Petit Éric

Chêne Denis

Adaptive navigation in interactive systems: paradigm and solution A generic adaptive navigation method based upon Bayesian inferences and finite state machine

Keywords: Adaptive interfaces, personalization, navigation, predictive model, Bayesian inference

Adaptive navigation in interactive systems: paradigm and solution. A generic adaptive navigation method based upon Bayesian inferences and finite state machine

Eric Petit, Denis

INTRODUCTION

An adaptive interactive system is first and foremost a system in which the information provided by the user enables him to interact with it, as defined by Beaudouin-Lafon [START_REF] Beaudouin-Lafon | Ingénierie des systèmes interactifs[END_REF]. It is secondly, a system aiming to facilitate the achievement of the user task [START_REF] Norcio | Adaptive Human-Computer Interfaces NRL Report[END_REF].Therefore, an adaptive system has to be able to automatically modify its characteristics according to the user's needs [START_REF] Browne | The formal specification of adaptive user interfaces using Command Language Grammar[END_REF]. We propose an adaptive paradigm as well as a technical solution which considers the user's navigation in interactive systems. This paradigm is generic as it can adapt itself to all navigation tasks whatever are the devices enabling the navigation (mouse pointing, touch-based interface, vocal command) and whatever is the navigation hierarchy. This adaptive paradigm covers Oppermann's three steps [START_REF] Oppermann | Adaptively supported adaptability[END_REF]: the Afference, the Inference and the Efference. The navigation activities of the current user, as per Simonin and Carbonell [START_REF] Simonin | Interfaces adaptatives Adaptation dynamique à l'utilisateur courant[END_REF], are captured in real time (Afference step) and are directly used to generate a predictive model (Inference step) in charge of managing adaptivity (Efference step). Under this schema, each new interaction data refines the predictive model. The probabilistic inferences are based on the adaptive algorithm ABIT1 leveraging Bayesian theory. Our adaptive paradigm combines, in a flexible way and on a same continuum, adaptive guidance which facilitates to spot the most used paths during the navigation, adaptive shortcuts to reach more quickly the task's final state, and adaptive automatisms to increase efficiency without affecting effectiveness (to reach the right goal at the right time) nor satisfaction (the user's feeling of the interaction). These different modes of adaptivity "guidance, shortcuts and automatisms" are managed by the system during the interaction. This generic approach of adaptivity aims for the customization of the interaction. Such a dynamic adaptation of the interface to the current user's profile is consistent to Simonin and Carbonell's taxonomy [START_REF] Simonin | Interfaces adaptatives Adaptation dynamique à l'utilisateur courant[END_REF]. Within this scope, our user's activity model is focused on the user's navigation habits. A usual navigation task is then considered as a series of actions repeatedly carried out by the user on the interface. As a matter of fact, we do not deal with other aspects of the user's profile, such as preferences or abilities [START_REF] Martin-Hammond | Designing an Adaptive Web Navigation Interface for Users with Variable Pointing Performance[END_REF] which can be handled by other means especially by adaptable and flexible interfaces as proposed by the Design for All approach [START_REF] Stephanidis | User Interfaces for All: New Perspectives into Human-Computer Interaction[END_REF]. In this paper, we do not consider the interface adaptation to the environment or to the device, as developed by plasticity [START_REF] Thevenin | Plasticity of User Interfaces: Framework and Research Agenda[END_REF], as it could be dealt with separately.

The paradigm we are focusing on has to do with the adaptation to the user's behavior, modeled from his interaction activity captured by the interface. This approach is admitted in scientific literature as a likely way to improve the interface's usability, especially by reducing both the number of interactions and the complexity of the navigation the user has to deal with. It has been implemented by Horvitz [START_REF] Horvitz | Principles of mixed-initiative user interfaces[END_REF] in the LookOut project to support the user in managing his messages. It has also been experimented for a company management software [START_REF] Eichler | Adaptive User Interface Personalization in ERP Systems[END_REF] in order to facilitate form filling by highlighting the most used and important text fields [START_REF] Findlater | Ephemeral adaptation: the use of gradual onset to improve menu selection performance[END_REF]. In [START_REF] Soh | Deep Sequential Recommendation for Personalized Adaptive User Interfaces[END_REF] the prototype also highlights the interface most probable items based on the current user's activity with a deep learning machine, previously trained with other users. This study reveals limitations in terms of robustness due to the number of examples needed to train the learning model. And it suggests that a probabilistic approach would allow for a more reliable uncertainty measure, in agreement with the requirements of automatic adaptation. In [START_REF] Shilpi | Adaptive web navigation[END_REF] adaptivity focuses on a Web interface in which personalized links recommendations allow the user to get in one click from the home page to a favorite link embedded in depth, the link being automatically pulled up as a shortcut. A probabilistic approach like an improved Markov Chain model is used to predict links. To reduce its complexity, an offline learning step is however needed. Let's stress that most of these prototypes are specific to an application or to an applicative field.

In terms of cognition, beyond the general principles of cognitive ergonomics [START_REF] Nielsen | Usability engineering[END_REF], those expressed by Horvitz in his "mixed initiative" appear still relevant to us. They guided our design choices. These principles are:

• In many cases, systems can benefit by employing machinery for inferring and exploiting the uncertainty about a user's intentions and focus.

•

If uncertainty is too high, the system must be able to start a dialog with the user, but at the same time it has to consider the cognitive cost for the user.

•

In case of uncertainty, the system should provide efficient means by which users can directly invoke or terminate the automated services.

•

A weak prediction (under uncertainty) shall only be associated to an action with limited consequences. • Under uncertainty, prefer for "doing less with accuracy".

•

System must continue to learn from user's goals and needs through uninterrupted capture of his interactional activities and by automated reasoning within a Bayesian framework. Regarding the software engineering aspect, numerous architecture models have been proposed. An extensive synthesis is given in [START_REF] Akiki | Adaptive Model-Driven User Interface Development Systems[END_REF]. It results from this synthesis that designing adaptive interfaces must go through Model-Driven Engineering (MDE) allowing to apply adaptive behaviors to different levels of abstraction before deriving the final user interface that gets presented to the end-user. Moreover, this approach promotes a strong coupling between the user's actions and the system's answers, maintaining the user within the loop of Human Computer interaction. These "toolboxes" generally aim at two types of adaptation on the interface: the reduction of functionalities on display and the optimization of the items' spatial organization. So, they allow to encapsulate the complexity of these adaptive interfaces within reusable components, with an industrial ambition. Among these proposals, let's note the MyUI [START_REF] Peissner | MyUI: generating accessible user interfaces from multimodal design patterns[END_REF] development tool box which provides a general framework for the design and the automated generation of adaptive multimodal interfaces, in order to make them accessible, that is to say, able to adjust to the needs and abilities of each individual user. This software architecture relies, on one hand, on "design patterns" allowing to dynamically modify the interface at several levels: user profile, device profile, interaction modes and types of adaptation, and on the other hand, on a modelling of the applicative logic with a hierarchical finite state machine (type UML2 v2). A state chart diagram editor is provided in MyUI for easy coding. This model of abstract interface assumes that the dynamics of an interaction can be conceived as a succession of states, where each state represents a situation of interaction.

The evaluation of this framework for a Web TV interface has proved its technical feasibility. Unfortunately, its experimentation with elderly users encountered understanding difficulties regarding interface adaptation changes which were introduced by the system through a (too) rich dialog with the user. Indeed, in this prototype, too much dialog and explanation of the changes during the task resulted in high cognitive load for older users, therefore a failure. As advocated by Horvitz in his "mixed initiative", in such a situation, part of the adaptation should be automated. But in MyUI, as in most of development frameworks, adaptation criteria are managed by deterministic and immutable rules which do not allow a continuous evaluation of the costs-benefits ratio of the adaptations initiated by the system. In Horvitz approach, as in ours, the decision strategy relies on the ability of the system to infer probabilities on the user's intentions. Our solution focuses on the issue of adaptive navigation support in a hierarchical structured interface. It is also based on a finite state machine model, but unlike MyUI, our solution includes the probabilistic inference component along with uncertainty measures, as well as the decision-making mechanisms. The global model is described hereafter.

GLOBAL MODEL OF ADAPTIVE NAVIGATION

This new paradigm of interaction customization thus combines 3 modes of adaptivity: guidance, shortcuts, and automatisms. It is the result of a global approach considering multiple aspects: ergonomic (i.e. effectiveness, efficiency and satisfaction), applicative (navigation structure, interface items), mathematics (the probabilistic framework) and computer science (finite automaton). As far as ergonomics is concerned, the solution must convey greater effectiveness and efficiency which should be early detected and accepted by the user, especially as for the automatisms triggered by the system. Through this paradigm, we address the critical issue of the proper allocation of control between the user and the system, in accordance with predictability, intelligibility, stability, controllability, situation awareness and security requirements [START_REF] Bouzit | The PDA-LPA Design Space for User Interface Adaptation[END_REF]. As far as the system is concerned, it implies to design a sufficiently strong, flexible, and reactive modeling to propose relevant adaptations through a constant and close dialog between the system and the user. The reliable and real-time interpretation of the user's actions by the system is the cornerstone of this approach. This interpretation may either reinforce the adaptation towards a new habit, otherwise make a correction towards a former habit. To that end, we associate several adaptivity and software engineering techniques gathered in the general model called ABIT-SM 3 . We described them hereafter.

Logical navigation and execution model

This first component follows two goals: to provide a logical navigation model for all type of applications, and to produce an execution model that controls in real time the behavior of the interface in response to events generated by the user, as described in Figure 1. We chose a finite state machine (particularly Mealy's one) because this type of machine meets these two requirements while providing an appropriate framework to the Bayesian formalism that we are implementing. This type of finite automaton has been used for a long time in systems where complexity and reliability requirements are strong, for example in the field of aerospace. It implies a model-driven design of the interface.

A finite state machine is a so-called reactive system which performs an action in response to an external event (or input) given the interaction context held by the notion of state. This action (here the modification of the system) depends both on the current state and on the triggering event. Following this reaction of the system, a modification of the current state (or transition) occurs, the new state becoming the current state. This can result in the following mathematical formula:

[𝑠𝑡𝑎𝑡𝑒(𝑛 + 1), 𝑎𝑐𝑡𝑖𝑜𝑛(𝑛)] = 𝑓2𝑠𝑡𝑎𝑡𝑒(𝑛), 𝑖𝑛𝑝𝑢𝑡(𝑛)5 3 Adaptive Bayesian Inference Technique -State Machine Thus, a finite state machine consists of a finite state set (the whole interface possible states) and of a finite set of inputs (here the user's actions) that are mapped to the change actions within the interface. In this model, the machine can only be in one state at a time, the current state. The initial state determines the beginning of an interaction. Such a finite state machine is very well adapted to model a logical navigation hierarchy. It will be represented as a state-oriented graph. In this graph, each arc represents a transition, and a series of arcs represents a possible navigation path, the final state not being imposed. To illustrate our points, we will rely on the example of Figure 2. For example, if the interface is in the initial state 𝑠 : , then a user interaction defined by the 𝑎 :,; , 𝑎 ;,< , 𝑎 <,=: , 𝑎 =:,=> input series will lead to the state series: 𝑠 : → 𝑠 ; → 𝑠 < → 𝑠 =: → 𝑠 => . Each change of the current state corresponds to an evolution in the interface without the need to specify the exact nature of the modification. Such a graph characterizes without any ambiguity the full set of navigation constraints and therefore possible interface reactions. When a given path is regularly repeated by the user, it then becomes a navigation habit likely to produce dynamic adaptations. The detection of the user habits as well as their modeling are explained in the following section.

Bayesian predictive model

The detection of usage patterns is related to an issue of predicting navigation paths. These paths are based on past and present user activity. Considering the current path s(𝑛 -𝑘), … , 𝑠(𝑛 -2), 𝑠(𝑛 -1), 𝑠(𝑛) where s(𝒏) represents the current state and 𝑠(𝑛 -1), 𝑠(𝑛 -2), … , 𝑠(𝑛 -𝑘) represent past states, then the prediction consists in determining the entry leading to the next most probable state s(𝑛 + 1). However, the crucial point is the uncertainty measure associated with this prediction. Indeed, our paradigm is based on getting a reliable measure of uncertainty, at each step of the navigation, in order to dynamically find the best adaptability strategy.

Here, the uncertainty is potentially present both at the output and at the input of each current state. For example, this is the case with the state 𝑠 E , because the latter has 2 incoming paths and 3 outgoing paths (the exits). The rigorous solving of such a problem appeals on Bayesian theory, which makes it possible to formalize a mode of rational reasoning in the presence of uncertainty. In this context, Bayesian inference allows a degree of probability to be associated with each outcome of the current state.

The Bayesian selected network is the naive one. It is based on the acceptable assumption of conditional independence of the predictive variables knowing the common causal hypothesis: S(𝑛 + 1). It is shown in Figure 3 below. The random variable S(𝑛 + 1) has a finite number of values corresponding to the possible outcomes from the state S(𝑛). The random variable S(𝑛 -1) then represents the possible states immediately connected to the input of the current state S(𝑛). The S(𝑛 -2) variable concerns the states of rank 𝑛 -2, and, so on as illustrated in Figure 4. So, the first level antecedent states are grouped together to form the variable S(𝑛 -1). Those of the previous level are grouped together to form the variable S(𝑛 -1). The output states are grouped together to form the variable to be explained: S(𝑛 + 1).

Thus, at each step n of the navigation path, Bayesian inference provides the a posteriori probability of state n + 1: During interaction, this probability is updated for each activated state of the automaton. Therefore, each state has its own Bayesian network that is updated locally and independently, thus limiting the number of calculations. In this schema, the strong coupling between the finite state machine and Bayesian inference (distributed in the states graph) provides the predictive navigation model able to supporting adaptive mechanisms. Note that the implemented inference algorithm (ABIT) operates in an adaptive and supervised way, taking into account the recency of activity data. Indeed, the calculated belief degree must simultaneously reflects the frequencies of occurrence of the taken paths but also their recency in order to give more importance to the last actions of the user. That implies the progressive forgetting of the past. These properties endow our algorithm with both learning and unlearning capabilities.

P(s(n + 1) / s(n), s(n -1), s(n -2), …)
Armed with this predictive model, we can design and operationalize the complete paradigm comprising the 3 adaptive modes: guidance, shortcuts and automatisms.

Adaptive guidance

This first assistance mode intends to guide the user through his navigation by highlighting the interface commands items (inputs) associated to the most used paths. Therefore, each state of the current path independently manages the guidance applicable to its possible entries now considered issues. For example, 𝑠 E state can highlight the 𝑎 E,J , 𝑎 E,K and 𝑎 E,=: issues. The highlight of one or several issues in the user interface can be concretely done by any means revealing the preferred way out. However, these means are not handled in this paper as it concerns the final user interface. The mechanism for activating local guidance is based on crossing the 20% probability threshold. This low threshold enables to quickly consider a budding habit. Moreover, it allows the possible activation of several guides when exiting the current state, as illustrated by a screenshot of our interactive demonstrator in Figure 5.

On the figure, the initial state of the interaction (𝑠 : in this example) is represented with a dark green button. The current state, here 𝑠 E , has a black border. The adaptive guidance part is marked with a thick red line covering the arcs of the graph. It is worth noting that the 𝑠 E state leads to two guides towards the 𝑠 J and 𝑠 K states. This type of guidance is known as a continuous guidance as it crosses several hierarchical levels. It is a local guidance if the habit is only for a portion of the navigation path. If several paths are competing at a given state, for example 𝑠 E → 𝑠 J facing 𝑠 E → 𝑠 K → 𝑠 =; , then learning one leads to unlearning the other following the Bayesian approach, the guidance adjusting accordingly. The guidance is incentive and not much intrusive but yet has to be responsive. That's why its trigger point is associated to a 20% probability. Thus, it is proposing by indicating the most used paths during previous interactions. In doing so, it can quickly include the changings in the user's habits. In return, this may be inappropriate but without having any consequences as it is just an "inducement to go". Above all when it is appropriate, it highly simplifies the spotting of the right path (cognitive saving) and even more, if it is associated to a selection operation on a control, it turns the required interaction to a simple validation action (motor saving).

Beyond the cognitive and motor savings, the adaptive guidance has low impact on the interface as for structure or additional items, which is not the case with shortcuts.

Adaptive shortcuts

This second assistance mode deals with an automatic generation of shortcuts. It aims at enabling the user to reach in a more efficient way the final state of his navigation task. These are macro-commands produced by the interface according to the design choices of the application. For example, the created shortcuts could be presented on the home page, in a dedicated area, or even in other places on the interface according to its functional and hierarchical structure. The principle is to generate these shortcuts on the basis of the adaptive guidance mode, provided there is a continuum. More precisely, a shortcut will be created on the usual path marked with at least 3 successive guidance towards current state. It will be created by the current state located at the end of the guidance series but registered on the starting state of the path. In the previous example, if the user validates the 𝑎 E,K input, the 𝑠 K state will become the new current state. The continuum conditions being fulfilled, a shortcut should be created and available in state 𝑠 : , as illustrated in the screenshot of Figure 6. This shortcut corresponds to the series of inputs that can be used to go from state 𝑠 : to the final state 𝑠 K (marked with a yellow star) by only one command (the macro 𝑎 :,; , 𝑎 ;,E , 𝑎 E,K). In this example, two actions are therefore saved for the user. Now if the usual path is extended through to 𝑠 =; state, then a new shortcut will automatically be generated (macro 𝑎 :,; , 𝑎 ;,E , 𝑎 E,K , 𝑎 K,=;). This shortcut will then replace the previous one because it is considered as more efficient. Let's point that first shortcut will be immediately recreated if the user follows the same path without exceeding state 𝑠 K , then considered as final, thus implementing the principle of reversibility. This general mechanism enables to manage several shortcuts attached to a same state (initial or not) according to a FIFO 4 list principle: the last updated shortcut goes up the list and the older ones disappear.

Note that the adaptive shortcuts, either presented on a list or in a dedicated area, are additional items. Hence, they overload the interface resulting in higher perceptual processing cost. They are certainly useful as they accelerate the execution (motor saving) and make the commands go up to the current state level in order to be seen (cognitive saving). Indeed, without the adaptive shortcuts, the usual commands would be buried deep in the hierarchy. Their structural impact goes beyond the current state overload. By levelling the functions, they can contribute to deconstruct the mental representation of the organization of the interface that the user has been able to build (loss of representation). To justify their use as an adaptive component, the motor gain has to be superior to the negative characteristics as a whole. That's why we have conditioned their creation on the implementation of at least 3 successive guides on the current navigation. They are thus more rarely set up and more efficient on a motor point of view, the navigation jumps being larger. Let's now consider the alternative approach of automated macro-commands.

Adaptive automatisms

This third assistance mode is related to adaptive automatisms. Like the guidance, it is locally activated (at the current state level) and concerns the downstream portion between the latter and one of the following states.

The idea is that the navigation runs autonomously on part of a usual path, without user action. However, this adaptivity mode is only triggered when a strong habit is detected, that is to say, a path prediction associated to a high level of confidence. It can be applied to one or several portions, might they be adjacent or not. Indeed, the flexibility of the mechanism authorizes to automate only a part of the predicted path where the uncertainty is very low. This mode is also based on the probability of the current prediction, but here considering a high threshold of 80%. By using the demonstrator's previous learning, we can for example create a strong habit by repeating the following series: s : → 𝑠 ; → 𝑠 E → 𝑠 K → 𝑠 =; . Then, after 8 repetitions (to get an idea), automatisms arise, as illustrated in Figure7. They are represented by a right-oriented black arch. In all cases, an activation of the first entry by the user (here 𝑎 :,;) will be necessary to trigger the whole chain of automatisms up to the final state, here 𝑠 =; . Indeed, we defined the following rule: an automatism cannot begin without a prior action by the user in order to secure the handling. On a cognitive point of view, it is important to point out that before the standalone mode of execution happens, the user will have had a reflective perception of his usage habits thanks to the adaptive guidance, or even shortcuts. He will thus be prepared to understand this automatic assistance which he will be able to link to his routine behavior. It should be specified that if an automated path covering 3 or more portions does exist, then the equivalent shortcut also exists. The user can thus choose the most convenient way to accomplish his task. Finally, note that the automatic mode can occasionally occur during an interaction in order to facilitate one or two successive transitions where a shortcut should be of little interest. It thus can be said that the 3 modes are in fact complementary, each of them bringing its own assistance suited to a user's habit. On the other hand, a temporal order exists. The guidance is first implemented bringing markers (like affordances) to the user, thereby reducing its cognitive load, and facilitating his appropriation. Then come the shortcuts (which can be accessed from different areas of the interface) as soon as the habits are settled, offering powerful macro-commands. As for the automatisms, they only appear if the user has performed marked routine behaviors which implies he has gained ability in the use of his interface. These automatisms reveal themselves on non-ambiguous portions matching with frequent used paths. They can arise at the beginning, the middle or the end of a task according to the user's habits and according to the navigation structural model as well as the uncertainty measures. A "middle" or "final" automatism might then be interpreted as a little boost from the system during interaction.

Reversibility of the adaptations

This adaptivity paradigm cannot be considered viable without any adaptation reversibility mechanisms in order to ensure a good user control on the system. This includes the possibility to correct an action and to change habits. That's why a specific "undo" command has been thought and integrated in the solution's global architecture. On one hand it enables the user to undo an action pushed by the system (especially several chain automatisms), or even an action done by him, and on the other hand it enables the system to unlearn a former habit and at the same time learn a new one. To illustrate these different aspects, let's consider the habit case: s : → 𝑠 ; → 𝑠 E → 𝑠 K → 𝑠 =; , just after its standalone execution. The use of the "undo" command will cancel the action performed by the system and therefore will bring the current state back to 𝑠 ; , this by a retrograde course of the path. All the potential automatisms are temporarily disengaged, the system giving back the control to the user. Then the user can make another navigation choice, as for example follow the 𝑠 ; → 𝑠 E → 𝑠 J 𝑝ath, ending in 𝑠 J state. If this choice is due to the circumstances, then the nature of the adaptivity will remain unchanged. But if the choice is due to the development of a new habit, then the predictive model will evolve consequently. More precisely, the 𝑠 E node becoming a possible turning point and opening on two likely issues: 𝑠 J and 𝑠 K , its Bayesian network will be modified. Actually, this competition between the two issues has an immediate effect: it creates uncertainty on 𝑠 E node which leads to a strong probability decrease associated to 𝑠 K , resulting in the rapid cancellation of the local automatism. It is worth repeating that for this mode the activation threshold is quite high, which boosts a quick unlearning in case of uncertainty. In the present case, the 𝑠 E → 𝑠 K automatism will be undone but the other automatisms: the upstream one (𝑠 ; → 𝑠 E) and the downstream one (𝑠 K → 𝑠 =;), will remain active because non-affected by the change of behavior. This stresses the flexibility of the adaptivity paradigm driven by probabilities and closely linked to the user's actions.

DEMONSTRATION

This adaptivity paradigm has been designed in conjunction with its algorithmic and software development, leading to ABIT-SM framework. The latter gives a generic implementation of the solution in the Kotlin language suited to multi-platform mobile development. On this basis we have developed a mobile application running on a touch-based tablet. Thus, it makes it possible to test the various concepts previously described in an interactive way for a sufficiently rich and universal navigation where the hierarchical structure could be more general than a tree (e.g. a lattice structure). To demonstrate the generic nature of our approach, we have chosen to design an interactive system not depending on an applicative field. Therefore, the application exposes an abstract interface. It represents the application structure as a state transition diagram. Thus, it reveals the underlying execution model of the final user interface (not yet defined). For this demonstration, we have selected a usage scenario combining the three adaptivity modes as well as the use of the "undo" command. We start from the automated learning of the path: s : → 𝑠 ; → 𝑠 E → 𝑠 K → 𝑠 =; and begin to create a new habit corresponding to the sequence: s : → 𝑠 ; → 𝑠 E → 𝑠 J . The user has been subjected to a now inappropriate automatism and found himself directly thrown from 𝑠 ; to 𝑠 =; .

First, the effect of the "undo" command cancelling the automatic executions (left-oriented black arches) and enabling the user to regain control is illustrated on Figure 8. So, the system goes back up to s2.

Finally, we create a third habit related to the task: s : → 𝑠 ; → 𝑠 < → 𝑠 == , keeping the two other habits. As the user goes automatically to 𝑠 E from 𝑠 ; state, the use of the "undo" command is required to go back to 𝑠 ; and then chose the 𝑎 ;,< input giving access to the new path. Repeating this operation undoes the middle automatism because of the competing paths and the resulting uncertainty. By force of habit, the guidance appears on the 𝑠 ; → 𝑠 < → 𝑠 == portion together with a third shortcut allowing access to state 𝑠 == . With the confirming habit, an ending task automatism appears on portion 𝑠 < → 𝑠 == , as illustrated on Figure 10. As uncertainty appears at state 𝑠 E , the automatism 𝑠 E → 𝑠 K is canceled. After a few repetitions of the new path, an alternative guidance shows up at 𝑠 E and a second shortcut is created, available at 𝑠 : , as illustrated in Figure 9. The 𝑠 ; → 𝑠 E automatism is still active (black arch) as well as the one on portion: 𝑠 K → 𝑠 =; . To sum up, we have continuous guidance for the two usual paths, two available shortcuts and two automatisms: one at the middle of the task and one at the end.

DISCUSSION AND CONCLUSION

We have presented a new paradigm for the dynamic adaptation of an interface to the user's navigation habits.

This paradigm makes it possible to assist the user in his current task of navigation through a flexible and dynamic combination of 3 modes of adaptivity. This combination adjusts the nature of the automated assistance according to the degree of uncertainty on the navigation paths predictions. The latter is calculated at every step and for each activated state of the interface. Therefore, inside a very interaction, several modes can be invoked in different places of the interface and at different times of the ongoing task. The automatic mode whose benefit is potentially significant for the user but with an expensive cost if an error occurs, will only be invoked in case of a high confidence level. Moreover, while navigating, its application will have a variable impact, more or less local according to the uncertainty measure along the path. The guidance mode, in case of a prediction error has less consequences and should be invoked with greater tolerance considering a low probability threshold. Nevertheless, the activation of this mode will always be linked to the user's usage, thus respecting the predictability criterion. Furthermore, this guidance being not locally exclusive, it could lead to several navigation incentives, thereby lessening the risk of error. Last, the shortcut mode, generated along with the guidance mode, leads to macro-commands, the user being free to use them or not. This generic paradigm also includes the critical command "undo" assuring the user the control of his interface, especially in case of behavior changes, might they be circumstantial or lasting ones, or simply due to an error. We noticed that the effect of this command depends on the nature of the previous actions. Its use gives the system a means to detect a possible change of habit, therefore improving its learning accordingly. In this paradigm, no need for an explicit dialog, the system only needs to implicitly interpret the user's current actions on the interface. Let's keep in mind that having to begin a dialog with the user to clarify his intentions can be quite costly on a cognitive point of view. The alternative may be to "do less" but correctly or, as Horvitz puts it, to "gracefully degrade" the accuracy of the automated service. So, it appears that a key point of the adaptive interfaces is to adjust permanently the nature of the adaptations according to the quality of the predictions given by the system, which involves a rigorous processing of uncertainty.

At the technical level, we have demonstrated the feasibility of a generic and robust solution in the form of a general prediction and adaptation model, underpinned by a finite state machine which defines the abstract interface. This systemic model is both a user and task model as well as an execution and adaptation model. Our ABIT-SM architecture embeds a large part of the implementation complexity of the paradigm opening up for an industrial manufacture. We particularly aim at everyday life applications that integrate complex navigation.

In this paper, we gave numerous elements of description and justification, both practical and theoretical, supporting the validity of our proposal. The latter has been materialized by an interactive prototype exposing an abstract interface, non-specific to a particular application, in order to remain generic. Our future work will consist in determining an appropriate application framework to test these concepts through an experimentation.

Figure 1 :

 1 Figure 1: navigation and execution automaton

Figure 2 :

 2 Figure 2: state-oriented graph of a user interface In this oriented graph, 𝑠 7 represents the interface state of index 𝑖. The user's actions (inputs) are associated to the arcs and represented by 𝑎 7,8 , 𝑖 and 𝑗 being the indexes of the starting states 𝑠 7 and ending states 𝑠 8 of the transition. The interface evolution is driven by the inputs 𝑎 7,8 which are also the entries of the automaton.

Figure 3 :

 3 Figure 3: Naive Bayesian network

Figure 4 :

 4 Figure 4: Formation of the discrete random variables from the current state.

Figure 5 :

 5 Figure 5: guidance's activation while on current path, including 2 guides from the state 𝒔 𝟓 .

Figure 6 :

 6 Figure 6: automatic creation of a shortcut in 𝐬 𝟎 to reach 𝒔 𝟗 .

Figure 7 :

 7 Figure 7: Implementation of 3 automatisms on the current path from state 𝒔 𝟐 .

Figure 8 :

 8 Figure 8: effect of the 'undo' command, here cancelling the last 3 actions initiated by the system.

Figure 9 :Figure 10 :

 910 Figure 9: activation of a new guidance from 𝒔 𝟓 (towards 𝒔 𝟖) with simultaneous creation of a shortcut

Adaptive Bayesian Inference Technique IDDN1 .FR2 .0013 .2300214 .0005 .S6 .P7 .20208 .0009 .20700

Unified Modelling language

ACKNOWLEDGMENTS

Many thanks to Hélène Joucla, Valérie Ledunois and Aymeric De Solages, for their welcoming and relevant contribution.