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Abstract

In this paper we consider high dimension models based on dependent observations
defined through autoregressive processes. For such models we develop an adaptive efficient
estimation method via the robust sequential model selection procedures. To this end, we
first obtain a van Trees inequality for such models, and then, using this inequality, we
probably for the first time obtain a sharp lower bound for the weighted robust risk in an
explicit form given by the famous Pinsker constant. Moreover, in getting this lower bound
we have found the nonparametric version of the Fisher information for this model. Then,
using the weighted least square method and sharp non asymptotic oracle inequalities from
(Arkoun O., Brua J.-Y., and Pergamenchtchikov S. 2019. Sequential Analysis 38(4): 437-
460), we develop analytic tools to provide the efficiency property in the minimax sense
for the proposed estimation procedure, i.e. we show that the upper bound for its risk
coincides with the obtained lower bound. It should be emphasized that this property is
obtained without using sparse conditions and in the adaptive setting when the parameter
dimension and model regularity are unknown. We then study the constructed procedures
numerically using Monte Carlo simulations.
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1 Introduction

1.1 Problem and motivations

We study the observations model defined for 1 ≤ j ≤ n through the following difference
equation

yj =

(
q∑
i=1

βiψi(xj)

)
yj−1 + ξj , xj = a+

(b− a)j

n
, (1.1)

where the initial value y0 is a non random known constant, (ψi)i≥1 are known linearly inde-
pendent functions, a < b are fixed known constants and (ξj)j≥1 are i.i.d. unobservable random
variables with an unknown density distribution p from some functional class which will be
specified later.

The problem is to estimate the unknown parameters (βi)1≤i≤q in the high dimension set-
ting, i.e. when the number of parameters is greater than the number of observations, i.e.
q > n. It should be noted that, usually, big data models in discrete time are considered only
for the i.i.d. observations (see, for example, [Hastie et al.(2008)] and the references therein).
In this paper, we study such model in the dependent observations framework defined by the
autoregressive model (1.1). It should also be emphasized, that in all the papers devoted to
big data models in discrete time, it is assumed that the number of parameters q is known and,
moreover, to provide optimality properties some sparse conditions are assumed. This means
that the usual methods (Lasso algorithms or Dantzig selector) cannot be used to estimate,
for example, the number of parameters q. To overcome these limitations, in this paper, sim-
ilarly to the approach proposed in [Galtchouk and Pergamenshchikov (2022)], we study this
problem in a nonparametric setting, i.e., we include observations (1.1) in the general model
defined by

yj = S(xj)yj−1 + ξj , (1.2)

where S(·) ∈ L2[a, b] is unknown function. The nonparametric setting allows to consider the
models (1.1) with unknown q or even with q = +∞. Note that the case when the number of
parameters q is unknown is one of challenging problems in the signal and image processing the-
ory (see, for example, [Beltaief et al. (2020), Bayisa et al. (2019)]). Thus the problem is now
to estimate the function S(·) on the basis of the observations (1.2) under the condition that the
noise distribution p is unknown and belongs to some functional class P. Note that this is well
known as time varying autoregressive model (TVAR) (see, for example, [Niedzwiecki (2000)]
and the references therein). Such models are very popular in various important fields such
as signal and image processing [De Souza and al. (2019)], econometrics [Orbe and al. (2006)],
farming [Li and al. (2022)], etc. There is a number of papers that consider these models
(see, for example, [Belitser (2000), Fan and Zhang (2008), Luo et al. (2009)] and the refer-
ences therein). Firstly, minimax estimation problems for the model (1.2) has been treated in
[Arkoun and Pergamenchtchikov (2008), Moulines et al. (2005)] in the nonadaptive case, i.e.
for the known regularity of the function S. It should be noted that in [Moulines et al. (2005)],
the authors found the optimal convergence rate for the Hölder multidimensional functional
coefficients, while in [Arkoun and Pergamenchtchikov (2008)], along with the optimal rate,
the efficiency of a kernel estimator was also established, that is, a constant determining the
sharp lower bound for the pointwise risk and a kernel estimator whose risk coincides with this
constant were found. Remark also that, in the parametric case, this constant is the Fisher
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information. Then, in [Arkoun (2011), Arkoun and Pergamenchtchikov (2016)], the authors
proposed to use the sequential analysis for the adaptive pointwise estimation problem, i.e.
in the case when the Hölder regularity is unknown. Moreover, it turned out that only the
sequential methods can provide the adaptive estimation for autoregressive models. For these
reasons we use in this paper the sequential analysis approach. Moreover, it should be noted
that in all these papers the estimation problems are considered only in the pointwise setting
when one estimates the functional parameters in fixed points. Unfortunately, these methods
do not provide an effective estimation of functions with respect to the integral risk. To develop
such methods for the model (1.2), we use in this paper the adaptive sequential model selec-
tion procedures from [Arkoun et al. (2019)], which are optimal in the sense of sharp oracle
inequalties for the quadratic risk defined by

Rp(Ŝn, S) = Ep,S‖Ŝn − S‖2 , ‖S‖2 =

∫ b

a

S2(x)dx ,

where Ŝn is an estimator of S based on the observations (yj)1≤j≤n and Ep,S is the expectation
with respect to the distribution law Pp,S of the process 1.2 given the distribution density p
and the function S. Moreover, taking into account that p is unknown, we use the robust risk
defined by

R∗(Ŝn, S) = sup
p∈P
Rp(Ŝn, S) , (1.3)

where P is a family of the distributions defined in Section 2.

1.2 Main tools

In this paper, in order to provide an efficient estimation, we develop special efficient estima-
tion methods for the model (1.2), as it is done in [Galtchouk and Pergamenshchikov (2022)]
for the diffusion processes. It should be emphasized that these methods cannot be used here,
since they are completely based on the uniform geometric ergodicity property. Note that the
process (1.2) is not ergodic even in the asymptotic setting. Therefore, to provide an efficient
estimation in this case, one needs to develop a new asymptotic estimation method for the
model (1.2). To estimate the function S in this model we make use of the model selection
procedures proposed in [Arkoun et al. (2019)]. These procedures are based on the optimal
pointwise truncated sequential estimators from [Arkoun and Pergamenchtchikov (2016)] for
which through the method developed in [Galtchouk and Pergamenshchikov (2009a)] sharp
oracle inequalities are obtained. Based on these inequalities, our goal is to show that the
estimation procedures constructed in this paper are efficient in an adaptive formulation for
the robust risk (1.3). To do this, first of all, it is necessary to establish a sharp lower bound
for this risk, i.e. to provide the best possible estimation accuracy for the model (1.2) which is
usually given by the Pinsker constant for quadratic risks (see, for example, in [Pinsker (1981)],
[Galtchouk and Pergamenshchikov (2011)], [Pchelintsev et al. (2021)]). The first step consists
in obtaining the van Trees inequality. Secondly, to apply this inequality to autoregressive mod-
els one needs to choose prior distributions. It should be emphasized here that we cannot apply
the usual analytic methods based on the Gaussian prior distributions, since in this case, the
observation process is not homogenous, and there is no stationarity as well. Here one needs
to choose prior functional distributions of special form with bounded supports.
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Then, through the van Trees inequality, we obtain a lower bound for the quadratic risk and
to get the sharp bound, we maximize it over all the chosen priori distributions. It turns out
that for the model (1.2) the sharp lower bound for the weighted quadratic risk is the Pinsker
constant obtained in [Pinsker (1981)] for the signal filtration problem. Moreover, it appears
that the weight coefficient in the quadratic risk is the nonparametric Fisher information for
the model (1.2). This is the new result in the efficient nonparametric estimation for depen-
dent observations. Eventually, using the oracle inequality from [Arkoun et al. (2019)] and the
weighted least square estimation method, we show that for our constructed model selection
procedure, the upper bound of its risk asymptotically coincides with the obtained lower bound
without using the regularity properties of the unknown function. This means that it is efficient
in the adaptive setting with respect to the robust risk (1.3).

1.3 Organization of the paper

The paper is organized as follows. In Section 2, we construct the sequential pointwise estima-
tion procedure which allows us to pass from the autoregression model to the corresponding
regression model, then in Section 3 we develop the model selection method. We announce
the main results in Section 4. In Section 5 we present Monte-Carlo results which numerically
illustrate the behavior of the proposed estimation procedure. In Section 6 we show the van
Trees inequality for the model (1.2). We get the lower bound for the robust risk in Section 7
and in Section 8 we obtain the upper bound for the corresponding robust risk. In Conclusion,
we summarize all the main results of the paper and compare them with the existing ones. We
provide all the auxiliary tools in Appendix.

2 Sequential pointwise estimation method

To estimate the function S in the model (1.2) on the interval [a, b], we use the kernel sequential
estimator proposed in [Arkoun and Pergamenchtchikov (2016)] at the points (zl)1≤l≤d defined
by

zl = a+
l

d
(b− a) , (2.1)

where d is an integer valued function of n, i.e. d = dn, such that d/
√
n→ 1 as n→∞. Note

that in this case the kernel estimator has the following form

Š(zl) =

∑n
j=1

Ql,j yj−1 yj∑n
j=1

Ql,j y
2
j−1

and Ql,j = Q

(
xj − zl
h

)
,

where Q(·) is a kernel function and h is a bandwidth.
As it is shown in [Arkoun and Pergamenchtchikov (2008)] to provide an efficient pointwise
estimation, the kernel function must be chosen as the indicator of the interval ] − 1; 1], i.e.
Q(u) = 1]−1,1](u). This means that we can rewrite the estimator (2) as

Š(zl) =

∑k2,l
j=k1,l

yj−1 yj∑k2,l
j=k1,l

y2
j−1

, (2.2)
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where k1,l = [nz̃l − nh̃] + 1 and k2,l = [nz̃l + nh̃] ∧ n, [x] is the integer part of x, z̃l = l/d

and h̃ = h/(b − a). In order to use the model selection method from [Arkoun et al. (2019)]
we need to obtain the uncorrelated stochastic terms in the kernel estimator of the function S
at the points (2.1), i.e. one needs to use the disjoint observations sets (yj)k1,l≤j≤k2,l . To this

end it suffices to choose h for which for all 2 ≤ l ≤ d the bounds k2,l−1 < k1,l, i.e. we set

h =
b− a

2d
and h̃ =

1

2d
. (2.3)

Note that the main difficulty is that the kernel estimator is a non linear function of the
observations due to the random denominator. To control this denominator we need to assume
conditions providing the stability properties for the model (1.2). To obtain the stability
(uniformly with respect to the function S) of the model (1.2), we assume that for some fixed
0 < ε < 1 and L > 0 the unknown function S belongs to the ε-stability set introduced in
[Arkoun and Pergamenchtchikov (2016)] as

Θε,L =
{
S ∈ C1([a, b],R) : |S|∗ ≤ 1− ε and |Ṡ|∗ ≤ L

}
, (2.4)

where C1[a, b] is the Banach space of continuously differentiable [a, b] → R functions and
|S|∗ = supa≤x≤b |S(x)|. As it is shown in [Arkoun et al. (2019)] ∀S ∈ Θε,L

k2,l∑
j=k1,l

y2
j−1 ≈

k2,l − k1,l

1− S2(zl)
as k2,l − k1,l →∞ .

Therefore, to replace the denominator in (2.2) with its limit we first need a preliminary estimate
of the function S(zl). We estimate it as

Ŝl =

∑ιl
j=k1,l

yj−1 yj∑ιl
j=k1,l

y2
j−1

with ιl = k1,l + q , (2.5)

where q = qn = [(nh̃)µ0 ] for some 0 < µ0 < 1. Indeed, we cannot use this estimator directly
to replace the random denominator since in general it can be close to one. For this reason we
use its projection onto the interval ]− 1 + ε̃, 1− ε̃[, i.e. S̃l = min(max(Ŝl,−1 + ε̃), 1− ε̃) and
ε̃ = (2 + lnn)−1. Finally, omitting some technical details, we will replace the denominator
(2.2) with the threshold Hl defined by

Hl =
1− ε̃

1− S̃2
l

(k2,l − ιl) . (2.6)

It should be noted that Hl is a function the observations yk1,l , . . . , yιl . To replace the random

denominator in (2.2) with Hl, we use the sequential estimation method through the following
stopping time

τl = inf{k > ιl :
k∑

j=ιl+1

uj,l ≥ Hl} , (2.7)
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where uj,l = y2
j−11{ιl+1≤j<k2,l} + Hl1{j=k2,l}. It is clear that τl ≤ k2,l a.s. Now we define the

sequential estimator by

S∗l =
1

Hl

 τl−1∑
j=ιl+1

yj−1 yj + κl yτl−1 yτl

1Γl
, (2.8)

where Γl = {τl < k2,l} and the correcting coefficient 0 < κl ≤ 1 is given by

τl−1∑
j=ιl+1

uj,l + κ2
l uτl,l = Hl . (2.9)

As in [Arkoun and Pergamenchtchikov (2016)], we study robust properties of this sequential
procedure by assuming that in the model (1.2) the i.i.d. random variables (ξj)j≥1 have a
density p (with respect to the Lebesgue measure) from the functional class P defined by

P :=

{
p ≥ 0 :

∫ +∞

−∞
p(x) dx = 1 ,

∫ +∞

−∞
xp(x) dx = 0 ,

∫ +∞

−∞
x2 p(x) dx = 1 and sup

l≥1

∫ +∞
−∞ |x|

2l p(x) dx

l! ς l
≤ 1

}
, (2.10)

where ς ≥ 1 is some fixed parameter which may be a slowly increasing function of the number
observation n, i.e. for any b > 0

lim
n→∞

n−b ς(n) = 0 . (2.11)

We can take, for example, ς(n) = lnm n for some fixed m ≥ 0. It should be noted, that the
(0, 1)-Gaussian density p0 belongs to P. Now we can formulate the following proposition from
[Arkoun et al. (2019)] (Theorem 3.1).

Proposition 2.1. For any b > 0

lim
n→∞

nb max
1≤l≤d

sup
S∈Θε,L

sup
p∈P

Pp,S

(
|S̃l − S(zl)| > ε0

)
= 0 , (2.12)

where ε0 = ε0(n)→ 0 as n→∞ such that ε−1
0 is a slowly increasing function.

Now we set
Yl = S∗l 1Γ and Γ = ∩dl=1 Γl . (2.13)

In Theorem 3.2 from [Arkoun et al. (2019)] it is shown that the probability of Γ goes to zero
uniformly faster than any power of the observations number n, which is formulated in the next
proposition.

Proposition 2.2. For any b > 0

lim
n→∞

nb sup
S∈Θε,L

Pp,S (Γc) = 0 .
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In view of this proposition we can neglect the set Γc. So, using the estimators (2.13) on the
set Γ we obtain the discrete time regression model

Yl = S(zl) + ζl and ζl = ηl +$l , (2.14)

in which

ηl =

∑τl−1
j=ιl+1

uj,l ξj + κluτl,l ξτl
Hl

and $l = $1,l +$2,l ,

where

$1,l =

∑τl−1
j=ιl+1

uj,l (S(xj)− S(zl)) + κ2
l uτl,l (S(xτl)− S(zτl))

Hl

and $2,l = (κl − κ2
l )uτl,l S(xτl)/Hl. Note that the random variables (ηj)1≤j≤d (see Lemma

A.2 in [Arkoun et al. (2019)]), for any 1 ≤ l ≤ d and p ∈ P, are such that

Ep,S (ηl |Gl) = 0 , Ep,S

(
η2
l |Gl

)
= σ2

l and Ep,S

(
η4
l |Gl

)
≤ v∗σ4

l , (2.15)

where σl = H
−1/2
l , Gl = σ{η1, . . . , ηl−1, σl} and v∗ is a fixed constant. Note also that

σ0,∗ ≤ min
1≤l≤d

σ2
l ≤ max

1≤l≤d
σ2
l ≤ σ1,∗ , (2.16)

where

σ0,∗ =
1− ε2

2(1− ε̃)nh
and σ1,∗ =

1

(1− ε̃)(2nh− q− 3)
.

Remark 1. It should be summarized that we construct the sequential pointwise procedure
(2.7) – (2.8) in two steps. First, we preliminary estimate the function S(zl) in (2.5) with the
observations (yj)k1,l≤j≤ιl and through this estimator we replace the random denominator in

(2.8) with the threshold Hl in the second step when we construct the estimation procedure on
the basis of the observations (yj)ιl<j≤k2,l. Also remark that in the deviation (2.14) the main

term ηl has a martingale form and the second one, as it is shown in [Arkoun et al. (2019)],
is asymptotically small. Finally, it should be emphasized that namely these properties allow us
to develop effective estimation methods.

3 Model selection

Now we use the sequential model selection procedure from [Arkoun et al. (2019)] to estimate
the function S for the regression (2.14). To this end, first we choose the trigonometric basis
(φj)j≥ 1 in L2[a, b], i.e.

φ1 =
1√
b− a

, φj(x) =

√
2

b− a
Trj (2π[j/2]l0(x)) , j ≥ 2 , (3.1)

where the function Trj(x) = cos(x) for even j and Trj(x) = sin(x) for odd j, and l0(x) =
(x−a)/(b−a). Moreover, we choose the odd number d of regression points (2.1), for example,
d = 2[

√
n/2]+1. Then the functions (φj)1≤j≤d are orthonormal for the empirical inner product,

i.e.

(φi , φj)d =
b− a
d

d∑
l=1

φi(zl)φj(zl) = 1{i=j} . (3.2)
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It is clear that the function S can be represented as

S(zl) =
d∑
j=1

θj,d φj(zl) and θj,d =
(
S, φj

)
d
. (3.3)

We define the estimators of the coefficients (θj,d)1≤j≤d by

θ̂j,d =
b− a
d

d∑
l=1

Ylφj(zl) . (3.4)

From (2.14) we obtain immediately the following regression on the set Γ

θ̂j,d = θj,d + ζj,d with ζj,d =

√
b− a
d

ηj,d +$j,d , (3.5)

where

ηj,d =

√
b− a
d

d∑
l=1

ηlφj(zl) and $j,d =
b− a
d

d∑
l=1

$l φj(zl) .

It should be noted here that

d∑
j=1

$2
j,d = ‖$‖2d =

b− a
d

d∑
l=1

$2
l ≤ (b− a)

$∗n
n
, (3.6)

where $∗n = nmax1≤l≤d$
2
l . In [Arkoun et al. (2019)] (Theorem 3.3) it is shown that

lim
n→∞

1

nb
sup
p∈P

sup
S∈Θε,L

Ep,S$
∗
n 1Γ = 0 for any b > 0 . (3.7)

For the model selection procedure we use weighted least squares estimators defined by

Ŝλ(t) =

d∑
l=1

Ŝλ(zl)1]zl−1,zl]
, Ŝλ(zl) =

d∑
j=1

λ(j) θ̂j,d φj(zl)1Γ , (3.8)

where the weight vector λ = (λ(1), . . . , λ(d))′ belongs to some finite set Λ ⊂ [0, 1]d, the prime
denotes the transposition. Denote by ν the cardinal number of the set Λ, for which we impose
the following condition.
H1) : Assume that the number of the weight vector ν is a slowly increasing function of n.
To choose a weight vector λ ∈ Λ in (3.8) we will use the following risk

Errd(λ) = ‖Ŝλ − S‖2d =
b− a
d

d∑
l=1

(Ŝλ(zl)− S(zl))
2 . (3.9)

Using (3.3) and (3.8) it can be represented as

Errd(λ) =
d∑
j=1

λ2(j)θ̂2
j,d − 2

d∑
j=1

λ(j)θ̂j,d θj,d +
d∑
j=1

θ2
j,d . (3.10)
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Since the coefficients θj,d are unknown we cannot minimize this risk directly to obtain an
optimal weight vector. To modify it, we set

θ̃j,d = θ̂2
j,d −

b− a
d

sj,d with sj,d =
b− a
d

d∑
l=1

σ2
l φ

2
j (zl) . (3.11)

Note here that in view of (2.16) - (3.2), the last term can be estimated as

σ0,∗ ≤ sj,d ≤ σ1,∗ . (3.12)

Now, we modify the risk (3.10) as

Jd(λ) =
d∑
j=1

λ2(j)θ̂2
j,d − 2

d∑
j=1

λ(j) θ̃j,d + δPd(λ) , (3.13)

where the coefficient 0 < δ < 1 will be chosen later and the penalty term is

Pd(λ) =
b− a
d

d∑
j=1

λ2(j)sj,d . (3.14)

Now using (3.13) we define the sequential model selection procedure as

λ̂ = argminλ∈Λ Jd(λ) and Ŝ∗ = Ŝ
λ̂
. (3.15)

To study the efficiency property we specify the weight coefficients (λ(j))1≤j≤n as it is proposed,
for example, in [Galtchouk and Pergamenshchikov (2009b)]. First, for some 0 < ε < 1, we
introduce the two dimensional grid to adapt to the unknown parameters (regularity and size)
of the Sobolev ball, i.e. we set

A = {1, . . . , k∗} × {ε, . . . ,mε} , (3.16)

where m = [1/ε2]. We assume that both parameters k∗ ≥ 1 and ε are functions of n, i.e.
k∗ = k∗(n) and ε = ε(n), such that

limn→∞ k∗(n) = +∞ , limn→∞
k∗(n)

lnn
= 0 ,

limn→∞ ε(n) = 0 and limn→∞ nbε(n) = +∞
(3.17)

for any b > 0. One can take, for example, for n ≥ 2

ε(n) =
1

lnn
and k∗(n) = k∗0 + [

√
lnn] , (3.18)

where k∗0 ≥ 0 is some fixed integer number. For each α = (k, t) ∈ A, we introduce the weight
sequence λα = (λα(j))1≤j≤d with the elements

λα(j) = 1{1≤j<j∗} +
(

1− (j/ωα)k
)
1{j∗≤j≤ωα} , (3.19)
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where

ωα = ω∗ + (b− a)2k/(2k+1)
(
d∗k tn

)1/(2k+1)
and d∗k = (k + 1)(2k + 1)/(π2kk) .

Here, j∗ and ω∗ are such that j∗ → ∞, j∗ = o
(
(n/ε)1/(2k+1)

)
and ω∗ = O(j∗) as n → ∞. In

this case we define the weight set as Λ = {λα , α ∈ A} . Note, that these weight coefficients
are used in [Konev and Pergamenshchikov (2012), Konev and Pergamenshchikov (2015)] for
continuous time regression models to show the asymptotic efficiency. It will be noted that in
this case the cardinal of the set Λ is ν = k∗m. It is clear that the properties (3.17) imply the
condition H1). In [Arkoun et al. (2019)] we showed the following result.

Theorem 3.1. Assume that the conditions (2.11) and H1) hold. Then for any n ≥ 3, any
S ∈ Θε,L and any 0 < δ ≤ 1/12, the procedure (3.15) with the coefficients (3.19) satisfies the
following oracle inequality

R∗(Ŝ∗, S) ≤ (1 + 4δ)(1 + δ)2

1− 6δ
min
λ∈Λ
R∗(Ŝλ, S) +

B∗n
δn

, (3.20)

where the term B∗n is a slowly increasing function.

Remark 2. In this paper we will use the inequality (3.20) to study efficiency properties for
the model selection procedure (3.15) with the weight coefficients (3.19) in adaptive setting, i.e.
in the case when the regularity of the function S (1.2) is unknown.

4 Main results

First, to study the minimax properties of the estimation problem for the model (1.2), we need
to introduce some functional class. To this end for any fixed r > 0 and k ≥ 2, we set

Wk,r =

f ∈ Θε,L :
+∞∑
j=1

aj θ
2
j ≤ r

 , (4.1)

where aj = 1 +
∑k

l=1
(2π[j/2]/(b − a))2l, (θj)j≥1 are the trigonometric Fourier coefficients in

L2[a, b], i.e. θj = (f, φj) =
∫ b
a
f(x)φj(x)dx and (φj)j≥1 is the trigonometric basis defined in

(3.1). It is clear that we can represent this functional class as the Sobolev ball

Wk,r =

f ∈ Θε,L :

k∑
j=0

‖f (j)‖2 ≤ r

 .

Now, for this set we define the normalizing coefficients

lk,r = ((1 + 2k)r)1/(2k+1)

(
k

π(k + 1)

)2k/(2k+1)

and

ς∗ = ς∗(S) =

∫ b

a

(1− S2(u))du . (4.2)

10



It is well known that in regression models with the functions S ∈ Wk,r the minimax con-

vergence rate is n−2k/(2k+1) (see, for example, [Galtchouk and Pergamenshchikov (2009b),
Konev and Pergamenshchikov (2009)] and the references therein). Our goal in this paper
is to show the same property for the nonparametric autoregressive model (1.2). First we have
to obtain a lower bound for the risk (1.3) over all possible estimators Ξn, i.e. any measurable
function of the observations (y1, . . . , yn).

Theorem 4.1. The robust risk (1.3) normalized by the coefficient υ(S) = ς−2k/(2k+1)
∗ can be

estimated from below as

lim inf
n→∞

inf
Ŝn∈Ξn

n2k/(2k+1) sup
S∈Wk,r

υ(S)R∗(Ŝn, S) ≥ (b− a)2k/(2k+1)lk,r . (4.3)

Now to study the procedure (3.15) we have to add some condition on the penalty coefficient
δ which provides sufficiently small penalty term in (3.13).
H2) : Assume that the parameter δ = δn is a function of n which goes to zero as n→∞ such
that δ−1

n is slowly increasing.

Theorem 4.2. Assume that the conditions H1) and H2) hold. Then the model selection
procedure Ŝ∗ defined in (3.15) with the weight vectors (3.19) admits the following asymptotic
upper bound

lim sup
n→∞

n2k/(2k+1) sup
S∈Wk,r

υ(S)R(Ŝ∗, S) ≤ (b− a)2k/(2k+1) lk,r .

Now, Theorems 4.1 - 4.2 imply the following efficiency property.

Corollary 4.1. Assume that the conditions H1) – H2) hold. The model selection procedure
Ŝ∗ defined in (3.15) and (3.19) is efficient, i.e.

lim
n→∞

inf
Ŝn∈Ξn

supS∈Wk,r
υ(S)R∗(Ŝn, S)

supS∈Wk,r
υ(S)R(Ŝ∗, S)

= 1 . (4.4)

Moreover,

lim
n→∞

n2k/(2k+1) inf
Ŝn∈Ξn

sup
S∈Wk,r

υ(S)R∗(Ŝn, S) = (b− a)2k/(2k+1) lk,r

and
lim
n→∞

n2k/(2k+1) sup
S∈Wk,r

υ(S)R∗(Ŝ∗, S) = (b− a)2k/(2k+1) lk,r .

Remark 3. It should be noted that the inequality (4.3) can be represented as

lim
n→∞

n2k/(2k+1) inf
Ŝn∈Ξn

sup
S∈Wk,r

(I(S))2k/(2k+1)R(Ŝn, S) ≥ (b− a)2k/(2k+1) lk,r , (4.5)

where r = r/(b− a), I(S) = (b− a)
(∫ b

a
(1− S2(x))dx

)−1
and

R(Ŝn, S) = sup
p∈P

Ep,S

1

b− a

∫ b

a

(
Ŝn(x)− S(x)

)2
dx .

11



Note also that the function I(S) is the nonparametric version of the asymptotic Fisher infor-
mation. We remind that for the parametric model (1.2), i.e. when S ≡ ϑ and |ϑ| < 1, the
Fisher information is (1−ϑ2)−1 (see, for example, [Amderson1970]). Moreover, the coefficient
(b−a)2k/(2k+1) lk,r is the well known Pinsker constant for the ”signal+white noise” model with
the noise intensity b − a and the radius r (see [Pinsker (1981)]). Therefore the lower bound
(4.5) is the nonparametric version of the Rao-Cramer inequality for the models (1.2).

Now we assume that in the model (1.1) the functions (ψi)i≥1 are orthonormal in L2[a, b],
i.e. (ψi, ψj) = 1{i=j}. We use the estimators (3.8) to estimate the parameters β = (βi)i≥1

as β̂λ = (β̂λ,i)i≥1 and β̂λ,i = (ψi, Ŝλ). Then, similarly we use the selection model procedure
(3.15) as

β̂∗ = (β̂∗,i)i≥1 and β̂∗,i = (ψi, Ŝ∗) . (4.6)

It is clear that in this case |β̂λ−β|2 =
∑∞

i=1
(β̂λ,i−βi)2 = ‖Ŝλ−S‖2 and |β̂∗−β|2 = ‖Ŝ∗−S‖2.

Note that Theorem 3.1 implies that the estimator (4.6) is optimal in the sharp oracle
inequality sense which is established in the following theorem.

Theorem 4.3. For any S ∈ Θε,L, n ≥ 3 and 0 < δ ≤ 1/12,

R∗(β̂∗, β) ≤ (1 + 4δ)(1 + δ)2

1− 6δ
min
λ∈Λ
R∗(β̂λ, β) +

B∗n
δn

,

where R∗(β̂, β) = supp∈P Ep,S |β̂ − β|2 and B∗n satisfies the limit property mentioned in The-
orem 3.1.

Remark now that Theorems 4.1 and 4.2 imply the efficiency property for the estimate
(4.6) based on the model selection procedure (3.15) constructed with the penalty threshold δ
satisfying the condition H2).

Theorem 4.4. Then the estimate (4.6) is asymptotically efficient, i.e.

lim
n→∞

n2k/(2k+1) sup
S∈Wk,r

υ(S)R∗(β̂∗, β) = (b− a)2k/(2k+1) lk,r

and

lim
n→∞

inf
β̂n∈Ξn

supS∈Wk,r
υ(S)R∗(β̂n, β)

supS∈Wk,r
υ(S)R∗(β̂∗, β)

= 1 , (4.7)

where Ξn is the set estimators for β based on the observations (yj)1≤j≤n.

Remark 4. It should be noted that we obtain the efficiency property (4.7) for the big data au-
toregressive model (1.2) without using the parameter dimension q or sparse conditions usually
used for such models (see, for example, [Hastie et al.(2008)]).

5 Monte-Carlo simulations

In this section we present the numeric results obtained through the Python software for the
model (1.2) in which (ξj)1≤j≤n are i.i.d. N (0, 1) random variables and 0 ≤ x ≤ 1, i.e. a = 0
and b = 1. In this case we simulate the model selection procedure (3.15) with the weights

12



(3.19) in which k∗ = 150 +
√

lnn, m = [ln2 n], ε = 1/ lnn. Moreover, the parameters j∗ and
ω∗ are chosen as

j∗ =
ω

200 + lnω
, ω = lnn+

(
(k + 1)(2k + 1)

π2kk
tn

)1/(2k+1)

and ω∗ = j∗ + lnn. First we study the model (1.2) with S1(x) = 0, 5 cos(2πx) and then for
the function

S2(x) = 0, 1 +

q∑
j=1

cos(2πjx)

(j + 3)2
and q = 100000 .

In the model selection procedure we use d = 2[
√
n/2] + 1 points in (2.1).

(a) Observations for n = 200 (b) Estimator of S1 for n = 200

Figure 1: Model selection for n = 200

(a) Observations for n = 500 (b) Estimator of S1 for n = 500

Figure 2: Model selection for n = 500
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(a) Observations for n = 10000 (b) Estimator of S1 for n = 10000

Figure 3: Model selection for n = 10000

(a) Observations for n = 70000 (b) Estimator of S1 for n = 70000

Figure 4: Model selection for n = 70000

Figures 1–4 show the behavior of the function S1 and its estimators by the model selection
procedure (3.15) depending on the observations number n. On the figures (a) the observations
are given and on the figures (b) the red dotted is the regression function and the black full
line is its estimator at the points (2.1). Then we calculate the empiric risks as

R̂ =
1

d

d∑
j=1

Ê
(
Ŝn(zj)− S(zj)

)2
, (5.1)

where the expectation is taken as an average over M = 50 replications, i.e.

Ê
(
Ŝn(.)− S(.)

)2
=

1

M

M∑
l=1

(
Ŝln(·)− S(·)

)2
.
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We use also the relative risk

R̂∗ =
R̂
‖S‖2n

and ‖S‖2n =
1

n

n∑
j=1

S2(xj) . (5.2)

The tables below give the values for the sample risks (5.1) and (5.2) for different numbers of
observations n.

Table 1: Empirical risks for S1

n R̂ R̂∗
200 0.135 0.98

500 0.0893 0.624

10000 0.043 0.362

70000 0.03523 0.281

Table 2: Empirical risks for S2

n R̂ R̂∗
200 0.0821 5.685

500 0.0386 2.623

10000 0.0071 0.516

70000 0.0067 0.419

Remark 5. From numerical simulations of the procedure (3.15) with various observation
durations n and for the different functions S we may conclude that the quality of the estimation
improves as the number of observations increases.
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6 The van Trees inequality

In this section we consider the nonparametric autoregressive model (1.2) with the (0, 1)-
Gaussian i.i.d. random variable (ξl)1≤l≤n and the parametric linear function S, i.e.

Sθ(x) =
d∑
j=1

θj ψj(x) , θ = (θ1, . . . , θd)
′ ∈ Rd . (6.1)

We assume that the functions (ψj)1≤j≤d are orthogonal with respect to the scalar product
(3.2). Let now Pn

θ be the distribution in Rn of the observations y = (y1, . . . , yn) in the
model (1.2) with the function (6.1) and νnξ be the distribution in Rn of the Gaussian vector

(ξ1, . . . , ξn). In this case the Radon-Nykodim density is given by

fn(y, θ) =
dP

(n)
θ

dνnξ
= exp


n∑
l=1

Sθ(xl)yl−1yl −
1

2

n∑
j=1

S2
θ (xl)y

2
l−1

 . (6.2)

Let % be a prior distribution density on Rd for the parameter θ of the following form %(θ) =∏d
j=1 %j(θj), where %j is a some probability density in R with continuously derivative %̇j for

which the Fisher information is finite, i.e.

Ij =

∫
R

%̇2
j (z)

%j(z)
dz <∞ . (6.3)

Let g(θ) be a continuously differentiable Rd → R function such that

lim
|θj |→∞

g(θ) %j(θj) = 0 and

∫
Rd
|g′j(θ)|u(θ) dθ <∞ , (6.4)

where g′j(θ) = ∂g(θ)/∂θj .

For any Q(Rn+d)-measurable integrable function H = H(y, θ) we denote

ẼH =

∫
Rn+d

H(y, θ) fn(y, θ) %(θ)dν
(n)
ξ dθ . (6.5)

Let Fyn be the field generated by the observations (1.2), i.e. Fyn = σ{y1, . . . , yn}. Now we
study the Gaussian the model (1.2) with the function (6.1).

Proposition 6.1. For any Fyn-measurable square integrable Rn → R function ĝn and for any
1 ≤ j ≤ d, the mean square accuracy of the function g(·) with respect to the distribution (6.5)
can be estimated from below as

Ẽ(ĝn − g(θ))2 ≥
g2
j

ẼΨn,j + Ij
, (6.6)

where Ψn,j =
∑n

l=1
ψ2
j (xl) y

2
l−1 and gj =

∫
Rd g

′
j(θ) %(θ) dθ.
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Proof. First, for any θ ∈ Rd we set

Ũj = Ũj(y, θ) =
1

fn(y, θ)u(θ)

∂ (fn(y, θ)u(θ))

∂θj
.

Taking into account the condition (6.4) and integrating by parts we get

Ẽ
(

(ĝn − g(θ))Ũj

)
=

∫
Rn+d

(ĝn(y)− g(θ))
∂

∂θj
(fn(y, θ)u(θ)) dθ dν

(n)
ξ

=

∫
Rn+d−1

(∫ +∞

−∞
g′j(θ) fn(y, θ)u(θ)dθj

)∏
i 6=j

dθi

 dν
(n)
ξ = gj .

Now by the Bouniakovskii-Cauchy-Schwarz inequality we obtain the following lower bound for
the quadratic risk Ẽ(ĝn− g(θ))2 ≥ g2

j/ẼŨ
2
j . To study the denominator in this inequality note

that in view of the representation (6.2)

1

fn(y, θ)

∂ fn(y, θ)

∂θj
=

n∑
l=1

ψj(xl) yl−1(yl − Sθ(xl)yl−1) .

Therefore, for each θ ∈ Rd,

E
(n)
θ

1

fn(y, θ)

∂ fn(y, θ)

∂θj
= 0

and

E
(n)
θ

(
1

fn(y, θ)

∂ fn(y, θ)

∂θj

)2

= E
(n)
θ

n∑
l=1

ψ2
j (xl) y

2
l−1 = E

(n)
θ Ψn,j .

Using the equality

Ũj =
1

fn(y, θ)

∂ fn(y, θ)

∂θj
+

1

u(θ)

∂ u(θ)

∂θj
,

we get Ẽ Ũ2
j = ẼΨn,j + Ij . Hence Lemma 6.1.

7 Lower bound

First, taking into account that the (0, 1)-Gaussian density p0 belongs to the class (2.10),
we get R∗(Ŝn, S) ≥ Rp0

(Ŝn, S). Now, according to the general lower bound methods (see,
for example, [Galtchouk and Pergamenshchikov (2009b)]) one needs to estimate this risk from
below by some bayesian risk and then to apply the van Trees inequality. To define the bayesian
risk we need to choose a prior distribution on Wk,r. To this end, first for any vector κ =

(κj)1≤j≤d ∈ Rd, we set

Sκ(x) =
d∑
j=1

κj φj(x) , (7.1)

where (φj)1≤j≤d is the trigonometric basis defined in (3.1). Now, to use the van Trees inequality
we introduce the Bayes risk as

R̃0(Ŝn) = Ẽ0 ‖Ŝn − Sz‖2 =

∫
Rd

Ep0,Sz
‖Ŝn − Sz‖2 µκ(dz) , (7.2)
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where µκ is the distribution in Rd of the random vector κ = (κj)1≤j≤d defined by its compo-
nents as

κj = sj η
∗
j , (7.3)

where (sj)1≤j≤d are some positive coefficients which will be specified later, (η∗j )1≤j≤d are i.i.d.

random variables with the continuously differentiable density ρn(·) defined in Lemma A.1 with
N = lnn and n > e2. As to the number of the terms d in (7.1) similarly to [Pinsker (1981)]
we choose it as a function of n, i.e. d = dn, such that dn →∞ as n→∞ and, moreover, this
function must belong to the class Wk,r with a probability approaching one faster than any
power function of n−1. For this, as we will see below in Lemma A.3, it is necessary to provide
for a fixed arbitrary 0 < ρ < 1 the following property

lim sup
n→∞

d∑
j=1

aj s
2
j ≤ ρr .

Taking into account that aj ≈ (πj/(b− a))2k for j →∞, this condition can be rewritten as

d∑
j=1

j2k s2
j ≤ ρr(b− a)2k/π2k . (7.4)

It is clear that almost surely the function (7.1) can be bounded as

max
a≤x≤b

(
|Sκ(x)|+ |Ṡκ(x)|

)
≤ c∗ δ

∗
n , (7.5)

where

c∗ =
√

2(b− a+ π)/(b− a)3/2 and δ∗n = lnn
d∑
j=1

j sj .

In the sequel we choose the number of the terms d in (7.1) and the coefficients sj in (7.3)
such that δ∗n → 0 as n → ∞. Therefore, under this condition for sufficiently large n the
function (7.1) belongs to the class (2.4) almost surely. Now, for all f ∈ L2[a, b], we denote
by h(f) its projection in L2[a, b] onto the ball W∗r = {f ∈ L2[a, b] : ‖f‖ ≤ r}, i.e. h(f) =

(r/max(r , ‖f‖))f . Since Wk,r ⊂ W∗r , we have ‖Ŝn − S‖2 ≥ ‖ĥn − S‖2 for S ∈ Wk,r, where

ĥn = h(Ŝn). This implies that for sufficiently large n

sup
S∈Wk,r

υ(S)Rp0
(Ŝn, S) ≥

∫
Γ

υ(Sz)Ep0,Sz
‖ĥn − Sz‖2 µκ(dz)

≥ υ∗

∫
Γ

Ep0,Sz
‖ĥn − Sz‖2 µκ(dz) , (7.6)

where Γ =
{
z ∈ Rd :

∑d
j=1

ajz
2
j ≤ r

}
and υ∗ = inf |S|∗≤c∗δ∗n

υ(S). Now taking into account

that ‖ĥn‖2 ≤ r, we get

sup
S∈Wk,r

υ(S)Rp0
(Ŝn, S) ≥ υ∗ R̃0(ĥn)− 2 υ∗R0,n (7.7)
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and R0,n =
∫

Γc
(r + ‖Sz‖2)µκ(dz) =

∫
Γc

(
r + |z|2

)
µκ(dz). Remark here that this term

is studied in Lemma A.3. Moreover, note also that for any z ∈ Rd we get ‖ĥn − Sz‖2 ≥∑d
j=1 (ẑj − zj)2 with ẑj =

(
ĥn , φj

)
. Furthermore, from Lemma 6.1 with g(θ) = θj it follows

that for any 1 ≤ j ≤ d and any Fyn measurable random variable κ̂j

Ẽ0(κ̂j − κj)2 ≥ 1

Ẽ0 Ψn,j + s−2
j Jn

,

where Ψn,j =
∑n

l=1
φ2
j (xl)y

2
l−1 and Jn =

∫ lnn

−lnn
(ρ̇n(t))2/ρn(t)dt. Therefore, the Bayes risk can

be estimated from below as

R̃0(ĥn) ≥
d∑
j=1

1

Ẽ0 Ψn,j + s−2
j Jn

=
b− a
n

d∑
j=1

1

Ψn,j + (s∗j )
−1Jn

,

where

Ψn,j =
(b− a)

n

n∑
l=1

φ2
j (xl)Ẽ0 y

2
l−1 and s∗j =

n

b− a
s2
j . (7.8)

Note here that in view of Lemmas A.1 and A.2 for any 0 < ρ1 < 1 and sufficiently large n we
have Jn ≤ 1 + ρ1 and max1≤j≤d Ψn,j ≤ 1 + ρ1, hence,

n2k/(2k+1) R̃0(ĥ) ≥ (b− a)

(1 + ρ1)n1/(2k+1)

d∑
j=1

s∗j
1 + s∗j

. (7.9)

Now we choose (s∗j )1≤j≤d to maximise this lower bound under the condition (7.4), i.e.

max
v1≥0,...,vd≥0

d∑
j=1

vj
1 + vj

subjected to

d∑
j=1

j2k vj ≤ Bn , B =
ρr(b− a)2k−1

π2k
. (7.10)

Using the Lagrange multipliers method, the solution of this problem can be given by

s∗j = ud

(
d

j

)k

− 1 and ud =
Bn+

∑d
l=1

l2k

dk
∑d

l=1
lk

. (7.11)

Therefore, in (7.3) we choose sj =
√

(b− a)s∗j/n and d such, that

ud ≥ 1 . (7.12)

Using this in (7.9), we deduce that

n2k/(2k+1) R̃0(ĥ) ≥ (b− a)d

(1 + ρ1)n1/(2k+1)

1− 1

ud

d∑
j=1

(
j

d

)k 1

d

 .

To obtain here a positive lower bound, we set d = dn = [Dn1/(2k+1)] for some D > 0. Then

lim
n→∞

ud =
B(k + 1)

D2k+1
+

k + 1

2k + 1
:= u∗(D)
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and, using the definitions (7.11) in (7.5) we obtain that for any k ≥ 2

δ∗n ≤
√

(b− a)ud
lnn√
n
dk/2

d∑
j=1

j1−k/2 → 0 as n→∞ .

Moreover, in this case

lim inf
n→∞

n2k/(2k+1) R̃0(ĥ) ≥ b− a
(1 + ρ1)

L∗(D) and L∗(D) = D − D

u∗(D)(k + 1)
.

Note here that the derivative L′∗(D) =
(
1− u−1

∗ (D)
)2 ≥ 0. In view of the condition (7.12) we

obtain that u∗(D) ≥ 1, i.e.

0 < D ≤
(

(2k + 1)(k + 1)

k
B

)1/(2k+1)

:= D∗ .

Therefore,

max
0<D≤D∗

L∗(D) = L∗(D∗) = D∗
k

k + 1
= ρ1/(2k+1) (b− a)(2k−1)/(2k+1)lk,r

and we get that for any 0 < ρ < 1

lim inf
n→∞

n2k/(2k+1) R̃0(ĥ) ≥ ρ1/(2k+1) (b− a)4k/(2k+1)

(1 + ρ1)
lk,r .

Taking into account that υ∗ → (b − a)−2k/(2k+1) as n → ∞ in (7.7), we conclude through
Lemma A.3, that for any 0 < ρ < 1 and ρ1 > 0

lim inf
n→∞

inf
Ŝn∈Ξn

n
2k

2k+1 sup
S∈Wk,r

υ(S)R∗(Ŝn, S) ≥ ρ
1

2k+1

1 + ρ1

(b− a)2k/(2k+1) lk,r .

Taking here the limits as ρ→ 1 and ρ1 → 0 we come to the Theorem 4.1.

8 Upper bound

We start with the estimation problem for the functions S from Wk,r with known parameters
k, r and ς∗ defined in (4.2). To do this, we denote

ω̃ = ωα̃ and α̃ = (k, t̃n) , (8.1)

where t̃n = [r̃(S)/ε] ε, r̃(S) = r/ς∗ and ε = 1/ lnn. In this case we use the estimator (3.8)
with the corresponding weight vector defined in (3.19), i.e.

S̃ = Ŝ
λ̃

and λ̃ = λα̃ . (8.2)

Note, that for sufficiently large n, for which k∗ ≥ k and m ≥ [r̃(S)/ε] the parameter α̃ belongs
to the set (3.16). In this section we study the risk of the estimator (8.2). To this end we need
firstly to analyse the asymptotic behavior of the sequance

Υn(S) =

d∑
j=1

(1− λ̃(j))2θ2
j,d +

ς∗
n

d∑
j=1

λ̃2(j) . (8.3)
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Proposition 8.1. The sequence Υn(S) is bounded from above

lim sup
n→∞

sup
S∈Wk,r

n2k/(2k+1) υ(S) Υn(S) ≤ (b− a)2k/(2k+1)lk,r . (8.4)

Proof. First, note that 0 < ε2(b − a) ≤ infS∈Θε,L
ς∗ ≤ supS∈Θε,L

ς∗ ≤ b − a. This implies

directly that

lim
n→∞

sup
S∈Θε,L

∣∣∣̃tn/r̃(S)− 1
∣∣∣ = 0 , (8.5)

where t̃n = [r̃(S)/ε] ε and r̃(S) = r/ς∗. Note now that

Υn(S) = Gn +
ς∗
n

d∑
j=1

λ̃2(j) ,

where Gn =
∑[ω̃]

j=j∗
(1− λ̃(j))2 θ2

j,d +
∑d

j=[ω̃]+1 θ
2
j,d := G1,n +G2,n. Moreover Lemma A.5 and

Lemma A.6 yield

G1,n ≤ (1 + ε̃)

[ω̃]∑
j=j∗

(1− λ̃(j))2 θ2
j + 4r(1 + ε̃−1)

(b− a)2kω̃

d2k

and

G2,n ≤ (1 + ε̃)
∑

j≥[ω̃]+1

θ2
j + r(1 + ε̃−1)

(b− a)2k

d2 ω̃2(k−1)
,

i.e. Gn ≤ (1 + ε̃)G∗n + 4r(b− a)2k(1 + ε̃−1) G̃n, where

G∗n =
∑
j≥1

(1− λ̃(j))2 θ2
j =

∑
j≤ω̃

(1− λ̃(j))2 θ2
j +

∑
j>ω̃

θ2
j := G∗1,n + G∗2,n

and G̃n = ω̃ d−2k + d−2ω̃−2(k−1). One also has

G∗1,n =
1

ω̃2k

[ω̃]∑
j=j∗

j2k θ2
j ≤

u∗n
ω̃2k

[ω̃]∑
j=j∗

aj θ
2
j ,

where u∗n = supj≥j∗
j2k/aj . It is clear that limn→∞ u∗n = (b − a)2kπ−2k. Therefore, for any

0 < ε̃ < 1 and for sufficiently large n, uniformly in S ∈ Θε,L

G∗1,n ≤ (1 + ε̃)
(b− a)2k

π2kω̃2k

[ω̃]∑
j=j∗

aj θ
2
j .

Similarly, for sufficiently large n, the term G∗2,n can be estimated as

G∗2,n ≤
1

a[ω̃]+1

∑
j≥[ω̃]+1

aj θ
2
j ≤ (1 + ε̃)

(b− a)2k

π2kω̃2k

∑
j≥[ω̃]+1

aj θ
2
j ,
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i.e.

G∗n ≤ (1 + ε̃)
(b− a)2k

π2kω̃2k

∑
j≥1

aj θ
2
j ≤ (1 + ε̃)

(b− a)2k

π2kω̃2k
r .

Furthermore, we have that uniformly in S ∈ Θε,L

lim
n→∞

1

ω̃

d∑
j=1

λ̃2(j) = lim
n→∞

1

ω̃

ω̃∑
j=j∗

(
1− (j/ω̃)k

)2
=

∫ 1

0

(1− uk)2du =
2k2

(k + 1)(2k + 1)
:= ιk .

Therefore, taking into account that limn→∞ supS∈Wk,r
n2k/(2k+1)G̃n = 0 for k ≥ 2, we obtain,

that for sufficiently large n and uniformly in S ∈ Θε,L

Υn(S) ≤ (1 + ε̃)Ψ(ω̃) and Ψ(v) =
(b− a)2k

π2kv2k
r +

ς∗ιk
n

v .

Note that
inf
v∈R

Ψ(v) = Ψ(v∗) = (ς∗(b− a))2k/(2k+1) lk,r

and
v∗ = (b− a)2k/(2k+1)

(
d∗kr̃(S)n

)1/(2k+1)
.

Then remind that ω̃ = ω̃∗ + (b − a)2k/(2k+1)
(
d∗kt̃n n

)1/(2k+1)
. Therefore, the limit property

(8.5) implies the upper bound (8.4).

Theorem 8.1. The estimator S̃ constructed on the trigonometric basis satisfies the following
asymptotic upper bound

lim sup
n→∞

n2k/(2k+1) sup
S∈Wk,r

υ(S)Ep,S‖S̃ − S‖2d 1Γ ≤ (b− a)2k/(2k+1)lk,r . (8.6)

Proof. Now we recall that the Fourier coefficients on the set Γ

θ̂j,d = θj,d + ζj,d with ζj,d =

√
b− a
d

ηj,d +$j,d .

Hence, on the set Γ we can represent the empiric squared error as

‖S̃ − S‖2d =
d∑
j=1

(1− λ̃(j))2 θ2
j,d − 2Mn

− 2

d∑
j=1

(1 − λ̃(j)) λ̃(j)θj,d$j,d +

d∑
j=1

λ̃2(j) ζ2
j,d ,

where Mn =
√
b− a

∑d
j=1 (1 − λ̃(j)) λ̃(j)θj,d ηj,d/

√
d. Now, for any 0 < ε1 < 1,

2

∣∣∣∣∣∣
d∑
j=1

(1− λ̃(j))λ̃(j)θj,d$j,d

∣∣∣∣∣∣ ≤ ε1

d∑
j=1

(1− λ̃(j))2θ2
j,d + ε−1

1

d∑
j=1

$2
j,d

≤ ε1

d∑
j=1

(1− λ̃(j))2θ2
j,d +

(b− a)$∗n
ε1n

,
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where $∗n is defined in (3.6). Therefore,

‖S̃ − S‖2d ≤ (1 + ε1)

d∑
j=1

(1− λ̃(j))2θ2
j,d − 2Mn +

$∗n
ε1n

+

d∑
j=1

λ̃2(j)ζ2
j,d .

By the same way we get

d∑
j=1

λ̃2(j) ζ2
j,d ≤

(1 + ε1)(b− a)

d

d∑
j=1

λ̃2(j) η2
j,d + (1 + ε−1

1 )
$∗n
n

and, then, for any 0 < ε1 < 1 on the set Γ

‖S̃n − S‖2d ≤ (1 + ε1)Υn(S)− 2Mn + (1 + ε1)Un +
3$∗n
ε1n

,

where Υn(S) is defined in (8.3),

Un =
1

d2

d∑
j=1

λ̃2(j)
(
d(b− a)η2

j,d − ς∗
)

(8.7)

and the variance ς∗ is defined in (4.2). Note that in view of Lemma A.7

Ep,SM
2
n ≤

σ1,∗(b− a)

d

d∑
j=1

θ2
j,d =

σ1,∗(b− a)

d
‖S‖2d ≤

σ1,∗(b− a)2

d
,

where σ1,∗ is given in (2.16). Moreover, using that Ep,SMn = 0, we get

|Ep,SMn 1Γ| = |Ep,SMn 1Γc | ≤ (b− a)

√
σ1,∗Pp,S(Γc)

d
.

Consequently, Proposition 2.2 yields

lim
n→∞

n2k/(2k+1) sup
S∈Θε,L

|Ep,SMn 1Γ| = 0 . (8.8)

Now, the property (3.7), Proposition 8.1 and Lemma A.8 imply the inequality (8.6).
It is clear that Theorem 3.1 and Theorem 8.1 imply Theorem 4.2.

Conclusion

In Conclusion, we focus on the methodological and theoretical investments of this paper in
the statistical treatment of the big data model with dependent observations.

• First of all, it should be emphasized that providing an efficient estimation for dependent
observations autoregressive models is possible only on the basis of the sequential analysis
approach through the transition from the observations (1.2) to the regression scheme
(2.14).
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• In this paper for the first time for the model (1.2), the sharp lower bound (4.3) for the
weighted robust quadratic risk is obtained. It turns out that through the Fisher infor-
mation I(S) defined in Remark 3, this bound can be represented as the nonparametric
version of the Rao-Cramer inequality (4.5). It should also be noted that we cannot use
here the usual methods to obtain the lower bound since the functions (7.1) must be in
the stable class (2.4), i.e. we cannot use Gaussian random variables in the representation
(7.1), as it is usually done.

• To show the efficiency properties (4.4), we generally use the adaptive estimation approach
proposed in the papers of Galtchouk and Pergamenchtchikov for the diffusion processes.
It should be emphasized that in all these papers, the main results are based on the
properties of geometric ergodicity, which cannot be used for the model (1.2). That is
the reason why we develop, for this model, special efficient estimation methods. In
Section 7, to obtain a lower bound for the asymptotic risk, we construct an analytical
tool based on a special version of the van Trees inequality given in Proposition 6.1. In
Section 8 we develop special asymptotic methods to obtain the sharp upper bound for
known regularity parameters k and t of the Sobolev ellipse (4.1). Finally, through the
oracle inequality from [Arkoun et al. (2019)], we obtain the asymptotic efficiency in the
adaptive setting.

A Appendix

A.1 Properties of the prior distribution 7.3

In this section we study properties of the distribution used in (7.2).

Lemma A.1. For any N > 2 there exists a continuously differentiable probability density
ρN(·) on R with the support on the interval [−N , N], i.e. ρN(z) > 0 for −N < z < N and

ρN(z) = 0 for |z| ≥ N, such that for any N > 2 the integral
∫N

−N zρN(z)dz = 0 and, moreover,∫N

−N z2ρN(z)dz → 1 and JN =
∫
R (ρ̇N(z))2/ρN(z) dz → 1 as N→∞.

Proof. First we set V (z) =
(∫ 1

−1
e
− 1

1−t2 dt
)−1

e
− 1

1−z2 1{|z|≤1}. It is clear that this function

is infinitely times continuously differentiable, such that V (z) > 0 for |z| < 1, V (z) = 0 for
|z| ≥ 1 and

∫ 1

−1
V (z)dz = 1. Now for N ≥ 2 we set χN(z) =

∫ 1

−1
1{|z+u|≤N−1} V (u)du =∫

R 1{|t|≤N−1} V (t − z)dt. Using here the properties of the function V we can obtain di-
rectly that χN(z) = χN(−z) for z ∈ R, χN(z) = 1 for |z| ≤ N − 2, χN(z) > 0 for
N− 2 < |z| < N and χN(z) = 0 for |z| ≥ N. Moreover, it is clear that the derivative χ̇N(z) =

−
∫
R 1{|t|≤N−1} V̇ (t − z)dt = −

∫ 1

−1
1{|u+z|≤N−1} V̇ (u)du. Note here that |V̇ (z)| ≤ c∗

√
V (z)

for some c∗ > 0. Now through the Bunyakovsky - Cauchy - Schwartz inequality we get that

χ̇2
N(z) ≤ 2c∗χN(z) for |z| < N. Now we set ρN(z) =

(∫ N
−N ϕ(t)χN(t)dt

)−1
ϕ(z)χN(z),

where ϕ(z) the (0, 1)-Gaussian density, It is clear that ρN(z) is the the continuously dif-
ferentiable probability density with the support [−N , N] such that for any N the integral∫N

−N zρN(z)dz = 0 and
∫ N
−N ϕ(t)χN(t)dt→ 1,

∫N

−N z2ρN(z)dz → 1 for N→∞. Moreover, the
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Fisher information can be represented as

JN =

(∫ N

−N
ϕ(t)χN(t)dt

)−1(∫
R

ϕ̇2(z)

ϕ(z)
χN(z)dz + ∆N

)
,

where, taking into account that χ̇N(z) = 0 for |z| ≤ N− 2,

∆N = 2

∫
|z|≥N−2

ϕ̇(z)χ̇N(z)dz +

∫
|z|≥N−2

ϕ(z)
χ̇2
N(z)

χN(z)
dz .

Therefore, ∆N → 0 as N→∞. Hence Lemma A.1.

Lemma A.2. The term (7.8) is such that limn→∞max1≤j≤d |Ψn,j − 1| = 0.

Proof. First, note that yl = y0

∏l
i=1

Sκ(xi) +
∑l

ι=1

∏l
i=ι+1

Sκ(xi)ξι for l ≥ 1. Therefore,

Ẽ0 y
2
l = y2

0 Ẽ0

∏l
i=1

S2
κ(xi) +

∑l−1
ι=1

Ẽ0

∏l
i=ι+1

S2
κ(xi) + 1 and due to (7.5) we obtain that for

any n ≥ 1 for which δ∗n < 1

sup
l≥1
|Ẽ0 y

2
l − 1| ≤ (δ∗n)2

(
y2

0 + 1
)

1− (δ∗n)2
→ 0 as n→∞ .

Since (b− a)
∑n

l=1
φ2
j (xl) = n, we get Lemma A.2.

Lemma A.3. The term R0,n in (7.7) is such that limn→∞ nbR0,n = 0 for any b > 0 and
0 < ρ < 1.

Proof. First note that taking into account in the definition of term R0,n in (7.7), that

|η∗j | ≤ lnn, we get that R0,n ≤
(
r + ln2 n

∑d
j=1

s2
j

)
µκ(Γc). Therefore, to show this lemma it

suffices to check that limn→∞ nb µκ(Γc) = 0 for any b > 0. To do this note that the definition
of d in (7.6) implies µκ(Γc) ≤ P(ζn > r) and ζn =

∑d
j=1

ajκ
2
j . So, it suffices to show that

lim
n→∞

nbP(ζn > r) = 0 for any b > 0 . (A.1)

Indeed, first note that the definition (7.3) through Lemma A.1 and the property (7.4) imply
directly

lim
n→∞

E ζn = lim
n→∞

d∑
j=1

ajs
2
jE (η∗1)2 = lim

n→∞

d∑
j=1

ajs
2
j = ρr .

Setting then ζ̃n = ζn − E ζn = (b − a)
∑d

j=1
s∗j aj η̃j/n and η̃j = (η∗j )

2 − E(η∗j )
2, we get for

large n that {ζn > r} ⊂
{
ζ̃n > r1

}
for r1 = r(1 − ρ)/2. Now the correlation inequality from

[Galtchouk and Pergamenshchikov (2013)] and the bound |η̃j | ≤ 2 ln2 n imply that for any
p ≥ 2 there exists some constant Cp > 0 for which

E ζ̃pn ≤ Cp
(lnn)2p

np

 d∑
j=1

(s∗j )
2 a2

j

p/2

≤ Cp n
− p

4k+2 (lnn)2p ,

i.e. the expectation E ζ̃pn → 0 as n→∞ and, therefore, nbP(ζ̃n > r1)→ 0 as n→∞ for any
b > 0. This implies (A.1) and hence Lemma A.3.
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A.2 Properties of the trigonometric basis.

First we need the following lemma from [Konev and Pergamenshchikov (2015)].

Lemma A.4. Let f be an absolutely continuous function, f : [a, b]→ R, with ‖ḟ‖ <∞ and g
be a piecewise constant function [a, b]→ R of a form g(x) =

∑d
j=1

cj χ(zj−1,zj ]
(x) where cj are

some constants. Then for any ε > 0, the function ∆ = f −g satisfies the following inequalities

‖∆‖2d ≤ (1 + ε̃)‖∆‖2 + (1 + ε̃−1)
(b− a)2‖ḟ‖2

d2
.

Lemma A.5. For any 1 ≤ j ≤ d the trigonometric Fourier coefficients (θj,d)1≤j≤d for the
functions S from the class Wk,r with k ≥ 1 satisfy, for any ε̃ > 0, the following inequality

θ2
j,d ≤ (1 + ε̃) θ2

j + 4r(1 + ε̃−1)(b− a)2kd−2k.

Proof. First we represent the function S as S(x) =
∑d

l=1
θl φl(x) + ∆d(x) and ∆d(x) =∑

l>d
θl φl(x), i.e. θj,d = (S, φj)d = θj + (∆d, φj)d and, therefore, ∀ε̃ > 0 we get θ2

j,d ≤
(1+ε̃)θ2

j+(1+ε̃−1)‖∆d‖2d. Lemma A.4 with g = 0 implies ‖∆d‖2d ≤ 2‖∆d‖2+2(b−a)2d−2‖∆̇d‖2.

Using here that 2π[l/2] ≥ l for l ≥ 2, we obtain that ‖∆d‖2 =
∑

l>d
θ2
l ≤ r/ad ≤ (b−a)2krd−2k

and
‖∆̇d‖2 = (2π/(b− a))2

∑
l>d

θ2
l [l/2]2 ≤ (b− a)2(k−1)d−2(k−1) . (A.2)

Hence Lemma A.5

Lemma A.6. For any d ≥ 2 and 1 ≤ N ≤ d the coefficients (θj,d)1≤j≤d of functions S from

the classWr,k with k ≥ 1 satisfy, for any ε̃ > 0, the inequality
∑d

j=N
θ2
j,d ≤ (1+ε̃)

∑
j≥N θ2

j +

(1 + ε̃−1)(b− a)2kr d−2N−2(k−1).

Proof. Note that
∑d

j=N
θ2
j,d = minx1,...,xN−1

‖S −
∑N−1

j=1
xjφj‖2d ≤ ‖∆N‖2d and ∆N (t) =∑

j≥N θjφj(t). Lemma A.4 and (A.2), imply Lemma A.6

A.3 Technical lemmas

Lemma A.7. For any non random coefficients (uj,l)1≤j≤d

E

 d∑
j=1

uj,lηj,d

2

≤ σ1,∗

d∑
j=1

u2
j,l ,

where the coefficient σ1,∗ is given in (2.16).

Proof. Using the definition of ηj,d in (3.5) and the bounds (2.16), we get

E

 d∑
j=1

uj,lηj,d

2

=
b− a
d

E

d∑
l=1

σ2
l

 d∑
j=1

uj,lφj(zl)

2

≤ σ1,∗
b− a
d

d∑
l=1

 d∑
j=1

uj,lφj(zl)

2

.

Now, the orthonormality property (3.2) implies this lemma.
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Lemma A.8. For the sequence (8.7) the following limit property holds true

lim
n→∞

n2k/(2k+1) sup
S∈Wk,r

|Ep,S Un1Γ| = 0 .

Proof. First of all, note that, using the definition of sj,d in (3.11), we obtain

Ep,S η
2
j,d = Ep,S sj,d =

1

d

d∑
l=1

Ep,S

1

Hl

+
1

d
Ep,Ssj,d ,

where sj,d =
∑d

l=1
σ2
l φj(xl) and φj(z) = (b − a)φ2

j (z) − 1. Therefore, we can represent the
expectation of Un as

Ep,S Un =
‖λ̃‖2

d2
Ep,SU1,n +

b− a
d2

Ep,SU2,n ,

where ‖λ̃‖2 =
∑d

j=1
λ̃2(j), U1,n = (b−a)

∑d
l=1

H−1
l −ς∗ and U2,n =

∑d
j=1

λ̃2(j)sj,d. Note now

that using Proposition 2.12 and the dominated convergence theorem in the definition (2.6) we
obtain that

lim
n→∞

max
1≤l≤d

sup
S∈Θε,L

sup
p∈P

Ep,S

∣∣∣∣ dHl

− 1 + S2(zl))

∣∣∣∣ = 0 .

Taking into account that for the functions from the class (2.4) their derivatives are uniformly
bounded, we can deduce that

lim
n→∞

sup
S∈Θε,L

∣∣∣∣∣b− ad
d∑
l=1

(1− S2(zl))− ς∗

∣∣∣∣∣ = 0 ,

i.e. limn→∞ supS∈Θε,L
supp∈P |Ep,S U1,n| = 0. Therefore, taking into account that

lim sup
n→∞

n2k/(2k+1) sup
S∈Θε,L

‖λ̃‖2

d2
<∞ ,

we obtain that

limn→∞ n
2k/(2k+1) sup

S∈Θε,L

sup
p∈P
|Ep,S Un| ≤ (b− a)limn→∞U∗2,n , (A.3)

where

U∗2,n =
n2k/(2k+1)

d2
sup

S∈Θε,L

sup
p∈P
|Ep,SU2,n| .

Now, using Lemma A.2 from [Galtchouk and Pergamenshchikov (2009a)] we get

∣∣Ep,SU2,n

∣∣ =

∣∣∣∣∣∣
d∑
l=1

Ep,S σ
2
l

d∑
j=1

λ̃2(j)φj(zl)

∣∣∣∣∣∣
≤ d σ1,∗ (22k+1 + 2k+2 + 1) ≤ 5 d σ1,∗ 22k .
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From the definition of σ1,∗ in (2.16) it follows that lim supn→∞ d σ1,∗ <∞, i.e.

lim sup
n→∞

sup
S∈Θε,L

sup
p∈P

∣∣Ep,SU2,n

∣∣ <∞ .

Therefore, the bound (A.3) implies limn→∞ n
2k/(2k+1) supS∈Θε,L

supp∈P |Ep,S Un| = 0. Us-

ing the inequality (A.4) from [Arkoun et al. (2019)] we get Ep,Sη
4
j,d ≤ 64v∗σ2

1,∗, where the

coefficient v∗ is given in (2.15). From this we obtain, that

Ep,S |Un|1Γc ≤
(b− a)

d

d∑
j=1

Ep,Sη
2
j,d1Γc + ς∗Pp,S(Γc)

≤
8σ1,∗(b− a)

√
v∗

d

√
Pp,S(Γc) + ς∗Pp,S(Γc) .

Thus, Proposition 2.2 yields limn→∞ n2k/(2k+1) supS∈Wk,r
Ep,S |Un|1Γc = 0.
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