Tammam Bakeer 
email: tammam.bakeer@tu-dresden.de
  
Assessment the stability of masonry walls by the transfer-matrix method

Introduction

The load bearing capacity of a masonry wall has influenced by the eccentricity of load and slenderness ratio, which in turn, depends on the geometry, the stiffness of the crosssection, the boundary conditions, and the existence of any lateral load. Masonry walls may have different positions and functions in the structure which might be subjected to a different type of loading and boundary conditions (Figure 1).

Figure 1 The bar idealization of masonry wall with the acting loads and boundary conditions

It is more appropriate for practical use and standards to describe the influence of these factors using a capacity reduction factor Φ for the compressive strength allowing the actual conditions. Since masonry material has low tensile strength, the wall may crack under certain conditions leading to further complications due to the reduction in the effective cross-section. Masonry members under compression might fail either because of material overstressing for squat members or because of stability failure for slender members. For squat masonry members, the failure takes place if the compressive strain at any cross-section reached the ultimate compressive strain of the material. Nevertheless, for slender masonry elements the failure occurs before reaching the 𝑁 ℎ 𝑒 0 𝑁 𝑒 𝑛 𝑄 0 𝑄 𝑛 ultimate compressive strain of the material at any cross-section. The former mode of failure is called material failure and the latter is called stability failure. Both failure modes are going to play a crucial role in the determination of the capacity reduction factor.

Stability theory of masonry walls 2.1 Background

A masonry wall of height ℎ and thickness 𝑡 is considered. The wall is subjected to an eccentric compressive load 𝑁 with eccentricity 𝑒 0 at both top and bottom ends. A strip length of the wall equal to 1 is considered assuming that the load is uniformly distributed over the length of the wall. The wall assumed to be freely rotating on the upper and lower edges (pinned-pinned model) and not supported at the side edges (or it has enough length so that the effect of the side edges boundary conditions can be ignored). Figure 2 shows the schematic configuration of the wall model which is going to be used to study the buckling of masonry.

The scope of this theory is slender masonry walls ℎ/𝑡 ≥ 3. The deformations due to shear have been ignored so that Euler-Bernoulli theory of slender beams can be applied. In Euler-Bernoulli beam theory, the crosssection that is perpendicular to the normal axis of the beam remains plane after bending. i.e. no deformations occur in the plane of the cross-section.

The curvature of deformation

Based on Euler-Bernoulli hypothesis of plane sections the curvature 𝜅 of the beam at distance 𝑦 is given by:

𝜅 = 1 𝜚 = - 𝑑 2 𝑒 𝑑𝑦 2 (1 + 𝑑𝑒 𝑑𝑦 ) 3 2 , ( 1 
)
where 𝜚 the radius of curvature of deformation, 𝑒 is the total eccentricity of the load which is the sum of the eccentricity due to the first order effect 𝑒 𝐼 and second order effect 𝑒 𝐼𝐼 : 

For small bending deformations, the curvature of deformation have approximated simply as:

𝜅 = - 𝑑 2 𝑒 𝑑𝑦 2 .
(3)

Equilibrium and compatibility equations

Masonry is an anisotropic material with low or no tensile strength in comparison to its compression strength. This makes masonry very sensitive to the flexural deformations. It is important to consider the state of damage due to cracking of the cross-section. In Figure 2 the stress distribution has been plotted on two sections: the first one is uncracked section and the second one is cracked section.

The stress and strain state under flexural deformation in both cross-sections of the wall has been considered. The stress / strain state at both cross-sections is going to be used to write the equilibrium equations considering the notations defined in Figure 3.

Figure 3 The stress and strain state in the cross-section of masonry wall under flexural deformation.

From the equilibrium equations, the normal force 𝑁 and the bending moment 𝑀 can be obtained by integrating the stresses over the area of the cross section: where 𝑧 is the abscissa of the differential area 𝑑𝐴 𝑤 measured from the centre of the cross-section. The differential area 𝑑𝐴 𝑤 is equal to 1 • 𝑑𝑧, since the strip length of the wall is 1. The moment and normal force can be rewritten as the following:

𝑁 = ∫ 𝜎 • 𝑑𝐴 𝑤 𝐴 𝑎𝑛𝑑 𝑀 = -∫ 𝜎 • 𝑧 • 𝑑𝐴 𝑤 𝐴 . (4) 
𝑁 = ∫ 𝜎 • 𝑑𝑧 𝑡 2 - 𝑡 2 𝑎𝑛𝑑 𝑀 = -∫ 𝜎 • 𝑧 • 𝑑𝑧 𝑡 2 - 𝑡 2 . ( 5 
)
Based on Euler-Bernoulli hypothesis of plane sections, the strain at location 𝑧 is given by:

𝜀 = 𝜀 0 + 𝜅 • 𝑧 . (6) 
This yields:

𝑧 = 𝜀 -𝜀 0 𝜅 𝑎𝑛𝑑 𝑑𝑧 = 1 𝜅 𝑑𝜀 . (7) 
Considering equation [START_REF] Desayi | Equation for the stress-strain curve of concrete[END_REF], the above integrations in equation ( 5) can be written in terms of strains as following:

𝑁 = 1 𝜅 ∫ 𝜎 • 𝑑𝜀 𝜀 1 𝜀 2 ; (8) 
𝑀 = 1 𝜅 2 ∫ 𝜎 • (𝜀 -𝜀 0 ) • 𝑑𝜀 𝜀 1 𝜀 2 . ( 9 
)
where 𝜀 1 is the maximum strain at the compression edge of the cross section, and 𝜀 2 is the minimum strain at the opposite edge.

Euler-Bernoulli hypothesis gives:

𝜅 • 𝑡 = 𝜀 1 -𝜀 2 = Δ𝜀 . (10) 
The flexural stiffness of the cross-section of the wall ℬ(𝜅) can be defined as following:

ℬ = 𝑀 𝜅 = 1 𝜅 3 ∫ 𝜎 • (𝜀 -𝜀 0 ) • 𝑑𝜀 𝜀 1 𝜀 2 . ( 11 
)

General relative description

A relative description for the theory of masonry buckling is going to be formulated.

Considering the notations defined in section 2.1, the relative form can be derived by using the following substitutions:

(a) relating all dimensions to the thickness of the wall. This gives:

ℎ = 𝑟 ℎ • 𝑡 ; 1 𝜅 = 1 𝑟 𝜅 • 𝑡 ; 𝑎 = 𝑟 𝑎 • 𝑡 ; 𝑦 = 𝑟 ℎ • 𝜉 • 𝑡 ; (12) 
𝑒 𝐼 = 𝑟 𝑒 𝐼 • 𝑡 ; 𝑒 𝐼𝐼 = 𝑟 𝑒 𝐼𝐼 • 𝑡 ; 𝑒 = 𝑟 𝑒 • 𝑡 . (13) 
(b) relating the stresses 𝜎 and the initial modulus of elasticity 𝐸 to the mean compressive strength of masonry 𝑓 and the strains 𝜀 to the strain corresponding to compressive strength 𝜀 𝑐 . This gives:

𝜎 = 𝑓 • 𝜎 ̅ ; 𝑓 𝑡 = 𝑓 • 𝑟 𝑓 𝑡 ; 𝐸 = 𝑓 • 𝐾 𝐸 ; (14) 
𝜀 = 𝜀 𝑐 • 𝜀̅ ; 𝜀 𝑢 = 𝜀 𝑐 • 𝜖 𝑢 ; 𝜀 𝑡 = 𝜀 𝑐 • 𝜖 𝑡 ; (15) 
where 𝑓 𝑡 the tensile strength, 𝜀 𝑢 is the ultimate compressive strain and 𝜀 𝑡 is the ultimate tensile strain of the material, 𝜉 is the relative coordinate of the cross-section measured from the mid-height of the wall.

By applying these transformations, a new wall model can be obtained with unit thickness and unit height (Figure 4). Using relative equations in ( 12) and ( 13), the differential expression (3) can be transferred to the relative form as following:

𝑟 ℎ 2 • 𝑟 𝜅 = - 𝑑 2 𝑟 𝑒 𝑑𝜉 2 , (16) 
where

𝑑 2 𝑒 𝑑𝑦 2 = 1 𝑡 • 𝑟 ℎ 2 𝑑 2 𝑟 𝑒 𝑑𝜉 2 . ( 17 
)
Considering the relative form description, equation [START_REF] Falk | Biegen, Knicken und Schwingen des mehrfeldrigen geraden Balkens[END_REF] will take the following form:

𝑟 𝜅 = 𝜀 𝑐 • (𝜀̅ 1 -𝜀̅ 2 ) = 𝜀 𝑐 • Δ𝜖 . (18) 
In analogue to equations ( 8), ( 9) and ( 11) the relative normal force, relative bending moment, and relative bending stiffness can be written as following:

𝑛 = ( 𝜀 𝑐 𝑟 𝜅 ) ∫ 𝜎 ̅ • 𝑑𝜀̅ 𝜀 ̅ 1 𝜀 ̅ 2 , ( 19 
) 𝑚 = ( 𝜀 𝑐 𝑟 𝜅 ) 2 ∫ 𝜎 ̅ • (𝜀̅ -𝜀̅ 0 ) • 𝑑𝜀̅ 𝜀 ̅ 1 𝜀 ̅ 2 , ( 20 
)
𝑟 ℬ = 𝑚 𝑟 𝜅 = 𝜀 𝑐 2 𝑟 𝜅 3 ∫ 𝜎 ̅ • (𝜀̅ -𝜀̅ 0 ) • 𝑑𝜀̅ 𝜀 ̅ 1 𝜀 ̅ 2 , (21) 
where

𝑛 = 𝑁 𝑓 • 𝑡 𝑎𝑛𝑑 𝑚 = 𝑀 𝑓 • 𝑡 2 , ( 22 
)
𝑟 ℬ = ℬ 𝑓 • 𝑡 3 . ( 23 
)
Figure 4 Relative description of the wall deformation and stress/strain state considering the second order effect.

By inserting equation [START_REF] Jäger | Ein neues Materialgesetz zur wirklichkeitsnahen Beschreibung des Baustoffverhaltens von Mauerwerk[END_REF] in equation ( 19), the relative normal force 𝑛 becomes:

𝑛 = 𝐼 𝑛 (𝜀̅ 1 ) -𝐼 𝑛 (𝜀̅ 2 ) 𝜀̅ 1 -𝜀̅ 2 , (24) 
where

𝐼 𝑛 (𝜖) = { 𝑛 𝜖 (𝜖), 𝜖 ≥ 𝜖 𝑡 𝑛 𝜖 (𝜖 𝑡 ), 𝜖 < 𝜖 𝑡 ; ( 25 
)
𝑛 𝜖 (𝜖) = ∫ 𝜎 ̅ • 𝑑𝜀̅ 𝜖 0 . (26) 
By inserting equation [START_REF] Jäger | Ein neues Materialgesetz zur wirklichkeitsnahen Beschreibung des Baustoffverhaltens von Mauerwerk[END_REF] in equation [START_REF] Lewicki | Nośność konstrukcji betonowych w przypadku technicznego obciążenia osiowego[END_REF], the relative bending moment 𝑚 becomes: 

𝑟 𝑒 Preprint 𝑚 = 1 (𝜀̅ 1 -𝜀̅ 2 ) 2 [ ∫ 𝜎 ̅ • 𝜀̅ • 𝑑𝜀̅ 𝜀 ̅ 1 𝜀 ̅ 2 -𝜀̅ 0 ∫ 𝜎 ̅ • 𝑑𝜀̅ 𝜀 ̅ 1 𝜀 ̅ 2 ] , (27) 
with 𝜀̅ 0 = 1 2

(𝜀̅ 1 + 𝜀̅ 2 ). By using equations ( 19) and [START_REF] Marguerre | Berechnung vielgliedriger Gelenkketten I. Das Übertragungsverfahren und seine Grenzen[END_REF], equation [START_REF] Pestel | Ein allgemeines Verfahren zur Berechnung freier und erzwungener Schwingungen von Stabwerken[END_REF] becomes:

𝑚 = 1 (𝜀̅ 1 -𝜀̅ 2 ) 2 [𝐼 𝑚 (𝜀̅ 1 ) -𝐼 𝑚 (𝜀̅ 2 ) -( 𝜀̅ 1 + 𝜀̅ 2 2 ) (𝐼 𝑛 (𝜀̅ 1 ) -𝐼 𝑛 (𝜀̅ 2 ))] , (28) 
where

𝐼 𝑚 (𝜖) = { 𝑚 𝜖 (𝜖), 𝜖 ≥ 𝜖 𝑡 𝑚 𝜖 (𝜖 𝑡 ), 𝜖 < 𝜖 𝑡 ; ( 29 
)
𝑚 𝜖 (𝜖) = ∫ 𝜀̅ • 𝜎 ̅ • 𝑑𝜀̅ 𝜖 0 . (30) 
The integral expressions in equations ( 26) and ( 30) are dependent from the material model. In Table 2 the values of 𝑛 𝜖 and 𝑚 𝜖 are calculated for different material models.

The relative normal force becomes equal to the capacity reduction factor Φ at failure. Therefore, equation ( 24) can be written as following:

Φ = 𝐼 𝑛 (𝜀̅ 1 ) -𝐼 𝑛 (𝜀̅ 2 ) 𝜀̅ 1 -𝜀̅ 2 . (31) 
The relative bending moment 𝑚 equals the value of 𝑛 • 𝑟 𝑒 . Consequently, the relative eccentricity can be calculated as following:

𝑟 𝑒 = 𝑚 𝑛 = 1 𝜀̅ 1 -𝜀̅ 2 • 𝐼 𝑚 (𝜀̅ 1 ) -𝐼 𝑚 (𝜀̅ 2 ) 𝐼 𝑛 (𝜀̅ 1 ) -𝐼 𝑛 (𝜀̅ 2 ) - 1 2 ( 𝜀̅ 1 + 𝜀̅ 2 𝜀̅ 1 -𝜀̅ 2 ) . (32) 
Considering that the relative maximum strain is 𝜀̅ 1 = 𝜖 and the relative strain difference is 𝜀̅ 1 -𝜀̅ 2 = Δ𝜖, this yields 𝜀̅ 1 + 𝜀̅ 2 = 2𝜖 -Δ𝜖. The equations ( 16), ( 18), ( 31) and (32) can be written in terms of the relative maximum strain 𝜖 and the relative strain difference Δ𝜖 as following:

𝑟 ℎ 2 • 𝜀 𝑐 • Δ𝜖 = - 𝑑 2 𝑟 𝑒 𝑑𝜉 2 ; (33) 
Φ = 𝐼 𝑛 (𝜖) -𝐼 𝑛 (𝜖 -Δ𝜖) Δ𝜖 ; (34) 
𝑟 𝑒 = 1 Δ𝜖 • 𝐼 𝑚 (𝜖) -𝐼 𝑚 (𝜖 -Δ𝜖) 𝐼 𝑛 (𝜖) -𝐼 𝑛 (𝜖 -Δ𝜖) - 1 2 ( 2𝜖 -Δ𝜖 Δ𝜖 ) 𝑜𝑟 𝑟 𝑎 = 1 2 (1 -2𝑟 𝑒 ) = 1 Δ𝜖 [𝜖 - 𝐼 𝑚 (𝜖) -𝐼 𝑚 (𝜖 -Δ𝜖) 𝐼 𝑛 (𝜖) -𝐼 𝑛 (𝜖 -Δ𝜖) ] . (35) 

The differential equation

The relative form description is going to be used to formulate the differential equation of buckling problem for masonry wall under combined eccentric compression and lateral loads (Figure 5).

Figure 5 The deformation state of masonry wall under eccentric compression and lateral loads considering the second order effect.

Due to the existence of lateral load, the thrust line isn't straight anymore. Because of this, equation ( 16) should be modified as following:

𝑟 ℎ 2 • 𝑟 𝜅 = - 𝑑 2 (𝑟 𝑒 -𝑟 𝑒 𝑞 ) 𝑑𝜉 2 , ( 36 
)
where 𝑟 𝑒 is the relative distance from the thrust line to the deflected axis of the wall and 𝑟 𝑒 𝑞 is the relative displacement resulting from the lateral load:

𝑟 𝑒 𝑞 = 𝑚 𝑞 Φ , (37) 
where 𝑚 𝑞 is the relative moment produced by the lateral load.

Considering 𝑚 = 𝑟 𝑒 • Φ in equation ( 21) yields:

𝑟 𝑒 0 𝑟 𝑒 𝜉 𝑟 𝑒 𝜉 1 2 Φ 0 Φ 𝑛 𝑟 𝑞 (𝜉)
𝑟 𝑒 𝑛 thrust line wall axis

𝑟 𝑒 𝑞 Φ Preprint 𝑟 𝜅 = Φ 𝑟 ℬ • 𝑟 𝑒 . (38) 
By substituting 𝑟 𝜅 from equation [START_REF] Smith | Ultimate Flexural Analysis Based on Stress-Strain Curves of Cylinders[END_REF] and 𝑟 𝑒 𝑞 from equation [START_REF] Tolle | Die Regelung der Kraftmaschinen -Berechnung und Konstruktion der Schwungräder, des Massenausgleichs und der Kraftmaschinenregler in Elementarer Behandlung[END_REF] in equation [START_REF] Smith | Ultimate Theory in Flexure by Exponential Function[END_REF], the following differential expression can be obtained:

𝑑 2 𝑟 𝑒 𝑑𝜉 2 + 𝑟 ℎ 2 • Φ 𝑟 ℬ • 𝑟 𝑒 = 1 Φ 𝑑 2 𝑚 𝑞 𝑑𝜉 2 . ( 39 
)
Differentiating the relative moment 𝑚 𝑞 twice gives:

𝑑 2 𝑚 𝑞 𝑑𝜉 2 = -𝑟 ℎ 2 • 𝑟 𝑞 , (40) 
where 𝑟 𝑞 = 𝑞/𝑓 the relative value of the lateral load 𝑞 taken with respect to the compressive strength 𝑓. The differential equation of buckling can be obtained by inserting equation [START_REF] Uhrig | The transfer matrix method seen as one method of structural analysis among others[END_REF] in equation ( 39):

𝑑 2 𝑟 𝑒 𝑑𝜉 2 + 𝑟 ℎ 2 • Φ 𝑟 ℬ • 𝑟 𝑒 = - 𝑟 ℎ 2 Φ 𝑟 𝑞 . (41) 
The differential equation of buckling in equation ( 41) relies on the relative stiffness of the cross-section. The relative stiffness in turn is a function of the stress/strain state and thus of the uncracked part of the cross-section. Even for a linear material model, the relative stiffness hasn't a constant value due to cracking of the cross section. The closed form solution of equation ( 41) for a non-linear material model is only possible under special conditions.

Normalized stress-strain relationship

The uniaxial stress-strain relationship of masonry material has been investigated in several experimental works (see eg. [START_REF] Pflücke | Traglastbestimmung Druckbeanspruchter Mauerwerkswände am Ersatzstabmodell unter wirklichkeitsnaher Berücksichtigung des Materialverhaltens[END_REF]). Figure 6 shows the general form of the stressstrain diagram. Several parameters might be used to define this diagram, but the basic parameters are the compressive strength of masonry 𝑓 and its corresponding strain 𝜀 𝑐 . By using these two parameters, the stress-strain relationship can be transformed into the normalized form 𝜎 ̅ -𝜀̅ using the following transformations:

𝜎 ̅ = 𝜎 𝑓 ; 𝜀̅ = 𝜀 𝜀 𝑐 , (42) 
where 𝜎 ̅ is the normalized stress and 𝜀̅ is the normalized strain. The normalized stressstrain relationship is more suitable to characterize the shape of the stress-strain relationship of different materials. Figure 7 shows examples of the stress-strain relationships in normalized form for different masonry material combinations. The range of the descending branch on the stress-strain relationship can be identified by the ultimate strain 𝜀 𝑢 . On the normalized stress-strain diagram this parameter corresponds to the normalized ultimate strain 𝜖 𝑢 :

𝜖 𝑢 = 𝜀 𝑢 𝜀 𝑐 ; 𝜖 𝑢 ≥ 1 . ( 43 
)
When 𝜖 𝑢 → 1, the material is considered brittle and when 𝜖 𝑢 ≫ 1 the material is ductile.

Figure 6 General form of non-linear stress-strain relationship of masonry material.

Figure 7 Normalized stress-strain relationships plotted in one diagram on the basis of experimental data in [START_REF] Pflücke | Traglastbestimmung Druckbeanspruchter Mauerwerkswände am Ersatzstabmodell unter wirklichkeitsnaher Berücksichtigung des Materialverhaltens[END_REF]. 

Material models

Figure 8 shows the stress-strain diagrams for different material models plotted for 𝑐 = 1,5.

It is worth mentioned that materials with the shape control parameter 𝑐 are close to each other in the ascending branch. The materials with no shape parameters like the linear elastic model, the quadratic parabola of Hognestad [START_REF] Hognestad | Study of combined bending and axial load in reinforced concrete members[END_REF], and Desayi/Krishnan model [START_REF] Desayi | Equation for the stress-strain curve of concrete[END_REF] deviate from the other diagrams with the parameter 𝑐. Table 1 Normalized form uniaxial stress-strain relationship of material models.

Material model Normalized form parameters

Perfectly plastic 

𝜎 ̅ = 1 𝑁𝑜 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 Linear 𝜎 ̅ = 𝜀̅ 𝑁𝑜 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 Quadratic Parabola Hognestad [17] 𝜎 ̅ = 2 • 𝜀̅ -𝜀̅ 2 𝑁𝑜 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 DIN 1045-1 [8] 𝜎 ̅ = 1 -(1 -𝜀̅ ) 𝑐 𝑐 ≥ 1 Vassilev [18] 𝜎 ̅ = 𝑐 • 𝜀̅ -(𝑐 -1) • 𝜀̅ 𝑛 𝑐 ≥ 1 ; 1 ≤ 𝑛 ≤ 𝑐 𝑐 -1
𝜎 ̅ = 𝜎 𝑓 𝜀̅ = 𝜀 𝜀 𝑐 Angervo [1; 3] 𝜎 ̅ = 1 𝑛 - 1 𝑛 ( 1 √2𝑐 • 𝑛 • 𝜀̅ + 1 ) 𝑐 ≥ 1 ; 𝑛 = 1 - 1 4𝑐 - 1 𝑐 √ 1 16 + 𝑐 2 Lweicki [20; 21] 𝜎 ̅ = 𝑛 • (1 -𝑒 -𝑐 𝑛 𝜀 ̅ ) 𝑐 ≥ 1
Smith and Yong [36; 37] / Schubert and Meyer [START_REF] Meyer | Spannungs-Dehnungs-Linien von Mauerwerk[END_REF] 𝜎 ̅ = 𝜀̅ • 𝑐 1-𝜀 ̅ 𝑐 ≥ 1

Desayi and Krishnan [START_REF] Desayi | Equation for the stress-strain curve of concrete[END_REF] 𝜎 ̅ = 2𝜀̅ 1 + 𝜀̅ 2 𝑁𝑜 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

Popovics [30] 𝜎 ̅ = 𝑐 • 𝜀̅ 1 + (𝑐 -1)𝜀̅ 𝑛 𝑐 ≥ 1 ; 𝑛 = 𝑐 𝑐 -1 Tsai [39] 𝜎 ̅ = 𝑐 • 𝜀̅ 1 + (𝑐 - 𝑛 𝑛 -1 )𝜀̅ + 𝜀̅ 𝑛 𝑛 -1 𝑐 ≥ 1 ; 1 ≤ 𝑛 ≤ 𝑐 𝑐 -1 Sargin [33; 34] 𝜎 ̅ = 𝑐 • 𝜀̅ + (𝑛 -1)𝜀̅ 2 1 + (𝑐 -2) • 𝜀̅ + 𝑛 • 𝜀̅ 2 𝑐 ≥ 1 ; 𝑛 ≥ 1 EN 1992-1-1 [9] 𝜎 ̅ = 𝑐 • 𝜀̅ -𝜀̅ 2 1 + (𝑐 -2) • 𝜀̅ 𝑐 ≥ 1 Saenz [32] 𝜎 ̅ = 𝑐 • 𝜀̅ 1 + (𝑐 -2) • 𝜀̅ + 𝜀̅ 2 𝑐 ≥ 1
This shows the importance of having the parameter 𝑐 to control the ascending branch of the stress-strain relationship. The material models of Lweicki [20; 21], Smith and Yong [36; 37] / Schubert and Meyer [START_REF] Meyer | Spannungs-Dehnungs-Linien von Mauerwerk[END_REF], Angervo [1; 3] are almost identical. Without considering the descending branch, the material models proposed for plain concrete can be used to model masonry materials as well. Nevertheless, the difference is in the descending branch when the material starts to get softening. Here most concrete material models with one or no shape parameters give more ductility than that in masonry materials. However, it is necessary for some materials to use two shape parameters like the models of (Vassilev [18], Tsai [START_REF] Tsai | Uniaxial Compressional Stress-Strain Relation of Concrete[END_REF], Sargin [33; 34]) to control the ascending branch and descending branch as well. The models of Tsai [START_REF] Tsai | Uniaxial Compressional Stress-Strain Relation of Concrete[END_REF], Sargin [33; 34] are rational form functions, which produce complications in the mathematical implementation of the model for buckling problem.

Material integrals

For the mathematical and numerical implementation of the material model, it is necessary to calculate the integrals defined in equations ( 26) and [START_REF] Popovics | A numerical approach to the complete stress-strain curve of concrete[END_REF]. The possible closed form calculation of the material integrals are demonstrated in Table 2. For some material models, like the model of Popovics, Tsai and Sargin/Saenz it is not possible to get a closed form integrals.

If a closed form integration is not possible, the material stress-strain relationship can be integrated numerically using one of the numerical integration methods like Simpson's rule, Newton-Cotes, or Gaussian quadrature. The numerical integration can be effectively used for the tabularized form of the stress-strain relationship.

Table 2 The material integrals 𝑛 𝜖 and 𝑚 𝜖 defined in equations ( 26) and ( 30)

Material model 𝑛 𝜖 = ∫ 𝜎 ̅ • 𝑑𝜀̅ 𝜖 0 𝑚 𝜖 = ∫ 𝜎 ̅ • 𝜀̅ • 𝑑𝜀̅ 𝜖 0 Perfectly plastic 𝜖 1 2 • 𝜖 2 Linear 1 2 • 𝜖 2 1 3 • 𝜖 3 Quadratic Parabola 𝜖 2 - 1 3 • 𝜖 3 2 3 • 𝜖 3 - 1 4 • 𝜖 4 DIN 1045-1 𝜖 - 1 𝑐 + 1 + (1 -𝜖) 𝑐+1 𝑐 + 1 𝜖 2 2 - 1 (𝑐 + 1)(𝑐 + 2) + (𝜖 + 𝑐 • 𝜖 + 1)(1 -𝜖) 𝑐+1 (𝑐 + 1)(𝑐 + 2) Vassilev 𝑐 2 • 𝜖 2 - (𝑐 -1) 𝑛 + 1 • 𝜖 𝑛+1 𝑐 3 • 𝜖 3 - (𝑐 -1) 𝑛 + 2 • 𝜖 𝑛+2 Angervo 𝜖 𝑛 - √2𝑛 • 𝑐 • 𝜖 + 1 𝑛 2 𝑐 𝜖 2 2𝑛 - 12√2𝑛 • 𝑐 • 𝜖 + 1 -4(2𝑛 • 𝑐 • 𝜖 + 1) 3 2 + 3 24 • 𝑛 3 𝑐 2 Lweicki 𝜖 • 𝑛 - 𝑛 2 𝑐 (1 -𝑒 -𝑐 𝑛 •𝜖 ) 𝑛 • 𝜖 2 2 + 𝑛 2 𝑐 2 (𝑛 + 𝑐 • 𝜖) • 𝑒 -𝑐 𝑛 •𝜖 - 𝑛 3 𝑐 2
Smith and Yong / Schubert and Meyer

-𝑐 1-𝜖 • (𝜖 • ln 𝑐 -𝑐 • 𝜖 + 1) ln 2 𝑐 -𝑐 1-𝜖 • (𝜖 2 • ln 2 𝑐 -2𝑐 𝜖 + 2𝜖 ln 𝑐 + 2) ln 3 𝑐

Desayi and

Krishnan ln (𝜖 2 + 1) 2𝜖 -2arctan (𝜖)

EN 1992-1-1 𝜖 ( 1 (𝑐 -2) 2 + 𝑐 𝑐 -2 ) - 𝜖 2 2(𝑐 -2) - (c -1) 2 (𝑐 -2) 3 • ln(𝜖(𝑐 -2) + 1)
𝑇𝑜𝑜 𝑙𝑜𝑛𝑔

Transfer-matrix method (TMM)

It is not always possible to get a closed form analytical solution for the differential equation ( 41), especially with a non-linear material model. Nevertheless, numerical solutions have been instrumental in solving this problem. Several numerical solutions for masonry buckling were proposed in the last decades. Due to the complexity of the non-linear differential equations, the analytical solutions are only possible in a few special cases.

Frisch-Fay [13; 14] developed an analytical and matrix displacement approach which used to obtain the load-deflection relationship of columns made of no-tension material. Payne, et al. [START_REF] Payne | The analysis and design of slender brick walls[END_REF] developed a method of analysis combining the finite element with the finite difference to predict the load bearing capacity of slender masonry walls. The material model of the units was assumed linear while for the mortar it was assumed non-linear.

The method includes the effects of the tensile strength of the units, the non-linear behaviour of the mortar in the bed joints, the initial deviations from vertical straightness, and different end eccentricities. Cerioni, et al. [START_REF] Cerioni | Influence of a nonlinear stress-strain relationship on the stability of certain masonry walls[END_REF] proposed a numerical procedure which takes into account both the material and geometrical nonlinearities. Several finite element studies have been addressed the stability problem of a masonry wall. Lu, et al. [START_REF] Lu | Application of the arc-length method for the stability analysis of solid unreinforced masonry walls under lateral loads[END_REF] applied the arc-length method for the stability analysis of solid unreinforced masonry walls under lateral loads. Cavaleri et al. [START_REF] Cavaleri | Modeling of Out-of-Plane Behavior of Masonry Walls[END_REF] studied the flexural behavior of masonry considering material model with a limited tension and non-linear stress-strain relationship in compression. Purtak [START_REF] Purtak | Tragfähigkeit von schlankem Quadermauerwerk aus Naturstein[END_REF] provided a numerical solution for buckling problem using finite element modelling of natural masonry on the micro level. A linear material model were used for the units and a non-linear material model were used for the mortar. Vassilev [18; 41; 42] proposed a numerical iterative solution based on the transfer-matrix method and used a non-linear material model that covers different levels of non-linearity.

In the present section, a numerical solution is going to be proposed for the differential equation ( 41) based on the transfer-matrix method.

Background

The transfer-matrix method TMM was founded in Germany during the fifties (Uhrig [START_REF] Uhrig | The transfer matrix method seen as one method of structural analysis among others[END_REF]) and largely elaborated in the sixties. Three authors mainly contributed to the method in the field of structural mechanics, namely: Pestel [27; 28], Marguerre [23; 24] and Falk [START_REF] Falk | Biegen, Knicken und Schwingen des mehrfeldrigen geraden Balkens[END_REF][START_REF] Falk | Die Berechnung des beliebig gestützten Durchlaufträgers nach dem Reduktionsverfahren[END_REF][START_REF] Falk | Das direkte (natürliche) Reduktionsverfahren, Teil II[END_REF]. The principle of the method goes back to the frequency search procedures applied in Physics and engineering like Holzer/Tolle method (Tolle [START_REF] Tolle | Die Regelung der Kraftmaschinen -Berechnung und Konstruktion der Schwungräder, des Massenausgleichs und der Kraftmaschinenregler in Elementarer Behandlung[END_REF]). The most important applications of TMM were in the vibration of structures (Leckie/Pestel [START_REF] Leckie | Transfer-matrix fundamentals[END_REF], Pestel [START_REF] Pestel | Ein allgemeines Verfahren zur Berechnung freier und erzwungener Schwingungen von Stabwerken[END_REF] and H. Fuhrke [START_REF] Fuhrke | Bestimmung von Balkenschwingungen mit Hilfe des Matrizenkalküls[END_REF]) and stability problems (Schnell [START_REF] Schnell | Berechnung der Stabilität mehrfeldriger Stäbe mit Hilfe von Matrizen[END_REF], K. Marguerre [START_REF] Marguerre | Matrices of Transmission in Beam Problems[END_REF], and Yoshida et al [START_REF] Yoshida | Analysis of lateral buckling of continuous beams[END_REF]). The TMM is suitable and efficient for periodic structures or line-like geometries e.g. continuous beams. The calculation is performed progressively from one element to another by a sequence of multiplications of the transfer matrices. Vassilev et al. [START_REF] Vassilev | Nonlinear Transfer Matrix Model for the Assessment of Masonry Buckling Behaviour[END_REF] have first applied the TMM on stability problem of masonry walls, but the problems associated with the nonlinear solution and its influence on the convergence of the solution was not completed. Despite the method is out of professional use today and don't possess the potential and flexibility of the finite elements but for some cases, including the one addressed here, numerical solutions based on TMM can be still the most efficient. The TMM procedure is further developed in the following sections to overcome the problems of convergence and to get faster and robust numerical solver.

The discrete system model

In the differential equation ( 41), the relative stiffness is a function of the state of the crosssection and the material model. If the cross section is cracked the relative stiffness is going to be reduced. Due to the nonlinear behaviour of the material, a closed form solution is not possible without introducing simplifications into the solution. However, the solution can be approximated by discretisation of the wall system into a number of elements 𝑛 𝑒 with a constant stiffness and constant lateral and vertical load. This results in a linear differential equation for each element (Figure 9).

For the element 𝑗 between nodes 𝑖 and 𝑖 + 1, the differential equation ( 41) can be reduced into the following form:

𝑑 2 𝑟 𝑒 𝑑𝜉 2 + 𝜔 𝑗 2 • 𝑟 𝑒 = - 𝑟 ℎ 𝑗 2 Φ 𝑗 𝑟 𝑞 𝑗 , (44) 
where 𝜔 𝑗 is a constant and can be determined by:

𝜔 𝑗 = 𝑟 ℎ 𝑗 √ Φ 𝑗 𝑟 ℬ 𝑗 , (45) 
where Φ 𝑗 is the relative normal force at the mid of the element 𝑗. Φ 𝑗 considers the vertical load applied on the element including the self-weight. In case if the vertical load is constant along the whole wall height, the reduction factor for each element Φ 𝑗 is going to be equal to Φ.

The solution within element 𝑗 for the differential equation ( 44) can be written as following:

𝑟 𝑒 = - 𝑟 ℎ 𝑗 2 • 𝑟 𝑞 𝑗 Φ • 𝜔 𝑗 2 + 𝐶 1 • cos 𝜔 𝑗 𝜉 + 𝐶 2 • sin 𝜔 𝑗 𝜉 . ( 46 
)
The relative rotation 𝑟 𝜗 of the section can be calculated as the first derivative of the relative eccentricity:

𝑟 𝜗 = 𝑑𝑟 𝑒 𝑑𝜉 = 𝜔 𝑗 • (-𝐶 1 • sin 𝜔 𝑗 𝜉 + 𝐶 2 • cos 𝜔 𝑗 𝜉) , (47) 
where the relative rotation 𝑟 𝜗 is written with respect to the rotation of the cross section 𝜗 as following:

𝑟 𝜗 = 𝑟 ℎ • 𝜗 . ( 48 
)
The relative moment 𝑚 and the relative shear force 𝑣 can be calculated as following:

𝑚 = - 𝑟 ℬ 𝑗 𝑟 ℎ 𝑗 2 • 𝑑 2 𝑟 𝑒 𝑑𝜉 2 = 𝑟 ℬ 𝑗 𝑟 ℎ 𝑗 2 • 𝜔 𝑗 2 • (𝐶 1 • cos 𝜔 𝑗 𝜉 + 𝐶 2 • sin 𝜔 𝑗 𝜉) 𝑜𝑟 𝑚 = Φ • 𝑟 𝑒 ; (49) 
𝑣 = - 𝑟 ℬ 𝑗 𝑟 ℎ 𝑗 2 • 𝑑 3 𝑟 𝑒 𝑑𝜉 3 = 𝑟 ℬ 𝑗 𝑟 ℎ 𝑗 2 • 𝜔 𝑗 3 • (-𝐶 1 • sin 𝜔 𝑗 𝜉 + 𝐶 2 • cos 𝜔 𝑗 𝜉) 𝑜𝑟 𝑣 = Φ • 𝑟 𝜗 . ( 50 
)
Figure 9 A discrete model for masonry wall under compression and lateral load and the transfer-matrix method derived for one element.

Considering the element 𝑗 between the nodes 𝑖 and 𝑖 + 1, the integration constants 𝐶 1 and 𝐶 2 in the solution of the differential equation ( 46) can be determined by applying the boundary conditions at node 𝑖:

𝑎𝑡 𝜉 = 0 𝑟 𝑒 = 𝑟 𝑒 𝑖 ; 𝑟 𝜗 = 𝑟 𝜗 𝑖 . (51) 
This yields: 

𝐶 1 = 𝑟 𝑒 𝑖 + 𝑟 ℎ 𝑗 2 • 𝑟 𝑞 𝑗 Φ • 𝜔 𝑗 2 ; 𝐶 2 = 𝑟 𝜗 𝑖 𝜔 𝑗 . ( 52 
) 𝑟 𝑒 0 𝑣 𝑖+1 𝑚 𝑖
At the end node 𝑖 + 1 of the element 𝑗, the relative eccentricity and the relative rotation can be calculated by putting 𝜉 = 1 in equations ( 53) and (54), respectively:

𝑟 𝑒 𝑖+1 = cos 𝜔 𝑗 • 𝑟 𝑒 𝑖 + sin 𝜔 𝑗 𝜔 𝑗 • 𝑟 𝜗 𝑖 - 𝑟 ℎ 𝑗 2 • 𝑟 𝑞 𝑗 Φ • 𝜔 𝑗 2 (1 -cos 𝜔 𝑗 ) ; (55) 
𝑟 𝜗 𝑖+1 = -𝜔 𝑗 • sin 𝜔 𝑗 • 𝑟 𝑒 𝑖 + cos 𝜔 𝑗 • 𝑟 𝜗 𝑖 - 𝑟 ℎ 𝑗 2 • 𝑟 𝑞 𝑗 Φ • 𝜔 𝑗 2 • 𝜔 𝑗 • sin 𝜔 𝑗 . (56) 
At the mid node 𝑗 of the element 𝑗, the relative eccentricity and the rotation can be calculated by putting 𝜉 = in equations ( 53) and (54), respectively:

𝑟 𝑒 𝑗 = cos 𝜔 𝑗 2 • 𝑟 𝑒 𝑖 + sin 𝜔 𝑗 2 𝜔 𝑗 • 𝑟 𝜗 𝑖 - 𝑟 ℎ 𝑗 2 • 𝑟 𝑞 𝑗 Φ • 𝜔 𝑗 2 (1 -cos 𝜔 𝑗 2 ) ; ( 57 
)
𝑟 𝜗 𝑗 = -𝜔 𝑗 • sin 𝜔 𝑗 2 • 𝑟 𝑒 𝑖 + cos 𝜔 𝑗 2 • 𝑟 𝜗 𝑖 - 𝑟 ℎ 𝑗 2 • 𝑟 𝑞 𝑗 Φ • 𝜔 𝑗 2 • 𝜔 𝑗 • sin 𝜔 𝑗 2 . ( 58 
)
Equations ( 55) and ( 56) can be written in matrix form as following:

𝐫 𝑖+1 = 𝛀 𝑗 • 𝐫 𝑖 . ( 59 
)
where 𝛀 𝑗 is the transformation matrix:

(60)

In special case, when 𝜔 𝑗 → 0, the transformation matrix 𝛀 𝑗 becomes:

𝛀 𝑗 = ۏ ێ ێ ێ ێ ۍ cos 𝜔 𝑗 sin 𝜔 𝑗 𝜔 𝑗 - 𝑟 𝑞 𝑗 • 𝑟 ℎ 𝑗 2 Φ • 1 -cos 𝜔 𝑗 𝜔 𝑗 2 -𝜔 𝑗 • sin 𝜔 𝑗 cos 𝜔 𝑗 - 𝑟 𝑞 𝑗 • 𝑟 ℎ 𝑗 2 Φ • sin 𝜔 𝑗 𝜔 𝑗 0 0 1 ے ۑ ۑ ۑ ۑ ې . lim 𝜔 𝑗 →0 𝛀 𝑗 = ۏ ێ ێ ێ ێ ۍ 1 1 - 1 2 𝑟 𝑞 𝑗 • 𝑟 ℎ 𝑗 2 Φ 0 1 - 𝑟 𝑞 𝑗 • 𝑟 ℎ 𝑗 2 Φ 0 0 1 ے ۑ ۑ ۑ ۑ ې , (61) 
where 𝐫 𝑖 , 𝐫 𝑖+1 the vectors of the nodal values at nodes 𝑖, 𝑖 + 1, respectively:

𝐫 𝑖 = ൝ 𝑟 𝑒 𝑖 𝑟 𝜗 𝑖 1 ൡ ; 𝐫 𝑖+1 = ൝ 𝑟 𝑒 𝑖+1 𝑟 𝜗 𝑖 +1 1 ൡ . ( 62 
)
When no lateral load exist, i.e. 𝑟 𝑞 = 0, the transformation matrix 𝛀 𝑗 becomes:

𝛀 𝑗 = [ cos 𝜔 𝑗 sin 𝜔 𝑗 𝜔 𝑗 -𝜔 𝑗 • sin 𝜔 𝑗 cos 𝜔 𝑗 ] , (63) 
where 𝐫 𝑖 , 𝐫 𝑖+1 the vectors of the nodal values at node 𝑖, 𝑖 + 1, respectively:

𝐫 𝑖 = { 𝑟 𝑒 𝑖 𝑟 𝜗 𝑖 } ; 𝐫 𝑖+1 = { 𝑟 𝑒 𝑖+1 𝑟 𝜗 𝑖+1 } . (64) 
In the later formulations, 𝛀 𝑗 is going to be written simply as 𝛀 𝑖+1 where 𝑖 + 1 refers to the element number, i.e.:

𝐫 𝑖+1 = 𝛀 𝑖+1 • 𝐫 𝑖 . ( 65 
)
By using the recursive equation ( 65), all the nodal vectors can be calculated on the basis of the initial nodal vector 𝐫 0 as following:

𝐫 1 = 𝛀 1 • 𝐫 0 = 𝐑 1 • 𝐫 0 𝐫 2 = 𝛀 2 • 𝐫 1 = 𝛀 2 • 𝛀 1 • 𝐫 0 = 𝐑 2 • 𝐫 0 𝐫 3 = 𝛀 3 • 𝐫 2 = 𝛀 3 • 𝛀 2 • 𝛀 1 • 𝐫 0 = 𝐑 3 • 𝐫 0 ⋮ 𝐫 𝑛 𝑒 = 𝛀 𝑛 𝑒 • 𝐫 𝑛 𝑒 -1 = 𝛀 𝑛 𝑒 • 𝛀 𝑛 𝑒 -1 ⋯ 𝛀 1 • 𝐫 0 = 𝐑 𝑛 𝑒 • 𝐫 0 . (66) 
The nodal vector at node 𝑗 can be then written in relation to the initial nodal vector as following:

𝐫 𝑗 = 𝐑 𝑗 • 𝐫 0 , (67) 
where:

𝐑 𝑗 = ∏ 𝛀 𝑗+1-𝑖 𝑗 𝑖=1 . (68) 
The nodal vector at the end node 𝑛 𝑒 can be calculated as following: 

𝐫 𝑛 𝑒 = 𝐑 𝑛 𝑒 • 𝐫 0 ( 

Boundary conditions

The determination of the nodal values depends on the boundary conditions. It is always possible to determine two unknown end conditions on the basis of the other two known end conditions. Using the equation (71), the nodal values at the ends has been determined for several fundamental boundary conditions (Table 3 and Figure 10). For end condition with rotational spring the following relationship is assumed between the relative moment and the relative rotation:

𝑟 𝜗 = 𝛼 • 𝑚 ( 72 
)
where 𝛼 is the flexibility of the rotation and is equivalent to the inverse of the rotation stiffness. If 𝛼 = 0, this indicates full fixation of the rotation. For the case of symmetry, it is enough to consider only half of the wall in the matrix transformation taking into account that the relative rotation at the middle of the wall is zero.

Solution procedure

In the following, a solution procedure is going to be proposed to determine the stress/strain state for the wall in Figure 9, considering the material and geometrical non-linearity. The Preprint wall is assumed to be under relative compression load Φ with eccentricities 𝑟 𝑒 0 and 𝑟 𝑒 𝑛 at the top and bottom of the wall, respectively.

Initialization

Step 1: Discretization of the wall/column system

The wall has been subdivided into 𝑛 𝑒 number of segments/elements. The discretization can be carried out in a uniform manner if there is no specific variation in the material, cross section, or the lateral load along the wall height. In this case the relative height of all elements are equal and can be calculated as following:

𝑟 ℎ 𝑗 = 𝑟 ℎ 𝑛 𝑒 . ( 73 
)
The relative location coordinate 𝜉 𝑗 of the centre node of the element 𝑗 can be calculate as following:

𝜉 𝑗 = 𝑟 ℎ 𝑗 2𝑟 ℎ + ∑ 𝑟 ℎ 𝑘 𝑟 ℎ 𝑗-1 𝑘=1 . ( 74 
)
Step 2: Initial flexural stiffness

The initial state of the flexural stiffness of the wall assumed to be elastic with a constant cross-section. Consequently, the relative initial stiffness can be calculated for the element 𝑗 as following:

𝑟 ℬ 𝑗 = 𝐾 𝐸 12 , (75) 
where 𝐾 𝐸 is the ratio of the initial elastic modulus 𝐸 to the compressive strength of the material 𝑓.

Step 3: Lateral load For the purpose of numerical implementation, a general lateral load case has been considered in Figure 11. The applied lateral load is linearly distributed on a specific domain of the wall and defined by the parameters 𝜉 𝑎 , 𝜉 𝑏 , 𝑟 𝑞 𝑎 , and 𝑟 𝑞 𝑏 . The beginning and the end of the loading domain should be placed in the discretization on nodes. The lateral load 𝑟 𝑞 𝑗 need to be calculated at the centre node of the element 𝑗 as following: 

Iterative solution procedure

Step

4: Determination of the nodal values

Based on defined state of the flexural stiffness for each element, the nodal values of the relative eccentricities can be determined. Here, the advantages and efficiency of using the transfer-matrix method can be recognized.

(a) Calculation of the transfer matrix

The transformation matrix 𝛀 𝑗 should be calculated for each element. This requires calculating the constant 𝜔 𝑗 at each element using equation ( 45). The transformation matrix of size (3 × 3) defined in equation ( 60) should be used for problems with lateral load while the transformation matrix of size (2 × 2) defined in equation ( 63) should be used for problems with no lateral load.

(b) Applying the boundary conditions

The matrix 𝐑 𝑛 𝑒 can be calculated using equation ( 70), and the nodal vectors for every element can be calculated using equation (67) considering the boundary conditions defined in section 4.3.

Step 5: Calculation the strain state at the mid of elements

(a) Calculation the relative eccentricity

The relative eccentricity at the mid of element 𝑗 can be calculated using the following equation:

𝑟̌𝑒 𝑗 = cos 𝜔 𝑗 2 • 𝑟 𝑒 𝑖 + sin 𝜔 𝑗 2 𝜔 𝑗 • 𝑟 𝜗 𝑖 - 𝑟 ℎ 𝑗 2 • 𝑟 𝑞 𝑗 Φ • 𝜔 𝑗 2 (1 -cos 𝜔 𝑗 2 ) . ( 77 
)

(b) Calculation the relative strain difference

The relative strain difference can be determined at the mid of element 𝑗 by:

Δ𝜖 𝑗 = 1 𝜀 𝑐 • Φ 𝑟 ℬ 𝑗 • 𝑟̌𝑒 𝑗 . ( 78 
)
This equation can be obtained by removing the relative curvature from equations ( 21) and ( 18) and considering the relative moment at the mid of element as 𝑚 = Φ • 𝑟̌𝑒 𝑗 .

(c) Solving the equilibrium equation

Preprint

This requires calculating the maximum normalized compression strain 𝜖 𝑗 at the mid of element 𝑗 which leads to the equilibrium state. Based on the defined material model and the calculated value of |Δ𝜖 𝑗 |, the maximum normalized strain 𝜖 𝑗 can be found as a solution of the following equation:

Φ = 𝐼 𝑛 (𝜖 𝑗 ) -𝐼 𝑛 (𝜖 𝑗 -|Δ𝜖 𝑗 |) |Δ𝜖 𝑗 | . ( 79 
)
The value of Δ𝜖 𝑗 always takes positive values because the solution procedure is the same for negative or positive values of Δ𝜖 𝑗 , but the relative strains 𝜀̅ 1 𝑗 and 𝜀̅ 2 𝑗 require to be swept for negative values of Δ𝜖 𝑗 . The above equation may have a single, double or no solution.

The procedure of the solution is given in detail in section 4.5. The solution procedure of equation ( 79) determines whether the material of the element is failed or not. Once material failure in one of the elements has occurred i.e. 𝜖 𝑗 > 𝜖 𝑢 , the calculation procedure must be ended.

Step 6: Updating the state of flexural stiffness

(a) Updating the relative eccentricity

The relative eccentricity at the mid of the element can be updated as following after getting the value of 𝜖 𝑗 from step 5-c:

𝑟̃𝑒 𝑗 = 1 𝜀̅ 1 𝑗 -𝜀̅ 2 𝑗 • 𝐼 𝑚 (𝜀̅ 1 𝑗 ) -𝐼 𝑚 (𝜀̅ 2 𝑗 ) 𝐼 𝑛 (𝜀̅ 1 𝑗 ) -𝐼 𝑛 (𝜀̅ 2 𝑗 ) - 1 2 ( 𝜀̅ 1 𝑗 + 𝜀̅ 2 𝑗 𝜀̅ 1 𝑗 -𝜀̅ 2 𝑗 ) , (80) 
where the relative strains 𝜀̅ 1 𝑗 and 𝜀̅ 2 𝑗 can be calculated as following:

𝜀̅ 1 𝑗 = { 𝜖 𝑗 , Δ𝜖 𝑖 ≥ 0 𝜖 𝑗 -|Δ𝜖 𝑗 |, Δ𝜖 𝑖 < 0 ; ( 81 
)
𝜀̅ 2 𝑗 = { 𝜖 𝑗 -|Δ𝜖 𝑗 |, Δ𝜖 𝑗 ≥ 0 𝜖 𝑗 , Δ𝜖 𝑗 < 0 . ( 82 
)
When the updated value gets bigger than half, i.e. |𝑟̃𝑒 𝑗 | > 1/2, the calculation must be ended as this indicates a stability failure in the system.

(b) Updating the relative stiffness

By using the updated relative stiffness at the mid of the element 𝑗, the relative flexural stiffness can be also updated as following:

𝑟̃ℬ 𝑗 = Φ 𝜀 𝑐 • Δ𝜖 𝑗 • 𝑟̃𝑒 𝑗 . ( 83 
)
Step 7: Calculation the damage state within the cross section

To get an idea about the state of damage occurred due to cracking of the cross section, it is appropriate to calculate the reduction ratio of the thickness of the cross-section 𝑟 𝑡 𝑗 as following:

𝑟 𝑡 𝑗 = 𝑟 𝑡 1 𝑗 + 𝑟 𝑡 2 𝑗 -1 , (84) 
where:

𝑟 𝑡 1 𝑗 = |𝜀̅ 1 𝑗 -max (𝜀̅ 2 𝑗 , 𝜖 𝑡 )| |Δ𝜖 𝑗 | ; ( 85 
)
𝑟 𝑡 2 𝑗 = |𝜀̅ 2 𝑗 -max (𝜀̅ 1 𝑗 , 𝜖 𝑡 )| |Δ𝜖 𝑗 | . ( 86 
)
Step 8: Checking the convergence

The convergence of the solution can be checked at each iteration using the following convergence index:

𝐶𝑜𝑛𝑣 = √ ∑(𝑟̃𝑒 𝑖 -𝑟̌𝑒 𝑖 ) 2 𝑛 𝑒 𝑖=1 ≤ 𝑒𝑟𝑟 . ( 87 
)
Since the assumption made in step 2 might be incorrect, the solution state must checked at this step. If the convergence index is bigger than the permissible error, the steps from 3 to 8 must be repeated, otherwise, the iteration must be ended.

The self-weight of the wall can be considered in the solution procedure by replacing Φ with Φ 𝑗 in the above equations, where Φ 𝑗 is the relative normal force at the center of the element 𝑗.

For symmetric wall system with pinned-pinned support conditions and no lateral load, the above solution procedure can be reduced at different steps which minimizes the computation time: only half of the wall should be considered due to symmetry; the size of transfer-matrix is reduced to (2 × 2), since no lateral load exist no checking for the sign of Δ𝜖 𝑗 is needed because it is always positive. Figure 12 shows a detailed flow chart for this case, which can be used to check the failure in the wall.

Solving the equilibrium equation

In step 5-c from the iterative procedure described above, it is required to find the relative maximum compressive strain 𝜖 at the mid of the element by solving equation (79). The solution of equation ( 79) is dependent from the material integral 𝐼 𝑛 and the relative strain difference Δ𝜖. Before going to present the solution procedure, it is useful to explain the meaning of the solution for the equilibrium equation (79). A graphical representation of the material integral 𝐼 𝑛 is shown in Figure 13. Two points are determined on the curve 𝐼 𝑛 (𝜖) at 𝜖 and 𝜖 -Δ𝜖. If the slope of the secant which passes through these two points is equal to Φ, then 𝜖 is a solution for equation (79).

In special case, when the normalized strain difference is zero Δ𝜖 → 0 the secant of the curve 𝐼 𝑛 (𝜖) turns into a tangent at 𝜖:

Φ = lim Δ𝜖→0 𝐼 𝑛 (𝜖) -𝐼 𝑛 (𝜖 -Δ𝜖) Δ𝜖 = 𝑑𝐼 𝑛 𝑑𝜖 = 𝜎 ̅(𝜖) . (88) 
This means, the solution of equation ( 79) can be found from the stress-strain relationship at normalized stress level equal to Φ. When an inflection point on the curve 𝐼 𝑛 (𝜖) exists, two secants of slope equal to Φ can be determined at two positions; one secant is located to the right and the second one is located to the left of the inflection point (see Figure 13). The function Φ can be described in a stepwise form as following:

Φ(𝜖, Δ𝜖, 𝜖 𝑡 ) = { 𝑛 𝜖 (𝜖) -𝑛 𝜖 (𝜖 -𝛥𝜖) 𝛥𝜖 , 𝜖 ∈ [𝜖 𝑡 + Δ𝜖, 𝜖 𝑢 ] 𝑛 𝜖 (𝜖) -𝑛 𝜖 (𝜖 𝑡 ) 𝛥𝜖 , 𝜖 ∈ [𝜖 𝑡 , 𝜖 𝑡 + Δ𝜖] . (89) 
The derivative of the function Φ with respect to 𝜖 can be also written in a stepwise form as following:

∂Φ 𝜕𝜖 = { 𝜎 ̅(𝜖) -𝜎 ̅(𝜖 -Δ𝜖) Δ𝜖 , 𝜖 ∈ [𝜖 𝑡 + Δ𝜖, 𝜖 𝑢 ] 𝜎 ̅(𝜖) Δ𝜖 , 𝜖 ∈ [𝜖 𝑡 , 𝜖 𝑡 + Δ𝜖] . (90) 
Both functions in (89) and (90) are plotted in Figure 14. (1 st itr)

(2 nd itr)

Figure 16 Flow chart for solving equation ( 79), the first part is to determine the maximum 𝛷 𝑚 using golden section search method. The second part of the flowchart is given in Figure 17. 79). This part is to find the solutions using secant method. The first part of the flowchart is given in Figure 16. The function Φ is non-smooth at 𝜖 𝑡 + Δ𝜖 and its derivative is discontinuous at this point. The function Φ reaches its peak at the relative strain 𝜖 𝑚 , which is the root of the derivative. It is useful to determine 𝜖 𝑚 at the peak point to check whether a solution exists or not. Φ > Φ 𝑚 means there is a material failure and thus no solution exists. Φ ≤ Φ 𝑚 means there is a solution and it may be a single solution or double solutions. This is mainly dependent from the characteristics of the post-peak branch of the stress-strain relationship. If 𝜖 𝑢 ≤ 𝜖 𝑚 , only one solution exists and can be found in the range [0, 𝜖 𝑚 ]. if 𝜖 𝑢 > 𝜖 𝑚 , two solutions are possible and the second solution should be found in the range [𝜖 𝑚 , 𝜖 𝑢 ].

The maximum values of Φ 𝑚 and its corresponding 𝜖 𝑚 have been determined numerically using the golden section search method, by successively narrowing the searching domain. The initial searching domain is taken between [0, 𝜖 𝑢 ]. The probe point within the searching domain is chosen with a proportional spacing ratio equal to the golden ratio 𝑔 = 1+√5 2

. The flow chart for finding the maximum Φ 𝑚 by golden section search method is shown in Figure 16. The secant method has been applied to find the solution numerically within the range [𝜖 1 , 𝜖 2 ]. The following recurrence relation were used to find better approximation of the solution:

𝜖 𝑠 = 𝜖 1 + 𝜖 2 -𝜖 1 Φ 2 -Φ 1 • (Φ -Φ 1 ) . (91) 
Figure 15 gives a graphical representation of the solution convergence using the secant method. The flowchart of finding the secant method is given in Figure 17 as a continuation of the flow chart given in Figure 16.

Convergence of the solution

Since the initial configuration of the wall is assumed at the beginning of the solution, the final configuration requires running a number of iterations until reaching a specific convergence criterion. At each iteration, the relative eccentricity at the mid of the element is calculated using equation (77) in Step 5-a and compared to the updated relative eccentricity using equation (80) in Step 6-a.

The values of the calculated relative eccentricities and the updated ones have been plotted at each iteration for one wall example with symmetric boundary conditions until reaching the convergence criteria. Figure 18 shows the iteration behaviour for the values taken at the mid-height of the wall 𝑟 𝑒 and the variation of the parameters 𝑟 ℬ ,𝑟 𝑡 , 𝜖 and 𝑟 𝜗 .

For the given example, it is required to run 50 iterations to reach the convergence criteria. Nevertheless, this depends on whether the applied load is near to the failure load or not.

For cases near stability failure, the convergence of the solution requires more iterations, but also this can be used as an indication for stability failure.

To determine whether the wall is failed due material failure or due to stability failure, it requires sometime to run a number of iterations. In the example shown in Figure 19, there is no convergence reached by running 11 iterations, but also the behaviour diagram of the parameter 𝜖 shows value beyond 𝜖 𝑢 at iteration 11 which indicates a material failure.

Figure 20 shows the convergence behaviour for a wall with stability failure. It can be seen that after 8 iterations, the value of the relative eccentricity gets bigger than 0,5, which indicates a stability failure.

Figure 18 Convergence behaviour using the transfer-matrix method, 𝛷 = 0,239; 𝑟 𝑒 0 = 0,3; 𝜆 = 0,5; material 𝑐 = 2, 𝜖 𝑢 = 1,1, 𝜀 𝑐 = 0,002; 𝜖 𝑡 = 0. 

Number of iterations

Figure 19 Convergence behaviour using the transfer-matrix method, 𝛷 = 0,3; 𝑟 𝑒 0 = 0,3; 𝜆 = 0,5; material 𝑐 = 2, 𝜖 𝑢 = 1,1, 𝜀 𝑐 = 0,002; 𝜖 𝑡 = 0. 

Determination of the capacity reduction factor

The solution procedure described in section 4.4 determines whether the wall fails or not, and calculates the values of relative eccentricities according to the last iteration. However, to calculate the reduction factor Φ for given values of slenderness and relative eccentricity, the bisection method can be used. The bisection method can search for the solution within a specific range by the halving of the interval of search in each iteration. The initial range can be assumed between 0 and 1 which is the full range of the reduction factor. There is always no failure at the lower value of the range Φ = 0 and at the same time there is always a failure at the upper value of the range Φ = 1. If the failure is checked at the midpoint of the interval, a decision can be made whether to select the upper half or the lower half of the solution interval. By repeating this procedure, the solution range is getting smaller and the final solution can be determined when the difference between the upper and lower values of the range reach a specific minimum criterion. For some cases, this method fails to determine the right solution because of different buckling modes. However, the smallest solution is the required one. To determine this solution, the range of search should be minimized before using the bisection method. This can be explained in the following example. The capacity reduction factor need to be calculated for 𝜆 = 2; 𝑟 𝑒 0 = 0,05. In Figure 21, it can be seen that searching within the range between 0 and 1 using the bisection method can lead to a solution bigger than the correct one. Figure 21 The response of the TMM procedure described in section 4.4 for solution search using the bisection method.

For this example, the correct solution is Φ = 0,1448 and can be exactly determined if Φ searched between 0,14 and 0,15. Nevertheless, another solution can be obtained when

-0,1 0 0,1 0,2 Φ = 0,14 𝑟 𝑒 𝑟 𝜗 0 = 0,023 -0,1 0 0,1 0,2 Φ = 0,77 𝑟 𝑒 𝑟 𝜗 0 = -0,0016
the bisection method searched within the range 0,77 and 0,78. However, this solution is incorrect. Therefore, it very important to specify the searching range before going to use the bisection method.

Validation of the method

At first, the proposed solution procedure of the buckling problem has been verified using reference analytical solutions. The analytical solution for linear material models with notension was one of the early solutions proposed for masonry and plain concrete materials. Several works reported the analytical solution of the differential equation of buckling without lateral load (Angervo [1-3], Chapman / Slatford [START_REF] Chapman | The elastic buckling of brittle columns[END_REF], and Yokel [START_REF] Yokel | Stability and load capacity of members with no tensile strength[END_REF]) and with lateral load (Hellers [START_REF] Hellers | Eccentrically compressed columns without tensile strength subjected to uniformly distributed lateral loads[END_REF]).

The values of the capacity reduction factor obtained by the transfer-matrix method were identical or very close to the values obtained by the analytical solution. When masonry wall divided into 20 elements in the transfer-matrix method, the difference in the values of the capacity reduction between both solutions becomes less than 10 -3 . Figure 22 and Figure 23 shows the capacity reduction factor obtained by the transfer-matrix method which was also identical to the analytical solution.

Figure 22 The capacity reduction factor 𝛷 for linear elastic material with no tensile strength (material parameters 𝑐 = 1; 𝜖 𝑡 = 0; 𝜖 𝑢 = 1) and no lateral loading obtained by the TMM using 20 elements. Since masonry has a wide variation in the non-linearity of the material model, the proposed solution procedure is further verified with experimental data of masonry walls of different material combinations. Table 4 shows the experimental data of masonry materials used in the verification [START_REF] Pflücke | Traglastbestimmung Druckbeanspruchter Mauerwerkswände am Ersatzstabmodell unter wirklichkeitsnaher Berücksichtigung des Materialverhaltens[END_REF]. The capacity reduction factor of the experimental and numerical results have been represented in Figure 24. A comparison between the experimental and numerical values of the capacity reduction factors demonstrates very good conformity of both results. 4 Comparison between the experimental and numerical results of the capacity reduction factor. The experimental results obtained from [START_REF] Pflücke | Traglastbestimmung Druckbeanspruchter Mauerwerkswände am Ersatzstabmodell unter wirklichkeitsnaher Berücksichtigung des Materialverhaltens[END_REF]. 
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Concluding remarks

A numerical solution has been proposed to solve the differential equation of masonry buckling under combined vertical and lateral actions using the transfer-matrix method. The proposed method is found to be very suitable and effective tool for the computer implementation of the solution. The computation effort involves just multiplication of small size matrixes. The numerical solution has been formulated in relative form and implemented into the matrix laboratory program MATLAB. Since the formulation carried out in relative form, several unnecessary parameters are excluded from the solution procedure like the moment or the shear force.

A computer algorithm for solving the equilibrium equation has been proposed, which determines if a solution exists or if a material failure occurs. The outcome of this routine provides an important indication to terminate the iterative solution when a material failure exists. All algorithms have been developed to use a wide variation of nonlinear material models. For the practical use of the developed TMM solution, the capacity reduction factor has been determined based on bisection method. The solution procedure has been checked for several examples and different failure modes. This provides an important tool to study the influence of different parameters on the capacity reduction factor and to help to verify the existing empirical methods.

The most pressing point for future research on the subject is to expand the work to twoway bending walls. It is very common to find masonry walls which are connected to other parts of the structure and have three or four sides supported edges. This requires defining The influence of boundary conditions and openings within the wall still requires further investigations. The numerical method developed in this work can be further expanded to deal with walls exposed to fire. The current codes have some provisions about these problems but comprehensive answers to these questions are not yet completed.

Figure 2

 2 Figure 2 Schematic drawing of the deformation of masonry wall due to second order effect.

Figure 8

 8 Figure 8 Normalized stress-strain relationships plotted in one diagram using 𝑐 = 1,5.

  in (69) yields to the following set of two equations: 𝑟 𝑒 𝑛 = 𝑅 11 𝑟 𝑒 0 + 𝑅 12 𝑟 𝜗 0 + 𝑅 13 ; 𝑟 𝜗 𝑛 = 𝑅 21 𝑟 𝑒 0 + 𝑅 22 𝑟 𝜗 0 + 𝑅 23 .(71)When no lateral load exists, the terms 𝑅 13 , 𝑅 23 become equal to zero.
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 1013243847557 Figure 10 The relative eccentricity and relative rotation for different fundamental boundary conditions (1) pinned-pinned, (2) fixed-fixed, (3) fixed-pinned, (4) fixed-free, (5) pinned-rotational spring, (6) rotational spring-rotational spring (7) symmetric pinned-pinned, (8) symmetric fixed-fixed.
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 11 Figure 11 Definition of the lateral load parameters
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 121113 Figure 12 Flow chart of the iterative solution of masonry wall buckling using TMM

Figure 14

 14 Figure 14 Graphical representation of 𝛷 as a stepwise function with transition point at 𝜖 𝑡 + 𝛥𝜖.

Figure 15

 15 Figure[START_REF] Fuhrke | Bestimmung von Balkenschwingungen mit Hilfe des Matrizenkalküls[END_REF] Graphical representation of the first two iterations of the solution procedure using secant method showing the convergence behaviour.

1 𝜖 1 = 1 ΦFigure 17

 11117 Figure 17 The second part of the flowchart for solving equation (79). This part is to find the solutions using secant method. The first part of the flowchart is given in Figure16.

Figure 23

 23 Figure[START_REF] Marguerre | Matrices of Transmission in Beam Problems[END_REF] The capacity reduction factor 𝛷 for linear elastic material with no tensile strength (material parameters 𝑐 = 1; 𝜖 𝑡 = 0; 𝜖 𝑢 = 1) and with lateral loading obtained by the TMM using 20 elements. The dashed lines for 𝑟 𝑞 < 0 while the solid lines are for 𝑟 𝑞 > 0.

  for masonry walls which can consider the orthotropic bending behaviour.
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Table 3

 3 Determination of the end nodal values for different fundamental boundary conditions. 𝑟 𝑒 𝑛 = 𝑅 11 𝑟 𝑒 0 + 𝑅 13 ; 𝑟 𝜗 𝑛 = 𝑅 21 𝑟 𝑒 0 + 𝑅 23 𝛼 0 • Φ • 𝑟 𝑒 0 ; 𝑟 𝜗 𝑛 = 𝑅 21 𝑟 𝑒 0 + 𝑅 22 𝑟 𝜗 0 + 𝑅 23 𝑟 𝑒 𝑛 = (𝑅 11 + 𝑅 12 𝛼 0 • Φ) • 𝑟 𝑒 0 + 𝑅 13 ; 𝑟 𝜗 0 = 𝛼 0 • Φ • 𝑟 𝑒 0 ; 𝑟 𝜗 𝑛 = 𝛼 𝑛 • Φ • 𝑟 𝑒 𝑛

	Boundary condition	Given end conditions	Determination of the unknown end conditions
	(1) pinned-pinned	𝑟 𝑒 0 , 𝑟 𝑒 𝑛	𝑟 𝜗 0 =	𝑟 𝑒 𝑛 -𝑅 11 𝑟 𝑒 0 -𝑅 13 𝑅 12	; 𝑟 𝜗 𝑛 = 𝑅 21 𝑟 𝑒 0 + 𝑅 22 𝑟 𝜗 0 + 𝑅 23
	(2) fixed-fixed	𝑟 𝜗 0 = 0, 𝑟 𝜗 𝑛 = 0			𝑟 𝑒 0 = -	𝑅 23 𝑅 21	; 𝑟 𝑒 𝑛 = 𝑅 11 𝑟 𝑒 0 + 𝑅 13
	(3) fixed-pinned	𝑟 𝑒 𝑛 , 𝑟 𝜗 0 = 0		𝑟 𝑒 0 =	𝑟 𝑒 𝑛 -𝑅 13 𝑅 11	; 𝑟 𝜗 𝑛 = 𝑅 21 𝑟 𝑒 0 + 𝑅 23
	(4) fixed-free	𝑟 𝑒 0 , 𝑟 𝜗 0 = 0			
	(5) pinned-rotational spring ; 𝑟 𝜗 0 = (6) rotational 𝛼 0 , 𝑟 𝑒 𝑛 𝑟 𝑒 0 = 𝑟 𝑒 𝑛 -𝑅 13 𝑅 11 + 𝑅 12 • 𝛼 0 • Φ spring-rotational 𝛼 0 , 𝛼 𝑛 𝑅 23 -𝛼 𝑛 • Φ • 𝑅 13 𝑟 𝑒 0 = 𝛼 𝑛 • Φ • (𝑅 11 + 𝑅 12 𝛼 0 • Φ) -(𝑅 21 + 𝑅 22 𝛼 0 • Φ)
	spring				
	(7) symmetric pinned-pinned	𝑟 𝑒 0 , 𝑟 𝜗 𝑚 = 0	𝑟 𝜗 0 = -	𝑅 21 𝑟 𝑒 0 + 𝑅 23 𝑅 22	; 𝑟 𝑒 𝑚 = 𝑅 11 𝑟 𝑒 0 + 𝑅 12 𝑟 𝜗 0 + 𝑅 13
	(8) symmetric fixed-fixed	𝑟 𝜗 0 = 0, 𝑟 𝜗 𝑚 = 0			𝑟 𝑒 0 = -	𝑅 23 𝑅 21	; 𝑟 𝑒 𝑚 = 𝑅 11 𝑟 𝑒 0 + 𝑅 13

  Figure 24 Comparison between experimental and numerical results of the capacity reduction factor.

				Clay-NM IIa	AAC-TM
					Autoclaved aerated
	Bricks	Calcium Silicate	Calcium Silicate	Clay	concrete
	Mortar	Thin layer mortar	Normal mortar II	Normal mortar IIa	Thin layer mortar
	𝑐	1,25	1,45	1,30	1,30
	𝑛	5,00	3,11	3,75	2,55
	𝐸 [𝑁/𝑚𝑚 2 ]	4800,0	3333,3	4000,0	2500,0
	𝑓 [𝑁/𝑚𝑚 2 ]	15,8	13,0	7,8	5,1
	𝐾 𝐸	303,8	256,4	512,8	490,2
	𝜀 𝑐	0,0040	0,0055	0,0027	0,0024
	𝜀 𝑢	0,0048	0,0062	0,0027	0,0025
	𝜖 𝑢	1,20	1,13	1,00	1,06
	ℎ [𝑚𝑚]	2500	1500	3264	5040
	𝑡[𝑚𝑚]	100	115	240	240
	𝑟 ℎ	25,00	13,04	13,60	21,00
	𝑒	0,0	42,5	39,0	42,0
	𝑟 𝑒 0	0,000	0,370	0,163	0,175
	𝜆	1,434	0,815	0,601	0,948
	Φ 𝐸𝑥𝑝	0,379	0,033	0,497	0,254
	Φ 𝑁𝑢𝑚	0,392	0,031	0,495	0,273