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C++ is a multi-paradigm language that enables the programmer to set up e cient image processing algorithms easily. This language strength comes from many aspects. C++ is high-level, so this enables developing powerful abstractions and mixing di erent programming styles to ease the development. At the same time, C++ is low-level and can fully take advantage of the hardware to deliver the best performance. It is also very portable and highly compatible which allows algorithms to be called from high-level, fast-prototyping languages such as Python or Matlab. One fundamental aspects where C++ shines is generic programming. Generic programming makes it possible to develop and reuse bricks of software on objects (images) of di erent natures (types) without performance loss. Nevertheless, conciliating genericity, e ciency, and simplicity at the same time is not trivial. Modern C++ (post-2011) has brought new features that made it simpler and more powerful. In this paper, we focus on some C++20 aspects of generic programming: ranges, views, and concepts, and see how they extend to images to ease the development of generic image algorithms while lowering the computation time.

Introduction

C++ claims to "leave no room for a lower-level language (except assembler)" [START_REF] Stroustrup | Evolving a Language in and for the Real World: C++ 1991-2006[END_REF] which makes it a go-to language when developing high-performance computing (HPC) image processing applications. The language is designed after a zero-overhead abstraction principle that allows us to devise a high-level but e cient solution to image processing problems. Other aspects of C++ are its stability, its portability on a wide range of architectures, and its direct interface with the C language, which makes C++ easily interoperable with highlevel prototyping languages. Therefore, many image processing libraries (and numerical libraries in general) implement performance-sensitive features in C++ (or C/Fortran as in OpenCV [START_REF] Bradski | The OpenCV Library[END_REF], IPP [START_REF] Burylov | Intel Performance Libraries: Multi-Core-Ready Software for Numeric-Intensive Computation[END_REF]) or with a hardware-dedicated language (e.g. CUDA [START_REF] Brill | NVIDIA VisionWorks toolkit[END_REF]), which are exposed through a high-level API to Python, LUA, etc.

Apart from the performance considerations, the problem lies in that each image processing eld comes with its own set of image type to process. The most common image type is an image of RGB or gray-level values, encoded with 8-bits channel, on a regular 2D rectangular domain. That covers 90% of common usages. However, new image types have come with the development of new devices: 3D multi-band images in Medical Imaging, hyperspectral images in Astronomical Imaging, images with complex values in Signal Processing. An image processing library able to handle those images [START_REF] Stepanov | The standard template library[END_REF] where one has to work on a collection of data. For example, let us consider the algorithm maxof(Collection c) that gets the maximal element of a collection (see g. 4). Whether the collection is actually implemented with a linked-list, a contiguous bu er of elements or whatever data structure is irrelevant. The only requirements for this algorithm are: [START_REF] Abadi | TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems[END_REF] we can iterate through it; (2) the type of the elements is regular (i.e. behaves the same way as a primitive type like int) and forms a monoid with an associative operator "max" and a neutral element "std::numeric_limits<value_t<R»::min()". A monoid is an abstract algebraic structure equipped with an associative binary operation and an identity element. Such structure is studied to achieve high e ciency in several areas, such as distributed computation of small scale algorithms [START_REF] Dean | Identifying Monoids: Exploiting Compositional Structure in Code[END_REF] calculus of object query languages [START_REF] Fegaras | Towards an E ective Calculus for Object Query Languages[END_REF]. There exists other algebraic structures, such as semi-ring dictionaries [START_REF] Shaikhha | Functional collection programming with semi-ring dictionaries[END_REF] that are studied to unify performance optimizations used in both database and linear algebra.

The constraint (1) is abstracted by pairs of iterators in the STL and ranges in C++20, while C++20 introduces concepts to check if a type follows the requirements of the algorithm. The term concept is de ned as follows in [START_REF] Dehnert | Fundamentals of Generic Programming[END_REF]: "a set of axioms satis ed by a data type and a set of operations we can perform on it.". Concepts enable checking the requirements for (2).

The Image Concept

Most image processing algorithms are also generic [START_REF] Levillain | Why and How to Design a Generic and E cient Image Processing Framework: The Case of the Milena Library[END_REF][START_REF] Levillain | Practical Genericity: Writing Image Processing Algorithms both Reusable and E cient[END_REF][START_REF] Ritter | Image Algebra: An Overview[END_REF] by nature. We saw in section 2.1 that concepts emerges from pattern behavior extracted from algorithms. Similarly to g. [START_REF] Bradski | The OpenCV Library[END_REF] a at structuring element (SE) B (we note Į the SE centered in ). The dilation is de ned as Ĝ ( ) = sup{ ( ), ∈ Į }; the generic algorithm is given in g. 5. As one can see, the implementation does not rely on a speci c implementation of the image. It could be a 2D image, a 3D image or even a graph image (the SE would be the adjacency relation of the graph).

The image requirements can be extracted from this algorithm. The image must provide a way to access its domain which must be iterable. The structuring element must act as a function that returns a range of elements having the same type as the domain element (let us call them points of type ). Image needs to provide a way to access its value for a given point (f(x)) with x of type P. Last, as in g. 4, image values (of type ) have to support max and have a neutral element "0". We deduce the -simpli ed-Image concept and the constrained dilation algorithm in g. 6. Actually, the requirements for being an image are quite light. This provides versatility and allows us to pass non-regular "image" objects as inputs such as the image views in section 3.

While C++20 provides all the tools necessary to properly de ne concepts as well as leveraging them when implementing algorithms, it is still necessary to make the inventory of the algorithms families (explained in section 2.1) in order to actually extract the concepts related to image processing. This extracting process is detailed more in-depth by the authors in [START_REF] Roynard | An Image Processing Library in Modern C++: Getting Simplicity and E ciency with Generic Programming[END_REF]. We performed the image processing concept extraction and made it available alongside the image processing library Pylene [START_REF] Carlinet | Pylena: a Modern C++ Library for Generic and E cient Image Processing[END_REF].

3 Image Views: Ease & Performance 3.1 Ranges and Views in the C++20 STL C++20 ranges [START_REF] Niebler | P1037R0: Deep Integration of the Ranges TS[END_REF] formalizes the concept of view, extending the array views implemented in array-manipulation libraries [START_REF] Andres | Runtime-Flexible Multi-Dimensional Arrays and Views for C++98 and C++0x[END_REF][START_REF] Veldhuizen | Blitz++: The Library that Thinks it is a Compiler[END_REF], and transferable to the Image concept. In the STL, there is a distinction between the container owning the data bu er, the iterators related to traversing this container, the range encapsulating the iterator pair allowing traversing the container and the view which mutates the way the base range traverse the data it is related to. All those abstraction levels need proper re ned design about data ownership and lifetime, depending on what it refers to. For instance, a range may not be cheap-to-copy as it may contain data to prolong lifetime of the underlying object, as for extending the lifetime of a temporary range in a pipe.

auto h = [](int x) 0 if x < 150 255 if x ≥ 150 auto u = auto v = transform( u , h ) → h u
In our design, all images have reference semantics and are cheap-to-copy. An image view, is a lightweight object that acts like an image and models the Image concept. For example, it can be a generator image object which generates a new value whenever ( ) is called, or an observer image that records the number of times each pixel is accessed to compare algorithms performance. In some pre C++-11 libraries (e.g. GIL [START_REF] Bourdev | Generic Image Library[END_REF] or Milena [START_REF] Levillain | Practical Genericity: Writing Image Processing Algorithms both Reusable and E cient[END_REF]), image views were also present (named morphers alongside the SCOOP pattern [START_REF] Burrus | A static C++ object-oriented programming (SCOOP) paradigm mixing bene ts of traditional OOP and generic programming[END_REF][START_REF] Géraud | Semantics-Driven Genericity: A Sequel to the Static C++ Object-Oriented Programming Paradigm (SCOOP 2)[END_REF]) but not compatible with modern C++ idioms (e.g. the rangebased for loop) and not as well-developed as in [START_REF] Niebler | P1037R0: Deep Integration of the Ranges TS[END_REF].

Among image views, we focus on image adaptors.

Let v = transform( 1 , 2 , • • • , Ĥ , ℎ)
where ğ are input images and ℎ a n-ary function. transform returns an image generated (adapting) from other image(s) as shown in g. 7. An adaptor does not "own" data but stores the transformation ℎ and references to the input images. The properties of the resulting view depend on ℎ. The projection h1: ( , , ) ↦ → that selects the green component of an RGB triplet gives a view that is writable and has the same domain as 1 . However, the projection h2: ( , ) ↦ → ( + )/2, applied on images 1 and 2 gives a read-only view that computes, pixel-wise, the average of 1 and 2 .

Following the same principle, a view can apply a restriction on an image domain. In g. 8, we show the adaptor clip(input, roi) that restricts the image to a non-regular roi and filter(input, predicate) that restricts the domain based on a predicate. All subsequent operations on those images will only a ect the selected pixels.

Views applied to image processing

Views feature many interesting properties that change the way we program. Let us consider the simple but real case image processing pipeline aiming at extracting objects from a background which is depicted in g. 9. Simply said, it computes the di erence between an image and a background image. The Gaussian blur and the morphological opening allow some robustness to noise. All the concepts and techniques shown here can be generalized to more complicated IP pipelines. Views are composable. One of the most important feature in a pipeline design (generally, in software engineering) is object composition. It enables composing simple blocks into complex ones. Those complex blocks can then be managed as if they were still simple blocks. In g. 9, we have 5 simple image operators Image → Image (grayscale conversion, subtract, thresholding, opening, Gaussian). As shown with MyComplexOperator, algorithm composition would consider these 5 simple operators as a single complex operator Image → Image that could then be used in another even more complex processing pipeline. Just like algorithms, image views are composable, e.g. a view of the view of an image is still an image. As shown with MyComplexImage1 & 2, we pipe the input images into other views before feeding them into algorithms .

Views improve usability. The code to compose images in g. 9 is as simple as what is shown in g. 10. People familiar with functional programming may notice similarities with these languages where transform (map) and lter are sequence operators. Views use the functional paradigm and are created by functions that take a function as argument: the operator or the predicate to apply pixel-wise; we do not iterate by hand on the image pixels. Also, it o ers the opportunity to raise the IP practitioner reasoning by one level. Indeed, in our example g. 10, the thresholding routine is written without any consideration of the dimension of the image (2D, 3D), nor the underlying data-type (8-bits, oat, RGB). Thanks to this new abstraction level, we are able to express more complex image processing routines very smoothly while remaining generic by default. For instance, restricting the input image to a speci c region or to a speci c color channel becomes as simple as writing the following code: auto imroi = thresholdf(view::clip(img_gray, roi)); // ROI auto imred = thresholdf(view::red(img_gray));//Red channel Views for lazy computing. Because the operation is recorded within the image view, this new image type allows fundamental image types to be mixed with algorithms. In g. 10, the creation of views does not involve any computation in itself but rather delays the computation until the expression ( ) is invoked (requesting the value for the point ). Because views can be composed, the evaluation can be delayed quite far. Image adaptors are template expressions [START_REF] Veldhuizen | Expression Templates[END_REF][START_REF] Veldhuizen | Blitz++: The Library that Thinks it is a Compiler[END_REF] as they record the expression used to generate the image as a template parameter. A view actually represents an expression tree (cf. g. 13). This approach is close to designing a Domain Speci c Language (DSL) [START_REF] Van Deursen | Domain-Speci c Languages: An Annotated Bibliography[END_REF], but it remains within the C++ languages, which is unlike another DSL for Image Processing named Halide [START_REF] Ragan-Kelley | Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines[END_REF] that have chosen to provide their toolchain infrastructure to solve performance issues related to heterogeneous computing.

Views for performance. With a classical design, each operation of the pipeline is implemented on "its own". Each operation requires memory to be allocated for the output image and also, each operation requires that the image is fully traversed. This design is simple, exible, composable, but is not memory e cient nor computation e cient. With the lazy evaluation approach, the image is traversed only once. That has three bene ts. First, there are no intermediate images, which is very memory e ective. Second, traversing the image maybe be faster thanks to a better memory cache usage. Indeed, a view acts as if we were writing an optimal operator that would combine all the operations. This approach is somewhat related to the kernel-fusing operations available in some HPC speci cations [START_REF]OpenVX[END_REF] but views-fusion is directly optimized by the C++ compiler [START_REF] Brown | Introducing Parallelism to the Ranges TS[END_REF]. Also, as we saw that the operations are represented by a functional Abstract Syntax Tree (AST), the compiler is able to perform optimization based on the deforestation algorithm [START_REF] Wadler | Deforestation: Transforming programs to eliminate trees[END_REF] that removes intermediate computation trees in order to achieve a treeless form. Third, and the most important, if there is a domain restricting operation downstream in a view pipeline, the operation upstream will only be performed on the relevant region of interest, instead of being performed on the whole image if there was no lazy-computing involved. 

Reasoning at image level

The nal argument we bring in our discussion about views is the fact that the IP practitioner raises his reasoning by one level. Indeed, let us take a look at the alpha-blending algorithm as a support example for our argument. The default code for a classical, handmade (and error-prone C++) alphablending is presented in g. 11. This algorithm makes several non-relevant hypotheses about the image type. Indeed, it is not relevant to the nal application whether the image's color is 8-bits RGB or oat. Also, the practitioner may only need to process a speci c color channel, or a speci c region of the image. The image may also be 3D. To summarize, there are a lot of hypotheses that are not relevant to the application logic and yet weight on the resulting implementations which lead us to the need of genericity. The solution is to shift the abstract level by one layer and reason at image level, as shown in g. 12 which presents the code and the produced view expression tree. Rewriting the low level algorithm in terms of views is as simple as in g. [START_REF] Dehnert | Fundamentals of Generic Programming[END_REF]. Finally, we also show in g. 14 how simple it now becomes to restrict input images to a speci c region or speci c color channel directly by chaining views at image level thanks to being able to reason at image level. The code has become more readable, more expressive and more e cient by default.

Comparison with Data Flow oriented

frameworks A parallel can be drawn between image views and the data ow oriented programming [START_REF] Rey | MapReduce: Simpli ed Data Processing on Large Clusters[END_REF] style used in Data Science such as Apache Spark [START_REF] Zaharia | Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing[END_REF] or even TensorFlow [START_REF] Abadi | TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems[END_REF]. Indeed, we nd similar properties in those data ow system, such as composition and lazy-computing. Data ow oriented programming is heavily inspired from functional programming collections (Scala, Haskell). Let us focus on the Apache Spark programming model for this comparison.

It is very similar to our view design in the fact that transformations (partitioning functions) can be compared to views (computed lazily and chainable) and actions (performed on Resilient Distributed Dataset (RDD) constructed from transformations) can be compared to our algorithms (perform the work and resolve the transformation). However, it differs from views at runtime. Views may only do computation on a speci c requested part of an image (as seen in section 3.2) whereas the Spark pipeline may do transformations on the whole dataset prior to performing a narrowing transformation. Indeed, Spark aims at distributing asynchronously computation on clusters, that is why it does not prevent inefcient and unnecessary computation due to the nature of the acyclic computation graph computed from RDDs. In contrast, views are static, and their compositions is static. There is no need for a framework for that. Also, Views enables in-place computation (through projectors) which is very memory e cient.

Finally, our design di ers in the sens that views are still image types (embedding an operation). The IP practitioner can focus on the behavior of his images and algorithms by reasoning at image level. On the other hand, data ow programmer focuses on the data and how to transform it in order to extract information. Design-wise, an RDD is a generalized super-type of data, more exible due to its dynamic nature, but it does not abstract away the underlying complexity incurred by the processed data.

Experimentation

To highlight the interest of Generic Programming and views in the context of performance-sensitive applications, we study the impact on a simple but real case image processing pipeline aiming at extracting objects from a background as depicted on g. 9. Simply said, it computes the di erence Table 2. Benchmarks of the pipeline g. 9 on a dataset (12 images) of 10MPix images with OpenCV as a baseline.

between an image and a registered image. The Gaussian blur and the morphological opening allow some robustness to noise. The pipeline is implemented with (1) OpenCV, (2) our library (Pylene) where each step is a computing operator, (3) and our library where the purple blocks are views. This pipeline actually produces interesting results, as shown in g. 15. In table 2, we benchmark the computation time and the memory usage (using valgring/massif ) of these implementations (all single-threaded) with an opening of disc of radius 32 on 10 MPix RGB images (the minimum of many runs is kept). The results should not be misunderstood. They do not say that OpenCV is faster or slower but shows that implementations all have the same order of processing time, despite the fact that the algorithms used in our implementation are not the same as those used in OpenCV for blur and dilation/erosion, so that the comparison makes sense. It allows us to validate experimentally the advantages of views in pipelines. First, we have to be cautious about the real bene t in terms of processing time. Here, most of the time is spent in algorithms that are not eligible for view transformation. Thus, depending on the operations of the pipeline, views may not improve processing time. Nevertheless, using views does not degrade performance neither (only 1% in this experiment). It seems to show that using views does not introduce performance penalties and may even be bene cial in lightweight pipelines as the one in section 3. On the memory side, views reduce drastically the memory usage which is bene cial when developing applications which are memory constrained. On the binary size side, while we can fear "code bloat" due to many template instanciations, it appears that our binary size is very much in the same order of magnitude as for one doing the same work with OpenCV. We can deduce that the compiler is able to prune generated code and keep only needed and optimized machine code in the nal binary. From the developer standpoint, it requires only few changes in the code as shown in g. 10 -the implementation of the algorithms remains the same -which is a real advantage for software maintenance.

To conclude, the main advantage of views lies in the usability gain for the user without degrading performance. They can even improve memory usage e ciency, which is useful for embedded systems. To showcase this point, we o er additional material 1 demonstrating how views can, for instance, be used for a connected-component labeling algorithm. On a toy example, (a simpler pipeline) we show that views can improve performance (the source is in the supplementary material).

Limitations & Conclusion

This paper demonstrates the usage of image views, a modern C++ feature applied to image processing, that reconciles genericity, e ciency and ease of use. This contribution allows the IP practitioner to reason at image level, which is novel in the C++ IP library ecosystem, and facilitates the transition between prototypes and production-ready applications. In addition to improving the usability, it leads to performance gain and decreases the memory usage. These ideas have been implemented in our C++20 library [START_REF] Carlinet | Pylena: a Modern C++ Library for Generic and E cient Image Processing[END_REF] and used for concrete image processing applications (medical imaging and document analysis).

Despite these advantages, this design comes with some limitations. The intensive use of the C++ templates generates type combinatorial explosion and code bloat that leads to large compilation times. Also, templates belong to the static world and are poorly interoperable with the dynamic world. Nevertheless, dealing with the dynamic world (runtime) is mandatory when it comes down to exposing a static library to a dynamic language like Python, in order to provide the interactivity that C++ lacks. Another drawback lies in relying on the compiler to do a lot of work, especially the optimizer. Therefore, when the compiler fails in optimizing our abstractions away, we pay the price in performance. Our future work will be dedicated to x these shortcomings.
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 1 Figure 1. The watershed segmentation algorithm runs on a 2D-regular grayscale image (left), on a vertex-valued graph (middle) and on a 3D mesh (right).
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 45 Figure 4. Concept-checked sum algorithm over a collection.
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 6 Figure 6. Image concept and constrained dilation algorithm.
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 )78 Figure 7. An image view performing a thresholding.
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 910 Figure 9. Pipeline for foreground extraction using algorithms and views. float kThreshold = 150; float kVSigma = 10; float kHSigma = 10; int kOpeningRadius = 32; auto img_gray = view::transform(img_color, to_gray); auto bg_gray = view::transform(bg_color, to_gray); auto bg_blurred = gaussian2d(bg_gray, kHSigma, kVSigma); auto tmp_gray = img_gray -bg_blurred; auto thresholdf = [](auto x) { return x < kThreshold; }; auto tmp_bin = view::transform(tmp_gray, thresholdf); auto ero = erosion(tmp_bin, disc(kOpeningRadius)); dilation(ero, disc(kOpeningRadius), output);Figure 10. Pipeline implementation with views .
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 111213 Figure 11. Alpha-blending with classical C/C++ code.
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 1415 Figure 14. Chaining views to feed alpha-blending.

  , let us consider the morphological dilation of an image : → (de ned on a domain with values in ) by

	template <class I>
	concept Image = requires {
	point_t<I>; // Type of point (P)
	value_t<I>; // Type of value (V)
	} && requires (I f, point_t<I> p, value_t<I> v) {
	{ v = f(p) }; //
	{ f(p) = v }; // optional, for output
	{ f.domain() } -> Range; // (actually Range of P)
	};
	template <Image I, StructuringElement SE>
	void dilation(I input, I output, SE se)
	requires MaxMonoid<value_t<I>>
	{ ... }
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