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In the density estimation model, we investigate the problem of constructing adaptive honest confidence sets with diameter measured in Wasserstein distance Wp, p ≥ 1, and for densities with unknown regularity measured on a Besov scale. As sampling domains, we focus on the d-dimensional torus T d , in which case 1 ≤ p ≤ 2, and R d , for which p = 1. We identify necessary and sufficient conditions for the existence of adaptive confidence sets with diameters of the order of the regularity-dependent Wp-minimax estimation rate. Interestingly, it appears that the possibility of such adaptation of the diameter depends on the dimension of the underlying space. In low dimensions, d ≤ 4, adaptation to any regularity is possible. In higher dimensions, adaptation is possible if and only if the underlying regularities belong to some interval of width at least d/(d -4). This contrasts with the usual Lp-theory where, independently of the dimension, adaptation occurs only if regularities lie in a small fixed-width window. For configurations allowing these adaptive sets to exist, we explicitly construct confidence regions via the method of risk estimation. These are the first results in a statistical approach to adaptive uncertainty quantification with Wasserstein distances. Our analysis and methods extend to weak losses such as Sobolev norms with negative smoothness indices.

Introduction

The construction of confidence sets is one of the fundamental problems of statistical inference, along with parameter estimation and hypothesis testing. Consider a model {P f : f ∈ F }, indexed by a family of functions F, and observe (some quantity n of) data from the true distribution P f 0 , where f 0 ∈ F. For most applications, having a single point estimate fn of the true parameter f 0 is not enough, and one desires to evaluate its performance in terms of a loss function, that is, to know how far it lies from f 0 . Producing a random set C n ⊂ F from the data containing f 0 with a prescribed high probability 1 -α achieves this aim. In this work, we investigate the existence of adaptive honest confidence sets. Since f 0 is unknown, we must insist that C n possesses the previous property not just for f 0 , but for all f ∈ F: we say that the confidence set C n is honest if, at least for all sufficiently large n,

inf f ∈F P f (f ∈ C n ) ≥ 1 -α.
Furthermore, we desire the diameter of the set C n to shrink in n as quickly as possible; however, typically the precise speed of this shrinkage depends on aspects of the unknown density f 0 such as its regularity, and so we find ourselves in an adaptation problem.

We work in a density estimation model: consider observations X 1 , . . . , X n independent and identically distributed (i.i.d.) from a probability measure P f 0 with probability density f 0 . The sample space 1 of the X i 's will either be the d-dimensional torus T d or R d . We then study procedures in a representative 'two-class adaptation problem', where f 0 belongs to one of two classes F(r) and F(s) (to be precisely defined below), indexed by regularity parameters r < s, such that F(s) ⊂ F(r). An adaptive honest confidence set C n should satisfy the above honest coverage condition, and also have a diameter that shrinks at the minimax estimation rate of whichever class f 0 belongs to (typically the rate is faster for the smaller class F(s)). The construction of such a confidence set involves assessing the accuracy with which one can estimate f 0 , which turns out to be more challenging than point estimation, as qualitative aspects of the parameter need to be identified. This problem has primarily been studied for L p or related distances [START_REF] Bull | Adaptive confidence sets in L 2[END_REF][START_REF] Cai | Adaptive Confidence Balls[END_REF][START_REF] Carpentier | Honest and adaptive confidence sets in L p[END_REF][START_REF] Hoffmann | On adaptive inference and confidence bands[END_REF][START_REF] Juditsky | Nonparametric confidence set estimation[END_REF][START_REF] Low | On nonparametric confidence intervals[END_REF][START_REF] Robins | Adaptive nonparametric confidence sets[END_REF]. In L 2 loss, adaptive honest confidence sets exist only if the regularity parameters of interest lie in some 'small' interval ([3, 6, 21, 35]). More troublesome is the case of pointwise or L ∞ loss, where no such procedures exist ( [START_REF] Hoffmann | On adaptive inference and confidence bands[END_REF][START_REF] Low | On nonparametric confidence intervals[END_REF]). This starkly contrasts the situation of adaptive estimation, where (perhaps at the cost of a logarithmic factor) it is possible to construct estimators which adapt to any regularity parameter ( [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF][START_REF] Lepskii | On a Problem of Adaptive Estimation in Gaussian White Noise[END_REF]). Informally, these negative results come from the fact that, in L 2 loss, a related testing problem is easier (admits a faster convergence rate) than estimation, whereas for L ∞ loss, the testing and estimation problems are equally difficult ( [START_REF] Bull | Adaptive confidence sets in L 2[END_REF][START_REF] Hoffmann | On adaptive inference and confidence bands[END_REF]). This distinction highlights how the existence of adaptive honest confidence sets depends on the geometry induced by the loss function (see [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF]Chapter 8] for an overview of these results).

Arising from the ideas of Optimal Transport [START_REF] Kantorovich | On the translocation of masses[END_REF][START_REF] Monge | Mémoire sur la théorie des déblais et des remblais[END_REF], Wasserstein distances W p , p ≥ 1, between probability measures have recently been studied in a wide array of fields such as optimization, machine learning, and statistics. For p ≥ 1, the p-Wasserstein distance between µ and ν, probability measures on a metric space (X , d), is defined as

W p (ν, µ) := inf π∈Π(ν,µ) X ×X
d(x, y) p dπ(x, y)

1/p
, with the infimum ranging over the set Π (ν, µ) of measures on X × X with given marginals ν and µ.

It quantifies the minimal cost, as measured by the metric d, to morph the distribution µ into ν. For measures P f and P g dominated by a common measure and with densities f and g, this also entails a distance between those densities, with W p (f, g) := W p P f , P g . Not only do these distances possess desirable theoretical properties ( [START_REF] Villani | Optimal transport. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]), as they take into account the geometry of the underlying sample space, but recent numerical developments ( [START_REF] Peyré | Computational Optimal Transport[END_REF]) have led to increased use in practical applications. They therefore now play a prominent role in statistics (see, for example, the review [START_REF] Panaretos | Statistical aspects of Wasserstein distances[END_REF]). The convergence of the empirical distribution in W p -distance is a wellstudied problem (it stretches back to [START_REF] Dudley | The speed of mean Glivenko-Cantelli convergence[END_REF], with definitive results on limit theorems for the R sample space in [START_REF] Del Barrio | Central limit theorems for the Wasserstein distance between the empirical and the true distributions[END_REF]; for state-of-the-art results, see [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF][START_REF] Weed | Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance[END_REF]). In dimensions d ≥ 3, the convergence rate of the empirical distribution (without further structural assumptions) is n -1/d , demonstrating that convergence in W p suffers from the curse of dimensionality. When measures have densities, a result in [START_REF] Weed | Estimation of smooth densities in Wasserstein distance[END_REF] states that, for certain classes of densities, W p compares with Besov norms of smoothness -1, a classical result for the W 1 distance due to the Kantorovich-Rubinstein duality formula. The convergence rates they obtain for regular densities using this comparison result, which lie closer to the parametric rate n -1/2 , highlight the importance of regularity of the signal in high-dimensional settings: to some extent, the curse of dimensionality can be mitigated by smoothness.

In addition, these rates are faster than the standard s-smooth nonparametric convergence rate n -s 2s+d for L p loss, 1 ≤ p < ∞, reflecting the fact that Wasserstein distances are weaker than L p distances. In this paper, we obtain similar quantitative improvements for testing separation rates of nonparametric statistical hypotheses. From this, on the bounded sample space T d we deduce new qualitative phenomena regarding the existence and non-existence of adaptive honest confidence sets when using the loss functions W p , 1 ≤ p ≤ 2. Surprisingly, in dimensions d ≤ 4 we construct confidence sets that can adapt to any set of regularities. This contrasts significantly with the fundamental limitations of adaptive confidence sets in L p . In higher dimensions d > 4, adaptation is still possible for regularities belonging to a certain interval, which is wider than in the L p case. The reason for this phenomenon is that while both the testing and estimation rates are faster than for L p , the testing rate accelerates more, leaving 'more space' for adaptation to occur than in the analogous problem for L p loss. As for densities on an unbounded sample space such as R d , the same phenomenon occurs, though we currently only have results for the W 1 distance.

From the general theory of confidence sets, it is known that such impossibility results may be circumvented if one is willing to remove certain 'troublesome' portions of the parameter space ([18, Proposition 8. 3.7]). Recent works have focused on describing maximal sets of densities for which adaptation is possible, by introducing further structural constraints on the model. In [START_REF] Bull | Adaptive confidence sets in L 2[END_REF], an L 2 -adaptative confidence set is shown to exist if one discards all densities within some positive radius of the smoother subclass; this radius converges to 0 as n → ∞. Self-similarity conditions, which roughly speaking describe functions that are as regular at small scales as at larger scales, have been employed in the regression setting in [START_REF] Nickl | A Sharp Adaptive Confidence Ball for Self-Similar Functions[END_REF][START_REF] Picard | Adaptive confidence interval for pointwise curve estimation[END_REF], as well as in density estimation [START_REF] Bull | Honest adaptive confidence bands and self-similar functions[END_REF][START_REF] Chernozhukov | Anti-concentration and honest, adaptive confidence bands[END_REF][START_REF] Giné | Confidence bands in density estimation[END_REF]; see also [START_REF] Armstrong | Adaptation bounds for confidence bands under self-similarity[END_REF]. In the study of adaptive Bayesian credible sets, self-similarity conditions were deployed in [START_REF] Ray | Adaptive Bernstein-von Mises theorems in Gaussian white noise[END_REF], and slightly more general polished tail assumptions were used in [START_REF] Rousseau | Asymptotic frequentist coverage properties of Bayesian credible sets for sieve priors[END_REF][START_REF] Szabó | Frequentist coverage of adaptive nonparametric Bayesian credible sets[END_REF]. We refer the interested reader to the review [START_REF] Mcdonald | A review of uncertainty quantification for density estimation[END_REF] for a more complete picture of the literature on uncertainty quantification in density estimation. In this paper, we do not pursue such a programme for the Wasserstein distances, instead leaving this problem for future work.

The paper is organized as follows. Section 2 formalizes our problem on the potential existence of adaptive honest confidence sets, and states our main results. The construction of such sets, whenever possible, and non-existence results are presented in Section 3 for the bounded sample space T d and Section 4 for the unbounded sample space R d . Proofs are deferred to Appendices B and C.

Main Results

Setting and Definitions

Initially, we assume that f 0 is a density on the d-dimensional torus, T d , which may be identified with (0, 1] d . Our results also apply to the case of the unit cube [0, 1] d (and hence any bounded rectangular subset of R d ), which is the focus of [START_REF] Weed | Estimation of smooth densities in Wasserstein distance[END_REF]; see Section A.3 below. For our loss function, we take the distance W 2 ; as described in Remark 2, this distance dominates W p for 1 ≤ p < 2, in particular the important case of W 1 . Later, we consider the situation where f 0 is a density on the whole of R d ; while a study for W p , p > 1 is beyond the scope of the present work, we obtain some definitive results for the loss function W 1 in Section 4.

Parameter Spaces

Here we define the classes of probability densities on T d we consider; definitions for R d are similar but deferred to Section 4. Let φ ≡ 1, ψ lk : l ≥ 0, 0 ≤ k < 2 ld be an S-regular periodised Daubechies wavelet basis of L 2 (T d ); see Appendix A for further details. We denote by f, g = T d f g the usual inner product on L 2 . For any f ∈ L p (T d ), 1 ≤ p < ∞, the wavelet expansion

f = f, 1 + l≥0 2 ld -1 k=0 f, ψ lk ψ lk (1) 
converges in L p , and if f is continuous then the expansion converges uniformly on T d . We write K j (f ) for the projection of f onto the first j resolution levels, i.e.

K j (f ) = f, 1 + l<j 2 ld -1 k=0 f, ψ lk ψ lk . (2) 
To define the parameter classes, we use the scale of Besov spaces, B s pq , 1 ≤ p, q ≤ ∞, s ≥ 0 as defined in Appendix A. The index s should be interpreted as a smoothness or regularity parameter. Using the definition of the Besov norm [START_REF] Peyré | Computational Optimal Transport[END_REF] and the embedding q ⊂ ∞ , for f ∈ B s pq (T d ) we have that

f, ψ l• p ≤ f B s pq 2 -l s+ d 2 -d p . (3) 
Thus f ∈ B s pq if its wavelet coefficients decay sufficiently fast as l grows, as measured by s. The use of subsets of Besov spaces as parameter spaces in nonparametric statistics is wellestablished, and the scale contains several of the regularity classes usually considered in such settings: for example, the Sobolev spaces (H s = B s 22 ) and the Hölder spaces (for s ∈ N, C s = B s ∞∞ , and for s ∈ N, C s B s ∞∞ ). See [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF]Section 4.3] for further discussion on this subject. In standard loss functions such as L 2 or L ∞ , it is typically assumed that f lies in some norm-ball in B s pq , for some choice of s, p, q. Here we slightly restrict the function class, insisting that the densities under consideration are bounded and bounded away from 0. In particular, the lower bound condition facilitates the faster minimax estimation rates of Proposition 2; it is shown in [START_REF] Weed | Estimation of smooth densities in Wasserstein distance[END_REF] that removing this condition results in slower rates for most parameter configurations.

Definition 1. Let 1 ≤ p, q ≤ ∞, s ≥ 0, B ≥ 1, M ≥ 1 ≥ m > 0. Define the function class F s,p,q (B; m, M ) = f ∈ B s pq : T d f = 1, f B s pq ≤ B, m ≤ f ≤ M a.e. ; (4) 
Note that we always have 1 ∈ F s,p,q (B; m, M ), and so the class is non-empty. Henceforth we fix p = 2 and consider q, B, m, M to be given. Define

F(s) := F s,2,q (B; m, M ).
For large s and smaller values of B ≥ 1, the condition f ≤ M is superfluous. However, the imposition of the uniform lower bound f ≥ m > 0 means that F(s) is a strict subset of the more typical parameter space {f ∈ B s 2q :

f ≥ 0, f = 1, f B s 2q ≤ B}.
Also, it is clear from the definition (32) that the continuous embedding B s pq ⊂ B r pq holds with operator norm 1, so F(s) ⊂ F(r) for r ≤ s.

Notation

For a probability density f , let P f and E f denote respectively the probability and expectation when 

Description of the Problem

Suppose initially that f ∈ F(r) for some given r ≥ 0. We wish to construct a confidence set C n for the unknown density f ; informally, we would like C n to contain f with (some chosen) high probability. Specifically, given α ∈ (0, 1), we require any confidence set

C n = C n (α, X 1 , . . . , X n ) to have honest coverage at level 1 -α over the class F(s), that is, there exists n 0 ∈ N such that for all n ≥ n 0 , inf f ∈F (r) P f (f ∈ C n ) ≥ 1 -α. (5) 
The 'honesty' refers to the uniformity over F(r). We remark that in the minimax paradigm, one must necessarily insist on honesty, since the true density f 0 is unknown: 'dishonest' adaptive confidence sets exist (see [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF]Corollary 8.3.10]), but the index n 0 from which coverage is valid depends on the unknown f , so such procedures produce questionable guarantees in practice.

It is clear that the smaller the set C n , the more informative it is; otherwise one could just take C n to be the whole parameter space F(r). Thus we desire the W 2 -diameter of our set C n to shrink as quickly as possible in n. Suppose C n satisfies the honest coverage condition [START_REF] Cai | Accuracy assessment for high-dimensional linear regression[END_REF] for some α ∈ (0, 1), and let r n be a positive sequence such that for some β > α and every n ≥ n 0 , we have

inf fn sup f ∈F (r) P f W 2 ( fn , f ) ≥ r n ≥ β. (6) 
Here, the infimum is taken over all estimators (i.e. measurable functions) fn = fn (X 1 , . . . , X n ). Then by Lemma 2 in [START_REF] Robins | Adaptive nonparametric confidence sets[END_REF], the W 2 -diameter of C n satisfies, for n ≥ n 0 , sup f ∈F (r)

P f |C n | W 2 ≥ r n ≥ β -α;
in particular, its diameter cannot shrink faster than r n with high probability. We define the minimax estimation rate (in probability) over F(s), denoted r * n (s), to be the 'slowest' sequence (i.e. the largest such sequence up to a multiplicative prefactor) r n such that (6) is satisfied for some β > 0 and some n 0 ≥ 1. Usually this rate depends on the smoothness parameter s.

Remark 1. The term 'minimax estimation rate' is often reserved for any sequence rn such that

inf fn sup f ∈F (r) E f W 2 ( fn , f ) rn .
By Markov's inequality, we have that r * n rn . In fact, as shown by Proposition 2 below, in this problem the rates r * n and rn coincide (possibly up to a logarithmic factor when d = 2).

In general, it is unrealistic to assume that the regularity r is known. Thus we find ourselves in an adaptation problem, where we wish to construct procedures that do not depend on the unknown smoothness r, but which result in (near-)optimal performance for a range of values of r. In order to highlight the main ideas, let us consider the two class adaptation problem, where for some fixed s > r ≥ 0 we consider the model F(r), but also seek optimal performance over the smoother subclass F(s) ⊂ F(r). We discuss after Theorem 4 how one might construct confidence sets adapting to a continuous window of smoothnesses [r, R] or even all r ≥ 0 simultaneously. Definition 2. We say that C n = C n (α, α , X 1 , . . . , X n ) is a near-optimal adaptive W 2 confidence set over F(s) ∪ F(r), s > r, if it satisfies the following properties, for given α, α ∈ (0, 1):

(i) Honest Coverage: for all n sufficiently large,

inf f ∈F (r) P f (f ∈ C n ) ≥ 1 -α; (7) 
(ii) Diameter Shrinkage: there exists a constant

K = K(α ) > 0 such that sup f ∈F (r) P f (|C n | W 2 > KR n (r)) ≤ α (8) 
and

sup f ∈F (s) P f (|C n | W 2 > KR n (s)) ≤ α , (9) 
for n large enough, where the rate sequences R n (r) and R n (s) satisfy

R n (r) ≤ a n r * n (r) and R n (s) ≤ a n r * n (s),
for a n some power of log n, and r * n (r) and r * n (s) the minimax rates of estimation over F(r) and F(s) respectively (these are given in Proposition 2 for the case of T d and Theorem 6 for the case of R d ).

Typically, for optimal adaptive confidence sets one insists that the rates R n (r), R n (s) in ( 8) and [START_REF] Castillo | On the Bernstein-von Mises Phenomenon for Nonparametric Bayes Procedures[END_REF] are equal up to constants to the minimax estimation rates r * n (r), r * n (s). Our definition of 'near-optimal' allows for R n (t) to equal r * n (t), t = r, s, up to a logarithmic factor in n, and is thus a slight relaxation. Admitting this relaxation does not alter the (existence and) non-existence results of [START_REF] Bull | Adaptive confidence sets in L 2[END_REF][START_REF] Carpentier | Honest and adaptive confidence sets in L p[END_REF][START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF][START_REF] Hoffmann | On adaptive inference and confidence bands[END_REF], since these results are due to a polynomial discrepancy between minimax estimation and testing rates; see Section 3.3 below.

We only consider the problem of adaptation in the smoothness parameter and do not address the question of adaptation to other parameters in the definition of the class F(s), such as the Besov norm bound B. See Remark 5 below for a discussion of this issue.

Adaptive W 2 Confidence Sets on T d

Our first theorem exhaustively classifies the parameter configurations for which adaptive honest confidence sets exist for W 2 loss; in the cases where such confidence sets do exist, an explicit construction is given in Theorem 4 below.

Theorem 1. Fix 1 ≤ q ≤ ∞, B ≥ 1, M ≥ 1 ≥ m > 0.
Consider the two class adaptation problem for confidence sets as defined by ( 7)-( 9).

(i) Let d ≤ 4 and s > r ≥ 0. Then for any α, α > 0, there exists a near-optimal adaptive W 2 confidence set. (ii) Let d > 4 and 0 ≤ r < s ≤ 2d-4 d-4 r + d d-4 . Then for any α, α > 0, there exists a near-optimal adaptive W 2 confidence set.

(iii) Let d > 4 and 0 ≤ r < s with s > 2d-4 d-4 r + d d-4 . Then for any α, α > 0 such that 2α + α < 1, no near-optimal adaptive W 2 confidence set exists.

Remark 2. We have focussed on the particular choice of W 2 ; by Jensen's inequality, this distance dominates W p for 1 ≤ p < 2. Since the minimax estimation rates in these problems are independent of p (c.f. Proposition 2), this means that the above existence results hold for W p , 1 ≤ p ≤ 2, in particular for the important case of W 1 . Moreover, in the case of W 1 , one may remove the lower bound condition in the definition of F(s); see Remark 3 below.

Theorem 1 says that in low dimensions, d ≤ 4, there exists a confidence set which adapts optimally in W 2 -diameter to any two smoothnesses s > r ≥ 0. As the construction does not depend on s, in fact adaptation occurs simultaneously for all s ≥ r (strictly speaking, r ≤ s ≤ S where S is the regularity of the wavelet basis used), where r is a chosen 'baseline' smoothness. Contrast this to the case of L p loss, 2 ≤ p ≤ ∞: for p < ∞, in any dimension, there exists a (near-)optimal adaptive confidence set if and only if s ≤ p p-1 r [START_REF] Bull | Adaptive confidence sets in L 2[END_REF][START_REF] Carpentier | Honest and adaptive confidence sets in L p[END_REF]; for L ∞ loss, adaptive confidence sets do not exist for any choice of s > r ≥ 0 [START_REF] Hoffmann | On adaptive inference and confidence bands[END_REF][START_REF] Low | On nonparametric confidence intervals[END_REF]. See [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF]Section 8.3] for a complete account of the L 2 and L ∞ theory.

In higher dimensions d > 4, Theorem 1 (together with the same confidence set as constructed in the case d ≤ 4) gives a continuous 'window' of smoothnesses for which adaptation occurs simultaneously, in a similar vein to the case of L p , p < ∞. However, for the W 2 loss this window is significantly wider; moreover, regardless of how small we choose the minimal smoothness r ≥ 0, this window has width at least d d-4 , whereas for L p , 2 ≤ p < ∞, the window is of width r p-1 ≤ r, which will be very narrow for small values of r.

These results are related to the fact that W 2 is a weaker loss function than L p : specifically, Proposition 1 and [START_REF] Daubechies | Ten lectures on wavelets[END_REF] show that on the class F(s), W 2 is comparable to a Sobolev (or Besov) norm of smoothness -1. In very low dimensions d = 1, 2, the estimation rate is independent of the smoothness parameter s, meaning that any confidence set satisfying [START_REF] Castillo | Nonparametric Bernstein-von Mises Theorems in Gaussian White Noise[END_REF] automatically satisfies the faster shrinkage condition (9) (with a possibly enlarged constant K). In low dimensions d = 3, 4, one finds a very fast minimax testing separation rate, which is at least as fast as the parametric rate of estimation n -1/2 (this is implied by the above existence results and Lemma 2 below). Even in higher dimensions, there is a substantial acceleration in the testing separation rate as compared to L 2 loss. Meanwhile, although there is also some acceleration in the estimation rates, the effect is not so pronounced. This explains the wider window of adaptation seen in Theorem 1 for W 2 loss, as compared to L p loss: the greater discrepancy between testing and estimation rates gives more room for adaptation to take place.

Theorem 1 is proved in Section 3; we outline the arguments now. For the existence result, we use the method of constructing confidence sets via risk estimation as in [START_REF] Cai | Adaptive Confidence Balls[END_REF][START_REF] Juditsky | Nonparametric confidence set estimation[END_REF][START_REF] Robins | Adaptive nonparametric confidence sets[END_REF]; see [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF]Section 6.4] for a concise summary of these ideas. These methods require the loss function under consideration to be a Hilbert space norm. Accordingly, we upper bound W 2 by a suitable Sobolev-type norm for which one can perform risk estimation with fast convergence rates; moreover, the estimation rates for this dominating norm differ from those for W 2 by only a logarithmic factor. In particular, the notions of near-optimal adaptive confidence sets for these two loss functions are equivalent. The non-existence result is obtained using a testing argument as in [START_REF] Bull | Adaptive confidence sets in L 2[END_REF], [START_REF] Hoffmann | On adaptive inference and confidence bands[END_REF] and others, together with a lower bound for the minimax separation rate in a related testing problem. Moreover, the precise characterisation of the separation rate identifies a certain small subset of F(r) consisting of 'problematic' densities which, once removed, permit the existence of confidence sets (with honesty relative to a smaller set of densities), as in the previous two references. We discuss the existence of these more general confidence sets after Theorem 5. These theoretical results and constructions extends more generally to the study of adaptive honest confidence sets with negative Sobolev norm distances, and we discuss them in Section 2.5. For p > 2, [START_REF] Carpentier | Honest and adaptive confidence sets in L p[END_REF] develops a construction of adaptive L p -confidence sets whose radii are selected via testing. Though an extension of these ideas to W p -confidence sets should be possible, we do not pursue it here as the methodology greatly differs from the one used in the present paper.

Adaptive W 1 Confidence Sets on R d

The case of densities on R d is also of great interest; there are several situations in which it is unrealistic to assume compact support of the density f . Accordingly, let X 1 , . . . , X n be an i.i.d. sample drawn from some unknown density f on R d . We take the Wasserstein-1 distance W 1 to be our loss function. We generalise our methods from the case of T d to produce adaptive confidence sets for f which adapt over similar function classes G(s), defined in ( 21) below and involving a constant L which uniformly bounds the exponential moments of the densities in G(s). The discussion following Theorem 1 is relevant in this context as well: in particular, since the confidence sets constructed in cases (i) and (ii) do not depend on s, adaptation in fact takes place for the full range of possible values of s (i.e. s ≥ r when d ≤ 4 and s in some given window when d > 4).

Theorem 2. Fix 1 ≤ q ≤ ∞, B ≥ 1, M ≥ 1 ≥ m > 0.
Consider the two class adaption problem for confidence sets defined by ( 7)-( 9), with function classes F replaced by G and W 2 in place of W 1 .

(i) Let d ≤ 4 and s > r ≥ 0. Then for any α, α > 0, there exists a near-optimal adaptive

W 1 confi- dence set. (ii) Let d > 4 and 0 ≤ r < s ≤ 2d-4 d-4 r + d d-4
. Then for any α, α > 0, there exists a near-optimal adaptive W 1 confidence set. (iii) Let d > 4, L be large enough and 0 ≤ r < s with s > 2d-4 d-4 r + d d-4 . Then for any α, α > 0 such that 2α + α < 1, no near-optimal adaptive W 1 confidence set exists.

The bound L on exponential moments in ( 21) is a technical condition which allows us to construct adaptive estimators and confidence sets via the method of risk minimization (see Section 4). We are naturally interested in the existence of confidence sets for large L, i.e. on larger classes of densities. Moreover, small values of L may lead to empty classes (see the discussion after Definition 4 below) for which the theory of confidence sets is superfluous.

Extension to negative Sobolev norm distances

To better understand the phenomena in Theorems 1 and 2, it is elucidating to consider negative order Sobolev norm loss, H -t = B -t 22 , t > 0 (see Appendix A for definitions), since the W 2 distance is dominated by such a norm (see (12) below). One finds that the minimax estimation rate for t ≥ d/2 is (up to a log factor) n -1/2 , so no meaningful adaptation is required and one constructs a confidence set which 'adapts' over all smoothnesses as in Proposition 3 below. When t < d/2, computations analogous to those in Section 3 show that the gap between testing and estimation rates are wider for larger t, enabling adaptation over a larger window of regularities (see Remark 8 below). Here, one finds a continuous transition as t increases from 0 (which is the L 2 case) to d/2, at which point confidence sets can adapt to any two smoothnesses. However, the specific geometry of the parameter space induced by the loss function is crucial, rather than how weak the loss function is per se: if instead we consider B -t ∞∞ loss, when t < d/2 the minimax estimation and testing rates can be shown to coincide; meanwhile, the estimation rate is independent of the smoothness parameter when t ≥ d/2. So in the case of B -t ∞∞ loss, when t < d/2 no adaptive confidence sets exist for any two smoothnesses by Lemma 2 below, but for t ≥ d/2 they trivially exist.

Whenever they exist, the construction of confidence sets in Section 3 below extends easily to the case of negative order Sobolev norms H -t , t > 0, and other Besov norms using norm embeddings as in [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF]Section 4.3]; see Remark 8 below.

Proof of Theorem 1 3.1. A Hilbert Norm Upper Bound for W 2

We wish to construct confidence sets by performing risk estimation. The inner product structure of Hilbert space norms makes them particularly amenable to risk estimation, and so we seek some Hilbert norm which upper bounds the W 2 distance.

For this, we introduce the logarithmic Sobolev norm ([18, Section 4.4]; see [START_REF] Castillo | Nonparametric Bernstein-von Mises Theorems in Gaussian White Noise[END_REF], [START_REF] Castillo | On the Bernstein-von Mises Phenomenon for Nonparametric Bayes Procedures[END_REF] for another statistical application of such norms).

Definition 3. Define the H -1,δ norm of f ∈ L 2 (T d ) as f H -1,δ = | f, 1 | +   l≥0 2 -2l max(l, 1) 2δ f, ψ l• 2 2   1/2 .
Note the similarity to the definition of the B -1 22 = H -1 norm given by ( 32); indeed, when δ = 0 the two norms coincide with the Sobolev norm of regularity -1. We refer to this as a 'logarithmic' Sobolev space because the parameter δ measures the smoothness of f on a logarithmic scale.

We require the following comparison inequality from [START_REF] Weed | Estimation of smooth densities in Wasserstein distance[END_REF].

Proposition 1 (Theorem 3, [START_REF] Weed | Estimation of smooth densities in Wasserstein distance[END_REF]). Let 1 ≤ p < ∞. Let f, g be two densities in L p (T d ), and assume that for almost every x ∈ T d , M ≥ max(f (x), g(x)) ≥ m > 0, for real numbers M and m. Then

M -1/p f -g B -1 p∞ W p (f, g) m -1/p f -g B -1 p1 , (10) 
where 1 p + 1 p = 1, and the constants depend only on d, p and the wavelet basis. Moreover, when p = 1, one may choose m = 0 (with the convention 0 0 = 1). This result is an extension of the celebrated Kantorovich-Rubinstein duality formula, which states that for two probability measures µ, ν on T d ,

W 1 (µ, ν) = sup h∈Lip 1 (T d ) h d(µ -ν), (11) 
where the supremum is taken over all functions h : T d → R with Lipschitz constant bounded by 1. We may relate this to (10) using the sequence of norm-continuous embeddings ([18, Section 4.3])

B -1 11 ⊂ B 1 ∞∞ * ⊂ BL(T d ) * ⊂ B 1 ∞1 * ⊂ B -1 1∞ ,
where BL(T d ) is the space of bounded Lipschitz functions on T d (note that any Lipschitz function on T d is bounded, so BL(T d ) and Lip 1 (T d ) coincide). However, in order to generalise this to W p , p > 1, one must impose that the probability measures have densities which are bounded and bounded away from zero; indeed, for densities not bounded below, no norm provides a similar comparison to W p ([41, Theorem 7]), and convergence rates are slower than those in Proposition 2. Thus the restriction from the usual choices of Besov norm-balls to the classes F(s), s ≥ 0 is necessary. A simple application of the Cauchy-Schwarz inequality confirms that H -1,δ ⊂ B -1 21 as soon as δ > 1/2. Thus in conjunction with the upper bound in Proposition 1, we have that, for r ≥ 0, f ∈ F(r) and fn any estimator of f ,

W 2 (f, fn ) f -fn B -1 21 f -fn H -1,δ , (12) 
where the first constant depends on the parameters of the class F(r), but the second constant depends only on the wavelet basis and d.

Remark 3. When using W 1 loss, one may consider the class F(s) with the choice m = 0, i.e. densities are not required to be bounded away from zero. Then the H -1,δ norm still provides an upper bound for W 1 for densities in F(s) due to the upper bound in [START_REF] Chernozhukov | Anti-concentration and honest, adaptive confidence bands[END_REF] and the sequence of continuous embeddings

H -1,δ ⊂ B -1 21 ⊂ B -1 11
, where the second embedding follows from Jensen's inequality (with operator norm 1).

For the remainder of this section, we work in H -1,δ risk; as soon as δ > 1/2, this provides a Hilbert norm upper bound for the W 2 risk. In particular, any coverage guarantee for a H -1,δ ball is automatically inherited by the W 2 ball with the same centre and radius scaled by the embedding constant from [START_REF] Daubechies | Ten lectures on wavelets[END_REF]. Of course, by constructing confidence sets for a stronger loss function, we may not be able to attain near-optimal diameter shrinkage, but we shall see that this is not the case.

Construction of Confidence Sets

We first give the minimax estimation rates for the problem under consideration. These are important for two reasons: firstly, they provide the benchmark for the 'size' of an optimal confidence set. Moreover, our confidence sets are centred at a suitable estimator of f , which must perform well for the resulting confidence set to also have good performance. In the density estimation problem, the estimation rates for W 2 loss are as follows:

Proposition 2. Let s ≥ 0 and let r * n (s) denote the minimax rate of estimation over F(s). Then

r * n (s)      n -1/2 , d = 1, n -1/2 log n, d = 2, n -s+1 2s+d , d ≥ 3,
where the constant depends on the parameters of the class F(s) and the wavelet basis. Moreover, for any s ≥ 0,

r * n (s) n -1/2 , d = 1, 2 n
The upper bounds follow from Theorem 1 in [START_REF] Weed | Estimation of smooth densities in Wasserstein distance[END_REF] and Remark 1. The lower bounds are proved as in Theorem 6.3.9 in [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF], where one ensures the existence of a suitable W 2 -separated set using the lower bound in Proposition 1. See also Theorem 2 in [START_REF] Weed | Estimation of smooth densities in Wasserstein distance[END_REF].

We centre our confidence sets at an estimator fn of f which has near-optimal convergence over the classes F(s) and F(r). The theory of adaptive estimation is relatively complete, and in the vast majority of cases it is possible to construct adaptive estimators which converge at the minimax estimation rate (perhaps up to a logarithmic factor) over a wide range of smoothnesses -we mention only the classical references [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF] and [START_REF] Lepskii | On a Problem of Adaptive Estimation in Gaussian White Noise[END_REF].

The choice of Wasserstein loss adds a minor complication to the usual case of 'norm-type' loss functions. The Wasserstein distance W p (f, fn ) is only well-defined if fn is also a density, and thus we ought to insist that any estimator we define is indeed a density almost surely. To achieve this, given any wavelet-based estimator of the form

fn = f-1 + l≥0 2 ld -1 k=0 flk ψ lk
where flk are the wavelet coefficients of the estimator, we insist that f-1 = 1. This ensures that

T d fn = 1.
The problem of non-negativity is more subtle. In [START_REF] Weed | Estimation of smooth densities in Wasserstein distance[END_REF], it was addressed by projecting fn onto the class of densities F(r) with respect to the B -1 p1 norm, where r is the smallest regularity to which we want to adapt. However, this projection step makes the estimator essentially intractable. Instead, we use the well-known L ∞ consistency of the adaptive estimators considered below (c.f. [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF], for example) together with the fact that the densities in F(r) are uniformly bounded away from 0 to conclude that for sufficiently large n, with high probability fn is in fact a probability density. Whenever fn fails to be non-negative, we simply replace it with an arbitrary choice of density (e.g. uniform); as n → ∞, this event occurs with vanishing probability. Theorem 3. Let d ≥ 2. Then there exists an estimator fn of f such that for all n ≥ n 0 (B) and all s ≥ 0,

sup f ∈F (s) E f f -fn 2 H -1,δ (log n) 2δ n log n - 2(s+1) 2s+d
, where the constant depends on B, d and the wavelet basis.

The definition of fn and proof of Theorem 3 can be found in Appendix B, and follows from the classical ideas of [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF].

Next, we introduce a U -statistic to perform risk estimation. Recall that given any estimator fn of f such that fn , 1 = 1, the H -1,δ loss can be expressed as

f -fn 2 H -1,δ = l≥0 2 -2l (l ∨ 1) 2δ 2 ld -1 k=0 f -fn , ψ lk 2 .
To estimate this loss, we use the approach of sample splitting. Suppose we have a sample of size 2n which we divide into two subsamples: S 1 = (X 1 , . . . , X n ), S 2 = (X n+1 , . . . , X 2n ). Denote expectation with respect to sample i by E (i) ; we denote variances and probabilities accordingly. We compute our estimator fn = fn (X 1 , . . . , X n ) based on S 1 and, for j ≥ 0, define the U -statistic based on the sample S 2 as

U n,j ( fn ) = 2 n(n -1) i<i ,i,i ∈S 2 l<j 2 -2l (l ∨1) 2δ 2 ld -1 k=0 ψ lk (X i ) -ψ lk , fn ψ lk (X i ) -ψ lk , fn .
(13) Since the sample is i.i.d., we see that

E (2) f U n,j ( fn ) = l<j 2 -2l (l ∨ 1) 2δ 2 ld -1 k=0 ψ lk , f -fn 2 = K j (f -fn ) 2 H -1,δ .
Thus U n,j ( fn ) is an unbiased estimator of the j th resolution level approximation of the loss ffn H -1,δ . The key idea behind the U -statistic is that the removal of the diagonal in the outermost sum in ( 13) eliminates the highest variance terms. Thus by averaging over O(n 2 ) terms with small variance, we expect the U -statistic to have very small variance (as in Theorem 6.4.6 of [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF]). This is confirmed by the next lemma.

Lemma 1. Assume f ∈ L ∞ (T d
) is a probability density, and fn is an estimator for f based on the subsample S 1 . Then

Var (2) (U n,j ( fn )) ≤ 4 f ∞ n max l≥-1 4 -l (1 ∨ l) 2δ K j (f -fn ) 2 H -1,δ + 2 f 2 ∞ n(n -1) l≤j-1 2 l(d-4) (l ∨ 1) 4δ =: κ 2 n,j,δ (f ). ( 14 
)
This result is analogous to Theorem 4.1 in [START_REF] Robins | Adaptive nonparametric confidence sets[END_REF]; for completeness, we give a proof in Appendix B.

With the adaptive estimator fn and the U -statistic U n,j ( fn ) in hand, we are now ready to give the construction of optimal confidence sets for the two-class adaptation problem.

We first note that for d = 1, 2, the minimax rates of estimation from Proposition 2 do not depend on the smoothness parameter s; in particular, the two diameter shrinkage conditions (8) and ( 9) become a single condition. Thus in these dimensions, defining an adaptive confidence set is very easy; indeed, there is no meaningful adaptation which needs to take place.

When d = 1, the empirical measure is a minimax optimal estimator of the sampling measure (see, for instance, [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF] or [START_REF] Weed | Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance[END_REF]). When d = 2, we centre at the adaptive estimator from Theorem 3 in place of the empirical measure P n , as P n is no longer minimax optimal, and standard kernel or wavelet projection estimators require choices of tuning parameters depending on the smoothness parameter to attain optimal rates. Proposition 3.

(i) Let d = 1. Consider the two-class adaptation problem over F(s) ∪ F(r) where s > r ≥ 0, q ∈ [1, ∞], B ≥ 1, M ≥ 1 ≥ m > 0 are all fixed. Then given any α ∈ (0, 1), the confidence set based on a sample X 1 , . . . , X n defined by

C n = g ∈ F(r) : W 2 (P g , P n ) ≤ Dα -1/2 n -1/2
is an optimal adaptive W 2 confidence set, where P n = n -1 n i=1 δ X i is the n-sample empirical measure and the constant D depends on B, m and the wavelet basis.

(ii) Let d = 2. Consider the two-class adaptation problem over F(s) ∪ F(r) where s > r ≥ 0, q ∈ [1, ∞], B ≥ 1, M ≥ 1 ≥ m > 0 are all fixed. Then given any α ∈ (0, 1), the confidence set based on a sample X 1 , . . . , X n defined by

C n = g ∈ F(r) : W 2 (g, fn ) ≤ Dα -1/2 n -1/2 (log n) 2+δ
is a near-optimal adaptive W 2 confidence set, where fn is the adaptive estimator from Theorem 3 and the constant D depends on B, m and the wavelet basis.

The diameter shrinkage conditions are met trivially, while honest coverage follows from Chebyshev's inequality in a standard fashion.

When d ≥ 3, the minimax rates depend on the smoothness parameter and so the diameter shrinkage condition differs between F(r) and F(s), r = s. In particular, this precludes any confidence set C n with deterministic radius, as used above. Instead, we centre at the adaptive estimator fn from Theorem 3, and use the estimate of its loss provided by the U -statistic U j,n ( fn ) as defined in [START_REF] Del Barrio | Central limit theorems for the Wasserstein distance between the empirical and the true distributions[END_REF] to determine the radius. We write U j := U j,n ( fn ) in the sequel. 

Theorem 4. Let d ≥ 3. Fix B ≥ 1, M ≥ 1 ≥ m > 0, 1 ≤ q ≤ ∞,
C n = g ∈ F(r) : g -f T n H -1,δ ≤ z α κ n,jn,δ (g) + U jn + G(j n ) (15) 
where f T n is computed on S 1 , U jn is computed on S 2 and:

• κ 2 n,j,δ (g) :=

4 g ∞ n K j (g -f T n ) 2 H -1,δ + 2 g 2 ∞ n(n-1) l≤j-1 2 l(d-4) (l ∨ 1) 4δ ; • j n is such that 2 jn n log n 1 2r+d/2 ; • G(j n ) = j 2δ n 2 -2jn(r+1) log n; • z α = (α/2) -1/2 .
Then for all n ≥ n 0 (B), C n satisfies [START_REF] Carpentier | Honest and adaptive confidence sets in L p[END_REF], as well as ( 8) and ( 9) for a suitable constant K > 0 depending on r, s, α, α and the parameters of the class F(r) with the rates

R n (r) = (log n) δ+ r+1 2r+d n -r+1 2r+d , R n (s) = (log n) δ+ s+1 2s+d n -s+1 2s+d .
In particular, C n is a near-optimal adaptive W 2 confidence set over F(s) ∪ F(r).

Remark 4 (Adaptation over ranges of classes). Note that the construction of C n is completely independent of s, and fn adapts simultaneously over all s ≥ 0. So when d ≤ 4, C n adapts simultaneously over all s ≥ r, and when d > 4, C n adapts simultaneously over the full window of admissible values of s.

Remark 5 (Adaptation to other parameters). We note that the construction of the confidence set in Theorem 4 does not depend on B or m, and so in fact this particular confidence set is also adaptive over B ≥ 1 and m > 0, in the sense that any dependence of the minimax rates r * n (r), r * n (s) on B or m are eventually accounted for by the logarithmic term in R n (r), R n (s). (Note however that the constants in our theoretical guarantees explode as B → ∞ or m → 0.) However, the construction of C n does depend on M . See [START_REF] Bull | Adaptive confidence sets in L 2[END_REF] for more discussion on the role of M .

Remark 6 (Adapting to wider ranges of smoothnesses in high dimensions). In the d > 4 case, following the ideas in [START_REF] Bull | Adaptive confidence sets in L 2[END_REF], one may still obtain adaptation over a window of the form [0, R] for arbitrary R > 0 at the cost of removing certain troublesome portions of the classes F(r), r ∈ [0, R]. In this restricted model, one can identify the smoothness of the unknown density within a window of the form r, 2d-4 d-4 r + d d-4 using tests as in [START_REF] Bull | Adaptive confidence sets in L 2[END_REF] or [START_REF] Nickl | A Sharp Adaptive Confidence Ball for Self-Similar Functions[END_REF]. Once this window is identified, in particular the relevant value of r, one can use the associated confidence set as constructed in Theorem 4.

Remark 7. (Necessity of log-factors) One may ask whether it is possible to remove the log-factors in the shrinkage rates and construct a confidence set with R n (r) = r * n (r), R n (s) = r * n (s). These log factors fundamentally arise from the use of the embedding H -1,δ → B -1 21 for δ > 1/2. For confidence sets constructed via risk estimation we conjecture that this is a necessary step, as it is precisely the accelerated risk estimation for Hilbert space norms which enables the adaptivity of the confidence set. However, it is conceivable that another approach, such as the testing method of [START_REF] Carpentier | Honest and adaptive confidence sets in L p[END_REF], could be used to construct W 2 confidence sets with sharp diameter shrinkage rates (although such an approach will not generalise beyond the two class problem).

Remark 8 (Weak Sobolev norms H -t , t > 0). Our methods extend to the use of negative order Sobolev norms H -t = B -t 22 , t > 0 as loss functions in place of H -1,δ (see Appendix A for definitions). The analysis of the estimator fn is completely analogous, and one must suitably augment the U -statistic U n,j to estimate the H -t loss. One finds that the resulting confidence set Cn adapts to any two smoothnesses 0 ≤ r < s < ∞ when t ≥ d/4; if instead t < d/4, adaptation is possible over a window of smoothnesses 0 ≤ r < s ≤ d d-4t t + 2d-4t d-4t r. Moreover, in this latter case, the arguments of Section 3.3 below can be augmented to show that if s does not lie in this window, then no such confidence set can exist.

The proof of this theorem proceeds similarly to that of Proposition 2.1 in [START_REF] Robins | Adaptive nonparametric confidence sets[END_REF], and is given in Appendix B.

The confidence sets constructed above prove statements (i) and (ii) of Theorem 1.

Testing rates and non-existence of Confidence Sets

We turn now to proving the impossibility result (iii) in Theorem 1.

The question of existence of adaptive confidence sets is closely related to a composite hypothesis testing problem. This connection was identified in the first works on adaptive confidence sets; for a complete decision-theoretic overview, see [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF]Chapter 8]. For ρ ≥ 0 and s > r ≥ 0, define the separated function class

F(r, ρ) := {f ∈ F(r) : W 2 (f, F(s)) ≥ ρ}
We may have ρ = 0, in which case F(r, 0) = F(r). However, if ρ > 0 then F(r, ρ) is a strict subset of F(r), disjoint from F(s). The testing problem we consider is

H 0 : f ∈ F(s) vs. H 1 : f ∈ F(r, ρ). ( 16 
)
As the usefulness of a test is naturally assessed by the sum of its Type I and Type II errors, the minimax rate of testing for the problem ( 16) is defined as any sequence (ρ * n ) n≥1 such that

• For any β > 0, there exists a constant L = L β and a measurable test

Ψ n : T d n → {0, 1} such that sup f ∈F (s) E f [Ψ n ] + sup f ∈ F (r,Lρ * n ) E f [1 -Ψ n ] ≤ β . (17) 
• There exists some β > 0 such that for all

ρ n = o (ρ * n ) , lim inf n→∞ inf Ψn sup f ∈F (s) E f [Ψ n ] + sup f ∈ F (r,ρn) E f [1 -Ψ n ] ≥ β, (18) 
where the infimum ranges over the set of tests Ψ n .

The following result characterises the role of the minimax testing rate ρ * n in the existence and nonexistence of confidence sets. Essentially, it says ρ * n provides a 'speed limit' on how quickly the confidence set can shrink when f is in the smoother submodel F(s):

Lemma 2 (Proposition 8.3.6, [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF]). Let ρ * n be the minimax testing rate for [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF], and rn (s), rn (r) be two sequences such that rn (s) = o (ρ * n ) and rn (s) = o (r n (r)). Let α, α > 0. Then, for any ρ n = o (ρ * n ) and L > 0, there does not exist any set

C n (α, X 1 , . . . , X n ) satisfying • lim inf n→∞ inf f ∈F (s)∪ F (r,ρn) P f (f ∈ C n ) ≥ 1 -α, • lim sup n→∞ sup f ∈ F (r,ρn) P f |C n | W 2 > Lr n (r) ≤ α , • lim sup n→∞ sup f ∈F (s) P f |C n | W 2 > Lr n (s) ≤ α ,
as long as α, α are such that 0 < 2α + α < β, with β as in [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF].

This non-existence phenomenon occurs because any C n satisfying the conditions of the Lemma induces a test

Ψ n = 1{C n ∩ F(r, ρ n ) = ∅}
which is uniformly consistent for the separation rate ρ n in the sense of (17) whenever ρ n = o(ρ n ). If we were able to choose ρ n to be o(ρ * n ), this would contradict the definition of the minimax testing rate ρ * n ; thus no such confidence set can exist. Note that the argument works for any rate rn (s) = o(ρ * n ), not just the minimax rate of estimation; in particular, we can multiply the minimax estimation rate by a poly-logarithmic factor so long as there is a polynomial gap between the testing and estimation rates.

It remains to determine the minimax rate of testing for the problem [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF]; this is done in the following theorem.

Theorem 5. Assume s > r ≥ 0 and d > 4. Let ρ * n be the minimax rate of testing for the problem [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF]. Then there exist a constant c > 0 depending on the parameters of the class F(s) and the wavelet basis, and n 0 = n 0 (B, M ) such that for all n ≥ n 0 ,

ρ * n ≥ cn -r+1 2r+d/2 .
Also, (18) holds for any β < 1.

The proof of Theorem 5 is given in Appendix B, and follows a multiple-testing lower bound. Assume now that d > 4 and s > 2d-4 d-4 r + d d-4 . Then the minimax rate of testing ρ * n is slower than the minimax estimation rate r * n (s) by a polynomial factor; in light of Lemma 2, this means there is no near-optimal adaptive W 2 confidence set over F(s) ∪ F(r) for any practical choice of α, α (for such a set to exist, we would require 2α + α ≥ 1). This proves statement (iii) of Theorem 1. However, this does not rule out the existence of confidence sets satisfying weaker conditions than those in Definition 2, namely those listed in Lemma 2 for some ρ n ≥ Lρ * n , L > 0. Such sets actually exists in view of Proposition 8.3.7 of [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF] and Theorem 3.

Moreover, the confidence set C n constructed in Theorem 4 in conjunction with the argument used to prove Lemma 2 shows that the lower bound of Theorem 5 is sharp up to a poly-logarithmic factor.

Extension of the Theory to R d

Having provided a fairly complete resolution of the problem of adaptive W 2 confidence sets when the sample space is T d , we extend our results to the case of the unbounded sample space R d with W 1 loss. The key tool is the Kantorovich-Rubinstein duality formula ( [START_REF] Kantorovich | On a space of totally additive functions[END_REF])

W 1 (f, g) = sup h∈Lip 1 (R d ) R d h(x)(f (x) -g(x)) dx, (19) 
where Lip 1 (R d ) is the set of 1-Lipschitz functions on R d . Our techniques do not extend to the distances W p , p > 1, due to the dependence on the lower bound m in Proposition 1 (which is the analogue of ( 19) for p > 1): any density on R d must decay to 0 at infinity, so using this result yields suboptimal convergence rates, even under favourable tail conditions.

In this section, it is assumed that we observe X 1 , . . . , X n i.i.d.

∼ f 0 for some density f 0 on R d , and we wish to perform inference on f 0 using W 1 as the loss function.

Parameter Spaces

We use an S-regular tensor product wavelet basis of L 2 (R d ) of the form φ k , ψ lk : k ∈ Z d , l ≥ 0 as introduced in Appendix A (we index the ψ lk using only k, l by a slight abuse of notation). We write K j (f ) for the projection of f onto the first j resolution layers, as in [START_REF] Bull | Honest adaptive confidence bands and self-similar functions[END_REF]. Besov norms on R d , also defined in Appendix A, are defined analogously to those on T d , and the relation (3) holds.

Our goal is to construct an adaptive confidence set for the true density f 0 using risk estimation, where the adaptation occurs with respect to the smoothness parameter s. We shall consider functions in B s 2q . Unlike our previous classes F(s) on T d , we need not assume that our densities are bounded away from zero, or something analogous such as sufficiently slow decay in the tails. However, in order to deal with the unboundedness of the sample space R d , we must impose a moment condition.

For α, β > 0, define the α, β-exponential moment of a density f as

E α,β (f ) := R d exp (β x α )f (x) dx = E f e β X α . ( 20 
) Definition 4. Let 1 ≤ p, q ≤ ∞, s ≥ 0, B ≥ 1, M > 0, α, β > 0 and L ≥ 1. Define the function class G s,p,q (B, M ; α, β, L) = f ∈ B s pq (R d ) : R d f = 1, f B s pq ≤ B, 0 ≤ f ≤ M a.e., E α,β (f ) ≤ L . (21) 
Henceforth, we fix p = 2 and consider q, B, M, α, β, L to be given. Define G(s) := G s,2,q (B, M ; α, β, L).

Observe that for M close to 0 and L close to 1, the class G(s) is empty. We therefore assume in the sequel that L is sufficiently large (depending on M, B) for G(s) to be non-empty.

The focus on p = 2 is quite natural in view of the material developed in the previous section, relying on risk estimation to compute the diameter of confidence sets. Combining the exponential moment condition and the bound on the B s 2q -norm, we prove in Lemma 8 that densities in G(s) also have their B s 1q -norm bounded by a constant depending on the class parameters.

Estimation Upper Bounds for W 1

As before, we should insist on our estimator fn being a density almost surely. Indeed, the fact that fn has total mass 1 is vital to the proof of Proposition 4 below. However, we note that there is no intrinsic requirement in ( 19) that f and g should be nonnegative, and so we will allow our estimators to take negative values. If a genuine density is required, one can just take the positive part of the estimator and renormalize.

The following proposition gives an upper bound on the W 1 distance which is convenient for wavelet estimators.

Proposition 4. For any probability density f with a finite first moment and any estimator fn of f which has a finite first moment almost surely, we have that

W 1 ( fn , f ) k∈Z d k | f -fn , φ k | + l≥0 2 -l( d 2 +1) k∈Z d | f -fn , ψ lk |, (22) 
where the constant depends only on the wavelet basis.

Remark 9. Let fn be some estimator of f , not necessarily with total mass 1. We obtain an estimator which integrates to 1 almost surely, which we call fn , by renormalising the first wavelet layer of fn , that is, renormalising f0 := K 0 ( fn ). Then we set fn = f0 f0 (x) dx + l≥0 k∈Z d fn , ψ lk ψ lk .

Note that while one can perform this procedure for any estimator fn , it is particularly simple for wavelet-based estimators. Assuming L 1 -consistency of fn , f0 → K 0 (f ) and thus K 0 ( fn ) → K 0 (f ) in L 1 . Moreover, for the wavelet estimators we use below, this convergence occurs very fast, at the rate

n -S 2S+d 
, where S is the regularity of the wavelet basis. Thus it suffices to consider the un-normalised estimator fn in the decomposition ( 22) whenever s ≤ S -1, which we do in the sequel.

We first establish an upper bound for the estimation rate over the class G(s). Theorem 6. For any s ≥ 0, there exists an estimator fn such that for all sufficiently large n,

sup f ∈G(s) E f W 1 ( fn , f ) (log n) γd 2 +1 n -1/2 , d = 2, (log n) γd 2 n -s+1 2s+d , d ≥ 3.
where γ is a constant depending on α and β only, and the constant depends on the parameters of the class G(s) and the wavelet basis. For d = 1, the empirical measure P n satisifies

sup f ∈G(s) E f W 1 (P n , P f ) n -1/2 .
Remark 10. These rates are sharp up to a logarithmic factor so long as L is sufficiently large: one uses a reduction to a multiple testing problem as in the proof of the lower bounds in Proposition 2, and then uses an analogous collection of well-separated densities defined on some common compact set. For large enough L, the compact support ensures that these densities have suitable exponential moments and so belong to G(s).

Remark 11. An inspection of the proof reveals that in fact it suffices to assume a suitable polynomial moment, depending on s; however, for convenience we assume an exponential moment which works for all s ≥ 0.

The proofs of Proposition 4 and Theorem 6 are given in Appendix C. The estimator fn is simply a wavelet projection estimator which is zero outside of a growing compact set; the risk outside of the compact is controlled using the moment assumption.

As in the case of T d , we require an adaptive estimator.

Theorem 7. Let d ≥ 2, and let γ > 0 be as in Theorem 6. Then there exists an estimator fn of f such that for all n ≥ n 0 (B) and all s ≥ 0,

sup f ∈G(s) E f W 1 ( fn , f ) (log n) γd 2 n log n -s+1 2s+d ,
where the constant depends on the parameters of the class G(s) and the wavelet basis.

The definition of fn and proof of Theorem 7 are given in Appendix C.

Construction of Confidence Sets

Let us now concretely state the two-class adaptation problem we wish to solve. Fix two smoothnesses s > r ≥ 0 and consider the model G(r) = G(r) ∪ G(s). Given α ∈ (0, 1), we seek a confidence set C n which has honest coverage at level 1 -α, that is, for all n sufficiently large,

inf f ∈G(r) P f (f ∈ C n ) ≥ 1 -α, (23) 
as well as the two diameter shrinkage conditions: for all α > 0 there exists a constant

K = K(α ) > 0 such that sup f ∈G(r) P f (|C n | W 1 > KR n (r)) ≤ α , ( 24 
)
sup f ∈G(s) P f (|C n | W 1 > KR n (s)) ≤ α , (25) 
where R n (r) and R n (s) equal the convergence rates in Theorem 6 up to a poly-logarithmic factor. As discussed previously, the d = 1 and d = 2 cases are straightforward given the existence of the estimator from Theorem 7, since here the convergence rates do not depend on the smoothness r. We thus restrict our attention to the case d ≥ 3.

Let X 1 , . . . , X 2n be an i.i.d. sample from the unknown f ∈ G(r). We split the sample as before into two equal halves, indexed by S 1 = 1, . . . , n and S 2 = {n + 1, . . . , 2n}, and denote by P (i) , E (i) probabilities and expectations taken over S i . We wish to construct a confidence set via risk estimation, centred at the adaptive estimator fn from Theorem 7, which we compute using S 1 . Proposition 4 provides a natural upper bound for W 1 (f, fn ) 2 which we then decompose into several terms. Define the thresholds κ -1n = κ 0n (log n) γ , κ ln = 2 l κ 0n for γ chosen as in Theorem 6. Applying the Cauchy-Schwarz inequality several times, we obtain the bound

W 1 (f, fn ) 2 ≤3 (log n) γ(d+2)   k ∞≤κ-1n f -fn , φ k 2 + j l<j 2 -2l k ∞≤κln f -fn , ψ lk 2   +   l≥j 2 -l( d 2 +1
)

k ∞≤κln | f -fn , ψ lk |   2 +   k ∞>κ-1n k | f, φ k | + l≥0 2 -l( d 2 +1) k ∞>κln | f, ψ lk |   2 . ( 26 
)
The final term is controlled using the moment assumption on f ∈ G(r); indeed, from the proof of Theorem 6 we have that for all f ∈ G(r), this term is bounded above by

∆ n := C(d)L 2 (log n) 2γ n -1 , (27) 
where C(d) is a constant depending only on d and the wavelet basis. We next consider the remaining terms in [START_REF] Low | On nonparametric confidence intervals[END_REF]. We introduce pseudo-distances W (n,j) (f, g) defined as

W (n,j) (f, g) =   k ∞≤κ-1n f -g, φ k 2 + j l<j 2 -2l k ∞≤κln f -g, ψ lk 2   1/2 + l≥j 2 -l( d 2 +1) k ∞≤κln | f -g, ψ lk |. ( 28 
)
Observe that for f, g ∈ G(r),

W 1 (f, g) ≤ 3(log n) γ(d+2) • W (n,j) (f, g) + 3∆ n ;
this is true uniformly over r ≥ 0. Since √ ∆ n converges (up to a logarithmic factor) at the parametric rate, this means that any diameter shrinkage condition with respect to W (n,j) provides an analogous shrinkage condition for W 1 , with only a slightly worse rate. Moreover, the first part of W (n,j) (f, g) is well-suited to estimation using a U -statistic. To this end, define the U -statistic

V n,j = V n,j ( fn ) := 2 n(n -1) i<i ,i,i ∈S 2 k ∞≤κ-1n φ k (X i ) -fn , φ k φ k (X i ) -fn , φ k + j l<j 2 -2l k ∞≤κln ψ lk (X i ) -fn , ψ lk ψ lk (X i ) -fn , ψ lk . ( 29 
)
Clearly we have that E

(2) f V n,j is equal to the square of the first term in [START_REF] Meyer | Wavelets and Operators[END_REF] with f, fn in place of f, g. Analogously to Lemma 1, one shows that V n,j has small variance.

Lemma 3. For f ∈ L ∞ (R d ),
we have that, for some constant C d depending only on d and the wavelet basis,

Var (2) f (V n,j ) ≤ C d 2 j 2 f 2 ∞ (log n) γd n(n -1) l<j 2 l(d-4) . . . + f ∞ n   k ∞≤κ-1n f -fn , φ k 2 + j 2 l<j 2 -4l k ∞≤κln f -fn , ψ lk 2   ≤ C d   j 2 f 2 ∞ (log n) γd n(n -1) l<j 2 l(d-4) + W (n,j) (f, fn ) 2   =: λ 2 j,n (f ).
For the second part of W (n,j) (f, fn ), we use the concentration arguments from the proof of Theorem 7 to show that this term is suitably small with high probability uniformly over f ∈ G(r).

Given a sequence (j n ), we write W (n) for W (n,jn) , and V jn for V n,jn . 

Theorem 8. Let d ≥ 3. Fix B ≥ 1, M > 0, α, β, L > 0, 1 ≤ q ≤ ∞,
C n = g ∈ G(r) : W (n) (g, fn ) ≤ C(d) z α λ n,jn (g) + V jn + G jn ( 30 
)
where fn is computed on S 1 , V jn is computed on S 2 , C(d) is a constant depending on d and the wavelet basis, and:

• λ n,jn (g) is as in Lemma 3;

• j n is such that 2 jn n log n 1 2r+d/2 ; • G jn = (log n) γd+1 2 -2jn(r+1) ; • z α = (α/2) -1/2 .
• Φ, Ψ are in C S (R), R Φ = 1, and Ψ is orthogonal to polynomials of degree < S.

• k |Φ k | ∞ 1, and k |Ψ lk | ∞ 2 l/2
for a constant depending only on Ψ. • Letting V j = span(Φ k , Ψ lk : l < j), for any f ∈ V j the following Bernstein estimate holds:

∇f p 2 j f p ,
for a constant depending only on the wavelet basis.

• Φ, Ψ are compactly supported.

We then form a tensor product basis of

L 2 (R d ) as follows. Let I = {0, 1} d \ {0}. Define φ(x) = Φ(x 1 ) • • • Φ(x d ), x ∈ R d and, writing Ψ 0 = Φ, Ψ 1 = Ψ, ψ ι = Ψ ι 1 (x 1 ) • • • Ψ ι d (x d ), ι ∈ I.
Then ([18, Section 4.3.6])

φ k = φ(• -k), ψ ι lk = 2 ld/2 ψ ι (2 l x -k) : l ≥ 0, k ∈ Z d , ι ∈ I defines a wavelet basis of L 2 (R d ).
We omit ι from our notation and simply write ψ lk with k now implicitly taking values in Z d × I; any sum over k is to be understood as over all ι ∈ I as well.

1) φ, ψ are in C S (T d ), R d φ = 1, and ψ is orthogonal to polynomials of degree < S.

2)

k |φ k | ∞ 1, and k |ψ lk | ∞ 2 ld/2
for a constant depending only on ψ. 3) φ, ψ are compactly supported. These properties follow elementarily from the previously stated properties of Φ and Ψ. Property 3) is used crucially in our analysis on R d . Notably, this precludes certain common choices of wavelet basis, such as the Meyer basis.

These properties imply the following relationship between L p -norms of functions and the p -norms of their wavelet coefficients (by an abuse of notation we denote both of these norms by • p ). Lemma 4. For any l ≥ 0, any p ∈ [1, ∞] and any c ∈ R Z d , we have that

k∈Z d c k ψ lk p 2 ld(1/2-1/p) c p ,
where the constants depend on ψ and p only.

When working on T d , we use the tensor product wavelet basis induced by the periodisations of Φ, Ψ; see [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF]Section 4.3.4] for details. This produces a basis of L 2 (T d ) with the following properties:

1) ψ(x) = d i=1 ψ (i) (x i ) for some univariate functions ψ (i) . 2) Setting ψ lk (•) = 2 ld/2 ψ(• -2 -l k) for l ≥ 0, k ∈ Z d ∩ [0, 2 l ) d , the set φ, ψ lk : l ≥ 0, k ∈ Z d ∩ [0, 2 l ) d
forms an orthonormal basis of L 2 (T d ). By an abuse of notation, we re-index in k such that k ∈ Z varies between 0 ≤ k < 2 ld .

3) ψ is in C S (T d ), and is orthogonal to polynomials of degree < S.

4)

k |ψ lk | ∞ 2 ld/2 , for a constant depending only on ψ. 5) Letting V j = span(φ, ψ lk : l < j), for any f ∈ V j the following Bernstein estimate holds:

∇f p 2 j f p ,
for a constant depending only on the wavelet basis.

Again, these are basic consequences of properties of Φ, Ψ, and enable the proof of Proposition 1; compare to Appendix C of [START_REF] Weed | Estimation of smooth densities in Wasserstein distance[END_REF].

A.2. Besov Spaces

In this section, we let (φ k , ψ lk ) denote either the S-regular tensor product Daubechies wavelet basis of L 2 (R d ), or the S-regular tensor product periodised Daubechies wavelet basis of L 2 (T d ). It should be understood that any summation is over the full range of indices, for example k ψ lk denotes k∈Z d ψ lk in the R d case and 2 ld -1 k=0 ψ lk in the T d case. We further let D be either the class of tempered distributions on R d , or the class of periodic tempered distributions on

T d . Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, s ∈ R, s < S. For f ∈ D, we define the Besov norm f B s pq = f, φ • p +   l≥0 2 ls 2 ld 1 2 -1 p f, ψ l• p q   1/q , (32) 
where • p is the p -norm. When q = ∞, the norm is defined as

f B s p∞ = f, φ • p + sup l≥0 2 ls 2 ld 1 2 -1 p f, ψ l• p . (33) 
We then define the corresponding Besov space B s pq as

B s pq = f ∈ D : f B s pq < ∞ . (34) 
We will write B s pq (R d ) or B s pq (T d ) to remove any ambiguity over the choice of domain, whenever it arises.

The definition of B s pq is independent of the wavelet basis used, that is, using a different (sufficiently regular) basis in the definition (32) produces an equivalent norm. Moreover, using a C ∞ basis such as the Meyer basis enables us to define B s pq concurrently for all s ∈ R.

A.3. The Case of the Unit Cube

We can also define a 'boundary-corrected' wavelet basis of L 2 ([0, 1] d ) based on Φ, Ψ as in [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF]; see also [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF]Section 4.3.5]. Such a basis possesses completely analogous properties to properties 1)-5) of the periodised basis of L 2 (T d ); moreover, all Besov spaces defined on T d are defined on the unit cube [0, 1] d by replacing the periodised wavelet basis with the boundary-corrected wavelet basis (as used in [START_REF] Weed | Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance[END_REF]). Thus all of our results for T d hold also for the case of [0, 1] d .

For fixed l, k and f ∈ F(s), the random variables (ψ lk (X i ) -f lk ) are i.i.d., centred, bounded by 2 ld/2 ψ ∞ =: c l , and have variance bounded by M . Thus from Bernstein's inequality, we deduce that

P f | flk -f lk | > u ≤ 2 exp - nu 2 2M + 2c l u 3 . (36) 
We also need a result on wavelet approximations in the H -1,δ norm to control bias terms. The following lemma about the error of j-level approximations to Besov functions is standard; see Propositions 4.3.8 and 4.3.14 in [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF], for instance. Lemma 6. Let 0 ≤ s < S and 1 ≤ q ≤ ∞, δ ∈ R. Then for f ∈ B s 2q , we have that

K j (f ) -f H -1,δ ≤ Csup l≥j 2 -l(s+1) l δ f B s 2q , (37) 
where the constant C depends only on the wavelet basis. In particular, for j ≥ 1 ∨ δ s+1 , we have that

K j (f ) -f H -1,δ ≤ C2 -j(s+1) j δ f B s 2q Proof of Theorem 3. Fix f ∈ F(s). Define l n (s) such that 2 ln(s) B 1 s n log n 1 2s+d
; for all sufficiently large n depending on B, we have that l n (s) < l max . We then decompose the risk as follows:

f -fn 2 H -1,δ = ln(s) l=0 2 -2l (l ∨ 1) 2δ f -fn , ψ l• 2 2 + lmax l=ln(s)+1 2 -2l l 2δ f -fn , ψ l• 2 2 + l>lmax 2 -2l l 2δ f, ψ l• 2 2 =: I + II + III. (38) 
This is a bias-stochastic decomposition, where we have further divided the stochastic term into terms I and II.

We first deal with the bias term III: a direct application of Lemma 6 gives

III = K lmax (f ) -f 2 H -1,δ l 2δ max 2 -2lmax(s+1) = o   (log n) 2δ n log n - 2(s+1) 2s+d  
for a constant depending on B and the wavelet basis.

Next, we deal with term I. For any l ≥ 0, by the triangle inequality we have that

f -fn , ψ l• 2 ≤ f l• -fl• 2 + fl• 2 1 fl• 2 ≤τ l ≤ f l• -fl• 2 + τ 2 ld/2 log n n .
Using Lemma 5 to control the expectation of the square of the first term, we see that

E f (I) ln(s) l=0 2 -2l (l ∨ 1) 2δ 2 ld n -1 + τ 2 2 ld log n n τ 2 log n n (l n (s)) 2δ ln(s) l=0 2 l(d-2) ,
for n large enough. Note that l n (s) log n. Thus when d = 2, the sum contributes at most some power of log n, and so E f (I) is clearly sufficiently small. For d > 2, the final term dominates the sum and so using the definition of l n (s),

E f (I) τ 2 (log n) 2δ n log n - 2(s+1) 2s+d
as required.

Lastly, we must analyse term II. Since we consider resolution levels l > l n (s), we have that

f l• 2 ≤ B2 -ls < B2 -ln(s)s n log n -s 2s+d ,
for a constant depending only on B. Moreover,

τ l = τ 2 ld/2 n log n -1/2 > τ 2 ln(s)d/2 n log n -1/2 ≥ τ n log n -s 2s+d ,
and so for τ chosen sufficiently large depending only on B, we have that f l• 2 ≤ τ l /2. Define events

A l,n := fl• 2 ≤ τ l , l n (s) < l ≤ l max .
Then by the above observations, the triangle inequality, a union bound and the bound (36), we have that

P f (A c l,n ) ≤ P f ( fl• -f l• 2 > τ l /2) ≤ 2 ld -1 k=0 P f | flk -f lk | > τ 2 log n n ≤ 2 ld • 2 exp - τ 2 n log n/4 2M n + τ c l √ n log n/3 n log n exp (-Cτ log n) , (39) 
for τ large enough depending on M and the wavelet basis, as l ≤ l max and so 2 l ≤ (n/ log n) 1/d . Here, C is an absolute constant. Note that on the event A c l,n , fn , ψ lk = flk , whereas on A l,n , fn , ψ lk = 0. Thus for l n (s) < l ≤ l max ,

E f fn -f, ψ l• 2 2 1 A l,n ≤ f, ψ l,• 2 2 2 -2ls (40) 
for some constant depending on B, using (3). Next, using Cauchy-Schwarz in conjunction with [START_REF] Villani | Optimal transport. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF] and Lemma 5,

E f f T n -f, ψ l• 2 2 1 A c l,n = 2 ld -1 k=0 E f | flk -f lk | 2 1 A c l,n ≤ 2 ld -1 k=0 E f | flk -f lk | 4 1/2 P f (A c l,n ) 1/2 2 ld (n log n) -1/2 n -Cτ /2 . ( 41 
)
Combining the estimates ( 40) and ( 41), we may bound II as follows:

E f (II) lmax l=ln(s)+1 2 -2l l 2δ 2 -2ls + 2 ld (n log n) -1/2 n -Cτ /2 (log n) 2δ   2 -2(s+1)ln(s) + (n log n) -1/2 n -Cτ /2 l≤lmax 2 l(d-2)   .
By the definition of l n (s), the first term is of the correct order. It remains to consider the second term. When d = 2 the sum contributes a logarithmic factor and so the second term is clearly sufficiently small. When d > 2, the sum is dominated by its final term and so the second term inside the brackets is of order

(n log n) -1/2 n -Cτ /2 2 lmax(d-2) log n -1/2 n 1 2 -2 d -Cτ 2 ;
by choosing τ sufficiently large, we can make this term sufficiently small for all s ≥ 0. This concludes the proof.

We will also later require the following lemma, which gives control of the B s 2q norm of the estimator fn .

Lemma 7. Under the hypotheses of Theorem 3, given α ∈ (0, 1) there exists n 0 = n 0 (α) such that for all n ≥ n 0 and any f ∈ F(s), with P f -probability at least 1 -α,

fn B s 2q B + τ B d/2s
, where the constant depends on d, q only. Proof. Let l n (s), A l,n be as in the previous proof. Further define events B l,n = { fl• -f l• 2 ≤ τ l }, and

A n =   0≤l≤ln(s) B l,n     ln(s)<l≤lmax A l,n   .
We have from [START_REF] Villani | Optimal transport. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF], which holds with B l,n in place of A l,n when l ≤ l n (s), and a union bound that

P f (A c n ) l max n log n exp (-Cτ log n) n exp (-Cτ log n)
and so by choosing τ > 0 sufficiently large (independently of α), we can make this smaller than α for all sufficiently large n. Then on the event A n , using (a + b) q ≤ 2 q-1 (a q + b q ), fn

q B s 2q = 1 + lmax l=0 2 lqs 1 fl• 2 >τ l fl• q 2 1 + ln(s) l=0 2 lqs f l• q 2 + ln(s) l=0 2 lqs fl• -f l• q 2 ≤ f q B s 2q + ln(s) l=0 2 lqs τ q l = B q + τ q log n n q/2 ln(s) l=0 2 lq( d 2 +s) 
B q + τ q B dq/2s , by choice of l n (s), since the sum is dominated by its largest term.

Proof of Lemma 1. The kernel of the U -statistic is

R(x, y) = l≤j-1 2 -2l (l ∨ 1) 2δ 2 ld -1 k=0 (ψ lk (x) -ψ lk , fn )(ψ lk (y) -ψ lk , fn )
which is symmetric, and so has Hoeffding decomposition (see Section 11.4 of [START_REF] Van Der | Asymptotic statistics[END_REF])

U n ( fn ) -E (2) f U n ( fn ) = 2 n i∈S 2 (π 1 R)(X i ) + 2 n(n -1) i<i ,i,i ∈S 2 (π 2 R)(X i , X i ) =: L n + D n , (42) 
with linear kernel

(π 1 R)(x) = l≤j-1 2 -2l (l ∨ 1) 2δ 2 ld -1 k=0 (ψ lk (x) -ψ lk , f ) ψ lk , f -fn and degenerate kernel (π 2 R)(x, y) = l≤j-1 2 -2l (l ∨ 1) 2δ 2 ld -1 k=0 [(ψ lk (x) -ψ lk , f )(ψ lk (y) -ψ lk , f )] .
One checks that L n and D n are uncorrelated. It thus remains to bound their variances separately. For Var (2) (L n ), we use the uncentred version of the kernel π 1 R and orthonormality of the wavelet basis

Var (2) (L n ) ≤ 4 n   l≤j-1 2 -2l (l ∨ 1) 2δ 2 ld -1 k=0 ψ lk (x) ψ lk , f -fn   2 f (x) dx ≤ 4 f ∞ n max l≥-1 4 -l (1 ∨ l) 2δ l≤j-1 2 -2l (l ∨ 1) 2δ 2 ld -1 k=0 ψ lk , f -fn 2 = 4 f ∞ n max l≥-1 4 -l (1 ∨ l) 2δ K j (f -fn ) 2 H -1,δ .
We next bound Var (2) (D n ). By the degeneracy of the kernel, the summands are uncorrelated. So

Var (2) (D n ) ≤ E (2)   2 n(n -1) i<i ,i,i ∈S 2 (π 2 R)(X i , X i )   2 ≤ 2 n(n -1) E (2) f   l≤j-1 2 -2l (l ∨ 1) 2δ 2 ld -1 k=0 [ψ lk (X i )ψ lk (X i )]   2 ≤ 2 f 2 ∞ n(n -1) l≤j-1 2 -4l (l ∨ 1) 4δ 2 ld -1 k=0 ψ lk (x) 2 dx 2 = 2 f 2 ∞ n(n -1) l≤j-1 2 l(d-4) (l ∨ 1) 4δ ,
using the orthonormality of the wavelet basis. Combining these two estimates concludes the proof.

Proof of Theorem 4. We first establish the coverage condition [START_REF] Carpentier | Honest and adaptive confidence sets in L p[END_REF]. By Lemma 7, for all n sufficiently large we have with P f -probability at least 1 -α/2 that fn is in a B s 2q -norm ball of constant radius. Thus for any f ∈ F(r), with P f -probability at least 1 -α/2, for n ≥ n 0 (B, α) we have from [START_REF] Szabó | Frequentist coverage of adaptive nonparametric Bayesian credible sets[END_REF] that

K jn (f -fn ) -(f -fn ) 2 H -1,δ ≤ G(j n ).
By conditioning on this event, we have that

P f (f ∈ C n ) = P f U n,j ( fn ) -f -fn 2 H -1,δ ≥ -G(j) -z α κ n,j,δ (f ) ≥ 1 - α 2 P (2) f U n,j ( fn ) -K j (f -fn ) 2 H -1,δ ≥ -z α κ n,j,δ (f ) ≥ 1 - α 2   1 - Var (2) f (U n,j ( fn )) (z α κ n,j,δ (f )) 2   ≥ 1 - α 2 2 ≥ 1 -α
by Chebyshev's inequality and Lemma 1.

We now move on to checking the diameter shrinkage conditions ( 8) and [START_REF] Castillo | On the Bernstein-von Mises Phenomenon for Nonparametric Bayes Procedures[END_REF]. Writing S j := l<j 2 l(d-4) (l ∨ 1) 4δ and using the fact that for positive numbers a, b,

√ a + b ≤ √ a + √ b, for g ∈ F(r) we have that κ n,jn,δ (g) ≤ 2 √ M n -1/2 g -fn H -1,δ + 2M S jn n -1 and so g ∈ C n if and only if g -fn H -1,δ ≤ z α 2M n S jn + U jn + G(j n ) + n -1/4 2z α √ M g -fn H -1,δ .
For positive numbers x, a, b, the inequality x ≤ b + a √ x implies that x ≤ 2b + 2a 2 . Applying this inequality with the values x = g -fn

H -1,δ , a = n -1/4 2z α √ M , b = z α 2M n S jn + U jn + G(j n ),
and further using that for any positive numbers x, y we have that √ x + y ≤ √ x + √ y, one sees that the diameter of C n is bounded by a multiple of

n -1/2 S 1/4 jn + U jn + G jn + n -1/2 .
We consider each of these terms separately; note that the final term is always sufficiently small. First, consider G(j n ): this is deterministic, of order

G(j n ) (log n) 1+2δ n log n - 2(r+1) 2r+d/2 = o(R n (s) 2 ) = o(R n (r) 2 ).
(When d ≤ 4 this is trivial; for d > 4, it necessitates the assumption on s.)

Next, n -2 S jn is of order

n -2 l≤jn-1 2 l(d-4) (l ∨ 1) 4δ .
When d ≤ 4, this contributes at most a logarithmic factor in n times n -2 , so this is clearly o(R n (s) 4 ) and o(R n (r) 4 ). When d > 4, the final term dominates the sum and so the contribution is of order

(log n) 4δ-d-4 2r+d/2 n - 4(r+1) 2r+d/2 = O(R n (s) 4 ) = o(R n (r) 4 ),
again by the assumption on s. Finally, since Var(U jn ) → 0 as n → ∞, we know that

U jn = O P E f U jn = O P E f K j (f -fn ) 2 H -1,δ ) = O P E f f -fn 2 H -1,δ .
As fn converges at the rates R n (s) and R n (r) uniformly over F(s) and F(r) respectively, U jn is of the correct order in probability in both cases. This concludes the proof.

Proof of Theorem 5. For some sequence L n → ∞, to be defined below, and any ω ∈ {-1; 1} Z d ∩[0,2 Ln ) d , we define for some > 0,

f n,ω := 1 + 2 -Ln(r+d/2) k∈Z∩[0,2 Ln ) d ω k ψ Ln,k . Provided that B > 1, f n,ω B r 2q = 1 + 2 Lnr    k∈Z∩[0,2 Ln ) d | f n,ω , ψ Ln,k | 2    1/2 = 1 + 2 Lnr 2 -Ln(r+d/2) 2 dLn/2 = 1 + , ensuring that f n,ω is in the • B 2 2q
-Besov ball of radius B for small enough. Also, T d f n,ω (t)dt = 1 and, as the tensor product wavelet basis is assumed to be S-regular (cf. Appendix A),

k |ψ Ln,k | ∞ 2 dLn/2 ,
for some constant depending on the basis only. Therefore,

f n,ω -1 ∞ ≤ c2 -rLn ,
so that, for any M > 1 ≥ m > 0, f n,ω ∈ F(r) for n large enough (or small enough if r = 0). Finally, for any ρ n = o n -1+r 2r+d/2 , f n,ω ∈ F(r, ρ n ) if, for any g ∈ F(s), W 2 f n,ω , g ≥ ρ n . By definition of F(r), F(s) and Proposition 1, we have, for n large enough

W 2 f n,ω , g 2 f n,ω -g 2 B -1 2∞ ≥ 2 -2Ln f n,ω -g, ψ Ln,• 2 2 ≥ 2 -2Ln   2 Lnd -1 k=0 | f n,ω , ψ Ln,k | 2 1/2 - 2 Lnd -1 k=0 | g, ψ Ln,k | 2 1/2   2 ≥ 2 -2Ln 2 -Lnr -B2 -Lns 2 ≥ 2 2 2 -2Ln(1+r) . Therefore, if L * n is such that 2 -2L * n (1+r) n -2 1+r 2r+d/2 , it is possible to find L n > L * n such that ρ 2 n ≤ 2 2 2 -2Ln(1+r) = o n -2 1+r 2r+d/2
. This choice ensures that, for any ω, f n,ω ∈ F(r, ρ n ). Note also that the density f 0 := 1 naturally belongs to F(s).

Re-index

{-1; 1} Z d ∩[0,2 Ln ) d
as ω (i) : i = 1, . . . , 2 2 dLn and denote by P i the distribution with Lebesgue density f i := f n,ω (i) , Q := 2 -2 dLn 2 2 Lnd i=1 P i and P 0 the distribution with density f 0 . Then, with µ the Lebesgue measure and for any test Ψ n ,

sup f ∈Σ 0 E f [Ψ n ] + sup f ∈Σ(ρn) E f [1 -Ψ n ] ≥ E f 0 [Ψ n ] + 2 -2 dLn 2 2 Lnd i=1 E f i [1 -Ψ n ] ≥ (Ψ n (x 1 , . . . , x n ) + 1 -Ψ n (x 1 , . . . , x n ))    n j=1 f 0 (x j ) ∧ 2 -2 dLn 2 2 Lnd i=1 n j=1 f i (x j )    dµ ⊗n (x 1 , . . . , x n ) = 1 - 1 2 P ⊗n 0 -Q ⊗n 1 ≥ 1 - 1 2 χ 2 Q ⊗n , P ⊗n 0 .
where χ 2 (Q, P ) = (dP/dQ-1) 2 dQ if P Q, χ 2 (Q, P ) = +∞ otherwise. Also, for any 1 ≤ γ, κ ≤ 2 2 dLn , the orthonormality of the wavelet basis gives 

= n i=1 T d 1 + 2 -Ln(r+d/2) k ω (γ) k ψ Ln,k (x i ) 1 + 2 -Ln(r+d/2) k ω (κ) k ψ Ln,k (x i ) dx i = 1 + 2 2 -Ln(2r+d) k ω (γ) k ω (κ) k n . Then, for γ n = n 2 2 -Ln(2r+d) → 0 and R k , R k i.i.d. Rademacher random variables, χ 2 Q ⊗n , P ⊗n 0 = 2 -2 dLn γ,κ 1 + 2 2 -Ln(2r+d) ω (γ) , ω (κ) n -1 ≤ E exp n 2 2 -Ln(2r+d) k R k R k -1 = E exp n 2 2 -Ln(2r+d) k R k -1 = cosh(γ n ) 2 Lnd
where we used that 1 + x ≤ e x for x ∈ R in the second line and that R k R k is distributed as R k in the third. Using that cosh(z) = 1 + z 2 /2 + o |z|→0 (z 2 ) and 1 + x ≤ e x once again, for any δ > 0,

(cosh(γ n )) 2 dLn -1 = 1 + γ 2 n 2 (1 + o(1)) 2 dLn -1 ≤ exp γ 2 n 2 dLn-1 (1 + o(1)) -1 ≤ δ 2
for n large enough, since γ 2 n 2 dLn = o(1). We have proven that, for any β < 1 and

ρ n = o (ρ * n ), lim inf n inf Ψn sup f ∈F (s) E f [Ψ n ] + sup f ∈ F (r,ρn) E f [1 -Ψ n ] ≥ β,
which concludes the proof.

where γ is to be chosen below. We then use the decomposition in Proposition 4, which we further split to obtain six terms:

W 1 (f, fn ) k ∞≤κ-1n k | f-1k -f -1k | + k ∞>κ-1n k |f -1k | . . . + l<ln(s) 2 -l( d 2 +1) k ∞≤κln | flk -f lk | + l<ln(s) 2 -l( d 2 +1) k ∞>κln |f lk | . . . + l≥ln(s) 2 -l( d 2 +1) k ∞≤κln |f lk | + l≥ln(s) 2 -l( d 2 +1) k ∞>κln |f lk | =: I + II + III + IV + V + V I.
We first consider the bias terms II, IV, V I. For term II, we have that

k ∞>κ-1n k |f -1k | ≤ R d k ∞>κ-1n k |φ k (x)|f (x) dx.
Since each φ k is compactly supported in some interval about k, and k∈Z d |φ k | is uniformly bounded on R d , we have that

k ∞>κ-1n k |φ k (x)| x
for some constant depending on the wavelet basis. Moreover, the integrand is supported for all large enough n in ([-κ -1n /2, κ -1n /2] d ) c =: D n . Thus, for n large enough,

II Dn x f (x) dx ≤ E α,β (f )κ -1n exp -β κ -1n 2 α . (43) 
Since k∈Z d |ψ lk | is uniformly bounded by a constant depending on the wavelet basis times 2 ld/2 , we analogously have

k ∞>κln |f lk | 2 ld/2 E α,β (f ) exp -β κ 0n 2 α . (44) 
Thus

IV + V I E α,β (f ) exp -β κ 0n 2 α .
Choosing γ > 0 sufficiently large depending on α, β, these terms converge faster than n -1/2 . Next, we deal with the final bias term V . By Cauchy-Schwarz and the fact that f B s 2q ≤ B,

k ∞≤κln |f lk | ≤ κ d ln f l• 2 (log n) γd/2 2 l( d 2 -s) ,
and so

V l≥ln(s) 2 -l(s+1) (log n) γd/2 (log n) γd/2 2 -ln(s)(s+1)
which is of the correct order by the definition of l n (s).

To bound the stochastic terms I and III, we use the expectation bound Lemma 5, whose proof generalises naturally to the case of R d . We have for all l ≥ -1 such that 2 ld ≤ n and k ∈ Z d that

E f | flk -f lk | n -1/2 ,
for some constant depending on M and the wavelet basis. So

E f (I) (κ -1n ) d+1 n -1/2 and E f (III) (log n) γd n -1/2 l<ln(s) 2 l( d 2 -1)
.

When d = 2, the sum contributes an extra log n factor as in the statement. For d ≥ 3, the final term of the sum dominates, and so

E f (III) (log n) γd/2 n -s+1 2s+d 
as stated.

Proof of Theorem 7. Define the thresholds κ -1n = κ 0n (log n) γ , κ ln = 2 l κ 0n for γ chosen as in Theorem 6. As before, let l max be such that 2 lmax (n/ log n) 1/d ; for 0 ≤ l ≤ l max , define the thresholds τ l via

τ 2 l = τ 2 κ d ln log n n ,
where τ > 0 is to be chosen below. For any sequence

(a k ) k∈Z d , set a • 2,κ ln := k ∞≤κln a 2 k 1/2
. The thresholded estimator is then defined as

fn = k ∞≤κ-1n f-1k φ k + lmax l=0 1 fl• 2,κ ln >τ l k ∞≤κln flk ψ lk . (45) 
We perform a decomposition of the risk similar to that in the previous proof:

W 1 (f, fn ) k ∞≤κ-1n k | f-1k -f -1k | + k ∞>κ-1n k |f -1k | + l≤lmax 2 -l( d 2 +1) k ∞≤κln 1 fl• 2,κ ln >τ l flk -f lk + l≤lmax 2 -l( d 2 +1) k ∞>κln |f lk | + l>lmax 2 -l( d 2 +1) k ∞≤κln |f lk | + l>lmax 2 -l( d 2 +1) k ∞>κln |f lk | =: I + II + III + IV + V + V I.
We treat terms I, II, IV and V I identically to before. Term V is also dealt with as in the previous proof, noting that for all n sufficiently large, 2 lmax > n 1/(2s+d) . It remains to deal with term III; by Cauchy-Schwarz and the definition of κ ln , we have that

III (log n) γd 2 lmax l=0 2 -l 1 fl• 2,κ ln >τ l fl• -f l• 2,κ ln ,
where the constant depends on d. By splitting this sum into two parts at l n (s), 2 ln(s) B 1/s (n/ log n) 1/(2s+d) , one can bound it exactly as in the proof of Theorem 3

Proof of Theorem 8. We first establish coverage. Define the thresholds κ ln as in the previous proof. Given f ∈ G(s), as in the proof of Theorems 3 and 7, on an event of probability tending to 1, for all l such that l n (r) ≤ l ≤ l max , fn , ψ l• ≡ 0. Note that l max > j n > l n (s) > l n (r). So on this event, by Cauchy-Schwarz,

  l≥jn 2 -l( d 2 +1
)

k ∞≤κln | f -fn , ψ lk |   2 (log n) γd   l≥jn 2 -l f, ψ l• 2   2 (log n) γd B2 -2jn(r+1)
≤ G jn for all n sufficiently large, i.e. this quantity is O P (G jn ). The other term in W (n) (f, fn ) 2 is precisely

E (2)
f V jn ; by Chebyshev's inequality we obtain condition [START_REF] Kantorovich | On a space of totally additive functions[END_REF]. It remains to confirm the diameter conditions [START_REF] Lepski | On estimation of the L r norm of a regression function[END_REF] and [START_REF] Lepskii | On a Problem of Adaptive Estimation in Gaussian White Noise[END_REF] with the rates R n (r), R n (s) as given in the statement of the result. As the remainder term √ r n converges up to a logarithmic factor at the rate n -1/2 , it is dominated by W (n) for diameter considerations. As observed previously, we may instead prove the diameter conditions for the W (n) distance with the augmented rates f (V jn ) → 0 (one shows that W (n,jn) (f, fn ) → 0 analogously to the proof of Theorem 3), we have that

V jn = O P f E f V jn ;
as in the proof of Theorem 7, this expectation is of order Rn (r) or Rn (s) when f belongs to G(r) or G(s) respectively.

Proof of Theorem 9. For some α > α, D > 0 and α(x) = α e -1/( x 2 -D) 1 B(0,D) c (x), the density f defined by f (x) ∝ e -β x α(x) 2 is such that E f e β X α < +∞. Then, for σ > 0, if X ∼ P f , σX has density g : x → σ -d f (σ -1 x) satisfying E g e β X α = E f e σ α β X α < +∞.

Then, we verify that

f ∈ H m 2 (R d ) ⊂ B m 2∞ (R d ) ⊂ B s 2q (R d ),
for any m ∈ N and s < m. Also, g p = σ -d(1-1/p) f p and, the moduli of continuity of g satisifies, for t > 0 and an integer r > s, ω r (g, t, 2) := sup For some sequence L n → ∞, and any ω ∈ {-1; 1} Z∩[0,2 Ln ) d ×I , we define for some > 0,

f n ω = g + 2 -Ln(r+d/2) k∈Z∩[0,2 Ln ) d ,ι∈I ω k,ι Ψ ι Lnk .
Assuming that the scaling and mother wavelets functions are compactly supported (as assumed in Appendix A), the Ψ ι Lnk , for k ∈ Z ∩ 0, 2 Ln d , ι ∈ I, are supported on a compact set K independent of n. Then, since ω ≤ M for n, σ large enough (or small enough if r = 0). Indeed, g is lower bounded by a some positive constant on K, So, f n ω actually is a density function. For these to belong to the alternative hypothesis, it remains to check that these are well separated from the null hypothesis. For any h ∈ G(s), the reversed triangular inequality gives

f n ω B r
W 1 (f n ω , h) f n ω -h B -1 1∞ 2 -Ln(d/2+1) k∈Z∩[0,2 Ln ) d ,ι∈I f n ω -h, Ψ ι Lnk ≥ 2 -Ln(d/2+1) k,ι | f n ω -g, Ψ ι Lnk | - k,ι | h -g, Ψ ι Lnk | = 2 -Ln(d/2+1) C2 -Ln(r-d/2) -C 2 -Ln(s-d/2)
2 -Ln(1+r) , for constants independent of n. Above, we used that s > r and that, for any s > 0, G(s) ⊂ f : f B s 1q ≤ B for some B > 0 according to Lemma 20.

The last inequality holds for n large enough. Therefore, if L * n is such that 2 -L * n (1+r) ξ n , it is possible to take L n > L * n such that ρ n ≤ C 2 -Ln(1+r) = o(ξ n ), so that, for any ω, f n ω ∈ G(s, ρ n ). For N n = 2 2 dLn (2 d -1) , let's index ω ∈ {-1; 1} Z∩[0,2 Ln ) d ×I = w (m) : m = 1, . . . , N n and denote P m = P f ω (m) . Then, For σ large enough, g is constant on the compact support of ν m and ν q , equal to g(0). Hence, following the same arguments as above,

lim inf n inf Ψn sup f ∈H 0 E f [Ψ n ] + sup f ∈H 1 (rn) E f [1 -Ψ n ] ≥ 1 -
χ 2 Q ⊗n , P ⊗n 0 = (cosh γ n ) 2 dLn (2 d -1) -1,
where γ n = n 2 g(0) -1 2 -Ln(2r+d) , and for any δ > 0, χ 2 Q ⊗n , P ⊗n 0 ≤ δ 2 for n large enough. This concludes the proof. Lemma 8. Let B ≥ 1, M > 0, α > 0, β > 0, L > 0, 1 ≤ q ≤ ∞, and s ≥ 0. Then, there exists a constant B , depending on the class parameters, the wavelet basis and the dimension d, such that G s,2,q (B, M ; α, β, L) ⊂ G s,1,q (B , M ; α, β, L).

Proof. Let f ∈ G s,2,q (B, M ; α, β, L). All we have to prove is that

f B s 1q = f, φ • 1 +   l≥0 2 l(s-d/2) f, ψ l• 1 q   1/q ≤ B ,
for some B as in the lemma. Let κ > 0. Then,

f, φ • 1 = k ∞ ≤κ | f, φ k | + k ∞ >κ | f, φ k | .
For the second term, the same arguments as the one used to obtain (43) give that it is bounded by E α,β (f ) exp -β κ 2 α , up to a constant depending on the wavelet basis. The first term is controlled via the Cauchy-Schwarz inequality

k ∞ ≤κ | f, φ k | (2κ + 1) d   k ∞ ≤κ | f, φ k | 2   1/2 ≤ (2κ + 1) d f, φ • 2 ,
for a constant depending on d only.

Next consider, for l ≥ 0, f, ψ l• 1 . As before, letting κ l = 2 l/2 , we have

f, ψ l• 1 = k ∞ ≤κ l | f, ψ lk | + k ∞ >κ l | f, ψ lk | .
Arguing as with (44), the second term is bounded by 2 ld/2 E α,β (f ) exp -β κ l 2 α , up to a constant depending on the wavelet basis. The first term is controlled as above. Then, using the l q triangular

X 1 ,

 1 . . . , X n i.i.d. ∼ f . For real numbers a, b, we write a ∧ b = min(a, b) and a ∨ b = max(a, b). Given sequences (a n ) and (b n ), we write a n b n if there exists a constant C > 0 that is independent of n such that for all n, a n ≤ Cb n ; we also write a n b n if a n b n and b n a n . Given any subset A of a metric space (A, d), we write |A| d for the d-diameter of A, defined by |A| d := sup x,y∈A d(x, y). Given a subset B ⊂ A and a point a ∈ A, we define the distance of a to B as d(a, B) := inf b∈B d(a, b).

  and let s > r ≥ 0. If d > 4, assume additionally that s ≤ 2d-4 d-4 r + d d-4 . Fix α ∈ (0, 1), and δ > 1/2. Consider the confidence set based on a sample of size 2n, S 1 ∪ S 2 given by

  and s > r ≥ 0. Let γ ≥ 1 be as in Theorem 6. If d > 4, assume additionally that s ≤ 2d-4 d-4 r + d d-4 . Fix α ∈ (0, 1). Consider the confidence set based on a sample of size 2n given by

. 4 +

 4 Rn (r) = (log n) γd/2 n log n -r+1 2r+d , Rn (s) = (log n) γd/2 n log n -s+1 2s+dBy the same argument as in the proof of Theorem 4, the W (n) -diameter of C n is bounded by a constant multiple of(log n) γd/4+1/2 n -1V jn + G jn + n -1/2 .The final term is dominated by the first, and (using the condition on s when d > 4) G jn = O( Rn (s)) = o( Rn (r)). One checks the first term is of the correct order as in Theorem 4. Finally, since Var

2 = 2 =

 22 r-k σ -d f (σ -1 • +kσ -1 h) r-k σ d f (σ -1 • +kh) σ -d/2 ω r (f, σ -1 t, 2). Therefore, with |f | B s pq pq = g p + |g| B s pq = σ -d(1-1/p) f p + σ -d(1-1/p)-s |f | B s pq ,(46)so that g B s 2q≤ B for σ large enough. Also, since f ∈ L ∞ (R d ), g ≤ M for σ large enough. So, for some large L, g ∈ G(s).

2q≤ g B r 2q + 2 -

 2q2 Ln(r+d/2) k∈Z∩[0,2 Ln ) d ,ι∈I ω k,ι Ψ for some C > 0 depending on d only, reasoning as for (46), and since B s 2q ⊂ B r 2q , f n ω is the • B r 2q -Besov ball of radius B for small enough and σ large enough. Then, by assumption, R d f n ω (t)dt = 1 and, since 2 -Ln(r+d/2)

1 2 χ 2 Q,where Q = N - 1 n

 21 ⊗n , P ⊗n 0 Nn m=1 P m and P 0 has density g ∈ H 0 . Then, for any 1 ≤ m, q ≤ N n , one has by properties of the wavelet basis, denoting ν m = f ω (m) -

2s+d , d ≥ 3,where the infimum is over all estimators fn based on a sample of size n.
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Then for all n ≥ n 0 (B), C n satisfies [START_REF] Kantorovich | On a space of totally additive functions[END_REF], as well as [START_REF] Lepski | On estimation of the L r norm of a regression function[END_REF] and [START_REF] Lepskii | On a Problem of Adaptive Estimation in Gaussian White Noise[END_REF] for a suitable constant K > 0 with the rates

In particular, C n is a near-optimal adaptive W 1 confidence set over F(s) ∪ F(r).

The proof is almost identical to that of Theorem 4; a more detailed argument can be found in Appendix C. In particular, this proves statements (i) and (ii) of Theorem 2.

Non-Existence of Confidence Sets

We now turn to the non-existence result (iii) in Theorem 2, a consequence of Lemma 2 (which holds in a general decision theoretic framework). We therefore require a lower bound on the minimax separation rate in the testing problem

where the separated alternative G(r, ρ) is defined analogously to before:

Theorem 9. Assume that d > 4 and s > r ≥ 0. Let ρ * n be the minimax rate of testing for the problem [START_REF] Panaretos | Statistical aspects of Wasserstein distances[END_REF]. Then, for L sufficiently large in [START_REF] Juditsky | Nonparametric confidence set estimation[END_REF], there exist a constant c > 0 depending on the parameters of the class G(s) and the wavelet basis, and n 0 = n 0 (B, M ) such that for all n ≥ n 0 ,

Also, (18) holds for any β < 1.

The proof is given in Appendix C, and is similar to the proof of Theorem 5. As before, this implies statement (iii) of Theorem 2.

Appendix A: Wavelets and Besov Spaces

Here we introduce the wavelet bases we use, and define the various norms and spaces used in our analysis.

A.1. Wavelet Bases of R d and T d

Let S ∈ N. We begin with an S-regular wavelet basis of L 2 (R) generated by scaling function Φ and wavelet function Ψ,

Concretely, we take sufficiently regular Daubechies wavelets: see [START_REF] Daubechies | Ten lectures on wavelets[END_REF], [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF]Chapter 4] , [START_REF] Meyer | Wavelets and Operators[END_REF] for details. Such a wavelet basis has the following properties:

Appendix B: Proofs for Section 3

We first give the definition of our adaptive estimator. The estimator is based on the empirical wavelet coefficients, defined as

We also write f l• and fl• for the vectors of coefficients (f lk : 0 ≤ k < 2 ld ) and ( flk : 0 ≤ k < 2 ld ) respectively.

Next, define the truncation point l max such that

, and for 0 ≤ l ≤ l max , define the thresholds

, for some τ > 0 to be chosen below, depending only on B, d, M and the wavelet basis. We then define

To prove Theorem 3, we must first collect some results on the expectation and concentration of the empirical wavelet coefficients flk . Lemma 5. Let f ∈ F(s) and let flk be the empirical wavelet coefficients of f based on a sample of n observations. Then for every t ≥ 2 there exists a constant C t depending only on t such that for all l ≥ 0 satisfying

For t = 2, the proof is immediate from the i.i.d. assumption on the data, the orthonormality of the wavelets and the bound f ∞ ≤ M . For t > 2, the result follows from the t = 2 case and Hoffmann-Jørgensen's inequality ([18, Theorem 3.1.22], [START_REF] Hoffmann-Jørgensen | Sums of independent Banach space valued random variables[END_REF]). We also require a concentration result for the flk ; for this we use Bernstein's inequality ([18, Theorem 3.1.7]). 

Appendix C: Proofs for Section 4

Proof of Proposition 4. As f and fn have the same total mass, we may without loss of generality take the supremum over functions h ∈ Lip 1 (R d ) for which h(0) = 0; observe that x → x is an envelope for this function class. Since both f and fn have finite first moments (almost surely), the wavelet expansion of any h in this class converges in L 1 (f ) and L 1 ( fn ) and so

As the father wavelets φ k are compactly supported in some interval about k,

for some constant depending on the wavelet basis. Moreover, h -K(h) = l≥0 k∈Z d h, ψ lk ψ lk is in a B 1 ∞∞ -ball of radius depending only on the wavelet basis, and so by [START_REF] Bull | Adaptive confidence sets in L 2[END_REF],

Plugging these uniform estimates for the wavelet coefficients of h into the first equation gives the result.

Proof of Theorem 6. When d = 1, the empirical measure achieves the stated rate ( [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF]). Thus we assume d ≥ 2.

The estimator we use is

where flk are empirical wavelet coefficients and the cutoffs κ ln , l n (s) are chosen such that

, for a constants depending on the wavelet basis and d. The first term is upper bounded by

as the series converges.

In the end, following our assumptions on f B s 2q ,

where the constants depend on the wavelet basis, d, the arbitrary κ > 0 we took, s, α, β and q.