 
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algorithms for systems with a large number of possible 

states.  

In [23], a scalable MAS is presented for the controlled 

charging of EVs. However, an accurate model of the 

distribution system is required by the system. Many of the 

existing decentralized solutions depend on the availability 

of an accurate distribution system model to link the 

charging powers of EVs with voltages and power flows in 

the network. These necessary models are often inaccurate 

or unknown, thus hindering or preventing the deployment 

of these methods in a real-life scenario.  

Egbue et al. [24] applied the concept of MAS, by 

defining simplistic actions for the EV agents, to design a 

microgrid with a V2G system. No network model is 

required in the designed MAS, but as a result, the DSO 

constraints have not been considered. In this work, a self-

organized multi-agent system is used to manage a large-

scale EV fleet. Self-organized multi-agent systems have 

been proved to be an efficient approach to deal with 

complex systems with dynamic requirements in distributed 

systems. This type of system is also known to be robust, 

scalable, and reliable. In addition, self-organization 

enables the engineering of underspecified software (see 

[25] for more details). According to Serugendo et al. [26], 

self-organization is “the mechanism or the process 

enabling a system to change its organization without 

explicit external command during its execution time”. 

They considered two types of self-organized systems: 

• Strong self-organizing systems are systems 

where there is no explicit central control either internal or 

external. 

• Weak self-organizing systems are systems where, 

from an internal point of view, re-organization may be 

performed under internal (central) control or planning. 

The concept of self-organization must be taken in a 

broad sense, it can concern the neighborhood of agents, the 

distribution of tasks, goals, etc. Our proposed multi-agent 

system falls under the category of strong self-organizing 

systems. Self-organization mechanisms in multi-agent 

systems can be grouped into three classes: the bio-inspired 

approaches (such as stigmergy, cooperation, 

reinforcement, etc.), social-based approaches (trust-based, 

social functions, auction, etc.), and artificial approaches 

(authentication chains, tag-based models, and so on) [25]. 

In this work, we chose to use the theory of adaptive multi-

agent system (AMAS) [27] which is based on cooperation 

as a self-organization mechanism. This approach has been 

applied successfully to solve problems from several 

disciplines involving large-scale systems [28]-[31]. 

Moreover, it is generic and can be combined with other 

mechanisms of self-organization (such as stigmergy or 

reinforcement learning, etc.). The AMAS theory proposes 

meta-rules and notions allowing self-organization (or self-

adaptation) through cooperation. With this theory, we can 

design a system capable of self-adapting to unseen or 

unspecified changes in the environment. In this paper, we 

intend to evaluate the outcomes of a pure AMAS applied 

to the management of EVs in a large-scale distribution 

network, before eventually combining it with other 

mechanisms/techniques. 

The proposed adaptive multi-agent system (AMAS) is 

based on a rule-based feedback control scheme similar to 

the one that has also been used by Zishan et al. [32] in their 

MAS. However, to incorporate adaptability in a simple 

rule-based system, they have utilized reinforcement 

learning while we are using a different methodology here, 

i.e., the concepts of cooperation [33]. The behaviors of the 

agents are defined simply and the system’s objectives are 

achieved through cooperative interactions among these 

agents (also the agents and the environment). This simple 

behavioral design of each agent results in an efficient 

performance even on a very fast timescale (1 second in this 

study) and also increases the scalability of the overall 

system. Additionally, as the system performs online 

optimization (mainly reactive), it does not need to go 

through any training phase and thus no statistical 

approximations or discretization of the action space of 

each agent is necessary to tackle the curse of 

dimensionality or to increase the scalability of the 

designed complex system for real-time operations. 

Furthermore, in [30], grid challenges involving two actors 

i.e., prosumers and DSO are considered. However, in this 

paper, the constraints and the objectives of prosumers, 

DSO, and BRP are considered altogether. This results in a 

highly coupled, multiscale problem.  

Additionally, not all studies quantify the gap in the 

optimality of the obtained results to check the quality of 

the designed methodology. In contrast, to evaluate the 

performance of the proposed MAS solution, our problem 

is modeled and solved using mixed integer linear 

programming (MILP) optimization. Following this, the 

comparison is drawn in terms of the quality of the solution 

as well as in terms of the practical computational 

complexities of both algorithms. The designed system is 

completely decentralized, scalable, and model-free. We 

use the term "model-free" in the meaning proposed by 

Barto and Sutton in [34]. It is considered that the system 

does not have a model of the environment that allows 

inferences to be made about how the environment will 

behave. Instead, the proposed MAS uses trial-and-error 

interactions with the environment. These characteristics 

(decentralization, scalability, and model-free) of AMAS 
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make it a suitable candidate to optimize the operation of a 

large-scale distribution system while considering a wide 

range of market actors’ constraints. The contributions of 

this paper can be summarized as follows: 

• A model-free AMAS is developed for large-scale 

distribution networks. The designed system solves the 

commitment mismatch problem of the BRP by using the 

connected EVs’ batteries, in the presence of photovoltaic 

(PV) panels, together with satisfying charging constraints 

of the EVs while avoiding congestion and voltage limits 

violations in the network. The designed system is 

completely decentralized, highly scalable, and operates in 

real-time (1 second in this study). 

• A comparison between the proposed AMAS 

solution and an optimal MILP solution is presented to 

quantify the performance of the system. The comparison is 

made both in terms of the distance to optimality of the 

obtained solution and in terms of the practical 

computational complexities (time and memory). This 

comparison paints a more complete picture to evaluate the 

performance of AMAS for smart grids. 

 

The rest of this paper is organized as follows. In Section 

2, the modeling of the problem using MILP and AMAS is 

presented. Moving forward, the case study to test both 

systems is presented in Section 3. Finally, the results 

obtained are discussed in Section 4 and the conclusion is 

made in the last section. 

Modelling 

This section presents the detailed mathematical 

formulation of both MILP and AMAS strategies. The 

optimization problem formulation is introduced at first 

along with the relaxations to make the formulation suitable 

for MILP optimization [35]. Then, the concepts of AMAS 

and the design of the system are presented. 

1.1. Optimization Problem Formulation 

1.1.1. Network Physical Constraints 

These constraints guarantee the correct power flow 

results, which are based on the network’s physical 

constraints. The active and reactive powers at each bus are 

defined as: 

( ) ( )
0 grid

P t P t=                                                          (1)  

( ) ( ) ( ), , , ,
) ( ) (

a PV a load a EV a EV a
P t P t P Pt t P t= − − +     (2) 

 

Fig. 1. Diagram of the optimization problem. 

where Pa(t) is the active power of Bus a, at instant t. 

Reactive power flows are modeled similarly. The first bus 

(Bus 0) of the system is modeled as the grid bus with active 

power Pgrid(t). The total power at Bus a, at instant t, is equal 

to the sum of the injected PV power PPV,a(t), the drawn 

load power Pload,a(t), and the EV power. Term 𝑃̃EV,a(t) is 

the expected day-ahead active power for the EV connected 

to Bus a, at instant t, while ∆PEV,a(t), a decision variable, 

is the real-time change, with respect to the predicted the 

day-ahead power, to achieve an optimized solution. The 

power flowing from Bus a to b is linked to the 

instantaneous bus voltages as: 

( ) ( ) ( ) ( ) ( )( )  
    

ab ab a a b ab
P t jQ t V t V t V t Y

  
+ = −    (3)  

where Va(t) and Vb(t) are the voltages at Bus a and b 

respectively, and 𝑌𝑎𝑏
∗  denotes the electrical line’s 

admittance. 

1.1.2. DSO Constraints 

Active power, reactive power, and bus voltage at each 

bus should remain within specified limits. Furthermore, 

there is a limit on the maximum current flowing through 

an electrical line, Iab,max. These limits are stated in (4)-(7). 

, ,
( )

a min a a max
P P t P                                                      (4)  

, ,
( )

a min a a max
Q Q t Q                                                    (5) 

, ,
| ( ) |  

a min a a max
V V t V                                              (6)  

,
 | ( ) |

ab ab max
I t I                                                           (7) 

2.1.3. EV Constraints 

EV constraints link the variables specific to an EV, such 

as its state of charge (SoC) and state of health (SoH) with 

the network flow constraints and introduce limits on these 

variables. The SoC is calculated as: 
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, , , ,

, ,

( ) ( )
( ) ( )1

EV chrg a EV dischrg a

a a chrg

bat a bat a dischrg

P t t P t
S C

t
oC t So t

E E



= − +


−


        (8) 

, ,
( )

a min a a max
SoC SoC t SoC                                      (9) 

, , ,
 ( ),  

a min depart a a depart
SoC SoC t if t t =                      (10)  

where PEV,chrg,a(t) and PEV,dischrg,a(t) are the EV charging and 

discharging powers at instant t respectively. The SoC 

should always remain within limits specified by SoCa,min 

and SoCa,max. Additionally, (10) specifies that at the time 

of departure of the EV, the SoC should be higher than a 

specific value defined by the owner, SoCa,min,depart. Terms 

Ebat,a, ηchrg, and ηdischrg are the energy capacity of EV at Bus 

a, charging efficiency, and discharging efficiency of the 

battery respectively. The state of health (SoH) of the 

battery should be positive and is defined as: 

,

,

( )
 1 0

0.2
( ) ( )

EV a

a a

bat a

P t t
SoH t SoH t

E


= − −                   (11) 

The instantaneous SoH depends on the SoH value of the 

previous instant, and the EV charging or discharging 

power at instant t. The SoH of a battery helps in assessing 

its degradation due to battery aging. Its value ranges 

between 0 and 1. We have considered a capacity fade of 

20% as the end-of-life of a battery in this formulation. 

Once the end-of-life of an EV battery is reached, it will 

need to be replaced. The total EV charging/discharging 

power connected to Bus a, at instant t is defined as: 

( ) ( ) ( ) ( ), , , , , , ,
( )

EV a EV chrg a EV dischrg a EV a EV a
P t P t P t P t P t= − = +   (12)  

( ) ( )( ), , , ,0 EV chrg a EV a maxP t t P                                 (13)  

( ) ( )( ), , , ,0 1EV dischrg a EV a maxP t t P  −                         (14)  

where ρ(t) is a binary variable to ensure that an EV does 

not charge and discharge simultaneously at instant t, and 

PEV,a,max is the maximum charging/discharging power of 

the EV. 

2.1.4. Objective Function 

The objective is to minimize the difference between the 

real-time energy consumption/production in the BRP 

perimeter and the commitment value for the studied 

imbalance settlement period. The objective function is 

defined as: 

( )( )
, ( )

1 1

: ( ) ( , )
end

EV a

N T

P t

t

BRP EV

N

obj min P N P t P t
=





=

−    (15)  

where N represents the present imbalance settlement 

period, ∆T is the length of the imbalance settlement period, 

and t ∈ [1, ∆T] is the smaller time resolution within this 

imbalance settlement period. Term 𝑃̃(N) is the day-ahead 

planned power for the imbalance settlement period N, and 

PBRP(t,∆PEV) is the total real-time consumption/production 

in the BP. The planned BRP commitment values 𝑃̃(N) are 

calculated as: 

( ) ( )( )( )( 1

1

1
1 (

T

hr PV PV

t

P N mean P t e t
T



=

= +



 

( )( )( ) ( )( ))10 101 (min load load min EVmean P t e t mean P t− + −   (16) 

where 𝑃̃ PV(t), 𝑃̃ load(t), and 𝑃̃ EV(t) are the day-ahead 

forecasted PV, load, and EV profiles respectively. Errors 

in the PV forecast ePV(t), and the load forecast eload(t) are 

also modeled here. In (16), two different mean values can 

be observed, mean1hr and mean10min, indicating the means 

of a time series over one hour and ten minutes respectively. 

This is because, usually the forecasts for PV are provided 

as one-hour average values while in the case of loads, 

smart meters can provide measurements at a resolution of 

ten minutes. 

2.1.5. MILP Approximations 

The original formulation is nonlinear, due to the 

product of voltages in (3). Thus, relaxations are made to 

transform it into a problem compatible with MILP. To 

linearize, the small angle approximation (i.e., sin(θa − θb) 

≈ (θa − θb)), is considered here. Additionally, it is also 

assumed that the per unit values of the voltages are 

sufficiently close to 1 (i.e., |𝑉| ≈ 1). This results in two 

separate equations for active and reactive powers, (17) and 

(18) respectively. 

( ) ( ) ( )( ) ( ) ( )( )ab ab a b ab a bP t G V t V t B t t = − + −       (17)  

( ) ( ) ( )( ) ( ) ( )( )ab ab a b ab b aQ t B V t V t G t t = − + −       (18) 

where conductance and susceptance values of the electrical 

line between Buses a and b are denoted by Gab and Bab 

respectively. Terms θa and θb are the phase angles at Bus 

a and Bus b respectively. Combined with the objective 

function and the constraints described earlier, this 

formulation can be directly solved using MILP. 
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2.2. Adaptive Multi-Agent System (AMAS) 

 

A MAS is a computerized system, in which a group of 

intelligent agents are continuously observing an 

environment and solving a set of complex problems 

through interactions. These reactive agents are 

autonomous and help to achieve decentralization of the 

system. An agent executes in a loop and goes through the 

following three stages in its life cycle:  

1. Perception stage: the agent gathers data from its 

environment. 

2. Decision stage: based on the observed data, an 

intelligent decision is made. 

3. Action stage: the previously selected decision is 

implemented by taking the required actions.  

An AMAS is a specific type of MAS, in which 

decision-making agents are communicating with the 

neighboring agent(s) to achieve a common goal through 

cooperative interactions, instead of dividing a big problem 

into smaller sub-problems. Each agent has its objective and 

a set of actions. At every instant, each agent decides 

whether to pursue its own goal or to help neighboring 

agent(s) through cooperative actions. To differentiate the 

notion of a bad action from a good action, each agent holds 

a criticality value defined between 0 and 1. A near zero 

criticality value would indicate the success of an agent in 

achieving its objective, and vice versa. The choice of 

action by each agent is based on the comparison between 

these criticalities i.e., an agent may help a neighboring 

agent in case the latter is more critical than the former.  

The “agentification processes” is defined as the 

mapping of a physical distribution network’s elements 

(such as electrical buses, lines, EVs, etc.) to software 

agents of the multi-agent system (such as bus agents, line 

agents, EV agents, etc.). In the proposed design, each 

physical component of the smart grid is a cooperative 

agent in the software domain. The designed system 

consists of four types of intelligent agents: bus agents, line 

agents, BRP agents, and EV agents. The design of each 

agent type is described in the following section. The 

“agentified model” of the sub-section of a distribution 

network is shown in Fig. 2. Each agent communicates the 

criticality value only with its neighboring agents. The BRP 

agent only communicates its criticality with all EV agents 

present in the BRP perimeter. The BRP agent 

communicates with the TSO to submit its day-ahead power 

consumption/production schedule.   

As a comparative analysis will be performed between 

different strategies, it is important to mention that the 

considered MILP is deterministic and centralized (i.e., 

SoC, arrival time, departure time, etc. are considered as 

known by the centralized agent). On the contrary, the 

agents in an AMAS react to the variations in the 

environment (e.g., energy commitment mismatches for the 

BRP) and the requests of other neighboring agents in real-

time. Hence, only a limited knowledge of the overall 

problem is required by them. These two approaches will 

also be compared with a so-called “dumb” (uncontrolled) 

charging strategy, where EVs charge at a constant power 

between their arrival and their departure times. 

 

Fig. 2. a) Sub-section of a distribution network b) “Agentified model” 

(the shaded area indicates the neighborhood of the EV agent b) of the 

distribution network in (a). 

2.2.1. Line Agent 

Line agents are designed to prevent line congestion. 

The neighborhood of a line agent consists of the bus agents 

corresponding to the electrical buses connected to it. Each 

line agent calculates its criticality based on the magnitude 

and direction of the current through the electrical line. In 

case of a non-zero criticality, the agent will request the 

EVs for cooperation. Line criticality is calculated as: 

0,              ( )

(( )
,  ( )

)

th

th
th

max th

lC

if I t I

I t Ir
if I t I

I

t

I




= 


−


−



                              (19)  

where at instant t, Crl(t) is the agent’s criticality, and I(t) is 

the current through the electrical line. Term Imax is the 

maximum current allowed through the line, which is set 

arbitrarily to 95% of the rated line current value. This 5% 

margin helps to avoid congestion arising due to sudden 

current peaks. Ith is the current threshold (arbitrarily set to 

0.7Imax), above which the criticality starts increasing 

linearly. As in (19) the line agent’s criticality is dependent 



8  

only on the instantaneous value of the electrical current, 

therefore an extreme behavior by the agent (continuous 

switching between highly critical and non-critical states) 

can be expected in case of congestion. These oscillations 

are undesirable especially when the agents are reacting 

every second. To tackle this, a criticality based on a 

memory term is introduced and named the “incremental 

criticality”. Once a line becomes critical, the agent uses the 

incremental criticality value, Cri,l(t), to request cooperative 

actions. This incremental criticality is defined as: 

( ) ( ) ( ) ( ), ,1 1i l l l l i lCr t K Cr t K Cr t= + − −                   (20)  

The incremental criticality converges towards the 

effective criticality value Crl(t). The rate of convergence is 

controlled by the parameter Kl. Larger values of Kl result 

in quicker convergence but increase the oscillations in the 

system. Smaller values ensure none or minimal 

oscillations but at the cost of slower convergence. As this 

incremental criticality is communicated to the neighboring 

agents once line congestion is detected, the electrical line 

current does not show extreme changes in its magnitude 

from one instant to the next.  

2.2.2. Bus Agent 

Bus agents are designed to prevent voltage limit 

violations. The neighborhood of a bus agent consists of the 

lines and EVs agents corresponding to the electrical lines 

and EVs connected physically to that bus. At first, each bus 

agent tries to prevent its voltage limit violation locally 

through cooperation with the EV(s) connected to that bus. 

When it is not possible, the bus agent starts communicating 

with other EVs in the distribution network to maintain its 

voltage level. Bus agent’s criticality is calculated as: 

( )

( )
max

0,                         ( )

( )
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( )b u t
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u t

u h

u t
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r t
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V V V

−





− −
− 

−




= 

 −

         (21)  

where Crb(t) is the bus agent’s criticality, Vu is the nominal 

voltage, Vmax corresponds to the maximum percentage 

deviation allowed in the bus voltage, and Vth is the 

threshold for the percentage deviation in the bus voltage, 

above which the bus criticality starts increasing linearly. 

To prevent the oscillations, similar to (20), incremental bus 

criticality (with Kb as the control parameter) is introduced 

as:  

( ) ( ) ( ) ( ), ,1 1b bb bi i bCr t K Cr t K Cr t= + − − .             (22)  

2.2.3. BRP Agent  

The BRP agent’s goal is to minimize the commitment 

mismatch for the current imbalance settlement period N, 

similar to the modeled objective function for the MILP 

optimization formulation. The BRP agent communicates 

with all the EVs present in its perimeter. As AMAS is an 

iterative system, the instantaneous criticality of the BRP 

agent, during an imbalance settlement period N, depends 

on the cumulative sum of the commitment mismatch 

observed since the start of the imbalance settlement period 

N. Its criticality is defined as: 

( )

( )( )( ) ( )
start

t

BRP

j t

BRP

period BRP

P N P j t

Cr t
tr K

=

− 

=


                         (23)  

where tstart is the starting time of the current settlement 

period, KBRP is the BRP agent’s tuning parameter and 

trperiod is the remaining time before the end of the current 

imbalance settlement period. The execution steps of each 

line, bus, and BRP agent, during a single agent cycle, are 

summarized in Algorithm 1. The execution steps of each 

EV agent are summarized separately in Algorithm 2, as the 

decision and the action stages of the EV agents differ from 

the decision and the action stages of the types of agents 

presented in Algorithm 1.  

2.2.4. EV Agent 

Each EV agent manages the consumption of its 

corresponding EV to attain the desired minimum SoC 

before its departure, while also cooperating with other 

neighboring agents for their objectives. The EV decision 

i.e., the power at which an EV should charge or discharge 

at instant t, is made through a comparison of criticalities 

i.e., the EV will help neighboring agents which are more 

critical than itself, otherwise, it will continue charging. The 

criticality CrEV,a(t) of the EV agent a is calculated as: 

 

( )
( )( ), , ,

,

, , ,

a min depart a bat a

EV a

a depart EV a max

SoC SoC t E
Cr t

t P

−
= .          (24)  
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Algorithm 1: Each line, bus, and BRP agent’s execution 

steps 

 begin agent cycle 

  /* Perception Stage 

  Requests ← received criticality messages from 

neighboring agents 

  Cr ← calculate the agent’s criticality 

  /* Decision stage 

  if ((Cr > 0) or (Requests ≠ null)) then   

   if (Requests ≠ null) then   

    if (Cr < criticality of the most critical 

request) then 

     Request to forward ← most critical 

request received 

    else 

     Request to forward ← agent’s criticality 

request 

   else 

    Request to forward ← agent’s criticality 

request 

  /* Action stage 

  if (Request to forward ≠ null) then 

   Send “Request to forward” to all neighboring 

agents  

 end agent cycle 

 

This EV criticality is compared with the criticalities of 

the neighboring agents. If the EV agent has the highest 

criticality, it continues charging at the planned charging 

power, otherwise, it helps the most critical neighboring 

agent(s). It is crucial to design the EV agent such that it 

can handle the antagonist requests (when two or more 

agents request opposite cooperative actions from the same 

EV agent). For example, a BRP agent can request the EVs 

to consume more when the commitment mismatch is 

positive, while simultaneously a line agent can request the 

EVs to charge less so that the congestion can be avoided. 

None of these requests can be completely ignored, hence 

the updated EV power at instant t is calculated as:  

( ) ( ) ( ) ( )( ), , , ,1EV a EV a max ant EV a maxP t P t Cr t hCr t P= −  −   (25)  

where Crmax(t) is the criticality of the most critical request 

and Crant(t) is the greatest criticality corresponding to an 

antagonist request, at instant t. Term h is a weighting 

function for the antagonist requests. Function h is defined 

as: 
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(26)  

where Tl,min and Tl,max are two threshold values. Between 

these two thresholds, function h behaves exponentially, 

and decreases linearly otherwise. Parameters Ka and Kb 

depend on the values of α, β, Tl,min and Tl,max. It can be 

observed in Algorithm 2 that the decision and action 

stages, during an EV agent’s cycle, are different from that 

of all other types of intelligent agents in the system. This 

is because the instantaneous charging or discharging 

power of the EV is also calculated, through a comparison 

of criticalities, during the decision and the action stages.  

Algorithm 2: Each EV agent’s execution steps 

 begin agent cycle 

  /* Perception Stage 

  Requests ← received criticality messages from 

neighboring agents 

  Cr ← calculate the agent’s criticality 

  /* Decision stage 

  if ((Cr > 0) or (Requests ≠ null)) then   

   if (Requests ≠ null) then   

    if (Cr < criticality of the most critical 

request) then 

     Crmax ← criticality of the received most 

critical request 

     Issuemax ← type of issue corresponding 

to the maximum criticality 

    else 

     Crmax ← EV agent’s criticality 

     Issuemax ← type of issue corresponding 

to the maximum criticality 

   else 

    Crmax ← EV agent’s criticality 

    Issuemax ← type of issue corresponding to 

the maximum criticality 

  Crant ← maximum criticality of the antagonist 

request(s)  

  h ← calculate using (26) 

  if (Issuemax ϵ  {BRP under-consumption, bus 

over-voltage, high export line current}) then 

    PowerEV ← PowerEV at previous instant + 

(Crmax – h * Crant) * maximum charging 

power 
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  if (Issuemax ϵ  {BRP over-consumption, bus 

under-voltage, high import line current}) then 

    PowerEV ← PowerEV at previous instant - 

(Crmax – h * Crant) * maximum charging 

power 

  /* Action stage 

   Set PowerEV as instantaneous EV power  

 end agent cycle 

2. Case Study 

2.1. Distribution Network 

A large-scale distribution network is modeled using the 

“IEEE European Low Voltage Test Feeder” (LVTF) 

model [36]. A graphical representation of the network is 

shown in Fig. 3. The modeled larger-scale distribution 

network consists of 3 districts, where each district contains 

3 sub-districts. In total, the network consists of 9 

subdistricts (A, B, C, D, E, F, G, H, and I), each 

representing a single IEEE LVTF model. The complete 

distribution network includes 495 household loads, along 

with 495 PVs and 495 EV connections on the same load 

buses. Line 1 (highlighted in red in Fig. 3), which connects 

sub-district A to the grid, is selected for the congestion 

study. 

 

 

Fig. 3. Line diagram of the studied distribution network 

2.2. Implementation 

2.2.1. MILP 

CVXPY is used to solve the MILP formulation [37]. 

The computing machine is equipped with an Intel i5-10210 

CPU along with 8 GB of DDR4 random-access memory 

(RAM). The secondary storage is an NVM express 

(NVMe) type drive. The temporal resolution of the MILP 

study is set to 1 minute. 

2.2.2. AMAS 

The proposed AMAS system is developed in JAVA and 

is called ADEMIS (ADaptive Energy Management In 

Smart Grids) [38]. It is interfaced with DIgSILENT 

PowerFactory (PF) to perform the load flow calculations 

[39]. The system executes in a loop. Communication 

between JAVA and PF is performed through a Python 

script. The time resolution of this system is 1 second. 

There are 495 EV agents, 1 BRP agent, 1857 bus agents, 

and 1855 line agents in the system, making a total of 4208 

intelligent AMAS agents. 

2.3. Datasets 

The individual household consumption data is provided 

with the IEEE LVTF network model. The length of each 

load profile is 1 day with a 1-minute resolution. The 

irradiance data, obtained from the database of the National 

Renewable Energy Laboratory (NREL), is used for PV 

profiles [40]. The resolution of the PV data is 1 second. 

The total power generated by a group of PV panels 

belonging to a given household at time t, PPV(t), is 

calculated as: 

( ) ( )PV PVP t A Irr t=                                                    (27)  

where A is the area of the PV panels, ηPV is the efficiency 

of the PV panels, Irr(t) is the irradiance value at time t. The 

area of the PV panels and the efficiency of the PV panels 

for this study are equal to 10 m2 and 0.17. The duration of 

this study is one hour (4 imbalance settlement periods of 

15 minutes each). The arbitrarily selected hour for this 

study is from 16:00 till 17:00. The forecast errors follow a 

Gaussian distribution with a standard deviation of 20% and 

zero mean value, as a first approach. 

2.4. EV Models 

All EVs hold the same battery capacity of 30 kWh and 

a maximum power rating of 7 kW. The minimum and 

maximum SoCs are set to 0.3 and 0.8 respectively; while 

each EV should have at least 0.7 SoC at the time of its 

departure. A large number of EVs are arriving at the start 

of period 1 and departing near the end of the period (23 

EVs in sub-district A of the distribution network). These 

EVs, due to their short connection time with the grid, will 

demand a large amount of power, thus causing congestion 
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in Line 1. Other grid-connected EVs, depending on their 

constraints, will try to minimize the arising problems in the 

grid.  

2.5. Antagonist Issues 

The selected PV profile results in an excess of 

production during the first two imbalance settlement 

periods, while a lack of production exists in the two 

remaining periods, shown in Fig. 4. As the real-time 

production is different from the day ahead forecast due to 

forecast errors, the BRP commitment mismatch is non-

zero in all periods. Also, as mentioned earlier, line 

congestion will occur in Line 1 during the first imbalance 

settlement period if the dumb strategy is applied. The value 

of the rated current is obtained based on the electrical 

line’s type (provided in the IEEE LVTF network model) 

and is equal to 0.21 kA. As both the line congestion and an 

excess PV production in the sub-district A is occurring 

during the first period, the EVs present in the sub-district 

A will therefore face an antagonistic scenario: they will be 

encouraged to consume more by the BRP to minimize the 

commitment mismatch while the line will encourage them 

to consume less to avoid congestion. These types of 

situations may arise in a real-life distribution network, thus 

consideration of such issues in this case study makes it 

incline more toward a realistic scenario. 

 

Fig. 4. Load and PV data for the case study. 

3. Results 

In this section, the quality of the solutions obtained is 

compared and also the computational complexities of the 

MILP and AMAS solutions are discussed. 

3.1. Solutions Quality Comparison 

The electrical current profile of Line 1 is shown in Fig. 

5. A significant level of congestion can be seen for the 

uncontrolled “dumb” charging strategy. The congestion 

lasts for 30.16% of the imbalance settlement period with 

an average value equal to 110.5% of the rated line current. 

Line congestion is avoided in both MILP and AMAS 

solutions. The total power consumption of all the EVs is 

also shown in Fig. 5. During the first two imbalance 

settlement periods, an excess of the PV production with 

respect to the forecasted values leads to the EVs charging 

more compared to their planned consumption to achieve 

the objective of the BRP (for both MILP and AMAS). For 

the third and fourth imbalance settlement periods, an 

under-production by the PVs with respect to the forecasted 

values results in reduced total consumption by the EVs for 

the MILP and the AMAS strategies.  

Table 1 shows the comparison of the BRP commitment 

mismatch values for the uncontrolled charging, the 

AMAS, and the MILP strategies. As expected, the 

uncontrolled charging of the EVs leads to the highest 

mismatch, with a total of 134.32 kWh. MILP is providing 

the optimal solution with the total commitment mismatch 

equal to zero. AMAS is performing exceptionally well 

compared to the uncontrolled charging strategy, reducing 

its total commitment mismatch by 99.5%. Both MILP and 

AMAS solutions are satisfying all the earlier mentioned 

DSO and prosumers constraints.  

 

Table 1. Commitment Mismatch Comparison (kWh). 

Period Uncontrolled Charging AMAS MILP 

Period 1 38.061 0.015 0 

Period 2 11.125 0.012 0 

Period 3 37.202 0.001 0 

Period 4 47.932 0.630 0 

Total 134.32 0.658 0 

 

 

Unlike MILP, AMAS is reactive and not predictive. But 

it still manages to follow the path obtained by the MILP 

solution for the total consumption of all EVs. This ensures 

that not only AMAS can find near-optimal solutions but 

also, it can be scaled to obtain efficient solutions for larger 

networks as the complexities of centralized predictive 

strategies increase dramatically with the number of system 

variables. As the AMAS is purely reactive, without any 

anticipative capabilities, a relatively oscillatory solution 

profile can be observed. Multi-agent learning is envisaged 

to further improve the performance of the designed AMAS 

platform.  
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Fig. 5. Case study results: a) Line 1 current b) Total EVs power. 

3.2. Computational Complexity Comparison 

The computational complexities of the MILP strategy, 

obtained by averaging 10 independent runs for each data 

point, are shown in Fig. 6. Curve fitting reveals that the 

practical time complexity big O of the algorithm equals n2, 

where n is the problem size. For the centralized MILP, 

there are no differences between the simulation or the real-

life complexities, as a single node would be processing all 

the information in both scenarios. But for the decentralized 

AMAS, as the computing device used for simulation 

studies generally has a single processing unit and in a real-

life implementation, each agent is supposed to have its 

processing unit, thus performing simulations on a single 

computing device can be more restrictive. Curves for both 

the simulation complexities and the real-life 

implementation complexities for AMAS are given in Fig. 

6.  

 

 

Fig. 6. Computational complexities comparison a) Time complexities b) 

Memory complexities. 

In the context of practical implementation, as the 

computing time per agent in an AMAS system is constant 

regardless of the number of total agents in the system, our 

proposed decentralized system outperforms the MILP 

approach even at a small scale. This is a significant result 

of this paper: our proposed method allows us to find a near-

optimal solution, given by the MILP approach here, with a 

fraction of its computing time. The processing times per 

agent of all intelligent agents in the AMAS are presented 

in Table 2. In the context of the simulation studies, a linear 

relationship is observed for the AMAS and hence it will 

outperform the MILP for larger networks. 

 

Table 2. AMAS per agent processing times 

Agent Processing Time 

(ms/iteration) 

Bus 0.003 

Line 0.004 

BRP 0.064 

EV 0.540 

 

 

A significant difference can also be observed in terms 

of memory consumption as the centralized MILP, being 

predictive, processes larger amounts of input data at once 

compared to the reactive AMAS, in which each agent 

processes only a limited amount of the local data at each 

time step. This would pose a problem if the required 

memory by the MILP approach to perform the 

optimization is greater than the available RAM of the 

computing device. On the specified computing device, this 

happens when the MILP optimization with 1000 or more 

EVs is performed. Modern operating systems (OSs) tackle 

this problem by creating virtual storage in the secondary 

memory using memory paging [41], but this comes at the 

cost of an increment in the running time as the secondary 

storages are much slower compared to the RAM. To get an 
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idea of the impact of the available memory on the time 

complexity, a comparison of the MILP optimization times 

(with and without the memory constraint) is presented in 

Fig. 7. The MILP algorithm time with no memory 

constraint is observed simply by assuming there is enough 

RAM available to process the entirety of the input data. 

However, if the memory constraint is considered for more 

complex and large-scale problems, the operating system 

has to start using the slower secondary memory storage 

when the size of the data to process to perform 

optimization is greater than the available RAM. The 

algorithm time with the memory constraint is calculated 

as: 

( ) ( )( )( )( ),1 1 min ,1cstr m m s noncstrt min r r r t= + −        (28)  

where tnoncstr is the algorithm time when no memory 

constraint is considered, rm is the ratio of the available 

RAM over the total memory required by the MILP 

strategy, and rs is the memory speed ratio, which is 

obtained by dividing the input-output operations per 

second (IOPS) of the RAM over the IOPS of the installed 

secondary storage. Generally, OSs store working data as 

small chunks at random locations in the storage memory. 

Thus, benchmarks through random read/write cycles with 

a file size of 4 KiB are performed to obtain the average 

IOPS values. These benchmarks show that the IOPS of the 

RAM and that of the installed secondary storage are equal 

to 0.259 million and 0.014 million respectively, on the 

specified computing machine.   

The memory-adjusted time complexities (logarithmic 

vertical scale) are shown in Fig. 7. The red region 

corresponds to the extrapolated time complexities, while 

the green region corresponds to the measured computing 

times. For the decentralized AMAS, two curves are 

presented in Fig. 7. One curve includes only the total time 

taken by all AMAS agents (blue curve), while the other 

curve considers the time spent in executing the load-flows 

as well (green curve). Memory constraint is not a problem 

for AMAS studies here due to low memory consumption. 

Extrapolation of the memory consumption suggests that 

the designed system can perform simulation studies with 

up to 25,000 EVs approximately before the bottleneck of 

the RAM installed on the specified computing machine is 

reached.  

It should be noted that the MILP time complexity is 

highly dependent on the secondary storage technology for 

larger distribution networks. This considerable shift of the 

solution time without memory constraint (red curve) to the 

time with memory constraint (black curve), in Fig. 7, 

favors the use of the decentralized AMAS for simulating 

large-scale networks above 1000 EV agents, compared to 

the centralized MILP. It may be argued that a decentralized 

version of the MILP problem (not analyzed here) would 

lead to lower computing times. However, decentralized 

MILP is generally not used for such a high number of 

agents as the computing time remains quite prohibitive. 

Furthermore, the application of such methodologies relies 

on the availability of an accurate distribution system 

model, which is not always present. 

 

Fig. 7. Computing times comparison against the total number of EVs in 

the system. 

4. Conclusion 

This paper proposes an adaptive multi-agent platform for 

solving a three-level management problem involving a 

BRP, a DSO, and EV owners. It also compares the results 

of the centralized MILP with the presented AMAS 

approach. In the context of a real-life implementation, it 

can be observed that the AMAS results are near-optimal 

compared to the optimal MILP approach, for only a 

fraction of its computing time. The proposed method is 

also observed to be far more efficient than a “dumb” 

uncontrolled strategy as it reduces the energy commitment 

mismatch by more than 99%. In the context of simulating 

large-scale networks, it can be assumed that the AMAS 

would outperform the MILP (with memory constraints), in 

terms of computing times, for systems including more than 

1000 EVs. In terms of memory usage, the AMAS can 

simulate up to 25 times more agents than the MILP 

approach without exceeding the primary storage capacity 

of the computer used in this study. These AMAS 

characteristics make it an ideal candidate both as a 

practical, real-life solution and to carry out optimization 

studies for large-scale networks. In the future, a more 

realistic comparative analysis will be carried out between 

the AMAS and a stochastic MILP problem, as both would 

be intended to handle uncertainty. This is expected to lead 



14  

to considerably greater computing times for the MILP 

problem compared to its deterministic version, as in 

stochastic optimization, several scenarios must be 

considered. This comparison should make the advantages 

of the AMAS even more clear.  
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