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The Cost of Dynamism in Static Languages for Image
Processing

Baptiste Esteban, Edwin Carlinet, Guillaume Tochon and Didier Verna,
EPITA Research Laboratory
14-16 Rue Voltaire
94270 Le Kremlin-Bicétre
FRANCE

Generic programming is a powerful paradigm abstracting data structures and algo-
rithms to improve their reusability, as long as they respect a given interface. Cou-
pled with a performance-driven language, it is a paradigm of choice for scientific
libraries where the implementation of manipulated objects may change depending
on their use case, or for performance purposes. In those performance-driven lan-
guages, genericity is often implemented statically to perform some optimization.
This does not fit well with the dynamism needed to handle objects which may only
be known at runtime. Thus, in this article, we evaluate a model that couples static
genericity with a dynamic model based on type erasure in the context of image pro-
cessing. Its cost is assessed by comparing the performance of the implementation
of some common image processing algorithms in C++ and Rust, two performance-
driven languages supporting some form of genericity. Finally, we demonstrate that
compile-time knowledge of some specific information is critical for performance,
and also that the runtime overhead depends on the algorithmic scheme in use.
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1 Introduction

Scientific tooling is an important part of the research process. In image processing, three criteria are
of prime importance: genericity, performance, and interactivity. Genericity [I1] allows using a single
algorithm on several kinds of objects while they respect a predefined interface. The genericity may
be on the type of the values of an image [§], but also its spatial definition [9] and its implementation
(sparse-matrix, constant image). Performance is an important criterion to be able to handle large
images in an image processing pipeline or for real-time applications. Finally, interactivity allows the
researcher to change the pipeline at runtime without having to perform a new compilation at every
change. This kind of interactivity is usually reached by bridging the functionalities written in a
compiled language such as C++ into a dynamic language, more popular for algorithm prototyping,
such as Python, having a large range of scientific utilities such as NumPy [5] for multi-dimensional
arrays manipulation, Matplotlib [6] for visualization or IPython/Jupyter for interactive programming.
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A lot of image processing libraries meet these criteria. They are implemented in C++, a performance-
driven language, well-suited for efficient scientific applications through optimizations at compile time
such as partial specialization [4], and endowed with genericity capabilities, through the use of tem-
plates. Those libraries handle a large range of image processing objects such as multi-dimensional
arrays with generic values for Vigra [8], different kinds of graphs for Higra [12], or any kind of image
for Olena [9]. Furthermore, using some libraries wrapping the CPython API into a more interactive
APT such as Pybind11 [7] or Boost.Python [I], their functionalities are easily usable in Python. How-
ever, Python extensions being compiled modules, C++ templated algorithms must be instantiated to
allow their bridging. While Higra instantiates its functionalities for a large range of types, generating
a large amount of code due to the monomorphization process of the C++ genericity mechanism, Vigra
limits the choice of input arguments type, reducing the genericity of the exposed functionalities.

Thus, our main objective is to reduce the amount of generated machine code while keeping the
generic abilities of the implemented algorithm. To this aim, we present in this article a model for generic
image processing algorithms allowing both static and dynamic genericity based on operation functions
and we evaluate its cost. We focus in this paper on two programming languages with a genericity
mechanism relying on monomorphization, the C++ language, widely used for image processing, and
the Rust language, which is increasingly becoming popular for its safety in terms of memory usage,
multi-processing, and performance.

This article is structured as follows: we first recall the basis of genericity and we explain its
application in image processing in section 2] Then, we explain our proposed model to handle both
static and dynamic genericity in section We compare the performance of the static and dynamic
implementation in section [d] We finally conclude in section

2 Generic Programming

2.1 Preliminaries

Reusability is important in the development process. It reduces the amount of code to be written and
maintained. Generic programming [I1] improves the ability of programming language to reuse existing
components of a library. It abstracts an algorithm through a predefined interface for the objects used
by it. As long as an object respects this interface, it can be used by this algorithm.

Genericity in the C++ and Rust languages is particularly interesting in terms of performance.
Their mechanism for genericity is based on monomorphization, a process producing machine code
for each concrete algorithm. This machine code is optimized by the compiler for each combination
of type parameters, resulting in performant libraries and applications. Genericity in C++ is based
on templates, a list of parameters containing either types or constant values which are filled at the
instantiation of a concrete data structure or algorithm. Thus, each combination of parameters results
in a new concrete type or algorithm. The Rust language genericity is based on a similar parameter
list named generics. The illustration in Figure [I] shows a generic implementation of the sum function
in C++ and Rust traversing an array, summing all its elements, and returning the results. In these
two cases, the type parameter must respect the interface ensuring the usage of the operator +, either
by an operator overloading in C++ or the implementation of the trait bound Add in Rust.



// C++ version
template <class T>
T sum(std: :vector<T> 1lst) {
T res = T();
for (const auto e : 1lst)
res += e;
return res

// Rust wversion
fn sum<T: Add<Output = T> + Default>(
1st: Vec<T>,
) > TH
let mut res : T = Default::default();
for e in 1lst {
res = e + res;
}
res

}

Figure 1: C++ and Rust implementation of sum

2.2 Application to Image Processing

Let f: € — V be an image with €2 its domain and V its value space. The domain of definition of the
image differs depending on which kind of image is used: it may be a multi-dimensional grid, the index
of a node in a graph, etc... In the same way, the values of an image may be univariate (boolean for
binary image, numerical for grayscale image) or multivariate (for color image). Algorithms may be
used on all these kinds of images. An example of algorithms on specific images is shown in Figure
The two functions compute the elementwise maximum between two objects. The first function takes in
argument a 2D image with the value encoded as an unsigned integer on 8 bits and the second function
takes a node-valued graph. The pattern of the algorithm is the same for the two functions: the object
is traversed, computing the maximum between two elements and storing it in a third object.

These functions are limited: if a new type is introduced, a new function has to be implemented.
However, due to the common pattern of the algorithm, they can be implemented as a single generic
function by imposing a common interface for all the objects being accepted by the function. This
is illustrated in Figure 8] From the definition of an image given above, the interface of an image
is composed of a domain, accessible by the domain function, and the values are accessed using the
callable operator, taking into argument an element of the domain. This element is an n-D point for
an n-D image, the index of a node for a node valued graph, etc... Thus, this generic function has only
two constraints: the domain of the object should be the same and the type of the values of the images
should be compatible for the maximum operation. That means the value type of the images may be
different.

As explained in section C++ and Rust generate code for each instantiated function. The
function generic_max in Figuretakes three template parameters; each combination of types generates
machine code specialized for the combination of parameters. Set to all kinds of possible types, it leads
to a combinatorial explosion.



void image_max(image2d a, image2d D,
image2d& out) {
for (int y = 0; y < a.height(); y++)
for (int x = 0; x < a.width(); x++)
out(x, y) = max(a(x, y), b(x, y));
}

graph graph_max(graph a, graph b,
graph& out) {
for (int 1 = 0; i < a.num_nodes(); i++)
out (i) = max(a(i), b(i));

Figure 2: Non-generic maximum functions

template <class I, class J, class 0>
void generic_max(I a, J b, 0& out) {
for (auto p : a.domain())
out (p) = max(a(p), b(p));
}

Figure 3: C4++ implementation of generic maximum function

3 Dynamism for Static Genericity

As explained above, the genericity in statically typed languages has two major drawbacks:
e The generic parameters cannot be set at runtime.

e When the generic parameters are not known at compile time, several generic objects and algo-
rithms have to be instantiated, resulting in a combinatorial explosion and the code bloat resulting
from the monomorphization process.

To solve these issues in the image processing context, we propose to observe four models of image and
apply them to generic algorithms with few modifications in their implementation. In this section and
the following ones, we only focus on 2D images, but this method is extendible to any kind of image,
as described in Section 2.2l

3.1 Image Models

In static languages such as C++ or Rust, a practical and basic way to implement a 2D image encoded
as a buffer is to store the values in an array contained inside an object and to have access to the size of
the image. Furthermore, to make the image reusable, a generic parameter handles the type of values
in the buffer. Thus, the user has access to two elements: the domain of the image (width and height
for a 2D image) and the value encoded at a given position. This is illustrated in C++ in Figure {4 and
Rust in Figure [5] as the templated and generic version of a 2D buffer. However, as specified above,
this kind of image is unusable in a dynamic context.

One way to remove this generic parameter relies on type erasure. This mechanism is widely used
in the C++ standard library and used in several cases. For example, the std::any [3] object is a



// Templated 2D buffer
template <class T>
struct buffer2d
{
T& operator () (point2d p);

_ rect2d domain()_const;______ Interface ___
T+ data; Implementation

I details

// Type-erased 2D buffer

struct buffer2d_any

{
void* operator() (point2d p);
rect2d domain() const; Interface
void* data; Implementation
size_t element_size; details

Figure 4: C++ implementation of a 2D buffer

trait Buffer2dInterface {
type Output: 7Sized;
fn domain(&self) -> Rect2d;
fn at(&mut self, p: Point2d)
-> Option<&mut Self::0Output>;

X Interface

// Generic 2D buffer Implementation
struct Buffer2d<T> { details

domain: Rect2d,
data: Vec<T>

}

// Type-erased 2D buffer

struct Buffer2dAny {
domain: Rect2d,
element_size: usize,
data: Vec<u8>

}

Figure 5: Rust implementation of a 2D buffer



template <class T>
struct indirect2d {
T& operator () (point2d p);
__rect2d domain() const; _____ Interface

std: :function<T&(point2d) >
m_access;

Implementation
details

Figure 6: C++ implementation of indirection

type-safe object handling any kind of object under certain constraints. It allocates memory for this
object and stores it without any static type information, but keeps a dynamic identifier of the type
internally so that the conversion from the typed-erased object to the statically typed one is a type-safe
operation by computing some type checking. Another use case of type erasure is the std: :function
object. It stores any kind of callable inside the object such as a function pointer or a functor storing
some data since their call operation respects a given list of argument types and the return type.

Value type information This second model type-erases the values of the image. Some information
about the type of values such as the size in bytes of one value must be stored in the implementation
details in order to traverse the image value by value. However, the interface does not change: the
type erasure does not change the nature of the definition domain and the access operator still returns
information related to the value. In C++, this information is a pointer to the first byte of the value
and in Rust, it is an unsized slice containing the bytes of the value. This slight difference between the
two implementations is due to the fact that Rust syntax for pointers is different than its syntax for
concrete values. These type-erased versions are illustrated in Figures |4 and [5| as buffer2d_any and
Buffer2dAny.

Data encoding information The two previous models are based on the type of values, but not on
their implementation. However, an image may have a different implementation according to the con-
text, such as one value for a constant image, a sparse matrix for an image storing a few values different
from 0, or a C++ view returning a modified image value at access. To handle all of these implemen-
tations, a model inspired by the C++ std::function functionality is used. Instead of encoding the
implementation of the image directly in the structure handling the interface, it is handled by an exter-
nal object, encoding the access of the value to the image, which is itself stored in the interface. This
method makes an indirection to access the image values. This can be done by using a std: :function
in C4++ or a dynamic trait object in Rust. These structures are denoted by indirect2d<T> for the
statically typed values version and indirect2d_any for the dynamic one. The C++ implementation
of indirect2d<T> is illustrated in Figure [6]

3.2 Application to Generic Algorithm

The image models described above have a common interface, which is a criterion for generic pro-
gramming. However, the untyped models return values that cannot be directly manipulated by the
algorithm, such as the addresses returned by the access operation in the C++ implementation of a 2D
untyped buffer. Thus, these values should be converted into a statically typed one to be manipulated
by the algorithm.



void gsort(void *tab, size_t nmemb, size_t size, int (*compare) (const void *, const void *))
Figure 7: gsort function prototype

// Generic operation
template <class I, class 0Op>
void elemwise_op(I a, I b, I& out, Op& op) {
for (auto p : a.domain())
op(a(p), b(p), out(p));

Figure 8: Elementwise operations function

The model used to manipulate these algorithms is based on the gsort function from the C standard
library whose prototype is recalled in Figure [7] This function sorts the elements of the table pointed
by the address tab, composed of nmemb elements of size bytes. It sorts the elements according to the
result returned by the function pointed by the compare pointer. This approach has several advantages:
first, the gsort function does not require the knowledge of the static type of the object being sorted
at compile time. Then, the sorting criterion can be changed at runtime without having to generate
too much code. However, as pointed out by Meyers in [I0], the std::sort function from the C++
Standard Template Library (STL) is 670% faster than the gsort function on a table containing one
million of double typed elements. This is due to the fact that statically typed code is optimized at
compile time and the cost of a function call is reduced by function inlining for the std: : sort function.

This model is adapted to generic programming by adding operations to the algorithm manipulating
the values of an object in the same way as the gsort function. The operator interface used in Figure[3]
is changed to support type erasure. It changes from (T, T) -> T to (T, T, T&) -> void to store
the result of the computation in the last function argument. It yields the generic elementwise_op
depicted in Figure[8] that traverses a and b and stores the result of the operation op in the out image.

Table [2| summarizes the different image structures presented and their properties. The Operation
type column shows two kinds of max operation, one where the operand types are known at compile-
time, and a ”dynamic” one whose arguments are type-erased, unknown at compite-time. In the context
of the elementwise_op function, these two operations are valid as they respect the required interface.
The statically-typed operation can be inlined because both the operator and the operand type are
known at compile-time. However, the second one requires an indirection because the operand type is
not known.

4 Results

In order to measure the cost of our models, we implemented in C++ and Rust three image processing
algorithms following different algorithmic schemes, illustrated in Figures [Da] to The raster pattern
is implemented using an elementwise maximum operation between two images. The random pattern
is used in the construction of a max-tree [I3] using Berger’s algorithm [2]. Finally, the local pattern is
implemented by a dilation [I4] using a square of size 1 as a structuring element. Each operation has been
run on square images of side s = {2"| n € [4—12]}. The experiments have been performed on a Linux
Debian 11 machine equipped with a processor Intel i7-3770, 3.40GHz. The C++ benchmarks have been
run using the Google Benchmark library from binary compiled with GCC 10.2.1 using the optimization
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Figure 9: Benchmarks results of the implementation of the three algorithmic pattern in C++ and Rust

flags -03, -ftree-vectorize, -mavx and -unroll-loops. The Rust benchmarks have been compiled with the
Ruste compiler using the third optimization level (-C opt-level=3) and the measurements have been
performed using the Criterion.rs library.

The results of the benchmark are displayed in Figure [J} Each plot displays the performance of
an algorithm in seconds related to the size of the side of an image. The second row is the result
of the algorithms implemented in C++ and the third one of the algorithms implemented in Rust.
Except for the Rust implementation of the dilation (Figure , the statically typed buffer is the
fastest implementation of the algorithm, which is particularly true when traversing the image in raster
order as for the elementwise operation (Figures|9d|and . This is due to the number of cache misses,
low for the elementwise operation, due to the fact the images are traversed in the same order they
are stored in memory. Furthermore, the knowledge of the type at compile time enables optimizations
by the compiler such as automatic vectorization of the instruction in the produced binary. Finally,
the implementations of the algorithms with the buffer2d<T> knowing the nature of the input object
values type and the input object implementation details, the operations given to the algorithm are
processed by the compiler, enabling its inlining and avoiding the indirection induced by a function call.

Furthermore, we observe in Figures [0c| and [9h] that the algorithmic scheme is an important crite-
rion to choose the generic model to use. For the max-tree algorithm, whatever the model used, the
performance of its computation is similar for each one. Indeed, the random algorithmic scheme does
not access the memory in the same order as the memory is used. Thus, it results in several cache



Table 1: Execution time overhead (in percentage) of the algorithmic schemes compared to the
statically-typed with direct access image of side size of 4096

Statically Typed Yes No
Direct Access | Yes No Yes No
Raster | +0% | +176% | +183% | +367%
C++ Random | +0% | +20% +18% +29%

Local | +0% | +208% | +174% | +283%
Raster | +0% | +388% | +251% | +574%
Rust Random | +0% | +9% +6% +15%
Local | +0% | +61% | -14% +66%

misses, but also the compiler is unable to optimize the generated machine code.

We can conclude from these benchmarks that the static information of the image values type
is important, but also the algorithmic scheme. This is even more obvious in Table where the
dynamism overhead is shown. In the context of a bridge between the C++ or Rust language and
Python, specializing generic algorithms to a wide variety of types in the case of a pattern such as the
random pattern is not necessary in term of performance.

The second experiment performed in this paper is the measurement of the size evolution of the
generated machine code from the C++ implementation of the max-tree algorithm related to the number
of handled image value types. To make it, we used the Bloatg,EI profiler which measures the size
of different elements in binaries. The max-tree algorithm has been chosen because its compilation
generates the largest amount of machine code from the three previous algorithms, but also because
the cost of dynamism of its algorithmic scheme is negligible and permits the usage of its dynamic
version. The result of this measurement is shown Table Bl Both version exhibit a linear increase with
the addition of new image types. However, the quantity of new code generated in the dynamic version
( 100b/type) is 26 times lower than in the static version (2.6Kb/type) where a new full algorithm is
instantiated. Therefore, the dynamic version prevents code bloat.

5 Conclusion

In this paper, we presented different models of generic programming and we compared them applied to
image processing by implementing different algorithmic schemes in C++ and Rust. We showed that
the performance of each model was dependent on the algorithmic scheme used, and we highlight the
fact that some information such as the type of the values of an image, was more important to be known
statically by the compiler in some cases. To reduce the loss of performance induced by the lack of static
information knowledge, some leads may be explored: first, the usage of external modules downloaded
at runtime and linked to the application, with precompiled algorithms, optimized for this particular use
case. The second lead may be the usage of Just-In-Time compilation to generate optimized assembly
code such as SIMD instruction at runtime for critical operations. Then, as observed in the benchmark’s
result Figure [J] for a small square image, the difference in performance is negligible. Looking for the
best side size related to the performance of an algorithm for distributed tile-based image processing
algorithm would be a means to reduce this gap in performance. Finally, this work is intended to be

Thttps://github.com/google/bloaty
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Table 2: Summary of the different image structures and their properties

Image type Access policy Static f(p) Operation type
value return
type type
buffer2d<T> Direct to the buffer v T& void max<T>(T a, T b, T& out)
indirect2d<T> Indirect v T& void max<T>(T a, T b, T& out)
buffer2d_any Direct to the buffer X void* void (*max) (const void* a, const
void* b, void* out)
indirect2d_any Indirect X void* void (*max) (const void#* a, const

void* b, void* out)

Table 3: Max-tree generated machine code related to the number of handled types

Number of handled types 1 2 3 4 5 6 7 8 9 10 11
Size for static version (in Kb) 2915379105 | 132 | 158 | 185 | 21.1 | 23.8 | 26.5 | 29.2
Size for dynamic version (in Kb) | 3.7 | 3.8 | 39 | 40 | 41 | 42 | 44 | 45 | 46 | 47 | 4.9




used in the context of a bridge from a static language to a dynamic one to provide an interface for
dynamic environments without a loss of performance for a C4++ image processing library. Thus, we
will use it as a basis for efficient bindings of our algorithms from C++ to Python.
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