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Abstract
Numerical simulators are widely used to model physical phenomena and global sensitivity analysis

(GSA) aims at studying the global impact of the input uncertainties on the simulator output. To
perform GSA, statistical tools based on inputs/output dependence measures are commonly used.
We focus here on the Hilbert-Schmidt independence criterion (HSIC). Sometimes, the probability
distributions modeling the uncertainty of inputs may be themselves uncertain and it is important
to quantify their impact on GSA results. We call it here the second-level global sensitivity analysis
(GSA2). However, GSA2, when performed with a Monte Carlo double-loop, requires a large number
of model evaluations, which is intractable with CPU time expensive simulators. To cope with this
limitation, we propose a new statistical methodology based on a Monte Carlo single-loop with a
limited calculation budget. First, we build a unique sample of inputs and simulator outputs, from
a well-chosen probability distribution of inputs. From this sample, we perform GSA for various
assumed probability distributions of inputs by using weighted HSIC measures estimators. Statistical
properties of these weighted estimators are demonstrated. Subsequently, we define 2nd-level HSIC-
based measures between the distributions of inputs and GSA results, which constitute GSA2 indices.
The efficiency of our GSA2 methodology is illustrated on an analytical example, thereby comparing
several technical options. Finally, an application to a test case simulating a severe accidental scenario
on nuclear reactor is provided.

1 Introduction
Numerical simulators are fundamental tools for understanding, modeling and predicting phenomena.
They are widely used nowadays in several fields such as physics, chemistry and biology, but also in
economics and social science. These numerical simulators take a large number of input parameters
more or less uncertain, characterizing the studied phenomenon. Consequently, the output which is
provided by the numerical simulator is also uncertain. It is therefore important to consider not only
the nominal values of inputs, but also the set of all possible values in the range of variation of each
uncertain input [12, 22]. In the framework of a probabilistic approach, the inputs and the output
are considered as random variables and their uncertainties are modeled by probability distributions.
The objective is then to evaluate the impact of the input uncertainties on the variability of the
output. For this, sensitivity analysis studies can be performed, using statistical methods based on
a sample of realizations from the simulator. To choose these numerical simulations, experimental
design techniques can be used [10].

Generalities on sensitivity analysis. Sensitivity analysis [34] aims at determining how the
variability of inputs contributes, qualitatively or quantitatively, to the output variability. Sensitivity
analysis can yield a screening of the inputs, which consists in separating them into two subgroups:
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those that mainly influence the output (most influential inputs) and those whose influence on the
output can be neglected. More generally, sensitivity analysis can be divided into two main areas:

• local sensitivity analysis (LSA) which studies the output variability for a small input variation
around nominal values (reference values);

• global sensitivity analysis (GSA) which studies the impact of the input uncertainties on the
output, considering the whole range of input variation.

We focus here on GSA and we call it in the following, first-level GSA, denoted GSA1.
Use of dependence measures for GSA1. Among GSA1 tools [23], one of the most popular

methods used in industrial applications is based on a variance decomposition of the output [37].
The sensitivity indices thus obtained by this decomposition are called Sobol’ indices. These indices
have the advantage of being easily interpretable but are in practice very expensive in computing
time (several tens of thousands of simulations required). More recently, tools based on dependence
measures have been proposed for GSA1 purpose [9]. These measures aim at quantifying, from a
probabilistic point of view, the dependence between the output random variable and the input ran-
dom variables. Among these measures, we can mention the f -divergence of Csiszár which, for a given
input, compares the distribution of the output and its distribution when this input is fixed, thanks
to a function with specific properties [8]. Always on the same principle, the distance correlation
is an other dependence measure which compares the characteristic function of a couple of random
input/output variables, with the product of the joint characteristic functions of the two variables
[43]. Last but not least, the Hilbert-Schmidt independence criterion denoted HSIC [20], generalizes
the notion of covariance between two random variables and takes into account a very large spectrum
of forms of dependence between variables. Initially developed by statisticians [20] to perform inde-
pendence tests, these dependence measures offer the advantage of having a low cost of estimation
(in practice a few hundred simulations against several tens of thousands for Sobol’ indices) and their
estimation for all inputs does not depend on the number of inputs. In addition, recent work proposed
by [11] showed the efficiency of these measures to perform a screening of the input variables, from
various HSIC-based statistical tests of significance. Finally, HSIC measures can easily be extended
to non-vector inputs (functional, categorical, etc.). For all these reasons, we will focus here on HSIC
measures for GSA1 of numerical simulators.

Second-level input uncertainties and GSA2. In some cases, the probability distributions
characterizing the uncertain inputs may themselves be uncertain. This uncertainty may be related
to a divergence of expert opinion on the probability distribution assigned to each input or a lack of
information to characterize this distribution. The modeling of this lack of knowledge on input laws
can take many forms:

• the type of the input distribution is uncertain (uniform, triangular, normal, ...);
• the distribution is known but its parameters are uncertain (e.g., known normal distribution

with unknown mean and variance, eventually estimated on data).

In both cases, the resulting uncertainties on the input laws are referred to here as second-level
uncertainties. As part of a probabilistic approach, these uncertainties can be modeled by a probability
law on a set of possible probability laws of inputs or by a probability law on the parameters of a
given input law (e.g. Gaussian distribution with probability law on mean and/or variance). In any
case, these 2nd-level uncertainties can significantly change the GSA1 results performed by HSIC or
any other dependence measure. In this framework, the main purpose of second-level GSA denoted
GSA2 is to answer the following questions: “What impact do 2nd-level uncertainties have on the
GSA1 results?” and “What are the most influential ones and those whose influence is negligible?”.
The GSA2 results and conclusion can then be used to prioritize the characterization efforts on the
inputs whose uncertainties on probability laws have the greatest impact on GSA1 results. Note that,
we assume here that the inputs are independent and continuous random variables with a probability
density function, denoted here pdf.

Practical problems raised by GSA2. In practice, the realization of GSA2 raises several
issues and technical obstacles. First, it is necessary to characterize GSA1 results, i.e. to define a
representative quantity of interest in order to compare the results obtained for different uncertain
input pdf. Then, the impact of each uncertain input pdf on this quantity of interest has to be
evaluated. For this, sensitivity indices measuring the dependence between GSA1 results and each
input pdf have to be defined. We propose to call them 2nd-level GSA indices. In order to estimate
these measures, an approach based on a “Monte Carlo double-loop” could be considered. In the outer
loop, a Monte Carlo sample of input pdfs is generated, while the inner loop aims at evaluating the
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GSA1 results associated to each pdf. For each pdf selected in the outer loop, the inner loop consists
in generating a Monte Carlo sample of simulations (set of inputs/output) and to compute GSA1
results. The process is repeated for each input pdf. At the end of the outer loop, the impact of input
pdf on the GSA1 results can be observed and quantify by computing 2nd-level GSA. Unfortunately,
this type of double-loop approach requires in practice a very large number of simulations which is
intractable for time expensive computer simulators. Therefore, other less expensive approaches must
be developed.

To answer these different issues (choice of the quantity of interest, definition of 2nd-level sensitivity
indices and reduction of the budget of simulations), we propose in this paper a “single-loop” Monte
Carlo methodology for GSA2 based on both 1st-level and 2nd-level HSIC dependence measures. Note
that this work was initiated in the framework of Meynaoui’s PhD [31], the interested reader could
find more technical elements and detailed demonstrations in this document.

The paper is organized as follows. In Section 2, we introduce HSIC measures, before presenting
the statistical estimators of these measures, as well as the associated characteristics (bias, variance
and asymptotic law). Then, we show that these measures can be formulated and estimated with a
sample generated from a different distribution than the prior distribution of the inputs. For this,
new estimators are proposed and their characteristics are detailed, these new estimators being a key
point for the proposed GSA2 methodology. In Section 3, the full methodology for GSA2 is presented:
a single inputs/output sample is used, taking advantage of the new HSIC estimators. The GSA2
principle and the related practical issues are first introduced. The general algorithm is then detailed,
followed by dedicated sections focusing on major technical elements. In Section 4, the methodology
is illustrated on an analytical example, thereby comparing different options and technical choices of
the methodology. Finally, an application on a test case simulating a severe accidental scenario on a
nuclear reactor is proposed.

2 Statistical inference around Hilbert-Schmidt depen-
dence measures (HSIC)
Throughout the rest of this document, the numerical model is represented by the relation:

Y =M (X1, . . . , Xd) ,

where X1, . . . , Xd and Y are respectively the d uncertain inputs and the uncertain output, evolving in
one-dimensional real sets respectively denoted X1, . . . ,Xd and Y. M denotes the numerical simulator.
We note X = (X1, . . . , Xd) the vector of inputs. As part of the probabilistic approach, the d inputs are
considered as continuous and independent random variables with known densities. These densities
are respectively denoted f1, . . . , fd. Finally, f : (x1, . . . , xd) 7→ f1(x1) × . . . × fd(xd) denotes the
density of the random vector X. As the model M is not known analytically, a direct computation
of the output probability density as well as dependence measures between X and Y is impossible.
Only observations (or realizations) ofM are available. It is therefore assumed in the following that
we have a n-sample of inputs and associated outputs

(
X(i), Y (i))

1≤i≤n
, where Y (i) =M(X(i)).

2.1 Review on HSIC measures
After introducing their theoretical definition, the estimation of HSIC dependence measures and their
use for GSA1 are detailed.

2.1.1 Definition and description
To define the HSIC measure between Xk and Y , where k ∈ {1, . . . , d}, [20] associate to Xk a
reproducing kernel Hilbert space (denoted RKHS, see [4] for more details) Hk composed of functions
mapping from Xk to R and characterized by a kernel lk. The same transformation is carried out for
Y, considering a RKHS denoted G and a kernel l. The scalar products on Hk and G are respectively
denoted 〈., .〉Hk and 〈., .〉G . Under this RKHS framework, [5] defines the cross-covariance operator
Ck between Hk and G as the linear operator from G to Hk defined for all h ∈ Hk and all g ∈ G by

〈h,Ckg〉Hk = Cov (h(Xk), g(Y )) .

The operator Ck generalizes the notion of covariance, taking into account a large spectrum of re-
lationships between Xk and Y (not only linear ones). Finally, the Hilbert-Schmidt independence
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criterion (HSIC) is defined by [20] as the Hilbert-Schmidt norm of the operator Ck:

HSIC(Xk, Y )Hk,G = ‖Ck‖2HS =
∑
i,j

〈ui, Ckvj〉2Hk
, (1)

where (ui)i≥0 and (vj)j≥0 are respectively orthonormal basis of Hk and G.

Remark 1 In the following, the notation HSIC(Xk, Y )Hk,G is replaced by HSIC(Xk, Y ) in order to
lighten the expressions.

Authors of [20] show that the HSIC measure between an input Xk and the output Y can be
expressed using the kernels lk and l in a more convenient form:

HSIC(Xk, Y ) = E
[
lk(Xk, X ′k)l(Y, Y ′)

]
+ E

[
lk
(
Xk, X

′
k

)]
E
[
l
(
Y, Y ′

)]
(2)

− 2E
[
E
[
lk
(
Xk, X

′
k

)
| Xk

]
E
[
l
(
Y, Y ′

)
| Y
]]
,

where (X ′1, . . . , X ′d) is an independent and identically distributed copy of (X1, . . . , Xd) and Y ′ =
M (X ′1, . . . , X ′d).

Independence characterization. To ensure equivalence between HSIC nullity and indepen-
dence, the kernels lk and l must belong to the specific class of characteristic kernels [42]. A most
commonly used characteristic kernel for real variables is the Gaussian kernel, which is defined for a
pair of variables (z, z′) ∈ Rq × Rq by

kλ(z, z′) = exp
(
−λ‖z − z′‖22

)
, (3)

where λ is a positive real parameter (fixed) and ‖.‖2 is the euclidean norm in Rq.

Remark 2 Despite that theoretically HSIC(Xk, Y ) = 0 is equivalent to the independence between
Xk and Y , a good choice of the kernel widths is required in practice. Indeed, a wise choice of these
parameters guarantees a better behavior of HSIC estimators and better properties of the associated
independence tests. Unfortunately, the best choice is unknown in practice, it depends on the joint
density of (Xk, Y ). For this, intrinsic characteristics of these random variables are usually used.
In particular, two main options are usually adopted in practice for the adjustment of λ in Equation
(3): whether the inverse of empirical variance of z, or the inverse of empirical median of ‖z − z′‖22
[11, 40, 49]. In the sequel, we refer to Standardized Gaussian kernel as the one with λ being the
empirical variance. Note that, some existing works such as [41] propose methods based on cross-
validation to suitably select widths. Very recently, [2] proposed aggregated HSIC-based tests: a well-
chosen collection of HSIC tests is aggregated through a unique independence test to improve the
power.

2.1.2 Statistical estimation
In this paragraph, we present HSIC estimators, as well as their characteristics. As a reminder, we
assume that we have a n-sample of independent realizations

(
X(i), Y (i))

1≤i≤n
of the inputs/output

couple (X, Y ), where X = (X1, . . . , Xd).

Monte Carlo estimation. From Equation (2), authors of [20] propose to estimate each
HSIC(Xk, Y ) by

ĤSIC(Xk, Y ) = 1
n2

∑
1≤i,j≤n

(Lk)i,j(L)i,j + 1
n4

∑
1≤i,j,q,r≤n

(Lk)i,j(L)q,r −
2
n3

∑
1≤i,j,r≤n

(Lk)i,j(L)j,r, (4)

where Lk and L are the matrices defined for all i, j ∈ {1, . . . , n} by (Lk)i,j = lk(X(i)
k , X

(j)
k ) and

(L)i,j = l(Y (i), Y (j)). These V-statistic estimators [45] (named after Richard Von Mises) can also be
written in the following more compact form [20]:

ĤSIC(Xk, Y ) = 1
n2 Tr(LkHLH), (5)

where H is the matrix defined for all i, j ∈ {1, . . . , n} by Hi,j = δi,j − 1/n, with δi,j the Kronecker
symbol between i and j which is equal to 1 if i = j and 0 otherwise.

Characteristics of HSIC estimators. Under the assumption of independence between Xk
and Y and the assumption lk(xk, xk) = l(y, y) = 1 (as in the case of Gaussian kernels), the estimator
ĤSIC(Xk, Y ) is asymptotically unbiased, its bias converges in O(1/n), while its variance converges
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to 0 in O(1/n2). Moreover, the asymptotic distribution of n × ĤSIC(Xk, Y ) is an infinite sum of
independent χ2 random variables, which can be approximated by a Gamma law [35] with shape and
scale parameters, respectively denoted γk and βk:

γk '
e2
k

vk
and βk '

n.vk
ek

,

where ek and vk respectively are the expectation and the variance of ĤSIC(Xk, Y ), i.e.

ek = E
[
ĤSIC(Xk, Y )

]
and vk = Var

(
ĤSIC(Xk, Y )

)
.

The reader can refer to [18] and [11] for more details on ek and vk and their estimation.

2.1.3 Use for first-level GSA
Several methods based on HSIC measures have been developed for GSA1. In this section, we mention
three possible HSIC-based approaches for screening and ranking the inputs: sensitivity indices [9],
asymptotic tests [18] and permutation tests [11].

HSIC-based sensitivity indices. These indices directly derived from HSIC measures, classify
the input variables X1, . . . , Xd by order of influence on the output Y . They are defined for all
k ∈ {1, . . . , d} by

R2
HSIC,k = HSIC(Xk, Y )√

HSIC(Xk, Xk) HSIC(Y, Y )
. (6)

The normalization in (6) implies that R2
HSIC,k is bounded and included in the range [0, 1], which

makes its interpretation easier. In practice, R2
HSIC,k can be estimated using a plug-in approach:

R̂
2
HSIC,k = ĤSIC(Xk, Y )√

ĤSIC(Xk, Xk)ĤSIC(Y, Y )
. (7)

Asymptotic tests. The independence test between the input Xk and the output Y based on
HSIC rejects the independence assumption (hypothesis denoted H0,k), when the p-value1 of the test
based on the statistic n× ĤSIC(Xk, Y ) is less than a threshold α (in practice α is set at 5% or 10%).
Within the asymptotic framework, this p-value denoted Pk is approximated under H0,k using the
Gamma approximation (denoted Gk) of n× ĤSIC(Xk, Y ) law:

Pk ' 1− FGk

(
n× ĤSIC(Xk, Y )obs

)
, (8)

where FGk is the cumulative distribution function of Gk and ĤSIC(Xk, Y )obs is the observed value
of the random variable ĤSIC(Xk, Y ).

Permutation tests. Outside the asymptotic framework, independence tests based on permuta-
tion technique can be used. For this, the observed n-sample is resampled B independent times con-
sidering B random permutations on the set {1, . . . , n}, denoted (τ [b])1≤b≤B . These permutations are
applied only to the vector X of inputs. We thus obtain B bootstrap-samples

(
X(τ [b](i)), Y (i)

)
1≤i≤n

.

The HSIC measures computed on these samples are denoted
(

ĤSIC
[b])

1≤b≤B
. The p-value (denoted

pk) of the test is then computed by

pk = 1
B

B∑
b=1

1
ĤSIC[b](Xk,Y )>ĤSIC(Xk,Y )

. (9)

More details and demonstration of test properties are available in [31] (see Proposition 3.5).
In addition, sequential algorithms have been recently proposed by [15], to optimize the number of
permutations B, while having reliable p-value estimation.

1The p-value of the test is the probability that, under H0,k, the test statistic (in this case, n× ĤSIC(Xk, Y )) is greater
than or equal to the value observed on the data.
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2.2 Estimation of HSIC with a sample generated from an alternative
distribution
In this part, we first demonstrate that HSIC measures presented in Section 2.1.1, can be expressed
and then estimated using a sample generated from a probability distribution of inputs which is not
their prior distribution. This sampling distribution will be called “alternative law” or “modified law”.
The statistical properties of these new HSIC estimators are also presented.

2.2.1 Expression and estimation of HSIC measures under an alternative law

We consider here d continuous and independent random variables X̃ = (X̃1, . . . , X̃d) whose densities
(different from those of X1, . . . , Xd) are denoted f̃1, . . . , f̃d. We assume that they have the same
supports as f1, . . . , fd. The associated output is denoted Ỹ = M(X̃). Finally, the density of X̃ is
designated by f̃ .

Changing the probability laws in HSIC expression is based on a technique commonly used in the
context of importance sampling (see e.g. [21]). This technique consists in expressing an expectation
E [g(Z)], where Z is a random variable with density fZ , by using a random variable Z̃ with density
f
Z̃
whose support is the same as that of fZ . This gives the following expression for E [g(Z)]:

E [g(Z)] =
∫

Supp(Z)
g(z) fZ(z) dz =

∫
Supp(Z)

g(z) fZ(z)
f
Z̃

(z) fZ̃(z) dz = E
f̃

[
g(Z̃) fZ(Z̃)

f
Z̃

(Z̃)

]
, (10)

where the notation E
f̃

[h(Z)] designates the expectation of h(Z) for Z ∼ f̃ and Supp(Z) denotes the
support of Z.

The HSIC measures, formulated as a sum of expectations in Equation (2), can then be expressed
under the density f

Z̃
by adapting Equation (10) to more general forms of expectations. Hence, we

obtain:
HSIC(Xk, Y ) = H1

k +H2
kH

3
k − 2H4

k , (11)
where (Hl

k)1≤l≤4 are the real numbers defined by

H1
k = E

[
lk(X̃k, X̃ ′k)l(Ỹ , Ỹ ′)w(X̃)w(X̃ ′)

]
; H2

k = E
[
lk(X̃k, X̃ ′k)w(X̃)w(X̃ ′)

]
;

H3
k = E

[
l(Ỹ , Ỹ ′)w(X̃)w(X̃ ′)

]
and H4

k = E
[
E
[
lk(X̃k, X̃ ′k)w(X̃ ′) | X̃k

]
E
[
l(Ỹ , Ỹ ′)w(X̃ ′) | Ỹ

]
w(X̃)

]
,

where X̃′ is an independent and identically distributed copy of X̃, Ỹ ′ =M(X̃′) and w = f/f̃ .

Formula (11) shows that HSIC(Xk, Y ) can then be estimated using a sample generated from f̃ ,
provided that f̃ has the same support than the original density f . Thus, if we consider a n-sample
of independent realizations

(
X̃(i), Ỹ (i)

)
1≤i≤n

, where X̃ is generated from f̃ and Ỹ (i) = M(X̃(i)),

we propose the following V-statistic estimator of HSIC(Xk, Y ):

H̃SIC(Xk, Y ) = H̃1
k + H̃2

kH̃
3
k − 2H̃4

k , (12)

where (H̃l
k)1≤l≤4 are the V-statistics estimators of (Hl

k)1≤l≤4.

Proposition 1 Similarly to Equation (5), this estimator can be rewritten as

H̃SIC(Xk, Y ) = 1
n2 Tr

(
WL̃kWH1L̃H2

)
, (13)

where W , L̃k, L̃, H1 and H2 are the matrices defined by

L̃k =
(
lk(X̃(i)

k , X̃
(j)
k )
)

1≤i,j≤n
; L̃ =

(
l(Ỹ (i), Ỹ (j))

)
1≤i,j≤n

; W = Diag
(
w(X̃(i))

)
1≤i≤n

;

H1 = In −
1
n
UW ; H2 = In −

1
n
WU ;

with In is the identity matrix of size n and U the matrix filled with 1.
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The proof of this proposition is detailed in Appendix A. Similarly, the sensitivity index R2
HSIC,k

can also be estimated using the sample
(

X̃(i), Ỹ (i)
)

1≤i≤n
by

R̃
2
HSIC,k = H̃SIC(Xk, Y )√

H̃SIC(Xk, Xk)H̃SIC(Y, Y )
. (14)

We can demonstrate that these new estimators have statistical properties similar to those of
classical estimators. More precisely, H̃SIC(Xk, Y ) is asymptotically unbiased and its bias converges
in O(1/n).
Proposition 2 Under the hypothesis of independence of Xk and Y , and the assumption lk(xk, xk) =
l(y, y) = 1, the bias and variance of H̃SIC(Xk, Y ) are respectively:

E
[
H̃SIC(Xk, Y )

]
−HSIC (Xk, Y ) = 2

n
(Ekω − Exk,ω)(E−kω − Ey,ω)− 1

n
(Eω − Exk )(Eω − Ey) (15)

+ 1
n
Eω(Eω − 1) +O(1/n2),

Var
[
H̃SIC(Xk, Y )

]
= 72(n− 4)(n− 5)
n(n− 1)(n− 2)(n− 3) E1,2

[
E3,4[h̃1,2,3,4]2

]
+O(1/n3), (16)

where

Eω = E
[
ω2(X̃)

]
, Exk = E

[
lk(X̃k, X̃ ′k)ωk(X̃k)ωk(X̃ ′k)

]
,

Ey = E
[
l(Ỹ , Ỹ ′)ω−k(X̃−k)ω−k(X̃ ′−k)

]
, Exk,ω = E

[
lk(X̃k, X̃ ′k)ω2

k(X̃k)ωk(X̃ ′k)
]
,

Ey,ω = E
[
l(Ỹ , Ỹ ′)ω2

−k(X̃−k)ω−k(X̃ ′−k)
]
, Ekω = E

[
ω2
k(X̃k)

]
,

E−kω = E
[
ω2
−k(X̃−k)

]
, h̃1,2,3,4 = 1

4!

(1,2,3,4)∑
(t,u,v,s)

[
(̃lk)t,u l̃t,u + (̃lk)t,u l̃v,s − 2(̃lk)t,u l̃t,v

]
,

ω, ωk and ω−k respectively denote the functions f/f̃ , fk/f̃k and ω−k : x−k 7→ ω(x1, . . . , xd)/ωk(xk),
with x−k being the vector extracted from (x1, . . . , xd) by removing the k-th coordinate. Moreover,
X̃ ′−k is an independent and identically distributed copy of X̃−k and (̃lk)p,q, l̃p,q respectively de-
note lk(X̃(p)

k , X̃
(q)
k ), l(Ỹ (p), Ỹ (q)). Finally,

∑(1,2,3,4)
(t,u,v,s) is the sum over all permutations (t, u, v, s)

of (1, 2, 3, 4) and Ep,q is the expectation only with respect to Xp and Xq.

One can also prove that the distribution of n× H̃SIC(Xk, Y ) can be approximated by a Gamma
law, whose parameters γ̃k and β̃k are given by γ̃k = ε2

k/ϑk and β̃k = nϑk/εk, where εk and ϑk are
respectively the expectation and variance of H̃SIC(Xk, Y ). Proofs of all the propositions are provided
in [31], as well as unbiaised estimators of bias and variance.

Remark 3 From a practical point of view, the greater (Var(ωk(X̃k))1≤k≤d, the greater the number of
simulations required to accurately estimate (HSIC(Xk, Y ))1≤k≤d. It is therefore highly recommended
to check that (Var(ωk(X̃k))1≤k≤d are finite. For instance, in the case of densities with compact
supports, it is enough to check that (ωk)1≤k≤d are finite on their supports.

2.2.2 Illustration on an analytical example

To illustrate the statistical properties of H̃SIC, we consider a numerical application inspired from
Ishigami’s model [24] and defined on [0, 1]3 by

M(X1, X2, X3) = sin(X1) + 1.5 sin2(X2) + 0.5X4
3 sin(X1), (17)

where the inputs X1, X2 and X3 are assumed to be independent and follow a triangular distribution
with a mode equal to 0.5.

We consider HSIC measures based on Standardized Gaussian kernel (see Remark 2). To estimate
them, we suppose that we have Monte Carlo samples of independent inputs generated from a uniform
distribution on [0, 1]3 (modified law). For each sample of size n = 100 to n = 1500, the estimation
process is repeated 200 times, with independent random samples. The convergence of H̃SIC(Xk, Y )
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estimators is illustrated by Figure 1. Results for ĤSIC(Xk, Y ) computed with samples generated
from the original law (namely triangular) are also given and theoretical values are represented in red
dotted lines. We observe that for small sample sizes (n < 500), modified estimators H̃SIC(Xk, Y )
have more bias and variance than ĤSIC(Xk, Y ) estimators. But, from size n = 700, both estimators
have similar behaviors.

In addition, to assess the convergence of ranking, the sensitivity indices R2
HSIC,k are estimated

from H̃SIC(Xk, Y ) with Equation (14). The inputs are ranked by decreasing indices and the resulting
correct ranking rates are given by Table 1. Even for small sample sizes (e.g n = 200), the modified
estimators R̃

2
HSIC have good ranking ability.

Figure 1: ModelM – Convergence plots of the estimators ĤSIC(Xk, Y ) and H̃SIC(Xk, Y ), according to
the sample size n. Theoretical values are represented in red dashed lines.

n = 100 n = 200 n = 300 n > 500
88% 93.5% 97% 100%

Table 1: ModelM – Good ranking rates of inputs based on R̃
2
HSIC, for different sample sizes n.

3 New methodology for second-level GSA
We consider that the input probability distributions, PX1 , . . . ,PXd , are uncertain. These uncertain-
ties on PX1 , . . . ,PXd are modeled by probability distributions, respectively denoted PPX1

, . . . ,PPXd
.

We also assume that the distributions PPX1
, . . . ,PPXd

are independent and that all possible input
distributions have a common support, which the set of all possible input values. Each assumed joint
distribution PX = PX1 × . . . × PXd of inputs yields potentially different results of 1st-level global
sensitivity analysis (GSA1). This impact must be quantified by GSA2. Based on GSA2 results, the
probability distributions of inputs could be separated into two groups: those which significantly mod-
ify GSA1 results and those whose influence is negligible. Subsequently, the probability distributions
with a small impact can be set to a reference distribution and the efforts of characterization will be
focused on the most influential ones to improve their knowledge (strategy of uncertainty reduction).
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3.1 Issues raised by GSA2
We present in the following the main steps for GSA2 realization and some related technical issues.
Our approach is based on the extension of HSIC measures for non-vectorial data. The idea is to define
2nd-level sensitivity indices between input distributions PX1 , . . . ,PXd and GSA1 results. To do so,
we first characterize GSA1 results. This means that we associate to each possible input distribution
PX = PX1× . . .×PXd , a mathematical quantity denoted R representing the associated GSA1 results.
To choose this quantity of interest, we propose the following options, all based on HSIC (see Section
2.1.3):

• vector of sensitivity indices R2
HSIC = (R2

HSIC,1, . . . ,R2
HSIC,d);

• ranking of inputsX1, . . . , Xd using the indices R2
HSIC,1, . . . ,R2

HSIC,d . This quantity of interest
R is a permutation on the set {1, . . . , d}, verifying that R(k) = j if and only if the variable Xj
is the k-th in the ranking;

• vector of p-values from asymptotic independence tests P = (P1, . . . ,Pd);
• vector of p-values from permuted tests p = (p1, . . . , pd).

Thanks to the kernel trick, we build 2nd-level HSIC measures between the probability distributions
PX1 , . . . ,PXd and the quantity of interest R. Assume that lD1 , . . . , lDd and lR are RKHS kernels
respectively associated to PX1 , . . . ,PXd and R. Some examples of these kernels are provided in
Section 3.3. We define similarly to Equation (2), the 2nd-level HSIC measure between PXk and R as

HSIC(PXk ,R) = E
[
lDk (PXk ,P

′
Xk

)lR(R,R′)
]

+ E
[
lDk (PXk ,P

′
Xk

)
]
E
[
lR
(
R,R′

)]
− 2E

[
E
[
lDk (PXk ,P

′
Xk

) | PXk

]
E
[
lR
(
R,R′

)
| R
]]
, (18)

where (P′X1 , . . . ,P
′
Xd

) is an independent and identically distributed copy of (PX1 , . . . ,PXd ) and R′
the GSA1 results associated to (P′X1 , . . . ,P

′
Xd

). The GSA2 indice between PXk and R′ is then defined
as

R2
HSIC(PXk ,R) = HSIC(PXk ,R)√

HSIC(PXk ,PXk ) HSIC(R,R)
. (19)

The estimation of R2
HSIC(PXk ,R) requires a n1-sample (P(i)

X ,R(i))1≤i≤n1 of (PX,R). However,
the quantities of interest R(i) are not directly observable, they need to be estimated. To do so, a
straightforward double-loop approach could be considered. The outer loop entails to generate the
n1-sized sample of input distribution. On the flip side, the inner loop involves two steps. A n2-
sized sample (X(i,j)

1 , . . . , X
(i,j)
d )1≤j≤n2 is first generated according to each distribution P(i)

X , before
computing the corresponding outputs (Y (i,j))1≤j≤n2 . This allows to estimate the quantity of interest
R(i) associated to each input distribution P(i)

X . At the end, 2nd-level HSIC can be estimated by

ĤSIC(PXk ,R) = 1
n2

1
Tr(LDkHLRH), (20)

where LDk and LR are the matrices defined for all (i, j) in {1, . . . , n1}2 as (LDk )i,j = lDk (P(i)
Xk
,P(j)
Xk

)
and (LR)i,j = lR(R(i),R(j)). In addition, the matrix H is defined as in Equation (5). Finally,
according to (19), 2nd-level R2

HSIC indices can be estimated by

R̂
2
HSIC(PXk ,R) = ĤSIC(PXk ,R)√

ĤSIC(PXk ,PXk )ĤSIC(R,R)
. (21)

Consequently, the Monte Carlo double-loop approach requires a total of n1n2 simulations. This
approach is therefore not tractable for CPU-time expensive simulators, even for reasonable sample
sizes n1 and n2. To overcome this issue and reduce the number of simulator-calls, we propose in
the following a single-loop approach only requiring n2 simulations, and allowing to consider a larger
sample of input distribution.

3.2 Algorithm for computing 2nd-level sensitivity indices with a
Monte Carlo single-loop
We provide here a single-loop algorithm for estimating the 2nd-level HSIC measures and indices,
respectively defined in Equations (20) and (21). To do so, the inputs are generated according to
a unique and known probability distribution, denoted P̄X = P̄X1 × . . . × P̄Xd . We assume that
this distribution has a density f̄ : (x1, . . . , xd) 7→ f̄1(x1) × . . . × f̄d(xd), and that all possible input
distributions also have densities. The procedure is detailed in Algorithm 1.
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Algorithm 1 GSA2 with a Monte Carlo single-loop
Input: The probability density f̄ and an observed n2-sized sample X̄ =

(
X(1), . . . ,X(n2)).

1. Build a unique n2-sized sample E of inputs/output.
We compute the output sample Ȳ =

(
Y (1), . . . , Y (n2)) associated to X̄. The inputs/output sample

is denoted E =
(
X̄, Ȳ

)
.

2. Perform n1 GSA1 using only E.
We draw a n1-sized sample P(1)

X , . . . ,P(n1)
X of input distributions. Then, we estimate all the GSA1

results R(i) associated to each distribution P(i)
X using only E . The options proposed for R(i) in

Section 3.1 are distinguished:

(a) Estimate the vector R(i) = (R2,(i)
HSIC,1, . . . ,R

2,(i)
HSIC,d) of sensitivity indices.

The vector coordinates are estimated using Equation (14), with the alternative sample E =(
X̄, Ȳ

)
.

(b) Rank the inputs X1, . . . , Xd using the indices R2
HSIC,1, . . . ,R2

HSIC,d .
The ranking is obtained by ordering the coordinates of the vectors estimated in Option 2a.

(c) Estimate the vector R(i) =
(

P(i)
1 , . . . ,P(i)

d

)
of p-values associated with asymptotic

independence tests.
Each P(i)

k is estimated using the properties of the modified estimators:

P̃
(i)
k ' 1− F̃Gk

(
n2 × H̃SIC(X(i)

k , Y )obs

)
, (22)

where F̃Gk denotes the Gamma distribution approximating the asymptotic distribution of n2×
H̃SIC(X(i)

k , Y ).

(d) Estimate the vector R(i) =
(

p(i)
1 , . . . ,p(i)

d

)
of p-values associated with permutation

independence tests.
Keeping the same notations of Equation (9), each p(i)

k is estimated as

p̃(i)
k = 1

B

B∑
b=1

1
H̃SIC

[b]
(X

(i)
k

,Y )>H̃SIC(X
(i)
k

,Y )
. (23)

3. Compute 2nd-level sensitivity indices.
Each indice R2

HSIC (PXk
,R) is estimated from the sample

(
P(i)

X , R̃(i)
)

1≤i≤n1
and using Equations

(20) and (21).

3.3 Choice of characteristic kernels for probability distributions and
for quantities of interest
Step 3 of Algorithm 1 involves a choice of kernel, according to the quantities of interest R. A kernel
for probability distributions is also required. Some examples of suitable characteristic RKHS kernels
are provided in the following.

Characteristic RKHS kernel for probability distributions. The definition of RKHS ker-
nels between distributions is based on the Maximum Mean Discrepancy (MMD), introduced in [19].
Let Q1 and Q2 be two distributions with a common support andK be a RKHS kernel on this support.
The distance MMD between Q1 and Q2 is defined as

MMDK(Q1,Q2) = E
[
K(Z1, Z

′
1)
]
− 2E [K(Z1, Z2)] + E

[
K(Z2, Z

′
2)
]
, (24)

where Z1 and Z′1 (respectively Z2 and Z′2) are independent random variables with common distri-
bution Q1 (respectively Q2). From the MMD distance, we consider the radial RKHS distribution
kernel defined as

lD (Q1,Q2) = exp
(
−λMMD2

K (Q1,Q2)
)
, (25)
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where λ is a positive real parameter (fixed). The latter RKHS kernel is characteristic, regardless of
λ value. This property results from [38, Theorem 4]. However, the parameter λ needs to be properly
calibrated for well behaved estimators. Back to our case, we define the kernel lDk in Equation (20)
by choosing K = lk and λ = 1/s2

k where

s2
k = 1

n2
1

n1∑
i=1

MMD2
lk

(
P(i)
Xk
,P†Xk

)
,

with P†Xk
= 1/n1

∑n1
i=1 P

(i)
Xk

is the uniformly weighted mixture distribution of P(1)
Xk
, . . . ,P(n1)

Xk
.

Characteristic RKHS kernel for permutations as quantity of interest. When considering
Option 2b in Algorithm 1, we propose the use of the Mallows kernel, brought to light by [25]. The
Mallows kernel is shown to be universal (and characteristic) by [29]. To define this kernel, we first
introduce the number of discordant pairs between two {1, . . . , d}-permutations σ1 and σ2 as

nD(σ1, σ2) =
∑

1≤r<s≤d

[
1{σ1(r)<σ1(s)}1{σ2(r)>σ2(s)} + 1{σ1(r)>σ1(s)}1{σ2(r)<σ2(s)}

]
. (26)

The Mallows kernel KM between σ1 and σ2 is then defined as

KM (σ1, σ2) = exp (−λnD(σ1, σ2)) , (27)

where λ is a positive real. From a numerical standpoint and based on a sample σ(1), . . . , σ(n1), we
suggest to take λ as the inverse of the arithmetic mean of

{
nD(σ(i), σ(j)) with 1 ≤ i < j ≤ n1

}
.

Characteristic RKHS kernel for real vectors as quantities of interest. When either
Option 2a, 2c or 2d is selected, we can simply use the Standardized Gaussian kernel (see Remark 2).

3.4 Possibilities for the unique sampling distribution
This section deals with the choice of the drawing density f̄ in Algorithm 1. Since the inputs are inde-
pendent, it boils down to choosing each martingale density f̄k. We recall that all possible densities of
each input Xk have the same support Xk. The main objective is to choose f̄k as “close” as possible to
the set all potential densities Fk, while accommodating the probability distribution over Fk. Three
possibilities for this choice are detailed below: the mixture distribution, the Wasserstein barycenter
and the Symmetrical Kullback-Leibler barycenter. For this, we consider here and only here, the
following generic notations. We designate by h a random one-dimensional density of distribution H,
of which the support is denotedH. We also designate by S the common support of all realizations of h.

The mixture distribution. We recall that the mixture distribution [16, 44] of h is defined as

h̄M = EH [h] =
∫
H
h dH(h). (28)

In particular, when H is discrete with support H = {h1, . . . , hm}, we obtain h̄M =
∑m

r=1 hr H(hr).
Moreover, if the support H is parameterizable, i.e. H = {hθ, θ ∈ Θ}, we have h̄M =

∫
Θ hθπ(θ) dθ,

where π is the distribution of the parameter θ.

The Symmetrical Kullback-Leibler barycenter. This barycenter is computed with respect
to the so-called Symmetrical Kullback-Leibler divergence, which is obtained by symmetrizing the
usual Kullback-Leibler divergence [27]. It is defined for two probability measures Q1 and Q2 as

DSKL(Q1,Q2) = 1
2 [KL(Q1||Q2) + KL(Q2||Q1)] , (29)

where KL(Q1||Q2) = EQ1 [log(dQ1/dQ2)] , with dQ1/dQ2 refers to the Radon–Nikodym derivative.
The explicit formula of the Symmetrical Kullback-Leibler barycenter is unknown. In the specific
case where H is uniform over a finite set {h1, . . . , hm}, a good approximation of this barycenter is
shown in [46] and given by

h̄K '
1
2

[
h̄+ h̃∫

S h̃

]
, (30)
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where h̄ = 1/m
∑m

r=1 hr and h̃ =
∏m

r=1 h
1/m
r are respectively the arithmetic and geometric means

of {h1, . . . , hm}. In the general case, we propose to approximate the Symmetrical Kullback-Leibler
barycenter as

h̄K '
1
2

[
h̄M + elog(h)M∫

S e
log(h)M

]
, (31)

where h̄M and log(h)M are respectively the mixture distributions of the random functions h and
log(h).

The Wasserstein barycenter distribution. We remind that the Wassertein distance [17, 47]
between two distributions Q1 and Q2 is defined as

W(Q1,Q2) = inf
γ∈Γ(Q1,Q2)

(
Eγ
[
(X − Y )2])1/2 , (32)

where Γ(Q1,Q2) is the set of probabilities of (X,Y ) with marginals Q1 and Q2. The quantile function
of the Wasserstein barycenter [1] of a finite uniformly weighted set {h1, . . . , hm} is defined as

q̄W = 1
m

m∑
r=1

qr, (33)

where qr is the quantile function associated to hr. In the general case, we extend Equation (33)
when h is generated according to a distribution H as

q̄W = EH[qh], (34)

where qh is the quantile function associated to h.

4 Application of GSA2 methodology
First, the performance of our methodology is studied through simulated data. More specifically, the
drawing density options presented in Section 3.4 are studied and compared. Moreover, we shed light
on the benefit of this approach compared to the “double-loop” one. Secondly, the methodology is
applied on a nuclear case study simulating a severe nuclear reactor accident.

4.1 Analytical example
To assess the efficiency of the “single-loop” methodology, we consider the analytical modelM defined
in Equation (17). The inputs X1, X2 and X3 are assumed to be independent. Moreover, their
probability distributions PX1 , PX2 and PX3 can equiprobably be PU , PT or PN , where PU is the
uniform distribution on [0, 1], PT is the triangular distribution on [0, 1] with mode 0.4, and PN is the
truncated normal distribution on [0, 1] with mean 0.6 and standard deviation 0.2.

In practice, this configuration may occurs when for example three experts agree on the input
variation ranges but, have different opinions on the nature of the probability distribution. More
precisely:

• the first expert claims that except the range of variation, no other information can be assumed
on the uncertain variable;

• the second adds that the most likely value is 0.4;
• the third thinks that the mean and the standard deviation can respectively be assumed equal

to 0.6 and 0.2.
According to the principle of maximum entropy for expert elicitation [30, 32], the information pro-
vided by these experts are respectively modeled by the distributions PU , PT and PN . By assigning
equal importance to these three opinions, the uniform distribution on the set {PU ,PT ,PN} seems to
be here the most reasonable choice for the second-level uncertainty.

As a first step, we well approximate the theoretical values of 2nd-level GSA indices for the model
M. Subsequently, to study the convergence rates of “single-loop” estimators, we apply Algorithm 1
for different sample sizes. To define 1st and 2nd-level HSIC measures, we use Standardized Gaussian
kernel (see Remark 2) for all vector quantities and the kernels presented in Section 3.3 for non-
vectorial quantities of interest.
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4.1.1 Computation of theorical values
We focus here on Option 2a of Algorithm 1, the other quantities of interest are studied in Section
4.1.4. To approximate the theoretical values of 2nd-level HSIC measures and indices, we consider the
set of the n1 = 27 possible 3-tuples of input probability distributions. For each input distribution,
the 1st-level HSIC measures and indices are computed using a sample of size n2 = 1000, generated
according to the prior input density. The theoretical 2nd-level HSIC measures are computed:

HSIC(PX1 ,R) = 0.0414, HSIC(PX2 ,R) = 0.0261 and HSIC(PX3 ,R) = 0.0009.

The theoretical 2nd-level HSIC indices are also computed:

R2
HSIC(PX1 ,R) = 0.4152, R2

HSIC(PX2 ,R) = 0.2516 and R2
HSIC(PX3 ,R) = 0.0086.

In this example, we observe that R2
HSIC(PX1 ,R) is significantly larger than the other two indices,

while R2
HSIC(PX3 ,R) is negligible. Based on these results, the lack of knowledge on PX3 is not

responsible for the variability of 1st-level HSIC indices. This distribution can simply be set to a
reference one. Furthermore, the impact of PX1 uncertainty is by far the largest and the one of PX2

remains non-negligible. Therefore, characterization efforts should be targeted in priority on PX1 ,
followed-up by PX2 .

4.1.2 GSA2 with our single-loop approach
In the sequel, 2nd-level HSIC estimators using the mixture distribution, the Wasserstein barycen-
ter and the Symmetrical Kullback-Leibler barycenters are respectively denoted H̃SICM (PXk ,R),
H̃SICW (PXk ,R) and H̃SICK(PXk ,R). Similarly, the 2nd-level indices are denoted R̃

2
HSIC,M (PXk ,R),

R̃
2
HSIC,W (PXk ,R) and R̃

2
HSIC,K(PXk ,R).

To study the convergence rate of the “single-loop” estimators, we apply Algorithm 1 from samples
with sizes ranging from n2 = 100 to n2 = 1500. For each sample size, the estimations are repeated
independently 200 times using independent samples. Results are given by Figure 2, where the the-
oretical values of R2

HSIC(PXk ,R) are represented in dotted lines. Visually, the estimators based on
the mixture distribution and the Symmetrical Kullback-Leibler barycenter seem to perform similarly
both for small and large sample sizes. In particular, the dispersion of these estimators are satisfying
from n2 = 700. In contrast, the Wasserstein barycenter estimators are less accurate (higher disper-
sion) compared to the previous estimators, especially for small and medium size samples (i.e. n2 in
[300, 700]).

A more pragmatic way to compare these drawing densities, is to compare the estimators ability
to correctly rank the input distributions based on their influence level. To do so, we compute
for each sample size, the percentage of times the theoretical ranking and the one given by the
estimators match. The results are presented in Table 2. As expected, the estimators based on the
mixture distribution and the Symmetrical Kullback-Leibler barycenter outperform those based on
the Wasserstein barycenter, and this regardless of the sample size. This can be explained by the
fact that the likelihood ratio f/fW is very high in the neighborhoods of 0 and 1. Furthermore, the
Kullback-Leibler barycenter seems to give slightly better results for small samples n2 ≤ 300, the
reverse is true from n2 = 500.

n2 100 200 300 500 700 1000 1500

R̃
2
HSIC,M (PXk

,R) 74% 79% 84% 94.5% 97% 100% 100%
R̃

2
HSIC,K(PXk

,R) 75.5% 79% 87% 92% 97% 99.5% 99.5%
R̃

2
HSIC,W (PXk

,R) 57.5% 71% 77% 82% 91% 93.5% 98%

Table 2: Model M – Good ranking rates of (PX1 ,PX2 ,PX3) using the estimators R̃
2
HSIC,M (PXk

,R),
R̃

2
HSIC,K(PXk

,R) and R̃
2
HSIC,W (PXk

,R), with respect to the sample size n2.

4.1.3 Comparison with Monte Carlo “double-loop” approach
We compare now the performance of the “single-loop” and “double-loop” approaches, in terms of
convergence rates of estimators. To do so, we consider a total simulation budget of n = 1026
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Figure 2: Model M – Convergence plots of the estimators R̃
2
HSIC,M (PXk

,R), R̃
2
HSIC,W (PXk

,R) and
R̃

2
HSIC,K(PXk

,R), with respect to the sample size n2. Theoretical values are represented in dotted lines.

for both approaches. More precisely for the “double-loop” approach, a sample of size n2 = 38 is
generated for each possible 3-tuple of input distributions (for a total number of n = n1 × n2 = 1026
simulations). The associated estimators are denoted R̂

2
HSIC(PXk ,R) with k ∈ {1, 2, 3}. Concerning

the “single-loop” approach, we apply Algorithm 1 with n2 = 1026 and we compute the estimators
R̃

2
HSIC,M (PXk ,R) and R̃

2
HSIC,K(PXk ,R) with k ∈ {1, 2, 3}.

Each estimation is repeated 200 times with independent Monte Carlo samples. The estimator
boxplots are shown by Figure 3, where the theoretical values are represented in dotted lines. The
“double-loop” estimators show much more variability than the “single-loop” ones. Also, notice
that the “single-loop” estimators are much less biased than the “double-loop” ones. Our approach
significantly outperforms the “double loop”. This conclusion is also supported by the good ranking
rates presented in Table 3. A reasonable explanation for the benefit of the “single-loop” approach,
may be the simulation budget for 1st-level HSIC. Indeed, given a total budget of n simulations, each
1st-level HSIC is computed using n2 = n for the “single-loop” approach, against n2 = n/n1 for the
“double loop” approach. Although the prior estimators converge faster than the alternative ones,
the total simulation number is drastically reduced when using the “double-loop” approach.

For this same modelM, other numerical studies with different hypothesis on input distribution
uncertainty have been performed and yield similar results and conclusions.

4.1.4 GSA2 with other quantities of interest
It is fair to wonder whether GSA2 conclusions vary if we decide to choose other quantities of interest.
To answer that, we deal with Options 2b, 2c and 2d of Algorithm 1. In all cases, we keep the same ker-
nel choices as described at the beginning of Section 4.1. Let us examine these possibilities one-by-one.

14



Figure 3: Model M – Comparison of 2nd-level HSIC indices estimated by the “single-loop” and
“double-loop” approaches for n = 1026. The estimators are denoted, R̂

2
k for R̂

2
HSIC(PXk

,R), R̃
2
M,k

for R̃
2
HSIC,M (PXk

,R) and R̃
2
K,k for R̃

2
HSIC,K(PXk

,R). Theoretical values are represented in dotted lines.

Double loop Single loop

R̂
2
HSIC(PXk

,R) R̃
2
HSIC,M (PXk

,R) R̃
2
HSIC,K(PXk

,R)
67.5% 100% 99%

Table 3: Model M – Comparison of good ranking rates of “single-loop” and “double-loop” estimators,
for n = 1026.

• Ranking by R2
HSIC. Before looking closely at the simulation results, one can notice that the

convergence of 1st-level R2
HSIC estimators systematically implies the convergence of those by ranking.

Therefore, the estimators of GSA2 indices of Option 2b converge faster than those of Option 2a.
Moreover, according to Section 4.1.2 results, a sample of size n2 = 1000 of the drawing density is
sufficient to accurately estimate the indices. We thus obtain:

R2
HSIC(PX1 ,R) = 0.3830, R2

HSIC(PX2 ,R) = 0.0958 and R2
HSIC(PX3 ,R) ' 0.

The gaps of theses values are more meaningful compared to those presented in Section 4.1.1. This
is likely related to the stability of the ranking compared to GSA1 indices. Indeed, only significant
variations of GSA1 indices contribute to GSA2 indices using the ranking. We safely conclude that
PX1 is the main contributor for the ranking uncertainty; less characterization efforts are required.

• P-values vector. When considering Options 2c or 2d as the quantity of interest, two points
are highlighted. Firstly, the estimators of GSA2 indices show a large variance, regardless of the
p-value estimation method (Gamma approximation or permutations), even for very large n2 such as
n2 = 5000. In addition, the three estimated GSA2 indices are small (not exceeding 0.2). To help
understanding these results, we focus on the estimated p-values for each possible input distribution.
To do so, we use the permutation method with B = 1000 resamplings. The results show that the
p-values associated to X1 and X2 are almost equal to zero (exactly zero numerically), regardless of
the input distribution. Moreover, the p-values associated to X3 are very low and in most cases below
10−5. Therefore, the high variance of GSA2 indices is due to the difficulty of accurately estimating
each p-value. In this case, Options 2c and 2d are not relevant: the independence hypothesis is not
reliable and this, regardless of the input distribution. The 2nd-level input uncertainties have no
impact on these GSA1 results.

4.2 Nuclear safety application
Within the framework of 4th-generation sodium-cooled fast reactor ASTRID: Advanced Sodium
Technological Reactor for Industrial Demonstration (see Figure 4), the CEA (French Commissariat
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à l’Énergie atomique et aux Énergies alternatives) provides numerical tools to model severe acci-
dent scenarios and assess the safety. Among them, a numerical tool called MACARENa (French:
Modélisation de l’ACcident d’Arrêt des pompes d’un REacteur refroidi au sodium) developed by [13]
simulates a primary phase of an Unprotected Loss Of Flow (ULOF) accident. During this type of
accident, the power loss of primary pumps and the dysfunction of shutdown systems cause a gradual
decrease of the sodium flow in the primary circuit, which subsequently may increase the temperature
of sodium until it boils. This can lead to a degradation of several components and structures of the
reactor core.

Previous GSA studies were performed on MACARENa simulator with several tens of uncertain
parameters whose pdf were assumed to be known and set at a reference pdf. These studies show that
only 3 input parameters mainly impact the accident transient predicted by MACARENa, namely:

• X1: error of measurement on external pressure loss,
• X2: primary half-flow time,
• X3: Lockart-Martinelli correction value.

Figure 4: MACARENa application – Basic architecture of a Sodium-cooled Fast Reactor.

However, due to lack of data and knowledge, uncertainty remains on the distributions PX1 , PX2

and PX3 . To take into account this uncertainty, the nature of each input distribution is assumed to
be known, but with one uncertain parameter, as described in Table (4). The notations Nt(a, b,m, σ),
T(a, b, c) and U(a, b) are respectively, the truncated normal distribution of mean m and standard
deviation σ on [a, b], the triangular law on [a, b] with mode c and the uniform distribution on [a, b].
The identification of these uncertainties is based on expert advice. More specifically, the uncertainty
on σ stems from a prior knowledge (no available data), while the uncertainties on c and m are due
to their estimation using few existing partial data.

Law of input Nature Uncertain parameter
PX1 Nt(−0.1, 0.1, 0, σ) σ ∼ U(0.03, 0.05)
PX2 T(0, 20, c) c ∼ U(8, 15)
PX3 T(0.8, 2,m) m ∼ U(1, 1.5)

Table 4: MACARENa application – Uncertainties on PX1 ,PX2 and PX3 distributions.

Among the outputs computed by MACARENa simulator to describe the ULOF accident, we
focus on the first instant of sodium boiling denoted Y . To assess the impact of input distributions
on GSA1 results of Y , we apply Algorithm 1 with Option 2a. We use the mixture density for the
unique drawing and the same kernel choices as in Section 4.1. Moreover, we consider a Monte Carlo
sample of size n2 = 1000 for the unique drawing. This choice is motivated by two main reasons.
Firstly, the MACARENa simulation cost (between 2 and 3 hours on average) which limits the total
number of simulations. Secondly, the analytical three-dimensional example of Section 4.1 for which
a budget of 1000 simulations give good results. In addition, we consider a Monte Carlo sample of
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n1 = 200 3-tuples of input distribution. These two choices for n1 and n2 will numerically be justified
later, by studying the stability of estimators. Algorithm 1 gives the following GSA2 indices:

R̃
2
HSIC,M (PX1 ,R) = 0.5341, R̃

2
HSIC,M (PX2 ,R) = 0.3317 and R̃

2
HSIC,M (PX3 ,R) = 0.0753.

Consequently, the uncertainty on PX1 mainly impacts GSA1 results, followed by PX2 , while the
impact of PX3 is negligible. To improve the robustness of GSA1 results, characterization efforts
should then focus primarily on PX1 . A deeper analysis of the 200 results of GSA1 shows that the
input X2 is always the most predominant. Surprisingly, X2 whose distribution is not the most
influential on GSA1 results is the most influential on Y . This example illustrates, if necessary, that
the information captured by GSA2 is different but complementary to that of GSA1.

To assess the accuracy of the estimation of GSA2 indices, we use a non-asymptotic bootstrap-
ping approach [14]. For this, we first generate Monte Carlo subsamples with replacement from the
initial sample (of 1000 simulations), then we re-estimate 2nd-level R2

HSIC using these samples. More
specifically, we consider subsamples of sizes n2 = 100 to n2 = 800. For each size, the estimation is
repeated independently B = 20 times. Furthermore, to reduce computational efforts, we consider a
sample of distributions of reduced size n1 = 30 and generated with a space-filling approach. More
precisely, the vector (σ, c,m) is sampled with a Maximum Projection Latin Hypercube Design [26]
of size n1 = 30 and defined on the cubic domain [0.03, 0.05]× [8, 15]× [1, 1.5].

Figure 5 presents as a boxplot the mismatch between the values estimated from the initial sample
and the ones estimated from subsamples. We first observe a robustness of estimation: the means
of estimators seem to match the value given by the initial sample. We notice also high dispersions
for small and medium sizes, (i.e. n2 ≤ 400) and small dispersions for medium and big sizes (i.e.
n2 ≥ 500). Therefore, we conclude that the estimations of GSA2 indices with the sample of n2 = 1000
simulations are consistent, the stability of estimations being satisfactory from n2 = 700.

We also check the estimation consistency in terms of input distributions ranking. Table 5 gives
for each subsample size, the rate of times that the ranking matches the one obtained with the initial
sample. The results confirm the conclusions drawn from the stability plots.

Figure 5: MACARENa application – Stability plots of the estimators R̃
2
HSIC,M (PXk

,R), with respect to
the sample size n2. Reference values are represented in red dashed lines.

n2 = 100 n2 = 200 n2 = 300 n2 = 400 n2 = 500 n2 = 600 n2 ≥ 700
45% 55% 70% 75% 95% 95% 100%

Table 5: MACARENa application – Good ranking rates of estimators R̃
2
HSIC,M (PXk

,R), with respect to
the size n2 of the unique sample.

5 Conclusion and Prospect
In this article, we proposed a new methodology for second-level Global Sensitivity Analysis (GSA2)
based on Hilbert-Schmidt Independence Criterion (HSIC). For this, we first proposed new weighted
estimators for HSIC, using an alternative sample generated according to a probability distribution
which is not the prior distribution of the inputs. We also demonstrated the properties of these new
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estimators (bias, variance and asymptotic law), which are similar to those of classical estimators.
Moreover, their convergence has been illustrated on an analytical example which has also highlighted
their ability to correctly rank variables (even for small and medium sample sizes). Subsequently,
2nd-level GSA based on HSIC measures is discussed. When input distributions are uncertain, GSA2
purpose is to assess the impact of these uncertainties on GSA results. In order to perform GSA2,
we presented a new “single-loop” Monte Carlo methodology to address problems raised by GSA2:
characterization of GSA results, definition of 2nd-level HSIC measures and limitation of the calcu-
lation budget. This methodology is based on a single sample generated according to a “reference
distribution” (related to the set of all possible distributions). Three options have been proposed for
this distribution: mixture law and barycentric laws with respect to the Symmetrical Kullback-Leibler
distance or Wasserstein distance. The estimation of 2nd-level HSIC seems to be more accurate using
the two first options rather than the Wasserstein barycenter. We also illustrated the great interest of
the “single-loop” approach compared to the “double-loop” approach. Finally, the whole methodology
has been applied to a nuclear test case simulating a severe reactor accident and has shown how GSA2
can provide additional information to classical GSA.

Several points of the methodology could be more investigated in future research. First, we
could focus on comparing Space Filling Design [33, 7, 48] techniques and Monte Carlo methods
for the sampling of input distribution in the case of probabilistic densities (pdf) with uncertain
parameters. Indeed, sampling the uncertain parameters of pdf following a space-filling design could
improve the accuracy of the estimators of GSA2 indices. Another interesting perspective would be
to build independence tests based on 2nd-level HSIC measures estimators. This could be achieved by
identifying the asymptotic distributions of these estimators under the assumption of independence
between distributions and GSA1 results.

Furthermore, this new approach for GSA2 could also be compared to the classical approach of
epistemic GSA in the framework of Dempster-Shafer theory [36, 3]. Indeed, Dempster-Shafer theory
gives a description of random variables with epistemic uncertainty, which is to associate with an
epistemic variable Z on a set A, a mass function representing a probability measure on the set P(A)
of all A-subsets. This lack of knowledge is reflected in Dempster-Shafer theory by an upper and
lower bound of the cumulative distribution function and can be viewed as 2nd-level of uncertainty.

An other potential prospect could be to make the connection between our approach and Perturbed-
Law based Indices (PLI) [28, 39]. These indices are used to quantify the impact of a perturbation of
an input density on the failure probability (probability that a model output exceeds a given thresh-
old). To compare our GSA2 indices with PLI, the probability of failure could be considered as the
quantity of interest characterizing GSA results in our methodology. Last but not least, GSA2 method
can be compared to the approach proposed in [6] which models 2nd-level uncertainties as a uni-level
uncertainty on the vector (Θ, X), where Θ is the vector of uncertain parameters.
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A Proof of Proposition 1
We prove here that

H̃SIC(Xk, Y ) = 1
n2 Tr

(
WL̃kWH1L̃H2

)
.

Firstly, we evaluate the matrix WL̃kWH1L̃H2 coefficients before computing its trace. The matrix
W being diagonal, we write for i, j ∈ {1, . . . , n}:

(WL̃kW )i,j = (L̃k)i,jWi,iWj,j .

The coefficient of the matrix WL̃kWH1 indexed by i and j can therefore be computed:

(WL̃kWH1)i,j =
n∑
r=1

(L̃k)i,rWi,iWr,r(H1)r,j

=
n∑
r=1

(L̃k)i,rWi,iWr,r(δr,j −
1
n
Wj,j)

= (L̃k)i,jWi,iWj,j −
1
n

n∑
r=1

(L̃k)i,rWi,iWr,rWj,j .

Subsequently, the matrix WL̃kWH1L̃ coefficients are obtained:

(WL̃kWH1L̃)i,j =
n∑
r=1

(WL̃kWH1)i,rL̃r,j

=
n∑
r=1

(
(L̃k)i,rWi,iWr,r −

1
n

n∑
s=1

(L̃k)i,sWi,iWs,sWr,r

)
L̃r,j

=
n∑
r=1

(L̃k)i,rL̃r,jWi,iWr,r −
1
n

n∑
s=1

(L̃k)i,sWi,iWs,s

n∑
r=1

L̃r,jWr,r.
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Finally,

(WL̃kWH1L̃H2)i,j =
n∑
r=1

(WL̃kWH1L̃)i,r(H2)r,j

=
n∑
r=1

(WL̃kWH1L̃)i,r(δr,j −
1
n
Wr,r)

= (WL̃kWH1L̃)i,j −
1
n

n∑
r=1

(WL̃kWH1L̃)i,rWr,r

=
n∑
r=1

(L̃k)i,rL̃r,jWi,iWr,r −
1
n

∑
1≤r,s≤n

(L̃k)i,sL̃r,jWi,iWs,sWr,r

− 1
n

n∑
r=1

(
n∑
s=1

(L̃k)i,sL̃s,rWi,iWs,s −
1
n

∑
1≤p,q≤n

(L̃k)i,qL̃p,rWi,iWq,qWp,p

)
Wr,r

=
n∑
r=1

(L̃k)i,rL̃r,jWi,iWr,r −
1
n

∑
1≤r,s≤n

(L̃k)i,sL̃r,jWi,iWs,sWr,r

− 1
n

∑
1≤r,s≤n

(L̃k)i,sL̃s,rWi,iWs,sWr,r + 1
n2

∑
1≤r,p,q≤n

(L̃k)i,qL̃p,rWi,iWq,qWp,pWr,r.

Summing up the matrix WL̃kWH1L̃H2 diagonal terms, then dividing by n2 gives:

1
n2 Tr

(
WL̃kWH1L̃H2

)
= 1
n2

∑
1≤i,r≤n

(L̃k)i,rL̃i,rWi,iWr,r + 1
n4

∑
1≤i,q≤n

(L̃k)i,qWi,iWq,q

∑
1≤p,r≤n

L̃p,rWp,pWr,r

− 2
n3

∑
1≤i,r,s≤n

(L̃k)i,sL̃i,rWi,iWs,sWr,r.

By definition of L̃k, L̃ and W , the three terms of the last equation are respectively the estimators
defined in Formula (12).
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