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Highlights
Obesity increases the incidence of
depression and anxiety as a function of
the extent of metabolic dysfunction.

Diets that include excess saturated fat
and sugar intake promote metabolic
dysfunction, neuroinflammation, and
mental health impairments.

Adipose- and gut-derived inflammation
and changes in brain nutrient composi-
tion stimulate neuroinflammation.
The incidence of depression and anxiety is amplified by obesity. Mounting
evidence reveals that the psychiatric consequences of obesity stem from poor
diet, inactivity, and visceral adipose accumulation. Resulting metabolic and
vascular dysfunction, including inflammation, insulin and leptin resistance, and
hypertension, have emerged as key risks to depression and anxiety development.
Recent research advancements are exposing the important contribution of these
different corollaries of obesity and their impact on neuroimmune status and the
neural circuits controlling mood and emotional states. Along these lines, this
review connects the clinical manifestations of depression and anxiety in obesity
to our current understanding of the origins and biology of immunometabolic
threats to central nervous system function and behavior.
Neuroinflammation alters structure, ex-
citability, and connectivity in corticolimbic
networks controlling mood, motivation,
and emotion.
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Convergence of mood and metabolic deficits
The peril of mood and anxiety disorders is receiving increasing attention beyond psychiatric and
psychological research and practice, an expansion encouraging constructive awareness and
discussion in public forums. The centrality of mental health to overall wellbeing and the substantial
contribution of external stressors has never been more apparent. The major influence of internal,
biological stressors originating from alterations in energy metabolism has also earned significant
consideration. In keeping with its extensive impact on physiology and health, growing evidence
is accentuating the threat of obesity to central nervous system function and risk of psychiatric
illness. Depression and anxiety disorders are prevalent and disabling mental health conditions
and the increased hazard they pose for obese individuals is far-reaching. Beyond hindering
personal welfare and quality of life, depressed mood and anxiety can diminish the will to seek
out and adhere to therapeutic interventions. The interchange between metabolic and mood
dysfunction can perpetuate a cycle of despair, overeating and physical inactivity that enhances
obesity severity and numerous associated health risks. In view of these consequences and the
limitations of available therapies, it is critical to improve our knowledge of the dietary, metabolic,
and neurobiological effectors of depression and anxiety development and progression to
implement better preventative and treatment strategies.

An elevated body mass index (BMI) is predictive of a chronic course of depressive and anxiety
symptoms [1,2]. The odds of developing major depressive disorder (MDD) and anxiety increase
as a function of the number of coexisting metabolic impairments, such as those characteristic
of metabolic syndrome [3,4]. Obesity is coupled to various structural and functional changes in
the brain that are remarkably similar to those observed in depressive disorders, such as region-
specific increases in cell density and compromised neural connectivity and excitability [5,6].
Several lines of evidence suggest that prolonged inflammation caused by poor dietary lifestyle
and inactivity and resulting metabolic consequences are required for such outcomes. Clinical
observations combined with rodent models of obesity exhibiting depressive- and anxiety-like
behaviors are proving valuable for uncovering the immunometabolic and neural mechanisms
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involved. In this review, we focus on how obesity increases the risk for depression and anxiety
(for cognitive corollaries, see [7,8]), with the aim to illuminate the diverse metabolic culprits of
obesity and their influence on the neural and behavioral processes giving rise to mood and
emotional deficits.

Epidemiology and clinical features
MDD (or depression) is a debilitating condition with genetic, epigenetic, and environmental
contributions. Depression can manifest in various ways, modulating homeostatic functions
such as appetite and sleep that can in turn further alter mood. Anxiety accompanies depression
in most cases and is indicative of a poorer mental health prognosis. Melancholic depression, the
most common form, is distinguished by hypophagia, hyposomnia, and anhedonia (decreased
capacity to experience and anticipate pleasure). In addition to anhedonia, characteristics of the
atypical subtype of depression include hyperphagia, lethargy, and hypersomnia. Obese individuals,
particularly those presenting attributes of metabolic syndrome (abdominal obesity, hyperglycemia,
hypertension, elevated triglycerides), tend to develop the atypical subtype [9] (Box 1). This form of
depression has stronger links to peripheral [10,11] and central [12] inflammation. Individuals with
atypical depression often have a more unrelenting course of depression [13], in part because
they show a poorer response to antidepressants [14]. As atypical depression is predictive of
overeating and weight gain, and metabolic risks can be intensified by antidepressant treatments
that encourage weight gain, a vicious cycle can promote disease progression.

The link between obesity and depression is well established. There is a bidirectional association
between being overweight (BMI ≥ 25–29.99) and depression in men and women, a relationship
that is stronger for obesity (BMI ≥ 30) [15]. A meta-analytic overview illustrates that obese adults
self-reporting symptoms have 23–36% increased odds of developing depressed mood as com-
pared with nonobese controls, whereas clinically diagnosed MDD is elevated by 14–34% [2]. The
odds of depression are higher when evaluating the waist-to-hip ratio [16,17] which provides a
better estimate of visceral adiposity and metabolic dysfunction than BMI [18]. Emphasizing the
importance of early detection and treatment, a longitudinal meta-analysis suggests that obese
adolescents have a 40% increased risk of being depressed [19]. A similar positive relationship
is observed with anxiety: obesity heightens the odds of an anxiety disorder or anxiety symptoms
(e.g., dread, unease) by 30% and 40%, respectively [1,20]. As with depression, other variables
may moderate the association between obesity and anxiety, including the degree of obesity,
presence of cardiometabolic comorbidities, and the type of anxiety. Indeed, there is a stronger
relationship between severe obesity (BMI ≥ 35) and anxiety [1].
Box 1. Sex, gender, and metabolic risks

The frequency of depression and anxiety disorder diagnoses are approximately double for obese women as compared with
obese men [1,157], a divergence that corresponds with lifetime prevalence independent of body weight. This sex distinction
in incidence narrows considerably in conditions of severe obesity (BMI ≥ 40) [1]. While sex differences in anxiety disorders
and major depression are well characterized, its only more recently that dissimilar underlying mechanisms are emerging
(for review, see [158]). Adiposity serves as a better predictor of depression than body weight in women than in men [149].
Women with depression and anxiety are more likely to have increased appetite and weight gain than male counterparts
[150], an outcome associatedwith the effects of stress to stimulate palatable food intake [119]. In both sexes, negativemood
state is more robustly associated with metabolic impairments such as inflammation, hypertension, and insulin resistance
rather than body weight itself [3]. Correspondingly, the prevalence of MDD is nearly twice as high in people with type 2 dia-
betes [159] and more than threefold higher in people with type 1 diabetes than those without, with greater rates in diabetic
women than men [160]. Diabetes is associated with a 48% greater likelihood of anxiety symptoms and a 20% higher risk of
developing an anxiety disorder [20]. In a consistent manner, obese individuals characterized as metabolically healthy (normal
blood pressure, C-reactive protein, triglycerides, and glycaemia) present either no increased risk [161] or a modest elevated
risk [3] of depression diagnosis as compared with nonobese controls. However, obesity stigmatization and poor self-image
may still contribute to negative mood states for these individuals, a problem more evident in women.
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Food environment and nutrient actions
Contemporary dietary environments offer an abundance of processed foods that are very tasty
and abnormally energy-dense, in addition to foods that convey gustatory information associated
with learned caloric value but then fall short post-ingestion (e.g., noncaloric sweeteners). Sensory
cues remind us of their affective value and bombard us with information about their proximity and
the comparatively low effort and cost required to obtain. These relatively recent changes to our
external world perilously intersect with the neurobiological processes controlling feeding, which
include critical components that favor positive emotion and stress reduction and facilitate
the encoding of memories related to how to access these foods and how they make us feel in
different contexts. Residing in midbrain and corticolimbic neural circuits, these processes are
highly recruited by our modern food environment and are posited to be largely responsible for
high rates of obesity and associated disease.

Dietary fat overload
Several lines of evidence link poor diet, inflammation, and depressive symptomology [21,22].
Dietary fats can have different metabolic, endocrine, and behavioral effects according to their
lipid class. Prolonged saturated fat intake can interfere with energy homeostasis by stimulating
visceral adipose deposition and inflammation in humans [23] and impairing central leptin and
insulin signaling in rodents [24,25]. Consumption of saturated fats [26] and plasma concentra-
tions of the saturated fatty acid palmitate [27] positively correlate with depressive symptoms
and plasma levels of the acute phase reactant C-reactive protein (CRP) in humans. The causal
relationship of diet-induced obesity (DIO) to depression and anxiety development in human
studies is indirect. To this end, rodent research has revealed that prolonged high-fat diet (HFD)
elicits metabolic dysfunction and increases anxiety- and depressive-like behaviors [28–36],
heightens stress and hypothalamic–pituitary–adrenal (HPA) responses [37,38], and triggers
neurobehavioral deficits associated with blunted mesolimbic dopamine function [39–41]. These
outcomes appear to largely stem from the immune-stimulating properties of excess fat intake
that propagate metabolic and vascular disturbances and enhance neuroinflammation.

Numerous epidemiological findings point to metabolic and affective benefits of a Mediterranean-
like diet, rich in unsaturated fats. Oleate, a monounsaturated fatty acid enriched in olive oil, can
improve glycemic control and plasma lipid profiles in humans and protect against inflammation,
hyperphagia, and anxiodepressive behaviors in mice [34,42]. Omega-3 (n-3) polyunsaturated
fatty acids (PUFA), including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are
well-known for their anti-inflammatory actions. Increased dietary n-3 intake can improve insulin
sensitivity [43] and significantly diminish plasma CRP, interleukin-6 (IL-6), and tumor necrosis factor
alpha (TNFα) levels in humans [44]. Several reports link higher n-3 consumption with lower preva-
lence and severity of mood disturbances in humans [45] and demonstrate that n-3 supplementation
dampens neuroinflammation and attenuates behavioral indices of mood deficits in rodents [46,47].
In contrast, low levels of blood n-3 PUFA correlate with heightened inflammatory status and depres-
sion risk in humans, whereas imposed dietary n-3 deficiency in rodents diminishes brain n-3 levels
and stimulates neuroinflammation and anxiety- and depressive-like behaviors [47].

In addition to being utilized by and stored in neural cells, lipids are fundamental structural compo-
nents that affect membrane fluidity, signaling, and neuroplasticity. Brain transport of fatty acids
is elevated in individuals with metabolic syndrome [48]. Moreover, chronic saturated high-fat
feeding increases saturated fatty acid levels and appreciably decreases PUFA levels in the
brain of rodents [49], changes that are likely one means by which saturated dietary fats generate
neuroinflammatory responses and mood deficits. The type and amount of dietary fat can affect
membrane phospholipid PUFA composition and associated metabolites (peroxidation products;
20 Trends in Endocrinology & Metabolism, January 2022, Vol. 33, No. 1
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specialized proresolving mediators) that contribute to neuroimmune activity and neural
function. Moreover, PUFAs are precursors for endocannabinoids, with known effects on
immunomodulation, neuroinflammation, food intake, and mood. Indeed, membrane n-3 compo-
sition is blunted in individuals with mood disorders, a finding that gave rise to the phospholipid
PUFA hypothesis of depression [50]. Both EPA and DHA limit the inflammatory effect of
eicosanoids derived from arachidonic acid, an omega-6 fatty acid with plasma levels that posi-
tively correlate with MDD severity and reduced serotonin transporter binding in the brain [50].
In parallel, fatty acids can modulate intracellular signaling cascades: EPA and DHA both act as
competitive antagonists of the Toll-like receptor-4 (TLR4) signaling pathway [47], which mediates
the proinflammatory activity of lipopolysaccharides (LPS) and saturated fatty acids like palmitate.
N-3 PUFA can also inhibit nuclear factor kappa-B (NFκB) activity, including through receptors like
GPR120 inmice. Correspondingly, central GPR120 agonism can suppress anxiety-like behaviors
in mice exposed to a saturated HFD [51]. The collective central actions of saturated dietary fats to
decrease PUFA phospholipid-derived metabolites and increase proinflammatory signaling looms
large as a culprit in the development of depression and anxiety in obese individuals.

Consequences of excess sugar
Ample evidence directly connects obesogenic diets to depressive- and anxiety-like behaviors in
rodents; however, the contribution of excess sugars typically present in such diets demands
attention. While sugar consumption can alleviate stress and pain and improve negative mood
and emotional states in the short-term [52], prolonged intake of high sucrose or fructose diets
can induce anxiety- and depressive-like behaviors and motivational deficits [53–55], effects that
are more pronounced during the adolescent period [55–57]. The presence of excess sugar in a
HFD was shown to be necessary for hypothalamic inflammatory responses in mice, including
the activation of microglia, the resident immune cells of the brain [58]. Combined high-sugar
and -fat consumption induces glucolipotoxicity in pancreatic beta cells, a phenomenon impairing
insulin secretion and worsening metabolic health. The extent to which combined sugar and fat
surfeit have similar direct actions in neural networks, controlling mood and emotion, remains to
be determined. Brain glucose transport and metabolism can be both increased or decreased
by obesity, depending upon the structure under investigation [59]. Reductions in glucose uptake
in the hippocampus have been connected to cognitive deficits in obesity [59]. It is well known that
glucose can also alter the electrical activity of specialized neuronal populations in the hypothala-
mus [60]; whether these glucose-sensing neurons are involved in the control of mood remains to
be elucidated. The fructose transporter GLUT5 is expressed in glia; thus, the possibility that
excess intake of foods high in fructose directly triggers neuroimmune responses that underlie
depression warrants investigation. It is nonetheless clear from the collection of studies examining
the influence of diet and nutrients, that the nature and amount of dietary fat and sugars consumed
can have a potent influence on metabolic and mental health.

Inflammatory conduits to the brain
Peripheral immune activation figures prominently in the pathophysiology of psychiatric and
metabolic disorders and resonates as a prime instigator of depression onset in obesity. Depression
in a subgroup of individuals is associated with elevated circulating levels of proinflammatory cyto-
kines, chemokines, and cell adhesion molecules, as well as prostaglandins and other arachidonic
acid derivatives [61]. Inflammation-induced depressed mood can be predicted by elevated blood
mononuclear cell transcription factor activity related to immune activation (NFκB), sympathetic
activation, and glucocorticoid (GC) insensitivity [62]. Likewise, individuals suffering from anxiety
disorders can exhibit elevated circulating levels of inflammatory markers, including CRP, IL-1β,
IL-6, and TNFα [63]; however, the literature linking inflammation to anxiety is much sparser.
Additional evidence contributing to neuroimmune theories of depression and anxiety arise from
Trends in Endocrinology & Metabolism, January 2022, Vol. 33, No. 1 21
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observations that inflammatory interventions can lead to symptoms of these disorders, such as in
the case of patients receiving interferon (IFN) alpha treatment [64]. Obesity is often characterized by
low-grade inflammation that contributes to the development of metabolic and vascular impair-
ments. Obese individuals exhibiting elevated inflammation, particularly increases in CRP, are
more likely to meet criteria for metabolic syndrome and to develop MDD and anxiety [65]. CRP is
a protein secreted by the liver in response to an increase in circulating proinflammatory cytokines,
most notably IL-6 and to a lesser degree IL-1β and TNFα. Notably, large cohort studies report
higher CRP concentrations in depressed patients, making heightened CRP levels in obesity one
of the best predictors of depression onset, particularly atypical depression [66]. Dietary-derived
saturated fatty acids [26] and erythrocyte content of saturated fatty acids (indicator of long-term
consumption) [27], positively correlate with circulating measures of CRP and can contribute to
inflammation by favoring TLR4 signaling in macrophages [67]. In turn, both diet and serum indices
of inflammation associate with indices of emotional distress. In this section, we explore the major
tissue origins of inflammation in obesity and summarize their involvement in mood and emotional
deficits (Figure 1).
TrendsTrends inin EndocrinologyEndocrinology & MetabolismMetabolism

Figure 1. Peripheral and neural
alterations linked to depression
and anxiety risk in obesity. Lifestyle
habits that include overconsumption
of fats and sugar and sedentation
drive obesity development and
metabolic dysfunction. Excessive
adipose accumulation in visceral depots
caused by poor diet (along with chronic
stress and genetics) is especially
susceptible to immune cell infiltration and
cytokine secretion. Aided by alterations in
gut microbiota that promote dysbiosis, a
chronic inflammatory state develops that
favors and/or associates with metabolic
risks (e.g., insulin resistance, hypertension)
and contributes to neurovascular impair-
ments (includingweakenedBBB integrity),
neuroinflammation, and neuroplasticity in
mood networks. Elevations in circulating
CRP serve as a useful inflammatory
index and predictor of depression onset.
The neurovascular unit (insert) includes
endothelial cells that control interactions
with different vascular, immune, and neu-
ral cells. Changes in brain composition
and handling of lipid species (saturated
versus unsaturated) and sugars (glucose/
fructose) associated with DIO are also
implicated in neuroimmune activation and
changes in brain structure, connectivity,
and excitability. Abbreviations: BBB,
blood–brain barrier; BDNF, brain-derived
neurotrophic factor; CRP, C-reactive
protein; DIO, diet-induced obesity; HPA,
hypothalamic–pituitary–adrenal; NF B,
nuclear factor kappa-light-chain-enhancer
of activated B cells; PUFA, polyunsatu-
rated fatty acid; SFA, saturated fatty acid.
Illustration created by Charlie Padgett.
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Adipose expansion
The production of proinflammatory cytokines by white adipose tissue is a major source
of obesity-related inflammation. Excess fat and sugar consumption favor the accumulation of
visceral adipose tissue, which comprises a higher concentration of saturated fatty acids and is
especially vulnerable to immune insults as compared with subcutaneous fat [18]. Correspondingly,
depression incidence is higher when assessing abdominal adiposity or the waist-to-hip ratio as
compared with BMI [17]. The importance of excessive adipose mass to emotional deficits in
obesity is highlighted by rodent studies showing that prolonged saturated high-fat feeding that
does not lead to significant adipose deposition fails to stimulate anxiety-like behaviors [37,38].
However, in the absence of obesity development, these diets can still potentiate HPA reactivity
[37] and feedback [38] and suppress behavioral responses to rewards [41]. When under metabolic
stress, adipocytes produce inflammatory mediators and chemoattractant molecules, such as
monocyte-chemoattractant protein-1 (MCP1), that can both activate resident immune cells and
recruit bone marrow-derived immune cells. It is namely resident macrophages and T-lymphocyte
immune cells that perpetuate the inflammatory situation in adipose tissue [68], and dietary
saturated fatty acids can be a direct source of metabolic stress that can promote inflammation
by increasing TLR4 signaling. Adipose-derived inflammatory molecules such as TNFα disrupt
insulin signaling to promote resistance and impaired vascular health. As these immunometabolic
consequences heighten the risk of depression [3], abdominal adipose expansion plays a central
role in the transmission of peripheral inflammation to the CNS.

Gut dysbiosis
Gut flora contribute to energy balance by influencing nutrient absorption and controlling fiber
fermentation. Microbiota are also the main source of endotoxins (LPS), which are well-known con-
tributors to systemic inflammation. Several bacteria can produce othermetabolites that can impact
physiology and health, such as short-chain fatty acids, and several molecules with that can affect
neural signaling and excitability in mood networks, including serotonin and gamma-aminobutyric
acid (GABA) [69]. Diet is the primary effector of microbiota composition, but psychological stress
can alsomodulate flora in rodents and in patients withMDD [69,70]. In addition, mounting evidence
suggests that microbiota alterations mediate diet-induced parental programming of offspring
neurobehavioral function and mood disorder susceptibility [71]. Chronic changes in microbiota
composition in obesity (dysbiosis) are associated with inflammation, insulin resistance, and mental
health deficits [72]. Notably, both the obese phenotype [73] and anxiodepressive behaviors [74] are
transmissible by transplanting gut microbiota of DIO to normal-weight, germ-free mice. Moreover,
the microbiota from DIO mice can weaken endothelial tight junctions and trigger inflammation in
both intestine and brain and promote brain insulin resistance [73,74]. Saturated high-fat feeding
and obesity can induce phylum-wide shifting in microbiota, from Bacteroidetes to Firmicutes
[73], and the abundance of some Firmicutes species positively correlate with energy intake and
plasma CRP levels in obese children. Deletion of T cell-dependent immunoglobulin A production
enhances obesity, while reducing the abundance and diversity of Clostridium [75]. Interestingly,
significant reduction of Clostridium is also observed in MDD patients and its abundance is
negatively correlated to the severity of anxiety and depression [70]. While changes in microbiota
composition are reported in individuals with MDD and can correlate with disease severity, the
nature of microbiota alterations across studies are conflicting [76]. The mechanisms by which gut
microbiota regulate brain function remain unclear; however, the inflammatory consequences of
dysbiosis are well-positioned to contribute to psychiatric and neurological comorbidities of obesity.

Neuroimmune components
Peripheral immune activation can exert profound effects on the brain and behavior. While neuro-
inflammation in the absence of peripheral inflammation can occur, behavioral is more affected by
Trends in Endocrinology & Metabolism, January 2022, Vol. 33, No. 1 23
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systemic immune responses that extend to the CNS. Acute neuroimmune activation can bring
about physiological and behavioral changes that are adaptive to the organism, such as fever,
HPA activation, and psychomotor slowing. However, persistent peripheral inflammation, even
if low-grade, can elicit sustained neuroinflammatory actions that ultimately generate changes
in brain structure, connectivity, and excitability [61]. Microglia and astrocytes are the brain-
resident glial cells undertaking immune functions in pathological states. Under robust inflamma-
tory conditions, blood-borne myeloid cells can infiltrate the brain to generate neuroimmune
responses at the interface between the parenchyma and the circulation. These include macro-
phages that can interact with endothelial cells of the BBB and the neurovascular unit (Box 2).
Together, activated glia and centrally recruited myeloid cells determine the extent of neuroinflam-
matory responses by production of local cytokines and chemokines and the stimulation of
intracellular signals such as NFκB, JNK, and JAK-STATs (Figure 2). Microglia dominate as
contributors to neuroinflammation and several reports underscore their role in the neuroimmune
pathogenesis of depression [77]. In addition, monocytes can infiltrate the brain and differentiate into
microglia that produce an inflammatory response that contributes to anxiety-like behavior [78].
Human neuroimaging findings show heightened microglia activation after LPS administration that
produces depressive-like sickness symptoms [79]. Consistently, suppression of microglia [80]
and astrocyte [81] reactivity is implicated in the response to antidepressant therapies.

There are numerous ways that peripheral inflammation can affect brain immune function: (i) some
cytokines, like TNFα, IL-6, and IL-1β can cross the blood–brain barrier (BBB) through leaky
regions (exacerbated by metabolic and vascular dysfunction) or via saturable transport to act
directly on glia and neurons; (ii) circulating cytokines and chemokines can target receptors on
astrocytes and endothelial cells that form the BBB and activate perivascular macrophages to pro-
duce local inflammatory cytokines, chemokines, prostaglandins, and nitric oxide; (iii) monocytes,
macrophages, and T cells can traffic to the brain to secrete cytokines; and (iv) activation of peripheral
autonomic afferents that relay cytokine signaling to the brain.

Intersecting neural circuits controlling mood and body weight
Emotions and mood states are controlled by neural processes residing in midbrain, limbic, and
cortical sites (Figure 2) that are often referred to as components of brain reward circuitry due to
their contribution to encoding reward value associated with stimuli (e.g., food) and behavioral
actions (e.g., feeding). A pivotal feature of these circuits is their modulation in response to expe-
riences, which largely serves to orient future behavior towards or away from objects or actions.
Dopamine neurons of the ventral tegmental area that project to the nucleus accumbens have
been intensely studied and implicated in the control of motivated behavior (including food-
motivated behavior), adaptation to behavioral outcomes, and anhedonia, a core symptom of
Box 2. Vascular pathology and blood–brain barrier (BBB) integrity

The BBB protects the CNS from toxins and pathogens and alterations of these properties are a component of some
neurological and psychiatric diseases. The walls of the blood vessels comprise endothelial cells that control interactions
with different vascular, immune, and neural cells. Astrocytes, pericytes, and the extracellular matrix contribute to the
formation of this neurovascular unit (see Figure 1 in main text, zoom inset). Patients with chronic vascular conditions, in-
cluding diabetes, cardiovascular disease, and stroke, have an increased risk of developing depression. Obesity and car-
diometabolic comorbidities impair BBB integrity [162]; thus, increased brain penetrability stands as a mechanism favoring
neuroimmune activation, immune cell infiltration, and mood dysfunction. The breakdown of the BBB produced by periph-
eral immune challenge (LPS) permits passage of bonemarrow-derived immune cells into the brain, a process enhanced by
DIO [163] and that favors depressive behaviors [164,165]. Hypertension is a leading risk factor for depression incidence in
obesity and causes neurovascular changes that involve the actions of perivascular macrophages to stimulate oxidative
stress and inflammation that lead to cognitive dysfunction [166]. Interestingly, chronic stress itself can also lead to BBB
dysfunction in the nucleus accumbens to promote depressive-like behaviors in mice, changes linked to increased
monocyte accumulation and reduced neuronal cAMP production [167].

24 Trends in Endocrinology & Metabolism, January 2022, Vol. 33, No. 1

CellPress logo


TrendsTrends inin EndocrinologyEndocrinology & MetabolismMetabolism

Figure 2. Central regions and mechanisms implicated in obesity-induced depression and anxiety. Schematic of rodent brain with key nuclei and pathways,
surrounded by mechanisms proposed to contribute towards the manifestation of depressed mood and anxiety symptomology in conditions of obesity. Center: principal
nuclei and circuits. The DRN is the largest of the serotonergic nuclei and sends highly divergent projections that target many functionally distinct regions controlling
motivation, arousal, sleep, mood, and autonomic functions. Dopamine neurons of the midbrain VTA form the mesolimbic dopamine system and are highly implicated in
reward learning, motivation, and anhedonia features of depression. The corticolimbic nuclei receiving dopaminergic and/or serotoninergic inputs are highly
interconnected. The nucleus accumbens is considered as a hub strongly contributing to motivation that receives dense glutamatergic innervation from multiple sites,
thereby integrating signals encoding learning, memory, emotion, and evaluation and translating this into behavioral action via basal ganglia outputs. Peripheral panels:
evidence amassed to date implicates four general, overlapping cellular mechanisms in the pathophysiology of depressed mood and anxiety stemming from obesity: (i)
microglia and astrocyte reactivity, neuroinflammation, and resulting neuroplastic changes (e.g., changes in brain-derived neurotrophic factor expression); (ii) insulin and lep-
tin resistance in neural cells; (iii) kynurenine/serotonin pathway and changes in glial function; and (iv) deficits in hippocampal neurogenesis. Each of these mechanisms has
been tied to local neuroinflammatory responses and/or the immunometabolic consequences of poor diet and obesity. Abbreviations: ACC, anterior cingulate cortex; Amy,
amygdala; DRN, dorsal raphe nucleus; GABA, gamma-aminobutyric acid; Hippo, hippocampus; 5-HT, 5-hydroxy tryptophan; Hyp, hypothalamus; IDO, indoleamine-2,3-
dioxygenase; IL, interleukin; Ins, insulin; InsR, insulin receptor; IRS, insulin receptor substrate; JAK2, Janus kinase 2; Lep, leptin; LepR, leptin receptor; MAPK, mitogen-
activated protein kinase; MCP1, monocyte-chemoattractant protein-1; mPFC, medial prefrontal cortex; NAc, nucleus accumbens; NMDAR, N-methyl-D-aspartate (gluta-
mate) receptor; PI3K, phosphoinositide 3-kinase; SN, substantia nigra; STAT3, signal transducer and activation of transcription 3; TNFa, tumor necrosis factor alpha; Trp,
tryptophan; VTA, ventral tegmental area.
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depression. Dopamine neurons also innervate the prefrontal cortex and amygdala, among other
areas, and each of these regions is interconnected. The nucleus accumbens receives dense
glutamatergic innervation from the prefrontal cortex, amygdala, and hippocampus and these
areas reciprocally connect with one another and receive serotonergic inputs from the dorsal
raphe nucleus, in addition to inputs from hypothalamic nuclei controlling homeostatic, endocrine,
and autonomic functions. The nucleus accumbens has been heavily implicated in food-directed
behavior and is tied to the hedonic and motivational deficits associated with depression, while
Trends in Endocrinology & Metabolism, January 2022, Vol. 33, No. 1 25
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the hippocampus has been underscored in cognitive impairments. The amygdala controls fear
responses and is implicated in feelings of dread and apprehension that are central to anxiety.
Other highly pertinent regions include the lateral habenula and the anterior cingulate cortex.
Neuronal activity in the lateral habenula is associated with encoding value of cues previously
paired with aversive outcomes and is posited to contribute to anhedonia [82]. The anterior
cingulate cortex is deemed to be involved in behavioral flexibility, conflict monitoring, and reward-
based decision making, and neuroinflammation in the anterior cingulate cortex is tied to clinical
features of atypical depression [12]. As targets of deep-brain stimulation therapy, both nucleus
accumbens and ventral anterior cingulate cortex stimulation are associatedwith strong antidepres-
sant effects in treatment-resistant MDD patients [83].

Neuroinflammatory outcomes
Neuroimaging studies demonstrate structural alterations in obesity, most consistently decreases
in cortical grey matter that are strikingly comparable with those observed in individuals with mood
disorders [6]. Both waist circumference [84] and circulating markers of inflammation [85] in
obesity correlate negatively with cortical grey matter volume. Of significance, mounting reports
demonstrate obese individuals possess greater subcortical volumes in areas controlling reward
and emotion. Novel diffusion spectrum neuroimaging techniques reveal increased subcortical
cell density in obesity, observations associated with activated microglia and astrogliosis in neuro-
inflammatory conditions. Obese adults exhibit increased cellularity in the hippocampus and
amygdala [86], whereas greater cell density in the nucleus accumbens, dorsal striatum, pallidum,
hypothalamus, amygdala, and hippocampus correlates positively with waist circumference in
adolescents [5]. Radiologic evidence of brain gliosis that links to insulin resistance in obese adults
has also been reported [87]. Accentuating a role for immunometabolic processes, elevated
plasma cytokines and insulin resistance have been tied to structural and functional changes in
reward- and motor-relevant cortical and subcortical structures controlling mood. For example,
anhedonia and motor slowing are associated with increased plasma CRP and insulin resistance
that correlate negatively with functional connectivity in corticolimbic reward and motor circuits
[88]. Together, these findings expose glial reactivity along with structural and functional changes
in mood networks that associate with adiposity and inflammation in humans.

Corroborating and extending findings in humans, rodent investigations illustrate the impact of
high-fat and -sugar diet to stimulate reactive gliosis and upregulate cytokine and chemokine
gene expression in mouse hypothalamus [89], hippocampus [90,91], nucleus accumbens [34],
and ventral tegmental area [92]. Microglia and astrocytes are paramount for the inflammatory
pattern induced by saturated high-fat feeding and consequent metabolic impairments [93,94].
A revealing aspect of hypothalamic inflammatory markers is that they are evident as early as
3 days of high-fat feeding, prior to significant adipose expansion and peripheral inflammation,
suggesting that caloric overload may participate towards adaptive inflammatory signal upregula-
tion via direct nutrient–brain and/or endocrine actions [95]. This early immune response to high-
fat feeding in mice resolves temporarily, to re-emerge more potently and in a manner coupled to
weight gain and metabolic dysfunction, with signs of neural degeneration observed by 8 months
[95]. Reversing neuroinflammation via targeted genetic [96,97], pharmacological [98,99], or
dietary [49,100] approaches that rescue behavioral anomalies offers convincing support for a
causal role of neuroinflammation in obesity-induced neuropathophysiology. For example,
anxiodepressive behaviors elicited by chronic saturated HFD can be reversed via selective
inhibition of NFκB activation in the nucleus accumbens, in a manner that corresponds with an
alleviation of nucleus accumbens inflammatory status [34]. Reducing nucleus accumbens
NFκB-mediated inflammation also blocked compulsive sucrose-seeking in these obese mice,
a finding that bodes well with evidence that overeating, a feature of atypical depression, is
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associated with immunometabolic dysfunction. The collective findings in rodents, along with
reports of structural and functional changes in obese humans, support the clinical relevance of
this mechanism.

Neuroplastic adaptations
The flexibility of neural circuits controlling mood and emotion is governed by neuroplasticity
mechanisms that permit changes in connectivity and synaptic strength in response to internal
(e.g., metabolic) and external (e.g., stress) states. Cytokines play an essential role herein under
physiological conditions, including in neurogenesis and synaptic plasticity. However, sustained
elevations in cytokines and chemokines by HFD can elicit region-specific, nonhomeostatic
alterations in neuroplasticity to promote mood deficits and weight gain. Indeed, recent
methylome-wide studies implicate neurotrophin and immune signaling interactions in MDD
[101]. The effects of DIO on the hippocampus have received considerable attention because of
the well-reported effects of HFD to elicit cognitive and emotional impairments [102]. Among
them is disrupted neurogenesis in the hippocampus, a key structural alteration involved in
depression and antidepressant responses. High-fat feeding triggers hippocampal proinflamma-
tory marker upregulation that can elicit depressive-like behavior, reduce neurogenesis, and impair
hippocampal function [102]. Microglia contribute to this process by suppressing neuronal stem
cell proliferation and inhibiting survival of new neurons and their integration into neuronal circuits
[103]. Neuroplastic adaptions to obesity also extend to other structures controlling mood, such
as the prefrontal cortex. Both obesity and depression share similar morphometric anomalies in
medial prefrontal cortex [104], and chronic HFD exposure in rodents, leading to obesity, gives
rise to impairments in prefrontal cortex-dependent functions that are accompanied by changes
in dendritic spine density and synaptic remodeling [105]. Adolescence is considered a sensitive
period for prefrontal cortex functional modulation by obesity, as HFD can inhibit prefrontal
cortex synaptic plasticity to induce local perturbations in excitatory transmission in adolescent
mice [106].

Numerous rodent studies emphasize neurotrophic factor signaling in the excitability of medium-
spiny neurons of the striatum in the onset of depressive behavior. Changes in neurotrophic
signaling are deemed to affect neurotransmitter levels (see later) and to be downstream of
changes in transcriptional activity, including increased nucleus accumbens NFκB transcription
that has been observed in response to repeated stress [107] and chronic high-fat feeding [34],
leading to depressive and anxiety-like behaviors. In addition, elevations of phosphorylated
CREB within the nucleus accumbens produces signs of anhedonia and behavioral despair in
rodents [107] and are observed after chronic consumption of a HFD [28]. Brain-derived neu-
rotrophic factor is a downstream target of CREB and elevated brain-derived neurotrophic
factor expression is implicated in the morphological changes in nucleus accumbens neu-
rons. Brain-derived neurotrophic factor has been widely studied in hippocampus and frontal
cortex for its role in depression, where a decline in brain-derived neurotrophic factor levels is
associated with cognitive deficits caused by HFD [108]. In contrast, increasing brain-derived
neurotrophic factor in the nucleus accumbens or ventral tegmental area produces a
depressive-like phenotype, whereas animals with selective knockout of brain-derived neuro-
trophic factor in ventral tegmental area are protected from depressive effects produced by
social defeat stress [107]. Brain-derived neurotrophic factor protein levels in the nucleus
accumbens and both brain-derived neurotrophic factor and pCREB levels in the dorsal
striatum correlate with the degree of HFD-induced behavioral despair in mice. Enhanced
signaling of both CREB and brain-derived neurotrophic factor in the nucleus accumbens
could be a risk for depression and increased food-seeking observed in obesity with
immunometabolic dysfunction.
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Monoamine imbalances
Monoamine neurotransmitter perturbations are a recognized feature of both depression and
obesity. Offset by common antidepressants [selective-serotonin reuptake inhibiters (SSRI)],
blunted serotoninergic tone has been extensively associated with mood and emotional deficits
[109]. Altered neurotransmitter levels observed in depression are, in part, a consequence of
changes in transcriptional activity and neurotrophic signaling in response to internal and external
stressors. Cytokines are a key mediator of such adaptations and can contribute to changes in the
synthesis, release, and degradation of neurotransmitters and thereby promote changes in neuro-
nal excitability. Chronic HFD in male mice, leading to increased anxiety-like behavior, has been
shown to impair the basal electrical activity and excitability of serotonin neurons as well as
serotonin-mediated neurotransmission in the hippocampus [33,35]. Similarly, obesity-induced
increases in neuroinflammation were recently shown to suppress serotonin signaling by increas-
ing its clearance from the synaptic cleft in the hippocampus [110], findings that provide a potential
synaptic mechanism for reduced SSRI responsiveness in obese individuals with depression.
The kynurenine pathway is well-implicated in the interaction between immune responses and
serotonin neurotransmission. Inflammatory cytokines and their signaling pathways can activate
the enzyme indoleamine 2,3 dioxygenase (IDO), which converts tryptophan, the primary amino
acid of serotonin, into kynurenine, thus potentially depleting the availability of serotonin in the
brain. Kynurenine affects neural afferents and circulating immune mediators that activate brain
endothelial cells, astrocytes, and microglia via IDO, eventually altering synaptic glutamatergic
neurotransmission (Figure 2). The influence of inflammation on IDO shifts kynurenine metabolism
towards microglial byproducts, such as 3-hydroxykynurenine and quinolinic acid, a change
associated with elevated oxidative stress and glutamate excitotoxicity that could contribute to
depressive symptoms [111,112].

Blunted dopamine tone in the striatum has been consistently described in obese individuals and in
rodent models of obesity [113]. DIO in rodents associates with reduced dopamine biosynthesis,
turnover, and overflow and reduced dopamine receptor binding and signaling. Correspondingly,
several lines of evidence point to hypodopaminergic states in MDD. Blunted mesolimbic dopamine
signaling has been more directly implicated in anhedonia, a cardinal symptom of MDD that is
ineffectively treated by SSRIs [114]. Animal models of depression that reliably induce anhedonia
are associated with mesolimbic dopamine abnormalities [115]. As a link to obesity-associated
depression, animals challengedwith inflammatory cytokines (e.g., IL-1β and IFNα) have a decrease
in striatal dopamine release, which correlates with anhedonia [61]. Together, modulation in
corticolimbic serotonin and dopamine signaling in mood networks are associated with depression
and anxiety emergence in obesity, although it remains poorly understood to what degree particular
changes are causal or a consequence of mood and metabolic changes.

Endocrine modulators of mood
Several endocrine hormones have been implicated in the effects of obesity and metabolic
syndrome to elevate the threat of anxiety and depression. As endocrine mediators of depression
have been recently reviewed [116], this next section will be limited to obesity-associated changes
in cortisol, insulin, and leptin signaling and their potential contribution to the manifestation of
depression and anxiety in the obese state. It should be noted, however, that other hormones
have been implicated, including adiponectin, resistin, and ghrelin, yet less is known about the
direct effects of these hormones in brain regions underlying mood control.

HPA activation and stress-induced feeding
Heightened HPA activity is embodied in a broad spectrum of inflammatory, metabolic, and
psychiatric diseases. Stressful life events can trigger depressive and anxiety episodes and early
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life stress presents a particular risk for the development of clinical depression or anxiety disorders
in adulthood [117]. The association between cortisol levels and obesity is complex [118]. Not all
obese individuals have elevated cortisol and obesity development coincides with an increase in
factors that enhance cortisol production, such as chronic stress, consumption of food high in
sugar and fat, and reduced sleep [118,119]. In turn, hypercortisolism favors visceral adipose
accumulation via local GC signaling actions. The increase in adipose-derived proinflammatory
cytokines can have a stimulatory effect on the HPA axis, while cortisol feeds backs to weaken
immune activation. However, chronic stress is associated with downregulation of GC receptor-
mediated transcriptional activity, resulting in GC insensitivity and loss of anti-inflammatory
feedback [120]. Visceral obesity and loss of muscle mass associated with hypercortisolism
favor clinical parameters of metabolic syndrome and promote melancholic depression. However,
depression and obesity comorbidity is often defined by atypical features; this is mostly associated
with normal or lower cortisol levels [121]. It may be that interindividual variation in GC sensitivity,
which is partly genetically determined, may cause higher vulnerability for atypical depression in
obesity, yet the precise contribution of HPA activity remains to be established.

HPA activity may more reliably participate towards the obesity and mood comorbidities via the
well-known effects of stress to stimulate intake of palatable, energy-dense (comfort) foods in a
subset of individuals. HPA dysregulation contributes to weight gain in stressed individuals via
the actions of cortisol to trigger palatable food intake through brain GC receptors, an effect that
leads to reduced HPA activity and short-term relief of negative affective states [119]. The impact
of stress and anxiety on food consumption seems to be different between men and women, with
a higher consumption of sweets and fast food reported in stressed women thanmen [119]. These
observations connect with the reciprocal relationship between obesity and depression: depression
increases the odds of developing obesity. This is consistent with the overlap in brain structure and
neurotransmitter systems controlling mood and emotions and motivation for food (see later) and
the hyperphagic and weight-gain side effects of antidepressants. As palatable food craving is a
predictor of eating and weight gain, it can mediate the relationship between chronic stress and
BMI and thus may strengthen the link between mood impairment and obesity.

Insulin
In obese individuals, decreased insulin sensitivity correlates significantly with greater depressive
and anxiety symptomology [122,123]. In turn, a high percentage of patients with depression
exhibit insulin resistance [124]. These findings suggest that impairments in insulin signalingmodify
the brain networks controlling mood and raise the question of whether insulin resistance contrib-
utes to mood disorders. On the one hand, inflammatory cytokines are a major contributor to
insulin resistance: elevated circulating insulin activates macrophages and can promote macro-
phage insulin resistance. On the other hand, diminished brain insulin signaling, which can be
provoked by neuroinflammation, can blunt the antidepressant effects of insulin or insulin-
sensitizing agents [125]. In support of this, reduced brain insulin signaling in brain regions control-
ling mood has been observed in animal models of DIO [126]. Deletion of insulin receptor in
neurons or astrocytes was shown to promote the development of anxiety- and depressive-like
symptoms [103,127]. Inhibiting insulin and IGF1 receptor signaling, specifically in the hippocam-
pus and the amygdala, confers anxiety along with memory impairments [128]. In addition, insulin
decreases the amplitude of excitatory currents onto ventral tegmental area dopamine neurons,
effects which are blunted in DIO rats [129,130]. The direct effects of insulin to increase
neurogenesis may also contribute to its antidepressant-like and procognitive properties [131].
Other studies described the impact of insulin on the activity of non-monoaminergic neurons in
the prefrontal cortex and nucleus accumbens [126]. Indirect evidence also suggests that insulin
impacts the serotonergic system and that insulin resistance, specifically in 5-HT neurons,
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participates in the development of mood disorders [125]. Nevertheless, it is not clear yet whether
the impact of insulin on these circuits plays a role in the control of mood and whether their alter-
ation may induce mood disorders. More studies are necessary to fully characterize the impact of
insulin in the circuits regulating mood and emotion.

Leptin
Plasma levels of the adipose-derived hormone leptin negatively correlate with symptoms of
anxiety and depression in women and men [116]. In a consistent manner, leptin can suppress
anxiety-like behavior [132–135] and behavioral despair [136] in mice. The anxiolytic action of lep-
tin in mice has been tied to leptin receptor signaling in mesolimbic dopamine neurons [137,138],
whereas its effects to inhibit behavioral despair are attributed to signaling actions in the hippo-
campus [139]. Leptin can also potentiate the antidepressant effect of SSRIs [140,141] and
prevent LPS-induced depressive behavior [142]. While studies in humans are limited, treatment
with a leptin analog (metreleptin) has rapid antidepressant effects in individuals with anorexia
nervosa marked by very low leptin levels [143]. In a corresponding manner, leptin resistance can
elicit depressive-like behaviors in rats [144] and is associated with atypical features of depression
(increased appetite and weight) in humans [145]. Interestingly, CRP directly inhibits the binding
of leptin to its receptors and blocks the ability of leptin to induce satiety and weight reduction in
mice [146]. Central leptin resistance should thus be considered and evaluated further as a key
consequence of obesity that causes and/or perpetuates depression and anxiety development.

Treatment options
Antidepressant medications serve as the standard line of treatment; however, these drugs can be
ineffective andmost augment the risk of weight gain [147]. An effective therapeutic intervention for
severe obesity is bariatric surgery, which has been shown to improve or even eliminate common
coexisting medical conditions, diabetes, hyperlipidemia, and hypertension. Meta-analyses show
that bariatric surgery is also associated with a significant reduction in the prevalence and severity
of depressive and anxiety symptoms. Several lines of evidence reveal that improving energy
metabolism through combining approaches that include diet, psychotherapy, bariatric surgery,
and/or diabetes treatment can have antidepressant efficacy in obese patients. For example,
adding a dietary weight loss intervention and psychotherapy has been shown to enhance the
efficacy of antidepressant medications in obese individuals [148]. A dietary approach that
includes anti-inflammatory foods and supplements, such as those containing high EPA n-3
PUFA and probiotics, could help attenuate psychological stress in obesity [149,150]. There is
also evidence showing the fast-acting antidepressant actions of ketamine involve decreases in
IL-6 and TNFα [151]; thus, ketaminemay prove useful for treating depression in obese individuals.
Recent therapeutic developments for treatment-resistant depression include the use of im-
planted electrodes to deliver deep-brain stimulation to the neuronal networks controlling mood
and motivation for food [152]. For example, deep-brain stimulation in the nucleus accumbens
has been shown to be effective at reducing body weight in obese rodents and patients [153]
and may offer superior weight-reducing and antidepressant effects when combined with bariatric
surgery [154].

Diabetes medications exhibit promising antidepressant and anxiolytic actions [125]. Though their
mechanism of action may rely on their ability to improve peripheral insulin signaling, it is notewor-
thy that these pharmacological agents cross the BBB, thus their beneficial effects on mood could
be driven by the modification of biological pathways common to both diabetes and depression,
such as anti-inflammatory or antioxidative properties. Improvement of insulin signaling in discrete
brain areas is another possible avenue, as one could expect that antidiabetic drugs stimulate the
neuronal activity of serotonergic, noradrenergic, and/or dopaminergic neurons. For instance, the
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Outstanding questions
To what degree do external stressors
enhance the mental health risks of
obesity? Are obese individuals more
susceptible?

What is the relative contribution of
obesity-induced inflammation originating
from adipose tissue versus blood-borne
and gut-derived inflammation to neural
function?

What is the sequence of events that
generates structural and functional
changes in mood networks? Do
direct brain nutrient actions initiate the
neuroinflammatory cascade?

Which brain nutrient receptors and
transporters influence neuroimmune
function and mood states?

Why are brain regions controlling
mood and cognition more affected by
metabolic dysfunction? Does poor diet
and obesity cause specific impairments
to the BBB surrounding corticolimbic
structures?

How can we better expand public
knowledge of the importance of
healthy diet and implement economic
and public policies that facilitate intake
of anti-inflammatory foods or supple-
ments?
insulin-sensitizing drug metformin can elicit an antidepressant-like effect in HFD fed mice and this
beneficial effect would rely on the increase in activity of serotonergic neurons in the CNS. In
particular, it has been proposed that peripheral insulin resistance increases branch-chained
amino acids that limit the reuptake of tryptophan through the BBB, thereby limiting serotonin
synthesis in the hippocampus [35]. These collective findings suggest that diabetes treatments
could be repositioned to improve both depressive symptoms and diabetes concurrently and
perhaps as an add-on strategy to improve the efficacy of other antidepressant drugs.

Concluding remarks
The incidence of depression and anxiety in obese individuals has numerous mental and physical
repercussions beyond encumbering psychological wellbeing. These include impairments in
cognition that can aggravate mood and emotional dysfunction. Obese individuals and animal
models of obesity present poorer performance on diverse cognitive tasks and these deficits are
exacerbated in instances of comorbid depressive disorder [155]. While not covered here, another
serious corollary of mood disorders is reduced voluntary and spontaneous physical activity,
which can also be causal of obesity and cardiovascular disease and thereby aggravate mental
health conditions. A sedentary lifestyle is a significant contributor to vascular pathology and
inflammation, which favors reduced brain blood flow, nutrient absorption, and cellular proliferation
to promote neuroinflammation along with mood and cognitive dysfunction. Although there is
limited evidence for depression and obesity comorbidity, exercise has been shown to enhance
mental health outcomes in obesity via ameliorating self-efficacy and autonomous motivation
[156]. Lifestyle intervention strategies such as this could be combined with pharmaceutical
compounds and/or surgical interventions to alleviate mood and emotional disturbances. New
research developments uncovering the metabolic and neurobiological mechanisms by which
obesity heightens the risk of depression and anxiety will prove valuable for evaluating new treat-
ment strategies (see Outstanding questions).
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