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Abstract The classical discrete-time model of proportional transaction costs relies
on the assumption that a feasible portfolio process has solvent increments at each
step. We extend this setting in two directions, allowing convex transaction costs and
assuming that increments of the portfolio process belong to the sum of a solvency
set and a family of multivariate acceptable positions, e.g. with respect to a dynamic
risk measure. We describe the sets of superhedging prices, formulate several no (risk)
arbitrage conditions and explore connections between them. In the special case when
multivariate positions are converted into a single fixed asset, our framework turns into
the no-good-deals setting. However, in general, the possibilities of assessing the risk
with respect to any asset or a basket of assets lead to a decrease of superhedging prices
and the no-arbitrage conditions become stronger. The mathematical techniques rely
on results for unbounded and possibly non-closed random sets in Euclidean space.

Keywords Acceptance set · Risk arbitrage · Risk measure · Superhedging · Good
deal · Solvency set · Random set · Transaction costs

Mathematics Subject Classification (2010) 91G20, 60D05, 60G42

JEL Classification G11, G13

1 Introduction

Transaction costs in financial markets are often described using solvency sets, which
consist of all financial positions (in physical quantities) regarded as better than the zero
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position or at least equivalent to it. In dynamic discrete-time setting, the solvency sets
form a set-valued random process (Kt)t=0,...,T adapted to the underlying filtration
(Ft)t=0,...,T . The no-arbitrage conditions are usually formulated in terms of selections
of these solvency sets, that is, for random vectors that a.s. belong to the solvency sets
and so correspond to particular choices of solvent portfolios. In many cases, solvency
sets are polyhedral cones, and the corresponding model is known as Kabanov’s model
with proportional transaction costs; see Kabanov et al. [25], Kabanov and Safarian
[26, Sect. 3.1], Schachermayer [34], where the no-arbitrage conditions are thoroughly
discussed.

If ξ is a claim that matures at time T , then the set of initial positions suitable as a
starting value for a self-financing portfolio process (Vt)t=0,...,T paying ξ at maturity
forms the family of superhedging prices for ξ. In the multivariate setting, the starting
values are vectors which are not necessarily comparable to each other, and so instead
of comparing them by a single numerical quantity, it is sensible to look at the whole
set of superhedging prices. The self-financing requirement amounts to imposing that
the (negative) increment Vt−1−Vt of the portfolio process is solvent at all times, that
is, it a.s. belongs to Kt for all t (in other words, the increment is a selection of Kt).

Instead of requiring the superhedging of the terminal payoff with probability one,
it is possible to require that the shortfall of the terminal value of the portfolio, in
comparison with the claim, is acceptable with respect to a certain risk measure. This
yields to a larger set of all superhedging prices and the minimal cash we need to
get a vector-valued superhedging price, i.e., the minimal cost, should be reduced.
This approach may provide arbitrage opportunities as good deals, i.e., terminal claims
attainable from zero capital and such that the risk of the claim is strictly negative.
The no-good-deal condition, first introduced in Cochrane and Saá-Requejo [11] and
then formalised in Černý and Hodges [3], Cherny [8], requires that this is impossible.
Unlike the univariate setting, the existence of a good deal in the multivariate setting
does not necessarily mean the existence of a claim whose multivariate risk belongs to
−Rd+. Indeed, a vector-valued financial position may be acceptable if some acceptable
components compensate for the non-acceptable ones. This may result in various types
of arbitrage opportunities.

Indeed, it is possible to strengthen the no-arbitrage requirement by also considering
hedging strategies where the self-financing condition is replaced by the acceptability of
all intermediate portfolio changes with respect to a dynamic risk measure; see Cherny
[7]. The setting of Cherny [7,9] involves at least two assets exchangeable without
transaction costs and pinpoints a particular asset that is used as the cash equivalent. A
portfolio is converted to its cash equivalent, with the acceptability condition imposed
on the increments of these cash values for consecutive time moments. The idea of
converting portfolios to a single numerical quantity with acceptable increments in
view of superhedging one-dimensional claims has been further explored by Cheridito
et al. [5].

However, if there are several currencies (exchangeable with random frictionless
rates or with transaction costs), it may well be the case that the position expressed
in one currency is acceptable, while the position in another is not; see Molchanov
and Cascos [31, Example 1.1]. This may lead to regulatory arbitrages as studied by
Willesson [36]. If the regulator is prepared to apply a relaxed acceptability criterion
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for one currency, it would be logical to expect the same policy with respect to another
currency or a basket of currencies. We show how to handle this in a way that treats all
components of a portfolio in the same manner.

The key idea of this work is to extend the family of self-financing portfolio pro-
cesses by requiring that Vt−1 − Vt equals the sum of a selection of Kt (a solvent
position) and another random vector that is not necessarily solvent, but is acceptable
with respect to a dynamic multivariate risk measure. It is worth mentioning thatKt is
only supposed to be convex, contrarily to the classical literature of linear transaction
costs. With this hedging to acceptability approach, all components of the portfolio are
treated in the same way. Then (Vt)t=0,...,T is called an acceptable portfolio process.
For example, the classical superhedging setting arises if the componentwise condi-
tional essential infimum is chosen as the risk measure, so that acceptable random
vectors necessarily have all a.s. nonnegative components. The hedging to acceptabil-
ity substantially increases the choice of possible hedging strategies, but in some cases
may lead to arbitrage.

Example 1.1 Let ρ be any coherent risk measure. Consider a one-period zero-interest
model with two currencies as assets. Assume that the exchange rate π (so that π units
of the second asset buy one unit of the first) at time one is lognormally distributed (in
the real world) and the exchanges are free from transaction costs. Then the positions
γ′ = (−a, πa) and γ′′ = (a,−πa) for a > 0 are reachable from (0, 0) at zero cost.
Their risks are (a, aρ(π)) and (−a, aρ(−π)). In order to secure the capital reserves
for γ′, the agent has to reserve a of the first currency and aρ(π) of the second one
(note that ρ(π) < 0). If the exchange rate at time zero is π0, the initial cost expressed
in the second currency is

π0a+ aρ(π) = a
(
π0 + ρ(π)

)
.

In order to secure γ′′, the initial cost is a(−π0 + ρ(−π)). If π0 does not belong to the
interval [−ρ(π), ρ(−π)], then either π0 + ρ(π) < 0 or −π0 + ρ(−π) < 0, and we
can let a grow to release infinite capital at time zero. Note that this model does not
admit financial arbitrage, since there exists a martingale measure. This example can
be easily modified by accounting for proportional transaction costs.

It is recognised by now that risks of multivariate positions involving possible ex-
changes of assets and transaction costs are described as sets; see Cascos and Molchanov
[2], Hamel and Heyde [20]. The multiasset setting naturally makes it possible to offset
a risky position using various combinations of assets. In this framework, it is also nat-
ural to consider the family of all attainable positions as a set-valued portfolio. Treating
both arguments and values of a risk measure as random sets leads to law-invariant risk
measures and makes it possible to iterate the construction, which is essential to handle
dynamic risk measures.

One of the aims of this paper is to introduce a geometric characterisation of su-
perhedging prices. On the way, we suggest a constructive definition of dynamic risk-
measure based on the families of acceptable positions, in line with the existing works
by Feinstein and Rudloff [14,15] on consistency in time for dynamic set-valued risk
measures taking integrable random variable arguments, by letting the arguments of
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risks and their values be sets of random vectors in Rd. In many instances, these sets
may be interpreted as random (possibly non-closed) sets. The necessary background on
random sets is provided in the Appendix. In particular, it is shown that the Minkowski
(elementwise) sum of two random closed sets is measurable, no matter if the sum is
closed or not. Special attention is devoted to the decomposability and infinite decom-
posability properties, which are the key concepts suitable to relate families of random
vectors to selections of random sets.

We refer to Delbaen [12, Sect. 4] and Föllmer and Schied [18, Chap. 4], among
others, for the basics of static risk measures and to Acciaio and Penner [1] for a survey
of the dynamic L∞-setting, further extended by the module approach worked out by
Filipović et al. [16,17].

Static risk measures are usually defined onLp(F ;R) with p ∈ [1,∞]. However, in
many cases, they are well defined also on larger sets of random variables. For example,
ρ(ξ) = −ess infξ makes sense for all random variables essentially bounded from be-
low by a constant. Similarly, if ρ(ξ) = −E[ξ], then the acceptance set is defined as the
family of all ξ such that their positive and negative parts satisfy E[ξ+] ≥ E[ξ−] >∞.
The boundedness of E[ξ+] is not required.

To account for similar effects in relation to multivariate dynamic risk measures,
we put forward acceptance sets in place of risk measures. The acceptance sets Ct,s
with t ≤ s are subsets of the sum of the family of Fs-measurable random vectors in
Rd that admit generalised conditional p-th moment with respect to Ft and the family
of all Fs-measurable random vectors in Rd+. Section 2 introduces basic conditions on
the acceptance sets and several optional ones.

The dynamic selection risk measureRt,s(Ξ) for a familyΞ ⊆ L0(FT ;Rd) is intro-
duced as the closure in probability of (Ξ+Ct,s)∩L0(Ft;Rd). If the family of selections
for a random closed set X is Ξ = L0(FT ;X), then the set Rt,s(X) = Rt,s(Ξ) itself
is an Ft-measurable random closed set. In comparison with Feinstein and Rudloff
[15], this approach explicitly defines a set-valued dynamic risk measure instead of
imposing on it some axiomatic properties. This yields a set-valued risk measure with
a set-valued argument that can be naturally iterated in the dynamic framework. The
conditional convexity of the acceptance sets yields that

Rt,s
(
λX + (1− λ)Y

)
⊇ λRt,s(X) + (1− λ)Rt,s(Y ) a.s.

for any λ ∈ L0(Ft; [0, 1]) and any random closed sets X and Y , meaning that the
risk measure is also conditionally convex. The static case of this construction was
considered by Molchanov and Cascos [31], where properties of selection risk measures
in the coherent case were obtained, some of them easily extendable for the dynamic
convex setting. In comparison to [31], we work with solvency sets instead of portfolios
available at price zero and also allow the argument of the risk measure to be a rather
general family of random vectors.

The hedging to acceptability relies on a sequence (Kt)t=0,...,T of solvency sets
and the acceptance sets Ct,s for 0 ≤ t ≤ s ≤ T . Note that the solvency sets are
not assumed to be conical, since non-conical models naturally appear, e.g. in the
order book setting; see Çetin et al. [4], Pennanen and Penner [32]. An acceptable
portfolio process (Vt)t=0,...,T introduced in Sect. 3 satisfies Vt−1 − Vt = kt + ηt for
kt ∈ L0(Ft;Kt), ηt ∈ Ct−1,t, and all t. In other words, the available assets do suffice
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to pay for the portfolio at the next step up to an amount acceptable with respect to
some risk measure. The strongest acceptability condition assumes that Ct−1,t consists
of random vectors with nonnegative components and yields the classical arbitrage
theory for markets with transaction costs; see Kabanov and Safarian [26, Sect. 3.2]. The
weakest acceptability requirement presumes that all ηt from Ct−1,t have nonnegative
Ft−1-conditional expectations.

If ξ is a terminal claim on d assets, thenΞξt denotes the set of all initial endowments
at time t that ensure the existence of an acceptable portfolio process paying ξ at
maturity, that is, VT ∈ ξ + KT a.s. Equivalently, Ξξt is the family of Ft-measurable
elements of (ξ − At,T ), where At,T is the set of claims attainable at time T starting
from zero investment at time t. The familyΞξt may be used to assess the risk associated
with ξ at time t.

The no-arbitrage conditions we study are imposed on the set of superhedging prices
Ξ0
t for the zero claim ξ = 0. They may be reformulated as no-arbitrage conditions

on the set of attainable claims, which are weaker than the usual ones of the literature.
These no-risk-arbitrage conditions are introduced and analysed in Sect. 4. In contrast
to Cherny [7], we do not rely on the weak compactness of the duals to the acceptance
sets and we do not need to pinpoint any reference asset. It should be noted that the risk
arbitrage only makes sense in the multiasset setting with some trading opportunities
between the assets; if Kt = Rd+ (which is always the case on the line), then all
no-risk-arbitrage conditions automatically hold.

It is shown that in some cases, it is possible to represent the families of capital
requirements as a set-valued process, and the no-risk-arbitrage conditions for linear
transaction costs can be characterised in terms of weakly consistent price systems, thus
providing a variant of the fundamental theorem of asset pricing in our framework; see
Theorem 4.10.

A comparison of our approach with the no-good-deals setting is provided in Sect. 5.
It is shown that our approach imposes stronger no-arbitrage conditions that are more
difficult to check, but which result in lower superhedging prices.

Note that the setsCt,s of acceptable positions always contain the familyL0(Fs;Rd+)
of random vectors with a.s. nonnegative components, and in many cases,Ct,s is a subset
of the family of random vectors with nonnegative generalised conditional expectation
given Ft. Thus the no-risk-arbitrage conditions are sandwiched between those for
the risk measures based on the conditional essential infimum and on the conditional
expectation. The first choice corresponds to the classical financial arbitrage with trans-
action costs, where our no-risk-arbitrage conditions become the classical no-arbitrage
conditions.

Section 6 recovers and extends several results from Kabanov [26, Sect. 3.2]. In
this classical setting, our approach yields a new geometric interpretation of the sets of
superhedging prices with possibly non-conical solvency sets; it is formulated using the
concept of the conditional core of a random set elaborated by Lépinette and Molchanov
[28]. The result applies also in some cases when the classical characterisation via
consistent price systems fails.

In Sect. 7, we characterise no-arbitrage conditions arising by adopting the gener-
alised conditional expectation as the acceptability criterion. These are the strongest no-
arbitrage conditions in our framework; their validity ensures the absence of arbitrage
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for all acceptance criteria satisfying a dynamic version of the dilatation monotonicity
condition from Cherny and Grigoriev [10].

The results from Sects. 6 and 7 are illustrated in a two-asset example in Sect. 8.

2 Dynamic acceptance sets and selection risk measures

2.1 Definition and main properties

Let (Ω,F , (Ft)t=0,...,T ,P) be a stochastic basis on a complete probability space such
that F0 is the trivial σ-algebra and FT = F . In the following, we endow random
vectors and events with a subscript that indicates the σ-algebras they are measurable
with respect to. The subscript is often omitted for FT -measurable random vectors.

Let Lp(F ;Rd) with p ∈ [1,∞] be the family of p-integrable random vectors
(essentially bounded if p =∞), and letL0(F ;Rd) be the family of all random vectors
in Rd. The closure in the strong topology on Lp(F ;Rd) for p ∈ [1,∞) is denoted
by clp, and cl0 is the closure in probability in L0(F ;Rd). If p = ∞, the closure is
considered with respect to the a.s. convergence of uniformly bounded sequences.

For a sub-σ-algebra H ⊆ F , denote by LpH(F ;Rd) the module of F-measurable
random vectors represented as γξ with ξ ∈ Lp(F ;Rd) and γ ∈ L0(H;R); see [16,
Example 2.5]. In particular, L1

H(F ;Rd) is the family of all ξ that admit a generalised
conditional expectation Eg[ξ|H] with respect to H; see [28, Lemma B.3]. Following
[16, Example 2.5], the module norm is defined by

|||ξ|||p,H =

{
E[|ξ|p|H]1/p, p ∈ [1,∞),

ess supH|ξ|, p =∞,

where ess supH|ξ| is the H-measurable essential supremum of |ξ|; see [18, Ap-
pendix A.5]. We endow the spaceLpH(F ;Rd) with the topology ofLpH-convergence by
saying that (ξn) converges to ξ if |||ξn−ξ|||p,H → 0 in probability ifp ∈ [1,∞). Forp =
∞, we use theH-bounded convergence in probability, meaning that supn ess supH|ξn|
is finite a.s. and |||(ξn − ξ) ∧ 1|||1,H → 0 in probability as n→∞.

Denote shortly Lp = Lp(F ;Rd), Lpt,s = LpFt
(Fs;Rd) for t ≤ s, and let

L̂pt,s = L̂pFt
(Fs;Rd) be the family of random vectors ξs that can be decomposed as

ξs = ξ′s+ξ
′′
s , where ξ′s ∈ L

p
t,s and ξ′′s ∈ L0(Fs;Rd+). Following the classical definition

of an acceptance set in the theory of risk measures, we introduce the acceptance set
Ct,s for t ≤ s as the collection of all Fs-measurable financial positions regarded as
acceptable at time t.

Definition 2.1 Discrete-time Lp-dynamic convex acceptance sets are defined as a
family {Ct,s, 0 ≤ t ≤ s ≤ T} such that Ct,s ⊆ L̂pt,s and the following properties hold
for all 0 ≤ t ≤ s ≤ T :

(i) Normalisation: we have Ct,t = L0(Ft;Rd+), Ct,s ⊇ L0(Fs;Rd+) and
Ct,s ∩ L0(Ft;Rd−) = {0}.

(ii) Integrability:
Ct,s = (Ct,s ∩ Lpt,s) + L0(Fs;Rd+).
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(iii) Closedness: Ct,s ∩ Lpt,T is closed in Lpt,T .
(iv) Conditional convexity: for all αt ∈ L0(Ft; [0, 1]) and η′s, η

′′
s ∈ Ct,s,

αtη
′
s + (1− αt)η′′s ∈ Ct,s.

(v) Weak time-consistency: Ct,s ∩L0(Fu;Rd) = Ct,u for all 0 ≤ t ≤ u ≤ s ≤ T .
(vi) Compensation: if ξs ∈ Lpt,s, then (ξs + Ct,s) ∩ L0(Ft;Rd) 6= ∅.

The integrability property implies that Ct,s is an upper set, i.e., ηs ∈ Ct,s and
ηs ≤ η′s a.s. (all inequalities are understood coordinatewise) implies that η′s ∈ Ct,s.
The compensation property implies that for all ξs ∈ Lpt,s, there exists γt ∈ L0(Ft;Rd)
such thatγt+ξs ∈ Ct,s, i.e., it is possible to make the financial position ξs acceptable by
adding the position γt. In the following, we consider a fixed family of such acceptance
sets Ct−1,t for t = 1, . . . , T .

Example 2.2 The simplest example is given by a static univariate convex risk measure.
Consider the one-period setting in one dimension with t = 0, 1. If ρ is a convex Lp-
risk measure, where p ∈ [1,∞), then its acceptance set C0,1 ∩Lp(F1;R) is the set of
η1 ∈ Lp(F1;R) such thatρ(η1) ≤ 0. The lower semicontinuity ofρ is equivalent to the
closedness of the acceptance set. The conditional convexity property of the acceptance
set is equivalent to the convexity property of the risk measure. The compensation
property corresponds to the finiteness of ρ.

Definition 2.3 A family Ξ ⊆ L0(F ;Rd) is said to be infinitely H-decomposable if∑
n ξn1An

∈ Ξ for all sequences (ξn)n≥1 from Ξ and all H-measurable partitions
(An)n≥1 of Ω. If this holds for finite partitions, we say that Ξ isH-decomposable.

The following result shows the infinite decomposability property (see Defini-
tion 2.3), also known as the countable concatenation property [16] or σ-stability [17].
Decomposability means that the family is stable under partitioning.

Lemma 2.4 For every 0 ≤ t ≤ s ≤ T , the family Ct,s is infinitely Ft-decomposable.

Proof If ηis ∈ Ct,s ∩ L
p
t,s and Bit ∈ Ft, i ≥ 1, then

η̄ns =

n∑
i=1

1Bi
t
ηis + η1

s1Ω\∪n
i=1B

i
t
∈ Ct,s

by the conditional convexity property, so that Ct,s ∩ Lpt,s is Ft-decomposable. Since
η̄ns → η̄s =

∑∞
i=1 1Bi

t
ηis in the ||| · |||p,Ft

-norm if p ∈ [1,∞) and Ft-boundedly in
probability if p = ∞, we have η̄s ∈ Ct,s ∩ Lpt,s. By the integrability property, Ct,s is
also infinitely decomposable. ut

Definition 2.5 A family of dynamic convex acceptance sets is called
(i) coherent if αtηs ∈ Ct,s for all t ≤ s, αt ∈ L0(Ft;R+) and ηs ∈ Ct,s;
(ii) continuous from below at zero if for every t ≤ s and any sequence (ξns )n∈N

in LpFt
(Fs;Rd−) with |||ξns |||p,Ft

→ 0 in probability as n→∞, there exist a sequence
(γnt )n∈N in L0(Ft;Rd+) and k ∈ R+ such that γnt + ξns ∈ Ct,s and |γnt | ≤ k|||ξns |||p,Ft

a.s. for all n.
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If p = ∞, then continuity from below at zero always holds and is easily verified
by choosing γnt with all components being |||ξns |||∞,Ft .

Example 2.6 The acceptance sets can be defined using a univariate convex dynamic
Lp-risk measure (ρt)t=0,...,T , so that Ct,s ∩ Lpt,s is the d-th Cartesian power of the
acceptance set for ρt. Equivalently, ξs ∈ Ct,s ∩ Lpt,s if and only if all components of
ξs are acceptable under ρt. The continuity from below at zero (with p ∈ [1,∞)) holds
if ρt is lower semicontinuous in the ||| · |||p,Ft -norm and continuous from below, which
is the case if ρt is convex and a.s. finite; see Vogelpoth [35, Theorem 4.1.4].

Example 2.7 For a dual construction of conditional acceptance sets, let p = ∞ and
consider families Zt,s ⊆ L1

Ft
(Fs;Rd+) with 0 ≤ t ≤ s ≤ T such that Zt,u ⊆ Zt,s

for all t ≤ u ≤ s and Eg[ζs|Ft] = (1, . . . , 1) for all ζs ∈ Zt,s. Note that we do not
assume that Zt,s is weakly compact. Define

Ct,s = L0(Fs;Rd+) +
⋂

ζs∈Zt,s

{ηs ∈ L∞t,s : Eg[〈ζs, ηs〉|Ft] ≥ 0},

where 〈ζs, ηs〉 is the scalar product. It is easily seen that conditions (i), (ii), (iv) and
(v) of Definition 2.1 hold and these acceptance sets are coherent.

If ξns → ξs in probability with ξns ∈ Ct,s and all ξns are bounded in the Euclidean
norm by γt ∈ L0(Ft;R+), then Eg[〈ζs, ξs〉|Ft] ≥ 0 by the dominated convergence
theorem for generalised conditional expectations. Thus condition (iii) also holds.

If ξs ∈ L∞t,s, the components of ξs are bounded in absolute value by
ηt ∈ L0(Ft;Rd+). Then ηt−ξs is nonnegative and so belongs to Ct,s, and ξs+(ηt−ξs)
is in L0(Ft;Rd). Thus (vi) also holds.

2.2 Dynamic selection risk measures

Let ΞT be an upper subset of L0(FT ;Rd), that is, with each ξ ∈ ΞT , the family ΞT
also contains all ξ′ ∈ L0(FT ; ξ+Rd+). The most important example of such a family
is the family of selections L0(FT ;XT ) for an FT -measurable upper random set XT

in Rd, that is, XT + Rd+ ⊆ XT a.s. The (graph) measurability of a random set is
defined in the Appendix. If XT is also closed, then its so-called centrally symmetric
version −XT := x ∈ L0 : −x ∈ XT is a set-valued portfolio in the terminology of
Molchanov and Cascos [31].

Definition 2.8 Let ΞT ⊆ L0(FT ;Rd) be an upper set. For t ≤ s ≤ T ,

R0
t,s(ΞT ) := (ΞT + Ct,s) ∩ L0(Ft;Rd) (2.1)

denotes the family of all γt ∈ L0(Ft;Rd) such that γt − ξ ∈ Ct,s for some ξ ∈ ΞT .
Let Rt,s(ΞT ) denote the closure in probability of R0

t,s(ΞT ). If ΞT = L0(FT ;XT ) is
the family of selections of an upper random setXT , we write R0

t,s(XT ) and Rt,s(XT )
instead of R0

t,s(ΞT ) and Rt,s(ΞT ). In view of this, Rt,s(XT ) (and also Rt,s(ΞT )) is
called a dynamic selection risk measure.
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Note that we have R0
T,T (ΞT ) = ΞT , R0

t,s(ΞT ) = R0
t,s(ΞT ∩ L0(Fs;Rd)) and

R0
t,u(ΞT ) ⊆ R0

t,s(ΞT ) for all 0 ≤ t ≤ u ≤ s ≤ T . If only portfolios from a random
set Mt are allowed for compensation at time t, i.e. to be added to a financial position
for it to become acceptable as it is the case in Feinstein and Rudloff [15], it is easy to
modify (2.1) by intersecting (ΞT + Ct,s) with L0(Ft;Mt).

First, for multi-varied financial positions, there may be several positions that can
be added to any position X so that it becomes acceptable. This is why the values of
a risk-measure consists of families of random variables (and not a singleton {ρ(X)},
mainly in the real case where ρ(X) is actually a minimal element, while the family is
[ρ(X),∞)). Moreover, a risk-measure is said dynamic because its values are updated
from time to time through the available information on the market in the same way
than the conditional expectation allows to update the average of all possible values of
a random variable accordingly to new information given by the information.

Recall that values of a dynamic risk-measure are families of random variables
that are updated from time to time through the available information on the market
described by the filtration. A dynamic selection risk measure of the family ΞT is a
financial position that allows to reach a position of ΞT up to an acceptable set. The
empty selection risk measure corresponds to completely unacceptable positions. The
compensation property of acceptance sets guarantees that R0

t,s(ΞT ) is not empty if
ΞT ∩ Lpt,s 6= ∅. The family ΞT is said to be acceptable for the time horizon s if
0 ∈ R0

t,s(ΞT ); equivalently, −ΞT is the family of all −xT where xT ∈ ΞT contains
an element from Ct,s. A dynamic selection risk measure is conditionally convex, that
is,

R0
t,s

(
αtΞ

′
T + (1− αt)Ξ ′′T

)
⊇ αtR0

t,s(Ξ
′
T ) + (1− αt)R0

t,s(Ξ
′′
T )

for allαt ∈ L0(Ft; [0, 1]), and the same holds for the closures. The next result follows
from Lemma 2.4.

Lemma 2.9 If ΞT is infinitely Ft-decomposable, then R0
t,s(ΞT ) and Rt,s(ΞT ) are

also infinitely Ft-decomposable for each t and s such that s ≤ t.

Lemma 2.10 Let XT be an FT -measurable random upper closed set for each fixed
t and s such that t ≤ s.

(i) Rt,s(XT ) coincides with the family of measurable selections of an Ft-measur-
able random upper set in Rd, also denoted by Rt,s(XT ).

(ii) If XT is a.s. convex, then R0
t,s(XT ) is a.s. convex. If XT is a cone and the

acceptance sets are coherent, then R0
t,s(XT ) is a cone.

Proof (i) By Lemma 2.9, Rt,s(XT ) is an Ft-decomposable family, and so Theo-
rem A.2 applies.

(ii) If γ1
t , γ

2
t ∈ R0

t,s(XT ), then γit − ξis ∈ Ct,s, i = 1, 2, for ξ1
s , ξ

2
s ∈ L0(Fs;XT ).

For any t ∈ (0, 1), tγ1
t + (1− t)γ2

t − ξs ∈ Ct,s by the conditional convexity property
with ξs = tξ1

s + (1− t)ξ2
s ∈ L0(Fs;XT ). The cone property is trivial. ut

Example 2.11
If Xs = ξs + Rd+ for some ξs ∈ Lpt,s and if Ct,s ∩ Lpt,s = {X ∈ Lpt,s : rt(X) ≤ 0},
then for a vector-valued dynamic risk measure rt on Lpt,s, we have



10 Emmanuel Lépinette, Ilya Molchanov

R0
t,s(Xs) = Rt,s(Xs) = rt(−ξs) + Rd+,

see Vogelpoth [35, Chap. 5].

3 Hedging to acceptability

3.1 Acceptable portfolio process

Let (Kt)t=0,...,T be a sequence of random closed convex sets such that for all t, we
have Kt ∩ Rd− = {0}, Kt is an upper set and Kt is Ft-measurable. The set Kt is
understood as the family of all solvent positions at time t expressed in physical units
and is called a solvency set; see Kabanov and Safarian [26, [Sect. 3.1.1]. If the solvency
sets are cones, this model is well studied and called Kabanov’s model; it describes the
market subject to proportional transaction costs, see [26, Sect. 3.1] and Schachermayer
[34]. If the solvency sets are cones and the acceptance sets are coherent, we talk about
the coherent conical setting.

Let K0
t be the largest Ft-measurable linear subspace contained in Kt, that is,

K0
t =

⋂
c6=0

cKt =
⋂

c∈Q\{0}

cKt,

which is also a random closed set. The solvency sets are called proper if K0
t = {0}

and strictly proper if K̃t := Kt ∩ (−Kt) = {0} for all t = 0, . . . , T . If Kt is a cone,
then K̃t = K0

t , while in generalK0
t ⊆ K̃t. Since K̃t is convex and origin symmetric,

Kt is proper if and only if K̃t is bounded.

Definition 3.1 A sequence (Vt)t=0,...,T in L0(Ft;Rd) is an acceptable portfolio pro-
cess if

Vt−1 − Vt ∈ L0(Ft;Kt) + Ct−1,t, t = 1, . . . , T. (3.1)

By the definition of a selection risk measure, (3.1) is equivalent to

Vt−1 ∈ R0
t−1,t(Vt +Kt), t = 1, . . . , T.

Thus by paying transaction costs, it is possible to transform Vt−1 − Vt into an ac-
ceptable position for the horizon t. Equivalently, Vt−1 suffices to purchase Vt +
kt + ηt for some kt ∈ Kt and ηt ∈ Ct−1,t. An initial endowment at time t is any
Vt− ∈ L0(Ft;Vt +Kt), so that it is possible to convert Vt− immediately into Vt pay-
ing the transaction costs. (In geometrical models like Kabanov’s one it is standard
to suppose, e.g. at time t = 0 for simplicity, that we may immediately rebalance the
initial endowment through the initial cone Kt, paying transaction costs.)
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3.2 Attainable positions and superhedging

The family of attainable positions at time s > t is the family of random vectors that
may be obtained as Vs for acceptable portfolio processes starting from zero investment
at time t. By (3.1), the family of attainable positions is given by

At,s =

s∑
u=t

L0(Fu;−Ku)−
s−1∑
u=t

Cu,u+1.

Let ξ ∈ L0(FT ;Rd) be a terminal claim (or payoff). Hedging to acceptability
aims to come up with an acceptable portfolio process (Vt)t=0,...,T that guarantees
paying ξ in the sense that the terminal wealth VT belongs to ΞξT = L0(FT ;Xξ

T ), the
family of selections of the random closed set Xξ

T = ξ +KT . Define recursively

Ξξt = L0(Ft;Kt) + R0
t,t+1(Ξξt+1), t = T − 1, . . . , 0. (3.2)

The familyΞξt consists of the time-t superhedging prices for ξ and the corresponding
mapping ξ 7→ Ξξt defines a dynamic convex risk measure with values being subsets
of L0(Ft;Rd). If ξ = ξ′ − ξ′′ for ξ′ ∈ Lp(FT ;Rd) and ξ′′ ∈ L0(FT ;Rd+), the
compensation property of acceptance sets ensures that Ξξt 6= ∅ for all t.

In order to handle the asymptotic version of the risk measure, let Ξ̂ξT := ΞξT and
further

Ξ̂ξt := L0(Ft;Kt) + Rt,t+1(Ξξt+1), t = T − 1, . . . , 0. (3.3)

Note thatΞξt ⊆ Ξ̂
ξ
t ⊆ cl0(Ξξt ), whence cl0(Ξ̂ξt ) = cl0(Ξξt ) for all t. The familiesΞ0

t

and Ξ̂0
T arise by letting ξ = 0 a.s.

Lemma 3.2 (i) The families R0
t,s(Ξ

ξ
s ), Rt,s(Ξξs ) and Ξ̂ξt are convex and infinitely

Ft-decomposable for all 0 ≤ t ≤ s ≤ T .
(ii) For each t ≤ T , there exists a (possibly non-closed) random set Xξ

t such that
Ξ̂ξt = L0(Ft;Xξ

t ).
(iii) For any t ≤ T , the set of all endowments Vt− at time t allowing to start

an acceptable portfolio process (Vs)t≤s≤T such that VT ∈ L0(FT ; ξ + KT ) a.s.
coincides with Ξξt , and

Ξξt = (−At,T + ξ) ∩ L0(Ft;Rd). (3.4)

(iv) If KT is a cone, then Ξξt ⊆ Ξ0
t for any ξ ∈ L0(FT ;KT ).

Proof (i) follows from Lemma 2.9.
(ii) The existence of Xξ

t is trivial for t = T . Suppose that it holds at time t. The
result for t− 1 follows from the induction assumption and (3.3) by Lemma A.3.

(iii) follows from the fact that (γT + At,T ) ∩ (ξ + KT ) 6= ∅ if and only if
γT ∈ (−At,T + ξ).

(iv) follows from (iii), since ξ +KT ⊆ KT a.s. ut
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Example 3.3 If Kt = Rd+ a.s. for all t (which is always the case if d = 1), then an
acceptable portfolio process satisfies Vt−1 − Vt ∈ Ct−1,t for all t = 1, . . . , T . Then

Ξξt =

(
ξ +

T−1∑
s=t

Cs,s+1

)
∩ L0(Ft;Rd).

Since Ct−1,t∩L0(Ft−1;Rd) = L0(Ft−1;Rd+) for all t ≥ 1 by weak time-consistency
and normalisation, induction yields that Ξ0

t = L0(Ft;Rd+). If ξ does not a.s. vanish,
the setR0

t,s(Ξ
ξ
T ) becomes non-trivial. Its static variant is called a regulator risk measure

in Hamel et al. [21]; it only takes into account the acceptability requirement and
disregards any trading opportunities between the components. In the terminology of
[21],R0,1(ξ+K1) (in the static setting with a conicalK1) is called the market extension
of the regulator risk measure.

4 Risk arbitrage

Recall that Ξ0
t is the set of time-t superhedging prices for the zero claim. By (3.4),

Ξ0
t = (−At,T ) ∩ L0(Ft;Rd). (4.1)

For multivariate financial models, e.g. models with proportional transaction costs,
several no-arbitrage conditions have been considered. In Kabanov’s model, there is
the NA condition, its robust version NAr, but also the NA2 condition derived using
an alternative approach; see the paper by Rásonyi [33] and [24]. All these conditions
are formulated in terms of the set At,T of all terminal claims attainable from zero
initial endowment. Here, we consider weaker no-arbitrage conditions imposed on the
superhedging prices for the zero claim.

Definition 4.1 The multiperiod model satisfies

(SNR) (strict no-risk-arbitrage) if we have Ξ̂0
t ∩ L0(Ft;−Kt) ⊆ L0(Ft;K0

t ) for
all t = 0, . . . , T ;

(NRA) (no-risk-arbitrage) if Ξ0
t ∩ L0(Ft;Rd−) = {0} for all t = 0, . . . , T ;

(NARA) (no asymptotic risk arbitrage) if (cl0Ξ
0
t ) ∩ L0(Ft;Rd−) = {0} for all

t = 0, . . . , T ;
(NRA2) (no-risk-arbitrage opportunity of the second kind) if for t = 0, . . . , T and

ηt ∈ L0(Ft;Rd) such that (ηt + At,T ) ∩ L0(FT ;KT ) 6= ∅, we have
ηt ∈ L0(Ft;Kt) + Ct−1,t;

(SNRA) (strong no-risk-arbitrage) if
∑T
t=0(kt + ηt) = 0 for kt ∈ L0(Ft;Kt) and

ηt ∈ Ct−1,t for all t implies that kt ∈ L0(Ft;K0
t ) and ηt = 0 a.s. for all t.

Let us comment on the (SNR) condition. If pt ∈ Ξ̂0
t ∩L0(Ft;−Kt), then starting

from zero endowment at time t expressed as 0 = pt − pt, we obtain the zero claim at
time T from pt and have an immediate possible profit at time t since the liquidation
value of−pt ∈ Kt is nonnegative. A similar interpretation applies for the (NRA) con-
dition and its asymptotic version (NARA). The (NRA2) condition may be compared
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to the (NA2) condition by Rásonyi [33], while (SNRA) is a version of [26, Sect. 3.2.2,
Condition (iii)]. Note that the (NRA) condition readsAt,T∩L0(Ft;Rd+) = {0}, while
the usual (NA) condition At,T ∩L0(FT ;Rd+) = {0} is stronger; see [26, Sect. 3.2.1].

Example 1.1 shows that it may be possible to release infinite capital from a zero
position without compromising the acceptability criterion; in particular, it violates the
(SNR) condition. By Lemma 3.2, (SNR) can be written as X0

t ∩ (−Kt) ⊆ K0
t a.s.,

and (NARA) as (clX0
t )∩Rd− = {0} a.s. It is obvious that (NARA) is stronger than

(NRA). By (4.1), the (NRA) condition is equivalent to At,T ∩L0(Ft;Rd+) = {0} for
all t. IfKt = Rd+ a.s. for all t; thenΞ0

t = L0(Ft;Rd+) and all no-arbitrage conditions
are satisfied, see Example 3.3.

Lemma 4.2 (SNR) implies that

Rt,t+1(Ξ0
t+1) ∩ L0(Ft;−Kt) ⊆ L0(Ft;K0

t ), t = 0, . . . , T − 1.

The converse implication holds if the solvency sets are strictly proper.

Proof Denote M = Rt,t+1(Ξ0
t+1), A = L0(Ft;Kt) and B = L0(Ft;K0

t ). It is
easily seen that M ∩ (−A) ⊆ B if (M + A) ∩ (−A) ⊆ B and only if in case
A∩(−A) = {0}. For the converse implication, if x ∈ (M+A)∩(−A), then we have
x = m+a1 = −a2, withm ∈M and a1, a2 ∈ A. Therefore,m/2 ∈M∩(−A) ⊆ B.
Then x/2 ∈ A∩ (−A), so that x ∈ B = A∩ (−A) = {0} ifKt is strictly proper. ut

Lemma 4.3 Assume that the acceptance sets are strictly proper, that is, Ct,s∩(−Ct,s)
consists of all random vectors that equal 0 almost surely.

(i) If K0
t = K̃t for all t, then (SNRA) implies

A0,t ∩
(
L0(Ft;Kt) + Ct−1,t

)
⊆ L0(Ft;K0

t ), t = 0, . . . , T, (4.2)

At,T ∩
(
L0(Ft;Kt) + Ct−1,t

)
⊆ L0(Ft;K0

t ), t = 0, . . . , T. (4.3)

(ii) If the solvency sets are strictly proper and

L0(Ft;−Kt) ∩ Ct−1,t = {0}, t = 0, . . . , T. (4.4)

Then each of the conditions (4.2), (4.3) implies (SNRA).

Proof (i) Motivated by [26, Lemma 3.2.7], assume that

−k0 − · · · − kt − η0 − · · · − ηt = gt + ζt ∈ A0,t ∩
(
L0(Ft;Kt) + Ct−1,t

)
,

where ks ∈ L0(Fs;Ks) and ηs ∈ Cs−1,s for s = 0, . . . , t, gt ∈ L0(Ft;Kt) and
ζt ∈ Ct−1,t. Since (ηt + ζt)/2 ∈ Ct−1,t by convexity and

−k0/2− · · · − kt−1/2− (kt + gt)/2− η0/2− · · · − (ηt + ζt)/2 = 0,

we deduce that (kt + gt)/2 ∈ K0
t and (ηt + ζt)/2 = 0 by (SNRA). The strict

properness of the acceptance sets yields that ηt = ζt = 0. At last, we observe that
1
2gt ∈ −

1
2kt + 1

2K
0
t ⊆ −Kt so that gt ∈ K0

t , i.e., (4.2) holds.
Property (4.3) is similarly derived from (SNRA).
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(ii) In order to show that (4.2) implies (SNRA), proceed by induction as in [26,
Lemma 3.2.13]. Let −k0 − · · · − kT − η0 − · · · − ηT = 0. Then

kT + ηT =

T−1∑
s=0

(−ks − ηs) ∈ A0,T−1 ⊆ A0,T .

By (4.2), kT + ηT ∈ L0(FT ;K0
T ). Since kT + ηT is FT−1-measurable and the

solvency sets are strictly proper, kT + ηT ∈ L0(FT−1;K0
T−1). Therefore, kT + ηT

can be merged with kT−1, and then the induction proceeds with T − 1 instead of T .
To show that (4.3) implies (SNRA), proceed by induction starting from time zero.

Since

k0 + η0 =

T∑
s=1

(−ks − ηs) ∈ A1,T ⊆ A0,T ,

(4.3) yields that k0 + η0 = 0, and (4.4) implies k0 = η0 = 0. ut

Condition (4.4) can be viewed as a consistency between acceptance sets and sol-
vency sets, namely that −Kt does not contain any acceptable non-trivial selection.

The first part of the following result shows that (NRA) is similar to the weak
no-arbitrage property NAw of Kabanov’s model; see [26, Sect. 3.2.1]. Denote by intA
the interior and by ∂A the boundary of A ⊆ Rd.

Proposition 4.4 Suppose that Rd+ \ {0} ⊆ intKt a.s. for all t. Then (NRA) is
equivalent to each of the following two conditions:

(i) R0
t,t+1(Ξ0

t+1) ∩ L0(Ft;−Kt) ⊆ L0(Ft;−∂Kt) for all t.
(ii) Ξ̂0

t ∩ L0(Ft;Rd−) = {0} for all t.

Proof (i) Consider xt = γt + kt for γt ∈ M = R0
t,t+1(Ξ0

t+1) and kt ∈ L0(Ft;Kt).
Assume that xt ∈ L0(Ft;Rd−) \ {0}. Hence γt/2 = xt/2 − kt/2 ∈ L0(Ft;−Kt)
and γt/2 ∈ −intKt on {xt 6= 0} since intKt contains Rd+ \ {0}. This contradicts the
assumption.

Consider any xt ∈ M ∩ L0(Ft;−Kt) such that xt = −kt for some kt ∈
L0(Ft;Kt) with P[kt ∈ intKt] > 0. By a measurable selection argument, there
exists γt ∈ L0(Ft;Rd−) \ {0} such that kt + γt ∈ L0(Ft;Kt). Thus,

xt + kt + γt = γt ∈
(
M + L0(Ft;Kt)

)
∩ L0(Ft;Rd−),

contradicting (NRA).
(ii) It suffices to show that (NRA) implies (ii). Assume that kt ∈ L0(Ft;Kt) and

γt ∈ Rt,t+1(Ξ0
t+1) are such that kt + γt ∈ Rd− a.s. and kt + γt 6= 0 with positive

probability. Since kt/2 + Rd+ ⊆ ({kt/2} ∪ intKt) a.s., with positive probability, the
set (intKt + Rt,t+1(Ξ0

t+1)) has a non-trivial intersection with Rd−. Applying [28,
Prop. 2.10] with X = intKt and Ξ = R0

t,t+1(Ξ0
t+1), the set (intKt +R0

t,t+1(Ξ0
t+1))

has a non-trivial intersection with Rd− with positive probability, which contradicts
(NRA). ut

Theorem 4.5 If the solvency sets are proper, then (SNR) implies (NARA) plus the
closedness of Ξ̂0

t in probability for all t = 0, . . . , T .
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Proof Denote M = Rt,t+1(Ξ0
t+1). Recall that we have cl0Ξ̂

0
t = cl0Ξ

0
t . Assume

that knt + γnt → ζt ∈ L0(Ft;Rd−) a.s. for knt ∈ L0(Ft;Kt) and γnt ∈ M such that
knt + γnt ∈ Ξ̂0

t forn ≥ 1. SinceM isL0-closed and convex, we may assume thanks to
[26, Lemma 2.1.2] that knt → kt ∈ L0(Ft;Kt) on the set A = {lim infn→∞ |knt | <
∞}. Hence γnt → γt ∈M so that

γt = ζt − kt ∈M ∩ L0(Ft;−Kt) ⊆ L0(Ft;K0
t ).

Thus γt ∈ K0
t and ζt/2 = γt/2 + kt/2 ∈ Kt. Hence ζt/2 ∈ Rd− ∩Kt = {0} and

ζt = 0 on A.
If P[Ω \ A] > 0, assume that knt = γnt = ζt = 0 on A by Ft-decomposability,

and use a normalisation procedure, i.e., divide knt , γ
n
t , ζt by (1 + |knt |). Arguing as

previously, we obtain kt ∈ L0(Ft;Kt) such that |kt| = 1 onΩ \A. Since 0 ∈M , we
have γt ∈M by conditional convexity. Moreover, kt+γt = 0 since ζt/(1+|knt |)→ 0.
Hence, γt 6= 0 belongs to M ∩L0(Ft;−Kt) = {0}, which is a contradiction in view
of Lemma 4.2. This argument also yields the closedness of Ξ̂0

t = L0(Ft;Kt) +M .
ut

LetA
p

t,s denote the closure ofApt,s = At,s∩Lp(FT ;Rd) with respect to the module
norm.

The following theorem states that the (NARA) and (SNR) conditions are weak
no-arbitrage conditions of the no-free-lunch type. Recall that the usual NFL condition
is cl∞,1(At,T ) ∩ L∞(FT ;Rd+) = {0}, where cl∞,1 designates the weak closure in
L∞(FT ;Rd+) with respect to the (dual) space L1(FT ;Rd+), see [13, Sect. 5.2].

Theorem 4.6 Assume that the acceptance sets are continuous from below at zero and
p ∈ [1,∞].

(i) (NARA) is equivalent to

A
p

t,T ∩ L0(Ft;Rd+) = {0}, t = 0, . . . , T − 1. (4.5)

(ii) If the solvency sets are proper, then (SNR) is equivalent to

A
p

t,T ∩ L0(Ft;Kt) = {0}, t = 0, . . . , T − 1. (4.6)

Moreover, properties (4.5) and (4.6) are equivalent to the same ones with p = 1 and
also to those obtained by taking the closure of At,T ∩Lp(FT ;Rd) with respect to the
norm on Lp(FT ;Rd).

Proof (i) Assume that (4.5) holds for the closure with respect to the module norm
on Lpt,T . Then (4.5) also holds if the closure is taken with respect to the norm on
Lp(FT ;Rd). Therefore, given (4.1), it suffices to show that (NARA) follows from

clp
(
Ξ0
t ∩ Lp(Ft;Rd)

)
∩ L0(Ft;Rd−) = {0}, t = 0, . . . , T − 1. (4.7)

Assume (4.7) and consider xt ∈ (cl0Ξ
0
t )∩L0(Ft;Rd−). Then xnt → xt a.s. for some

(xnt )n∈N in Ξ0
t . Hence

xnt 1{|xn
t |≤m+1}1{|xt|≤m} → xt1{|xt|≤m} a.s. as n→∞
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for all m ≥ 1, where xnt 1{|xn
t |≤m+1}1{|xt|≤m} ∈ Ξ0

t by decomposability and
since 0 ∈ Ξ0

t . Dominated convergence therefore yields that xt1{|xt|≤m} belongs to
clp(Ξ

0
t ∩ Lp(Ft;Rd)) ∩ L0(Ft;Rd−) = {0}, where the closure may be taken with

respect to the module norm. Letting m→∞ yields xt = 0, i.e., (NARA) holds.
Assume (NARA). Consider a sequence (V nt,T )n∈N from Apt,T which converges in

Lpt,T to z+
t ∈ Lp(Ft;Rd+). Then Ṽ nt,T := V nt,T∧z

+
t → z+

t inLpu,T , where the minimum
is taken coordinatewise and u is any time between t and T , and Ṽ nt,T ∈ At,T so that
we may assume without loss of generality that V nt,T ≤ z+

t . Passing to subsequences,
assume that V nt,T → z+

t in Lpu,T and almost surely for each given u ≥ t.
Define ξnT = V nt,T − z+

t ≤ 0. Then |||ξnT |||p,FT−1
→ 0 in probability. By the

continuity from below at zero, there exists a sequence (γnT−1)n∈N in L0(FT−1;Rd+)
such that

ηnT = ξnT + γnT−1 ∈ CT−1,T

and 0 ≤ γnT−1 ≤ xT |||ξnT |||p,FT−1
for all n and some xT ∈ Rd+. Hence γnT−1 → 0 in

LpT−2,T if T − 2 ≥ t. Since −γnT−1 → 0 in LpT−2,T , the continuity from below at
zero yields the existence of a sequence (γnT−2)n∈N in L0(FT−2;Rd+) such that

ηnT−1 = −γnT−1 + γnT−2 ∈ CT−2,T−1

for all n and for some constant xT−1 ∈ Rd+, we have

0 ≤ γnT−2 ≤ xT−1|||γnT−1|||p,FT−1
≤ xTxT−1|||ξnT |||p,FT−2

,

so that γnT−2 → 0 inLpT−3,T ifT−3 ≥ t. Iterate the construction to find γnT−3, . . . , γ
n
t

such that γnt → 0 a.s. Then ηnu+1 = −γnu+1 + γnu ∈ Cu,u+1 if t ≤ u ≤ T − 2. Hence

ξnT + γnt =

T−1∑
u=t

ηnu+1 ∈ Ct,t+1 + · · ·+ CT−1,T .

By convexity,
1

2
(−z+

t + γnt ) = −1

2
V nt,T +

1

2
(ξnT + γnt ) ∈ Ξ0

t .

Letting n → ∞ yields that − 1
2z

+
t ∈ (cl0Ξ

0
t ) ∩ L0(Ft;−Rd+, ) so that z+

t = 0 by
(NARA). Thus (4.5) holds with respect to the conditional norm and also with respect
to the Lp-norm.

(ii) Recall that Ξ̂0
t = cl0(Ξ̂0

t ) = cl0(Ξ0
t ) by Theorem 4.5. Following the argu-

ments from (i), we obtain that (SNR) is equivalent to

clp
(
Ξ0
t ∩ Lp(Ft;Rd)

)
∩ Lp(Ft;−Kt) = {0}, t = 0, . . . , T − 1. (4.8)

In view of (4.1), clp(Ξ
0
t ∩ Lp) ⊆ −A

p

t,T . Therefore, (4.6) implies (4.8) and (SNR)
holds.

Now assume (SNR). Consider a sequence (V nt,T )n∈N from Apt,T which converges
in Lp to kt ∈ L0(Ft;Kt). Then follow the proof of (i) with kt instead of z+

t .
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Consider a sequence (V nt,T )n∈N from A1
t,T which tends to kt ∈ L0(Ft;Kt) in

L1. We may assume that (V nt,T )n∈N converges a.s. Then for every M > 0, the se-
quence (V nt,T1{|kt|≤M})n∈N is in A1

t,T and converges to kt1{|kt|≤M} ∈ Lp(Ft;Kt)

in L1 so that we may assume without loss of generality that |kt| is bounded by M .
Passing to a subsequence, we may assume that E[|V nt,T − kt| |Ft] → 0 a.s. Thus
V nt,T1{E[|V n

t,T | |Ft]≤M+1} → kt almost surely and in L1
t,T . So (4.6) holds with p = 1.

ut

Now consider more general claims ξ. Recall that ifKT is a cone and ξ ∈ KT a.s.,
then Ξξt ⊆ Ξ0

t for all t.

Theorem 4.7 If the solvency sets are proper and the acceptance sets are continuous
from below at zero, then (SNR) yields that Ξ̂ξt is closed in probability for all t and any
ξ ∈ Lp(FT ;Rd), so that Ξ̂ξt = L0(Ft;Xξ

t ) for a random closed setXξ
t , t = 0, . . . , T .

Proof Assume that knt + γnt → ζt ∈ L0(Ft;Rd) a.s. for knt ∈ L0(Ft;Kt) and
γnt ∈ M = Rt,t+1(Ξξt+1) such that knt + γnt ∈ Ξ̂0

t . Since M is L0-closed and
convex, we may assume by [26, Lemma 2.1.2] that knt → kt ∈ L0(Ft;Kt) on the set
A := {lim infn→∞ |knt | <∞}. Hence γnt → γt ∈M , so that ζt = kt + γt ∈ Ξ̂ξt .

If P[Ω \ A] > 0, assume that knt = γnt = ζt = 0 on A by Ft-decomposability,
and use a normalisation procedure, i.e., obtain k̃nt and γ̃nt by scaling knt and γnt with
cnt = (1+|knt |)−1. We may assume that |γ̃nt | ≤ 2 since cnt ζt → 0, so that k̃nt +γ̃nt → 0.
Arguing as previously, k̃nt → k̃t ∈ L0(Ft;Kt) inLp, and |k̃t| = 1 onΩ\A. Therefore
γ̃nt → γ̃t = −k̃t in Lp, so that k̃t + γ̃t = 0. Notice that

M = cl0
(
(−At+1,T + ξ) ∩ L0(Ft;Rd)

)
.

By convexity,
γ̃nt ∈ cl0(−At+1,T + cnt ξ) ∩ L0(Ft;Rd).

Since |γ̃nt | ≤ 2, assume without loss of generality that γ̃nt ∈ clp(−At+1,T + cnt ξ).
Indeed, it suffices to approximate γ̃nt by (γ̄mnt )m∈N in (−At+1,T + cnt ξ) and multiply
the latter by 1{|γ̄mn

t |≤3}. Letting n→∞, (4.6) yields that

−γ̃t ∈ A
p

t,T ∩ L0(Ft;Kt) = {0}.

Thus γt = 0, so that P[Ω \A] = 0 and the conclusion follows. ut

Lemma 4.8 (NRA2) is equivalent to

Ξξt ⊆ L0(Ft;Kt) + Ct−1,t, t = 0, . . . , T, (4.9)

for any ξ ∈ L0(FT ;KT ). If (4.4) holds, then (NRA2) implies (NARA).

Proof Note that ηt + At,T intersects L0(FT ;KT ) if and only if

ηt ∈
(
− At,T + L0(FT ;KT )

)
∩ L0(Ft;Rd),

or equivalently if ηt ∈ Ξξt for some ξ = kT ∈ L0(FT ;KT ). ut
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Denote byK∗t = {x : 〈x, u〉 ≥ 0, u ∈ Kt} the positive dual set toKt and assume
that K∗t \ {0} is a subset of the interior of Rd+ for all t.

Definition 4.9 An adapted process Z = (Zs)s=t,...,T , t ≤ T , is a q-integrable
t-weakly consistent price system if it is a Q-martingale for Q ≈ P such that Zs is
a q-integrable (under Q) Fs-measurable selection of K∗s for every s ≥ t and Zt 6= 0
a.s. We denote byMq,w

t,T (Q) the set of all q-integrable t-weakly consistent price sys-
tems under Q, where q ∈ [1,∞].

The following result characterises the prices under the conditions (SNR) and
(NARA) conditions and so may be viewed as a fundamental theorem of asset pricing
in our framework.

Theorem 4.10 Assume the coherent conical setting and that the solvency sets are
continuous from below at zero. Let q be the conjugate of the number p from the
definition of the acceptance sets.

(i) (NARA) is equivalent to the existence for each t of Z ∈Mq,w
t,T (P) such that

E[〈Zu, ηu〉] ≥ 0 for all ηu ∈ Cu−1,u, u = t+ 1, . . . , T. (4.10)

(ii) If intK∗t 6= ∅ a.s. for all t, then (SNR) is equivalent to the existence for each
t of Z ∈Mq,w

t,T (P) such that (4.10) holds and Zt ∈ L0(Ft; intK∗t ).

Proof (i) Under (NARA), the existence of Z ∈ Mq,w
t,T (P) such that E[〈ZT , η〉] ≥ 0

for every η ∈ Ct,t+1 + · · · + CT−1,T is a direct consequence of the Hahn–Banach
separation theorem and Theorem 4.6, (i), since we may take p = 1. We then deduce
(4.10) as −Cu−1,u ⊆ At,T for u ≥ t+ 1.

To prove the converse implication, assume the existence of Z ∈ Mq,w
t,T (P) and

consider xT ∈ Apt,T . Then

xT = −kt − (kt+1 + ηt+1)− · · · − (kT + ηT ),

where ηs ∈ Cs−1,s and ks ∈ L0(Fs;Ks) for s ≥ t. Since ηs = η′s + η′′s with
η′s ∈ Cs−1,s ∩ Lps−1,s and η′′s ∈ L0(Fs;Rd+), we may merge η′′s and ks and suppose
without loss of generality that ηs = η′s.

Using backward induction on t ≤ T , we now show that E[〈ZT , xT 〉] ≤ 0. If
xT = −kT−1 − kT − ηT , this is trivial. Since ηt+1, kt ∈ Lpt,t+1, there exists a
partition (Bit)i≥1 fromFt such that ηt+11Bi

t
, kt1Bi

t
∈ Lp(Ft;Rd) for all i ≥ 1. Then

xit+1 = (−kt+1 − · · · − kT − ηt+2 − · · · − ηT )1Bi
t
∈ Apt+1,T , i ≥ 1.

Moreover,

E[〈ZT , xT 〉] =

∞∑
i=1

E[〈ZT , xit+1〉] +

∞∑
i=1

E[〈ZT ,−kt1Bi
t
〉] + E[〈Zt,−ηt+1〉1Bi

t
]

=

∞∑
i=1

E[〈ZT , xit+1〉] +

∞∑
i=1

E[〈Zt,−kt1Bi
t
〉] + E[〈Zt+1,−ηt+11Bi

t
〉]

≤
∞∑
i=1

E[〈ZT , xit+1〉].
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The induction hypothesis yields E[〈ZT , xit+1〉] ≤ 0, hence E[〈ZT , xT 〉] ≤ 0. There-
fore E[〈ZT , xT 〉] ≤ 0 for all xT ∈ A

p

t,T . In particular, if we consider xT = xt ∈
L0(Ft;Rd+), then E[〈Zt, xt〉] ≤ 0 and finally E[〈Zt, xt〉] = 0. Since Zt ∈ intRd+, we
have xT = 0, i.e., (NARA) holds by Theorem 4.6 (i).

(ii) Replicate the proof of (i) using the Hahn–Banach theorem and following
the arguments of [27, Theorem 4.1] in order to construct Z ∈ Mq,w

t,T (P) such that
Zt ∈ L0(Ft; intK∗t ). ut

Remark 4.11 Condition (4.10) can be equivalently written in terms of the condi-
tional expectation as E[〈Zu, ηu〉|Fu−1] ≥ 0 a.s., which also corresponds to the du-
ality pairing in modules; see Filipović et al. [16]. Suppose that (4.10) holds. Then
E[〈Zu, ηu1Au−1〉] ≥ 0 for all Au−1 ∈ Fu−1. Therefore, E[〈Zu, ηu〉|Fu−1] ≥ 0. The
opposite implication is obvious. In other words, (4.10) means that Zu belongs to the
positive dual of Cu−1,u.

If the acceptance sets with p = ∞ are generated by convex families Zt,s (see
Example 2.7), then (4.10) means that Zt belongs to the closure ofZt,s with respect to
Ft-bounded convergence in probability. If theKt are all half-spaces (in the frictionless
setting), then (NARA) is equivalent to the existence of a martingale Zu = φuSu,
where Su is the price vector, such that (4.10) holds.

5 Good-deal hedging

Assume that Ct,s consists of random vectors (ηs, 0, . . . , 0) ∈ Lp(Fs;Rd) with all
components vanishing except the first one and such that ρt,s(ηs) ≤ 0 for a univariate
dynamic risk measure ρt,s. This corresponds to the case when the acceptability at each
step is assessed by calculating the risk of a portfolio expressed in the units of the first
asset, most usually cash. An arbitrage opportunity in this setting is called a good deal;
see Cherny [7].

For simplicity, consider a one-period setting with zero interest rate and two assets
exchangeable without transaction costs so that without loss of generality, the first asset
is assumed to be cash and the second is a risky asset priced at St for t = 0, 1. Let ξ be
the cash value of a terminal claim. If x0 is the initial endowment (in cash), then the
terminal position of a portfolio is

V1 = (x0, 0) + (−k0S0, k0) + (−k1S1, k1)− (η′, η′′),

where η′ and η′′ are acceptable with respect to some static convex risk measure ρ,
meaning that ρ(η′) ≤ 0 and ρ(η′′) ≤ 0. Given the choice of the acceptance set C0,1,
we have η′′ = 0 so that V1 suffices to pay the claim if

x0 + k0(S1 − S0)− η′ ≥ ξ.

The smallest value of x0 which ensures that there exists some acceptable position
η′ = −ξ + x0 + k0(S1 − S0), satisfying the above inequality equals the infimum of
ρ(k0(S1 − S0)− ξ) over all deterministic k0 ∈ R. For instance, the zero claim ξ = 0
can be hedged with a negative initial capital if ρ(S1 − S0) < 0 or ρ(S0 − S1) < 0,
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and this means the existence of a good-deal arbitrage. If this is the case and the risk
measure is coherent, then also

ρ
(
k0(S1 − S0)− ξ

)
≤ ρ
(
k0(S1 − S0)

)
+ ρ(−ξ) < 0 (5.1)

for sufficiently large k0 > 0 if ρ(S1 − S0) < 0 (or negative k0 if ρ(S0 − S1) < 0),
meaning that any claim with finite ρ(−ξ) can be also hedged with a negative initial
investment. In other words, the no-good-deal (NGD) arbitrage condition becomes

ρ(S1/S0) ≥ −1 and ρ(−S1/S0) ≥ 1.

Our setting is more general than the good-deal hedging since it allows more general
acceptance sets and eliminates the prescribed choice of a single asset in order to assess
the acceptability. As a result, the no-arbitrage conditions become stronger and the
infimum cost of the superhedging price declines. To illustrate this, consider the above
two-asset one-period setting with the acceptance set C0,1 that consists of all (η′, η′′)
such that ρ(η′) ≤ 0 and ρ(η′′) ≤ 0. By allowing a non-trivial η′′, it is possible to
decrease the price of a terminal cash claim ξ. For this, note that ξ can be paid if

x0 − k0S0 − k1S1 − η′ ≥ ξ
k0 + k1 − η′′ ≥ 0

for some deterministic k0,F1-measurable k1 and acceptable η′, η′′. This increases the
hedging possibilities and so leads to a decrease of the superhedging price costs, but also
creates extra arbitrage opportunities. In particular, considering (η′, η′′) ∈ C0,1 with
η′ = 0, arbitrage becomes possible if ρ((k0(S1−S0)+x0)/S1) ≤ 0 for some x0 < 0
and K0 ∈ R. By letting x0 increase to zero, we see that the necessary no-arbitrage
condition in addition to (5.1) yields that

ρ(S0/S1) ≥ −1 and ρ(−S0/S1) ≥ 1.

This corresponds to the fact that with two assets, a position expressed in one of them
may be not acceptable, while it may be acceptable expressed in the other one. The
necessary and sufficient no-arbitrage condition is stronger and should also include all
possible combinations of the two assets.

Assume that ξ = (S1 −K)+ for some K > 0 and that the support of S1 is the
whole half-line (0,∞). If ρ(X) = ess supF0

(−X), i.e., when the acceptable positions
are nonnegative random variables, then the minimal price

x0 = inf
k0∈R

ρ
(
k0(S1 − S0)− ξ

)
equals S0. If ρ is non-trivial, we have x0 ≤ S0 + ρ(S1 − ξ). Observe that we have
S1 − ξ = S1 ∧K so that x0 ≤ S0 + ρ(S1)∧K and finally x0 ≤ S0 − ρ(S1), where
ρ(S1) < 0 given that S1 > 0 and ρ is non-trivial. This simple example illustrates the
decrease of the superhedging price in presence of a non-trivial risk measure.

Example 5.1 Assume that the risk measure ρ is the negative essential infimum, that
is, consider the setting of conditional cores from Sect. 6. Then NGD arbitrage is not
possible if ess infF0

S1 ≤ S0 ≤ ess supF0
S1. With this choice of risk measure, the

condition NGD coincides with the (SNR) condition; see Theorem 8.1.
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6 Conditional core as risk measure

Assume that p = ∞ and Ct,s = L0(Fs;Rd+) for all 0 ≤ t ≤ s ≤ T , so that
R0
t,s(Ξ) = Ξ ∩ L0(Ft;Rd) for any upper set Ξ ⊆ L0(Fs;Rd). If X is an upper

random closed set, then

R0
t,s(X) = Rt,s(X) = m(X|Ft),

where the latter notation designates the largestFt-measurable random closed subset of
X , called the conditional core of X; see [28, Definition 4.1]. An acceptable portfolio
process is characterised by Vt−1 − Vt ∈ Kt a.s. for t = 1, . . . , T . Then At,s becomes
the sum of L0(Fu;−Ku) for u = t, . . . , s, exactly like in the classical theory of
markets with transaction costs [26, Sect. 3.2.2]. For a claim ξ, the set Ξξt defined in
Sect. 3 becomes the set of superhedging prices that was used in Löhne and Rudloff
[29] to define a risk measure ξ 7→ Ξξt .

The classical no-arbitrage condition (NAs) (no strict arbitrage opportunity at any
time, see [26, Sect. 3.1.4]) then becomes (4.2); (SNA) (strong no arbitrage, see Condi-
tion (iii) in [26, Sect. 3.2.2]) then becomes (4.2); the strong no-arbitrage NAr equivalent
to Condition (iii) in [26, Sect. 3.2.2] coincides with (SNRA).

Theorem 6.1 Suppose that the solvency sets (Kt)t=0,...,T are strictly proper. Then
(SNR), (NAs) and (SNA) are all equivalent and are also equivalent to each of the
following conditions:

(i) A
p

t,T ∩ L0(Ft;Kt) = {0} for all t ≤ T − 1.
(ii) At,T is closed in L0 and At,T ∩ L0(Ft;Kt) = {0} for all t ≤ T − 1.

Proof (SNR) is equivalent to (i) by Theorem 4.6 (ii). The equivalence of (NAs) and
(SNA) follows from Lemma 4.3 given that (4.4) trivially holds.

The implication (i)⇒ (ii) is simple to show by induction. First, AT,T is closed.
Assume that −knt − · · · − knT → ξ a.s. for knu ∈ L0(Fu;Ku), u ≥ t. On the set
{lim infn→∞ |knt | =∞}, we use a normalisation procedure to arrive at a contradiction
with (i). Otherwise, suppose that −knt → −kt ∈ −Kt, so that we may use the
induction hypothesis to conclude.

In order to derive the closedness of At,r under (SNA), it suffices to follow the
proof of [26, Lemma 3.2.8]. Indeed, since K0

t is a linear space, the recession cone

K∞t =
⋂
α>0

αKt = {x ∈ Rd : Kt + αx ⊆ Kt,∀α > 0}

satisfies K0
t ⊆ K∞t ; see Pennanen and Penner [32]. Therefore kt + αx ∈ Kt

for all kt ∈ Kt, x ∈ K0
t and α ∈ R. Furthermore, (SNA) trivially implies that

At,T ∩ L0(Ft;Kt) = {0} for all t.
In order to show that (ii) implies (NAs), assume

−k0 − · · · − kt = k̃t ∈ A0,t ∩ L0(Ft;Kt).

Then k0 ∈ A0,T ∩ L0(F0;K0), i.e., k0 = 0 by (ii). Similarly, k1 = · · · = kt−1 = 0,
so that −kt = k̃t = 0 since Kt is strictly proper. Thus (NAs) holds.

At last, (NAs) yields (SNA)so that At,T is closed in L0. Finally, (SNA) yields
(4.3) and so At,T ∩ L0(Ft;Kt) = {0}, that is, (i) holds. ut
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(NA2) (no-arbitrage opportunity of the second kind) from Rásonyi [33] and Ka-
banov and Safarian [26, Sect. 3.2.6] has the same formulation as (NRA2).

Lemma 6.2 Assume that the solvency sets are cones. Then:
(i) (NA2) is equivalent to Ξ0

t = L0(Ft;Kt) for all t ≤ T .
(ii) (NA2) is equivalent to

m(Kt|Ft−1) ⊆ Kt−1, t = 1, . . . , T. (6.1)

(iii) If the solvency sets are strictly proper, then (NA2) implies (SNR).

Proof (i) By Lemma 4.8 and Lemma 3.2 (iv), Ξ0
t = L0(Ft;Kt) yields (4.9) and so

implies (NA2). In the other direction, we haveΞ0
t ⊆ L0(Ft;Kt) +Ct−1,t by (NA2),

while (3.2) and the choice of Ct−1,t yield Ξ0
t ⊇ L0(Ft;Kt).

(ii) If Ξ0
t ⊆ L0(Ft;Kt), then

Ξ0
t+1 ∩ L0(Ft;Rd) ⊆ L0(Ft;Kt)

for all t by (3.2). Since L0(Ft+1;Kt+1) ⊆ Ξ0
t+1, we obtain (6.1).

If (6.1) holds, then

Ξ0
T−1 = L0(FT−1;KT−1) + m(KT |FT−1) ⊆ L0(FT−1;KT−1).

Assume that Ξ0
s ⊆ L0(Fs;Ks) for s = t+ 1, . . . , T . Then

Ξ0
t = L0(Ft;Kt) +

(
Ξ0
t+1 ∩ L0(Ft;Rd)

)
⊆ L0(Ft;Kt) + m(Kt+1|Ft) ⊆ L0(Ft;Kt).

The proof is finished by induction.
(iii) Since Ξ0

t is closed in probability under (NA2)by (i), we deduce that
Ξ0
t = Ξ̂0

t = L0(Ft;Kt). Therefore, Ξ̂0
t ∩ L0(Ft;−Kt) = {0}, if the solvency sets

are strictly proper. We deduce that (SNR) holds. ut

For conical solvency sets satisfying m(K0
t |Ft−1) ⊆ K0

t−1, t ≤ T , and in partic-
ular for strictly proper ones, (NAs) is equivalent to the existence of a Q-martingale
evolving in the relative interiors of (K∗t )t=0,...,T for a probability measure Q equiv-
alent to P; see [26, Theorem 3.2.2]. Such a martingale is called a strictly consistent
price system. If intK∗t 6= ∅ for all t, this result follows from Theorem 4.10 (ii).

Note that ΞξT = L0(FT ;Xξ
T ) for XT = ξ +KT , and we also have that ΞξT−1 =

L0(FT−1;Xξ
T−1) is the family of measurable selections for some (possibly non-

closed) random set Xξ
T−1 = KT−1 + m(Xξ

T |FT−1). One needs additional assump-
tions of no-arbitrage type in order to extend this interpretation forΞξt with t ≤ T − 2.
Precisely the sum above should be closed, so that m(Xξ

t |Ft−1) exists for t ≤ T − 1,
which makes it possible to apply Lemma A.3.

Theorem 6.3 Assume that the solvency sets are strictly proper and (NAs) (equiva-
lently, (SNR) or (SNA)) holds. Then Ξξt = L0(Ft;Xξ

t ), where Xξ
t is an Ft-mea-

surable random closed convex set, t = 0, . . . , T , such that Xξ
T = ξ +KT and

Xξ
t = Kt + m(Xξ

t+1|Ft), t = T − 1, . . . , 0.
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Proof It suffices to confirm the statement for t = T−1 and then use induction. Indeed,
by Theorem 6.1, (NAs) is equivalent to (SNR) so that Theorem 4.7 applies. Since
Ξξt is Ft-decomposable, Theorem A.2 yields the existence of an FT−1-measurable
closed set Xξ

T−1 such that ΞξT−1 = L0(FT−1;Xξ
T−1). Since Xξ

T is closed,

ΞξT−1 = L0(FT−1;KT−1) + L0
(
FT−1;m(Xξ

T |FT−1)
)
,

= L0
(
FT−1;KT−1 + m(Xξ

T |FT−1)
)

= L0(FT−1;Xξ
T−1),

where Xξ
T−1 is a random set by Lemma A.3. ut

Proposition 6.4 Suppose that the solvency sets are strictly proper. Then (NAs) holds
if and only if Ξ0

t = L0(Ft;X0
t ) for random closed sets (X0

t )t=0,...,T such that
X0
t ∩ (−Kt) = {0} a.s. for all t. In the conical case, the latter condition is equivalent

to int(X0
t )∗ 6= ∅ for all t, and under (NAs),

At,T =

T∑
s=t

L0(Fs;−X0
s ), 0 ≤ t ≤ T, (6.2)

where X0
t is a strictly proper random closed convex cone for all t.

Proof Assume (NAs); hence Theorem 6.3 applies. Let −gt ∈ L0(Ft;X0
t ∩ (−Kt)).

Then we have gt ∈ Kt a.s., and there exist ku ∈ L0(Fu;Ku) for u = t, . . . , T and
g̃T ∈ L0(FT ;KT ) such that −gt − kt − kt+1 − · · · − kT = g̃T . Since (SNA) holds,
gt + kt = 0 and gt = 0. The converse implication is trivial. In the conical case, since
Kt +Kt = Kt for all t ≤ T , (6.2) follows from the inclusions

Kt ⊆ X0
t ⊆ Kt + · · ·+KT , t ≤ T.

Note that X0
T = KT is strictly proper by assumption. Since

X0
t−1 = Kt−1 + m(X0

t |Ft−1) ⊆ Kt−1 +X0
t ,

induction yieldsX0
t ⊆ Kt+· · ·+KT . Since (SNA) holds under (NAs),X0

t is strictly
proper for all t.

By [26, Lemma 5.1.2], Condition (NAs) holds if and only if Ξ0
t is closed and

Ξ0
t = L0(Ft;X0

t ) with

intK∗t ∩ int(X0
t )∗ = intK∗t ∩ intm(X0

t+1|Ft)∗ 6= ∅, t ≤ T.

Finally, observe that

intK∗t ∩ intm(X0
t+1|Ft)∗ = intK∗t ∩m(X0

t+1|Ft)∗ = int(X0
t )∗.

ut
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Equation (6.2) means that in the superhedging problem, we may replace the sol-
vency sets Kt with X0

t . The solvency sets (X0
t )t=0,...,T satisfy the condition (NA2)

by Lemma 6.2, which is generally required to obtain a dual characterisation of the
superhedging prices; see Condition B (equivalent to (NA2)) in [26, Sect. 3.6.3]. There-
fore, (NAs) suffices for [26, Theorem 3.6.3] to hold, provided that we consider the
consistent price systems associated to (X0

t )t=0,...,T .
Now consider the conditions (NRA) and (NARA) for the chosen acceptance

sets. Assume that the solvency sets are conical and satisfy K∗t \ {0} ⊆ intRd+. Since
Ξ̂0
t = cl0(Ξ̂0

t ) = cl0(Ξ0
t ) = Ξ0

t , (NRA) and (NARA) are equivalent by Proposi-
tion 4.4. Denote by Apt,T (Q) and A

p

t,T (Q) for p ∈ [1,∞] the variants of Apt,T and A
p

t,T

when the reference probability measure is Q.

Proposition 6.5 The following statements are equivalent:
(i) A

p

t,T (Q) ∩ L0(Ft;Rd+) = {0} for all t ≤ T − 1, p ∈ [1,∞) and Q ≈ P.
(ii)Mq,w

t,T (Q) 6= ∅ for all t ≤ T − 1, p ∈ [1,∞) and Q ≈ P.
(iii) (NARA).
(iv)M∞,wt,T (P) 6= ∅ for all t ≤ T − 1.
(v)M1,w

t,T (P) 6= ∅ for all t ≤ T − 1.

Proof By Theorem 4.10, (v) and (iii) are equivalent. We deduce the equivalence of
(ii) and (iv) by following the proof of [26, Lemma 3.2.4], which makes it possible to
construct a weakly consistent price system (see Definition 4.9) from any consistent
price system in L1. In particular, (v) implies (iv) and clearly (iv) implies (v). Then
(iii) implies (ii), i.e., (NARA) holds for Q in place of P. By Theorem 4.6, (i) holds.
Finally, (i) implies (NARA) by Theorem 4.6. ut

7 Arbitrage with acceptable expectations

Assume that p = 1 and let Ct,s ∩ L1
t,s be the set of all ηs ∈ L1

t,s such that Eg[ηs|Ft]
has all nonnegative components. In other words, the acceptable positions are those
having nonnegative generalised conditional expectation. This is the weakest possible
acceptability criterion, which is always the case (in the static setting) if the acceptance
sets are dilatation monotonic.

The generalised conditional expectation is well defined for each γs ∈ L̂1
t,s by

letting Eg[γs|Ft] = Eg[γ′s|Ft] + E[γ′′s |Ft], where γ′′s ∈ L0(Fs;Rd+) may have an
infinite expectation. If XT is an FT -measurable random upper convex set that admits
at least one selection from L1

t,s, then let

R0
t,s(XT ) = {Eg[γs|Ft] : γs ∈ L1

Ft
(Fs;XT )},

and Rt,s(XT ) = Eg[XT |Ft] is the generalised conditional expectation of the random
closed set XT ; see [28, Definition 6.3].

Let ξ ∈ L1(FT ;Rd). By Lemma 3.2, Ξ̂ξT−1 is the family of selections of the
(possibly non-closed) random set

Xξ
T−1 = KT−1 + E[ξ|FT−1] + E[KT |FT−1] ,
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which is FT−1-measurable by Lemma A.3. Note that all solvency sets are integrable
and so their generalised conditional expectation coincides with the usual one. There-
fore,

RT−2,T−1(Ξ̂ξT−1) = E[Xξ
T−1|FT−2]

= E[ξ|FT−2] + E
[
KT−1 + E[Kt|FT−1]

∣∣FT−2

]
,

= E[ξ|FT−2] + E[KT +KT−1|FT−2].

Since kT ∈ L1
FT−1

(FT ;KT ) and

R0
T−2,T−1(ΞξT−1)

=
{
Eg
[
kT−1 + Eg[ξ + kT |FT−1]

∣∣FT−2

]
: kT−1 ∈ L0(FT−1;KT−1)

}
,

we deduce that RT−2,T−1(Ξ̂ξT−1) ⊆ RT−2,T−1(ΞξT−1). Since ΞξT−1 is a subset of
Ξ̂ξT−1, we have

RT−2,T−1(Ξ̂ξT−1) = RT−2,T−1(ΞξT−1).

Therefore,

Xξ
T−2 = KT−2 + E[ξ|FT−2] + E[KT +KT−1|FT−2],

Continuing recursively, we obtain Ξ̂ξt = L0(Ft;Xξ
t ) with a not necessarily closed

Ft-measurable random set

Xξ
t = Kt + E[ξ|Ft] + E[KT +KT−1 + · · ·+Kt+1|Ft].

Notice that Xξ
t = X0

t + E[ξ|Ft], i.e., X0
t determines all superhedging prices. Refor-

mulating the requirements from Definition 4.1, we arrive at the following result.

Proposition 7.1 For the risk arbitrage conditions formulated for the conditional ex-
pectation as the risk measure, the following hold:

(i) If the solvency sets are strictly proper, (SNR) is equivalent to

E[Kt+1 + · · ·+KT |Ft] ∩ (−Kt) = {0} a.s., t = 0, . . . , T − 1.

(ii) (NARA) is equivalent to

(Kt + E[Kt+1 + · · ·+KT |Ft]) ∩ Rd− = {0} a.s., t = 0, . . . , T − 1.

Note that statement (ii) above follows from (i). Theorem 4.10 yields the following
result.

Proposition 7.2 Assume that the solvency sets (Kt)t=0,...,T are cones. Then (NARA)
(resp. (SNR)) is equivalent to the existence of a deterministic point z 6= 0 that belongs
to all K∗t (resp. intK∗t ), t = 0, . . . , T .
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Proof Any acceptable position from Cu−1,u is of the form

ηu = (γu − Eg[γu|Fu−1]) + Eg[γu|Fu−1] + ζ+
u

with Eg[γu|Fu−1] ∈ Rd+ and ζ+
u ∈ L0(Fu;Rd+). Thus

Eg[〈Zu, ηu〉|Fu−1] ≥ Eg
[
〈Zu, γu − Eg[γu|Fu−1]〉|Fu−1

]
= Eg[〈Zu, γu〉|Fu−1]− 〈Zu−1,E

g[γu|Fu−1]〉.

Hence Eg[〈Zu, ηu〉|Fu−1] ≥ 0 if there exists Z ∈M∞,wt,T (P) such that

Eg[〈Zu, γu〉|Fu−1] = 〈Zu−1,E
g[γu|Fu−1]〉 a.s.

for all γu ∈ L1
Fu−1

(Fu;Rd). The equality follows from (4.10) by taking unconditional
expectations (restricting to a partition if necessary) and applying the same reasoning
with −γu. Given that Zu is essentially bounded, one can let γu be equal to one of the
components of Zu multiplied by the corresponding basis vector. Thus the square of
every component of (Zu)u=0,...,T is a martingale, whence Zu must be deterministic
z for all u.

The converse implication follows from Theorem 4.10 (i) applied to

ηu = γu − Eg[γu|Fu−1] ∈ Cu−1,u.

The proof for (SNR) follows from the same argument and Theorem 4.10 (ii). ut

Remark 7.3 It is possible to derive the result of Proposition 7.2 from Proposition 7.1
by using the fact that the expectation of the cone Kt is the whole space unless K∗t
contains a deterministic point z distinct from the origin, and then E[Kt] is a subset of
the half-space with outer normal−z. In order thatX0

t does not intersect Rd−, all cones
Kt should have non-trivial expectation and the sum of these expectations must be
non-trivial. This amounts to the existence of a deterministic point z 6= 0 that belongs
to K∗0 ∩ · · · ∩K∗T .

8 Application to a two-dimensional model

Consider a financial market model composed of two assets. The first one has constant
value 1 and the second is a risky asset modelled by a bid-ask spread Yt = [Sbt , S

a
t ]

such that 0 < Sbt ≤ Sat a.s. for all t ≤ T . This is Kabanov’s model with the conical
solvency set Kt = C(Yt), where C([s′, s′′]) is the positive dual to the smallest cone
in R2 containing the set {1} × [s′, s′′].

Consider the acceptance sets from Sect. 6 so that the conditional core is the risk
measure. Then X0

T−1 is the sum of KT−1 and m(X0
T ,FT−1) = C(M(YT |FT−1)),

where M(YT |FT−1)) is the conditional convex hull of YT , that is, the smallest
FT−1-measurable random closed convex set that contains YT−1; see [28, Defini-
tion 5.1].

SinceX0
T−1 is a random closed set, iterating this argument yields thatX0

t = C(Ỹt)

for t = 0, . . . , T , where ỸT = YT and

Ỹt = M(Ỹt+1|Ft) ∩ Yt, t = T − 1, . . . , 0.
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Note that we do not make any no-arbitrage assumption to obtain X0
t . Observe that

Ỹt = [S̃bt , S̃
a
t ], where S̃aT = SaT , S̃bT = SbT and

S̃at = Sat ∧ ess supFt
S̃at+1, S̃bt = Sbt ∨ ess infFt S̃

b
t+1

for t = T − 1, . . . , 1. Since 0 < S̃bt ≤ S̃at a.s. for all t, (NRA) always holds. By
Definition 4.1 and Lemma 4.8, we easily deduce the following result.

Theorem 8.1 (i) (SNR) holds if and only if Sbt ≤ ess supFt
S̃at+1 and

Sat ≥ ess infFt S̃
b
t+1 a.s. with strict inequalityP -a.s when we have the strict inequality

Sbt < Sat a.s. for all t ≤ T − 1.
(ii) (NA2) holds if and only if ess supFt

Sat+1 ≥ Sat and Sbt ≥ ess infFt
Sbt+1 a.s.

for all t ≤ T − 1.

Remark 8.2 (NAs) is equivalent to (SNR) in the proper case, but also to the ex-
istence of a strictly consistent price system; see [26, Theorem 3.2.2]. In the two-
asset case, the Grigoriev theorem, see [26, Theorem 3.2.15] and Grigoriev [19],
asserts that (NAs) is equivalent to the existence of a (possibly non-strict) consis-
tent price system, i.e., the existence of a martingale (Zt) with respect to a prob-
ability measure Q equivalent to P such that Sbt ≤ Zt ≤ Sat for all t. By The-
orem 8.1, the existence of a consistent price system, or equivalently (NAs), im-
plies (SNR). Indeed, ess supFt

S̃at+1 ≥ EQ[Zt+1|Ft] ≥ Sbt and similarly we have
ess infFt S̃

b
t+1 ≤ EQ[Zt+1|Ft] ≤ Sat , the inequalities being strict when Sbt < Sat a.s.

Corollary 8.3 If there exist probability measures Qa,Qb which are equivalent to P
such that Sa is a Qa-submartingale and Sb is a Qb-supermartingale, then (NA2)
holds.

The condition in the following corollary means that the two quantities δbt =
Sbt /S

b
t−1 and δat = Sat /S

a
t−1 admit conditional full supports on R+ for all t ≤ T .

Corollary 8.4 If P[δbt ≤ c|Ft−1]P[δat ≥ c|Ft−1] > 0 a.s. for all t = 1, . . . , T and
all c > 0, then (NA2) holds.

Proof Let γ = ess supFt−1
Sat . Then γ1{δat≥c} ≥ Sat 1{δat≥c} ≥ cSat−11{δat≥c}.

Taking conditional expectations yields that

γP[δat ≥ c|Ft−1] ≥ cSat−1P[δat ≥ c|Ft−1].

Then γ ≥ cSat−1, and letting c → ∞ yields that γ = +∞ a.s. Similarly, we obtain
ess infFt−1

Sbt = 0 a.s., and so Theorem 8.1 (ii) applies. ut

Assume now that the acceptability criterion is based on the generalised conditional
expectation as in Sect. 7. By Proposition 7.2, (NARA) holds if and only if there is a
deterministic z that belongs to all Yt, t = 0, . . . , T , and (SNR) additionally requires
that this point belongs to the interiors of the Yt.
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Example 8.5 Consider a two-asset setting where it is allowed to perform transactions
up to one cash unit amount. This is a simple limit order book setting with only one
break point. Then Kt is the sum [0, αt] + [0, βt] + R2

+, where αt = (1,−Sat ) and
βt = (−1, Sbt ). By Proposition 7.1, (NARA) (with acceptability based on conditional
expectation) holds if and only if

E

[ T∑
s=t+1

([0, αs] + [0, βs])

∣∣∣∣Ft] ∩ Rd− = {0}

for all t = 0, . . . , T − 1. The sum of the segments [0, αs] and [0, βs] is a random
convex compact set called a zonotope. The setting can be easily extended to the case
of limit order books with several break points.

A Random sets and their selections

Let Rd be the Euclidean space with norm | · | and the Borel σ-algebra B(Rd). The
closure of a set A ⊆ Rd is denoted by clA. A set-valued function ω 7→ X(ω) from
a complete probability space (Ω,F ,P) to the family of all subsets of Rd is called
F-measurable (or graph-measurable) if its graph

GrX = {(ω, x) ∈ Ω × Rd : x ∈ X(ω)} ⊆ Ω × Rd

belongs to the product σ-algebra F ⊗ B(Rd). In this case, X is said to be a random
set. In the same way, theH-measurability of X with respect to a sub-σ-algebraH of
F is defined. The random setX is said to be closed (convex, open) ifX(ω) is a closed
(convex, open) set for almost all ω.

Definition A.1 An F-measurable random element ξ in Rd is said to be an F-mea-
surable selection (selection in short) of X if ξ(ω) ∈ X(ω) for almost all ω ∈ Ω. We
denote by L0(F ;X) the family of all F-measurable selections of X , and Lp(F ;X)
is the family of p-integrable ones.

It is known that an a.s. non-empty random set has at least one selection; see Hess
[22, Theorem 4.4]. LetH be a sub-σ-algebra of F and recall Definition 2.3.

The decomposable subsets of L0(F ;Rd) are called stable and infinitely decom-
posable ones are called σ-stable in Cheridito et al. [6]. The following result forH = F
is well known in case p = 1 (see Hiai and Umegaki [23] where the decomposability
concept was first introduced); see also Molchanov [30, Theorem 2.1.10] for H = F
and Kabanov and Safarian [26, Prop. 5.4.3] for p = 0.

Theorem A.2 (see [28, Theorem 2.4] and [30, Theorem 2.1.10]) Let Ξ be a non-
empty subset of Lp(F ;Rd) for p = 0 or p ∈ [1,∞]. Then

Ξ ∩ Lp(H;Rd) = Lp(H;X)

for an H-measurable random closed set X if and only if Ξ is H-decomposable and
closed.
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For A1, A2 ⊆ Rd, define their elementwise (Minkowski) sum as

A1 +A2 = {x1 + x2 : x1 ∈ A1, x2 ∈ A2} .

The same definition applies for the sum of subsets of L0(F ;Rd). The set of pairwise
differences of points fromA1 andA2 is obtained asA1 + (−A2), or shortlyA1−A2,
where −A2 = {−x : x ∈ A2} is the centrally symmetric variant of A2. For the sum
A + {x} of a set and a singleton we write shortly A + x. Note that the sum of two
closed sets is not necessarily closed unless at least one of the closed summands is
compact. The following result differs from [30, Theorem 1.3.25] in considering the
possibly non-closed sum of two random closed sets.

Lemma A.3 Let X and Y be two random sets. Then

L0(F ;X) + L0(F ;Y ) = L0(F ;X + Y ).

If both X and Y are random closed sets, then X + Y is measurable.

Proof It is trivial thatL0(F ;X)+L0(F ;Y ) ⊆ L0(F ;X+Y ). To prove the converse
inclusion, consider ξ ∈ L0(F ;X + Y ). Since X and Y are F-measurable, the mea-
surable selection theorem [26, Theorem 5.4.1] yields that there exist F-measurable
selections ξ′ ∈ L0(F ;X) and ξ′′ ∈ L0(F ;Y ) such that ξ = ξ′ + ξ′′.

Assume that X and Y are closed. Consider their Castaing representations (see
[30, Definition 1.3.6]) as X(ω) = cl{ξ′i(ω), i ≥ 1} and Y (ω) = cl{ξ′′i (ω), i ≥ 1}.
The measurability of X + Y follows from the representation

Gr(X + Y ) =
⋃
k≥1

⋂
m≥1

⋃
i,j≥1

{
(ω, x) : |x− ξ′i(ω)− ξ′′j (ω)| ≤ 1

m
, |ξ′i(ω)| ≤ k

}
.

Indeed, if (ω, x) ∈ Gr(X1 +X2), then x = a+ b for a ∈ X1(ω) and b ∈ X2(ω). Let
k ≥ 1 be such that |a| + 1 ≤ k. Since a ∈ X1, there exists a subsequence (ξ′nl

)l≥1

such that ξ′nl
(ω) → a. We may assume without loss of generality that |ξ′nl

(ω)| ≤ k.
Similarly, ξ′′nl

(ω)→ b. Therefore |x−ξ′i(ω)−ξ′′j (ω)| ≤ 1
m ifm > 0, and |ξ′i(ω)| ≤ k

for some i, j. ut
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