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Malondialdehyde and anion patterns 
in exhaled breath condensate among subway 
workers
Jean‑Jacques Sauvain1* , Maud Hemmendinger1 , Guillaume Suárez1 , Camille Creze1 , Nancy B. Hopf1 , 
Valérie Jouannique2, Amélie Debatisse2, Jacques A. Pralong3 , Pascal Wild4  and Irina Guseva Canu1  

Abstract 

Background: Underground transportation systems can contribute to the daily particulates and metal exposures 
for both commuter and subway workers. The redox and metabolic changes in workers exposed to such metal‑rich 
particles have yet to be characterized. We hypothesize that the distribution of nitrosative/oxidative stress and related 
metabolic biomarkers in exhaled breath condensate (EBC) are modified depending on exposures.

Results: Particulate number and size as well as mass concentration and airborne metal content were measured in 
three groups of nine subway workers (station agents, locomotive operators and security guards). In parallel, pre‑ and 
post‑shift EBC was collected daily during two consecutive working weeks. In this biological matrix, malondialdehyde, 
lactate, acetate, propionate, butyrate, formate, pyruvate, the sum of nitrite and nitrate (ΣNOx) and the ratio nitrite/
nitrate as well as metals and nanoparticle concentrations was determined. Weekly evolution of the log‑transformed 
selected biomarkers as well as their association with exposure variables was investigated using linear mixed effects 
models with the participant ID as random effect. The professional activity had a strong influence on the pattern of 
anions and malondialdehyde in EBC. The daily number concentration and the lung deposited surface area of ultrafine 
particles was consistently and mainly associated with nitrogen oxides variations during the work‑shift, with an inhibi‑
tory effect on the ΣNOx. We observed that the particulate matter (PM) mass was associated with a decreasing level of 
acetate, lactate and ΣNOx during the work‑shift, suggestive of a build‑up of these anions during the previous night in 
response to exposures from the previous day. Lactate was moderately and positively associated with some metals and 
with the sub‑micrometer particle concentration in EBC.

Conclusions: These results are exploratory but suggest that exposure to subway PM could affect concentrations of 
nitrogen oxides as well as acetate and lactate in EBC of subway workers. The effect is modulated by the particle size 
and can correspond to the body’s cellular responses under oxidative stress to maintain the redox and/or metabolic 
homeostasis.
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Background
Exposure to ambient particulate matter (PM) is associ-
ated with the development and exacerbation of differ-
ent respiratory and cardiovascular diseases [1, 2]. New 
evidences suggest that exposure to such pollutants is 
also able to induce more systemic effects beyond the 
cardiopulmonary system, e.g. favoring the progress of 
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metabolic diseases like type 2 diabetes or obesity [3]. 
The full mechanistic understanding of the development 
for such pathologies is lacking but increasing data sug-
gest that oxidative stress and inflammation are central 
in explaining these effects. A plausible hypothesis is that 
the oxidative stress induced by ambient PM exposure 
modifies the cellular redox homeostasis, resulting in 
antioxidant depletion, lipid peroxidation and mitochon-
drial dysfunction [4, 5]. In order to repair and restore the 
cellular functional processes, a reprogramming of the 
energy metabolism will occur [6]. Indeed, multiple meta-
bolic pathways have been observed to be modified either 
in in vitro [7, 8] or in in vivo models [9] after exposure 
to ambient PM. In these studies, the affected metabolic 
pathways were related to the metabolism of glucose [10, 
11], the tricarboxylic acid cycle as well as glutathione, 
arginine, proline, nitrogen and lipids metabolism [6]. Due 
to such multiple and complex inter-relations, a panel of 
metabolites (and not solely one molecule) should be con-
sidered when characterizing and discriminating a patho-
logical state resulting from PM exposure [12].

The pathogenicity from PM exposure has been linked, 
at least, to their size and chemical composition; parti-
cles with smaller aerodynamic diameters are more prone 
to penetrate deeper into the lung and induce a greater 
biological activity in sensitive regions such as the alveoli 
[13]. Ultrafine particles (UFP) (mean aerodynamic diam-
eter < 100  nm) have a high deposition in all regions of 
the respiratory tract [14]. Beside their chemical variabil-
ity, related to their sources, ambient PM might also have 
adsorbing properties for organic compounds or metals, 
playing the role of a carrier of noxious components to 
vulnerable regions of the lungs [13]. In order to under-
stand the effect of specific chemicals, it is important to 
consider model particles enriched with some chemicals. 
In this frame, underground railways are of special inter-
est as their PM concentration and composition differ 
strongly from ambient PM [15]. Indeed, PM encountered 
in subways contain mainly metallic elements, originat-
ing from specific processes such as wheel and brake wear 
or electric arcs. Exposure to PM during subway com-
muting in different Canadian cities has been reported 
to contribute to the majority of the personal daily expo-
sure to metals and to 10–20% of the total  PM2.5 exposure 
[16]. A similar observation was reported for Milan city, 
where the contribution of the subway PM on the total 
mass deposited in the lung was quite important during 
the winter season [17]. Some of these elements, such as 
iron, copper, and manganese, might have different oxida-
tion states depending on the biological conditions and be 
redox-active. Indeed, subway PM possess intrinsic oxida-
tive potential but of variable intensity and mainly associ-
ated to copper or nickel but not iron [18, 19]. The possible 

presence of mixed redox state of metals in these particles, 
as reported for iron [20] can promote Fenton-like reac-
tions, which induce oxidative damage to biological con-
stituents [21]. Therefore, exposure to subway PM can 
affect the cell metabolism and particularly, in the mito-
chondria. Karlsson et al. [22] reported the mitochondria 
depolarization of human lung epithelial cells A549 to be 
induced by such PM, suggesting a perturbation in energy 
storage during the oxidative phosphorylation.

The lung is the main entry portal of PM and by conse-
quence, the place where redox homeostasis perturbations 
is observed first. It is thus interesting to gain information 
relative to inflammation or oxidative stress status from 
this organ. For that purpose, exhaled breath condensate 
(EBC) is a relevant biological matrix as it is collected 
non-invasively [23] and allows measuring different bio-
markers of exposure and effect [24]. EBC is also proposed 
as a biological matrix of choice for metabolomics studies 
[25]. We recently validated a simple method to measure 
various anions related to metabolism (lactate, acetate, 
formate, propionate, butyrate, pyruvate) and nitrosative 
stress (nitrite, nitrate) in EBC [26]. The application of this 
method to EBC samples collected from workers exposed 
to soapstone and quartz suggested a modification of the 
distribution of some of these anions, particularly for 
quartz exposed workers [26].

In order to evaluate to which extent exposure to sub-
way PM induces metabolic changes in human respiratory 
system, we made the hypotheses that these particles may 
have effects on nitrosative/oxidative stress biomarkers 
(nitrite, nitrate, malondialdehyde) and/or on different 
metabolism biomarkers (acetate, lactate, formate) meas-
ured in the EBC. Our aim was to check these hypoth-
eses based on a longitudinal pilot-study among subway 
workers followed up during a period of two consecutive 
weeks, whose exposure was well characterized [27, 28].

Results
Anion, MDA, metals and sub‑micrometer particle 
concentrations in EBC
A total of nine workers were enrolled in this pilot study 
as described in the registered protocol [29]. Three dif-
ferent professional groups were included: station agents, 
locomotive operators and security guards. Their per-
sonal daily exposure to  PM10,  PM4,  PM2.5 and ultrafine 
fraction as well as their metal content was measured for 
two consecutive working weeks. In parallel, EBC sam-
ples were collected daily pre- and post-shift. Exposure 
concentrations are described in detail elsewhere [27, 28] 
and are summarized in Additional file  1: Table  S1. Fig-
ure 1 (and Additional file 1: Table S2) illustrates the EBC 
anion concentrations for the three professional groups, 
averaged across the day of the week and work-shift. The 
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inter-subject variance for the different anions, corre-
sponding to the variance observed during the ten work-
ing days, was comprised between 2 and 34% of the total 
variance. Acetate, propionate and butyrate, correspond-
ing to short chain fatty acids (SCFA), were strongly cor-
related, with Pearson correlation coefficients comprised 
between 0.69 and 0.88 (p-values < 0.0001 for all correla-
tions), suggesting a similar source (data not shown). The 
mass proportion of each SCFA anion to their sum was 
similar for the three professional groups with mean val-
ues for acetate/propionate/butyrate of 8/2/0.2 respec-
tively. This distribution is quite different from the typical 
3:1:1 ratio observed from microbial fermentation [30]. 
We noted a moderate correlation between nitrite and for-
mate (Pearson ρ: 0.46, p = 0.0001) or nitrite and acetate 
(Pearson ρ: 0.56, p = 0.0001).

MDA could be measured in all professional groups, 
and most concentrations fell within the concentration 
range reported in healthy controls, using the same ana-
lytical method [31]. Station agents exhibited the highest 
MDA concentrations (160  ng/L,  CI95% = 79–240  µg/L, 
Additional file  1: Table  S2). Iron was a predominant 
element in the collected underground particles (up to 
40.2% for  PM10, Additional file 1: Table S1), but it could 
not be consistently quantified in the EBC samples. Only 
25% of these samples presented iron levels above the 
limit of quantification (LOQ) of 1  µg/L and 59% had 
concentration comprised between LOQ and limit of 
detection (LOD), set at 0.3  µg/L. The concentration in 
descending order of the quantified elements in EBC was: 
Zn > Cu > Ni > Mn. Cu was significantly correlated with 
Zn and Ni for all professional groups. The averaged con-
centration of sub-micrometer particles in EBC (using 
nanoparticle tracking analysis—NTA [26]) was relatively 
low, comprised between 3.5 and 4.3 ×  107  particles/ml, 
with a mean size distribution between 156 and 174 nm.

Correlations between the EBC variables
Table  1 presents the Pearson correlation coefficients 
between the anions and the other variables measured in 
the 146 EBC samples (MDA, metals and concentration 
of sub-micrometer particles measured with NTA). Only 
five variables for anions were considered in this analy-
sis because propionate and butyrate were both strongly 
correlated with acetate, and pyruvate levels were very 
low and near the LOD. We observed that lactate was 
positively and moderately associated with the presence 
of Cu, Cr, Ni and Zn as well as with the concentrations 
of sub-micrometer particles in EBC (NTA). Acetate was 
negatively correlated with most of the variables, but only 
statistically significant with Cu and Cr. A low but statis-
tically significant positive correlation was also observed 
between acetate and MDA. Formate was positively and 
strongly associated with MDA and moderately with Zn. 
A low but statistically significant positive correlation was 
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2

Fig. 1 Mean concentrations of the anions [µM] in the EBC of the 
three professional groups across the day of the week and work‑shift

Table 1 Correlation* between EBC levels of the different anions with MDA, metals and sub‑micrometer particles

* Pearson correlation coefficients, with p-value between bracket. Bold values indicate a statistically significant correlation (p < 0.05)

Formate (µmol/L) Acetate (µmol/L) Lactate (µmol/L) ΣNOx (µmol/L) NO2
−/NO3

−

MDA (ng/L) 0.53 (0.001) 0.29 (0.001) 0.12 (0.169) 0.06 (0.468) 0.29 (0.001)
Cu (µg/L) 0.05 (0.58) − 0.21 (0.019) 0.47 (0.001) 0.07 (0.431)  − 0.23 (0.009)
Mn (µg/L) 0.11 (0.22) − 0.19 (0.033) 0.18 (0.048) 0.14 (0.107)  − 0.14 (0.118)

Cr (µg/L) 0.14 (0.134) − 0.22 (0.018) 0.21 (0.022) 0.004 (0.970)  − 0.15 (0.100)

Ni (µg/L) 0.03 (0.973) − 0.07 (0.463) 0.36 (0.001) 0.004 (0.968)  − 0.13 (0.150)

Zn (µg/L) 0.24 (0.008) − 0.14 (0.128) 0.23 (0.010) 0.18 (0.046)  − 0.18 (0.044)
Number concentration (NTA) (#/cm3) − 0.01 (0.945) − 0.10 (0.241) 0.32 (0.001) − 0.16 (0.083) 0.03 (0.765)

Mean hydrodynamic size (NTA) (nm) − 0.01 (0.903) − 0.03 (0.724) 0.19 (0.038) − 0.13 (0.144) 0.10 (0.267)
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observed for the ratio  NO2
−/NO3

− with MDA and nega-
tive with Cu and Zn (borderline). No association was 
observed between MDA and metals in EBC or between 
MDA and EBC’s sub-micrometer particles (data not 
shown).

Dependence of the anion concentration as a function 
of the professional activity
Results from modelling the anion concentration as a 
function of work-shift (averaged levels of selected ani-
ons for pre- and post-shift are given in Additional file 1: 
Table  S3), day of the week and working group in the 
mixed model are given in Fig. 2. Compared to the mean 
concentrations for locomotive operators and security 
guards, station agents presented a statistically significant 
higher level of acetate (p = 0.001) and  NO2

−/NO3
− ratio 

(p = 0.0001) (Fig. 2A and B). For security guards, lactate 
(p = 0.003) and the sum of nitrite and nitrate (ΣNOX, 
p = 0.0001) increased in comparison with station agents 
and locomotive operators (Fig.  2C and D). In addition, 
security guards presented the lowest  NO2

−/NO3
− ratio 

and a higher level of lactate and ΣNOX compared to loco-
motive operators. We did not observe any clear effect for 
the day of the week on the anion concentrations, except 
for the  NO2

−/NO3
− ratio and the ΣNOX (Fig.  2B and 

D, right panel). For the  NO2
−/NO3

− ratio, a statistically 
significant decreased ratio was observed on Wednesday 
(p = 0.036) compared to Monday, which was considered 
as the reference. On the contrary, a statistically signifi-
cant increase for ΣNOX was determined on Tuesday and 
Wednesday (p = 0.013 and p = 0.022 respectively) com-
pared to Monday. MDA level in EBC was the highest for 
the station agent group (Additional file 1: Table S1) and 
decreased for locomotive operators and security guards 
(Additional file 1: Fig. S1), but without reaching a statisti-
cal significance (p = 0.062).

Association between exposure and the anion 
concentrations in EBC
A key question was to know whether the change in con-
centration of anions during a work-shift (the difference 
between end of shift and before shift) could be due to 
the PM exposure, either measured the same day (lag 0), 
one or two days before (lag 1 and lag 2, respectively). 
The developed statistical model indicated that the con-
centration of some anions in EBC quickly changed after 
exposure (lag 0, Table 2). We observed a positive and sig-
nificant association (p = 0.02) between exposure to  PM4 
and the variation of formate level during the working day. 
Inhalation of UFP also had a rapid influence on the lev-
els of acetate, ΣNOx and  NO2

−/NO3
−. The acetate vari-

ation was negatively associated with UFP size (p = 0.01) 

suggesting that the smaller the UFP size, the higher the 
EBC acetate level at the end of shift. The particle number 
concentration (PNC) and the lung deposited surface area 
(LDSA) were also negatively associated with the variation 
of ΣNOX (p = 0.01 and 0.01, respectively). This suggests 
an inhibitory effect of the PNC and LDSA during the shift 
on ΣNOx. Finally, the variation of the  NO2

−/NO3
− ratio 

and the PNC were positively associated (p = 0.04) for the 
same day (lag 0). These results indicate that UFP expo-
sure favor the formation of  NO2

− compared to  NO3
−.

Delayed effects (at lag 1, Table 3) resulting from expo-
sure to subway PM on the anions concentrations in EBC 
were also detected. These effects were mainly associ-
ated with the PM mass. A higher EBC lactate concen-
tration was observed at pre-shift compared to post-shift 
(p = 0.01) 24 h after  PM10 exposure. A similar result was 
obtained for  PM2.5 and acetate (p = 0.02) and for  PM4 and 
ΣNOx (p = 0.02). Finally, a statistically significant nega-
tive association between the UFP size and the variation of 
the  NO2

−/NO3
− ratio was observed 24 h after UFP expo-

sure. Concentrations of MDA in EBC was positively asso-
ciated with exposure to  PM10 encountered the day before 
(p = 0.05; lag 1, Table 3). At lag 2 (48 h after exposure), no 
relationship between anion and exposure concentrations 
was observed.

Discussion
In this pilot study, we observed that three different pro-
fessional groups exposed to different subway particulate 
levels and characteristics presented different patterns of 
anion in their EBC.

Effect of exposure on the oxidative stress markers 
and anion levels in EBC
A detailed description of the workers’ exposures to UFP, 
PM and metals is given elsewhere [27, 28]. Additional 
file  1: Table  S1 gives an overview of the main expo-
sure levels. Salient results are that station agents had 
the lowest  PM2.5 or  PM10 mass exposure while PNC 
was the highest among the three groups (20,000  #/cm3, 
 CI95% = 16,000–24,000  #/cm3). Proportionally, their 
exposure to fine PM was the highest, with a  PM2.5/PM10 
ratio of 0.89. Locomotive operators presented the highest 
 PM2.5 and  PM10 exposures whereas the security guards 
were the professional group with the largest exposure to 
the coarse fraction (size range from 2.5 to 10  µm, con-
tributing to about 55% of the  PM10 mass). Such exposures 
are similar to the ones measured in different subways in 
European and Asian metropoles [32]. Exposure differ-
ences between the three professional groups were also 
observed when considering the metal elemental content 
in the PM. The locomotive operators were exposed to 
the highest Fe, Zn and Mn concentrations, whereas the 
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security guards had the highest Al level and Cu being 
as high as for locomotive operators. Nevertheless, when 
considering metals in EBC, only Cu and Zn could be 
quantified. The very low Fe concentrations in this matrix 
suggests a strong sequestration in the lungs for this 
essential element [27].

In this study, we observed signs of oxidative stress in 
the worker’s EBC, as measured through MDA quantifica-
tion, a biomarker of oxidative stress in the airways [33]. 
The station agents exhibited the highest MDA concentra-
tions, suggesting the presence of oxidative stress in their 
airways. Interestingly, this group had also the highest 

PNC exposure. Our finding is in line with in vitro stud-
ies showing that transition metals enriched PM, simi-
lar to subway PM [15] or residual oil fly ash [34–36], 
can induce oxidative stress and inflammation. Based on 
Fig. 2, such a perturbed redox homeostasis could be asso-
ciated with elevated levels of acetate and a higher ratio 
 NO2

−/NO3
−. On the other side, security guards pre-

sented the lowest MDA level in EBC but a statistically 
significantly higher level of lactate and ΣNOx compared 
to the two other groups. These different distributions of 
anions in EBC could be attributed only to their occupa-
tional activity. We did not observe a clear effect of the 

Table 2 Association* between personal exposures and selected anions at lag 0

* For each pair exposure-anion, the association was evaluated using linear regression with the (log-transformed) daily evolution of anion (ratio post-shift/pre-shift) as 
dependent variable, the personal exposure as independent predictor variable, and BMI as adjustment variable to control for confounding or effect modification. Bold 
values correspond to coefficients statistically significantly different from zero.  Indicee corresponds to post-shift anions levels whereas  indiceb corresponds to pre-shift 
anion levels

Personal exposure MDAe/MDAb Formatee/
Formateb

Lactatee/Lactateb Acetatee/Acetateb ΣNOxe/ΣNOb Nitrite/Nitratee/
Nitrite/Nitrateb

Lag 0 Lag 0 Lag 0 Lag 0 Lag 0 Lag 0

Particle number 
concentration (#/
cm3)

− 0.06 ± 0.22 (0.77) 0.03 ± 0.08 (0.70) 0.19 ± 0.47 (0.68) 0.14 ± 0.16 (0.37) − 0.39 ± 0.13 (0.01) 0.49 ± 0.24 (0.04)

UFP size (nm) − 0.55 ± 0.68 (0.42) − 0.24 ± 0.25 (0.34) − 1.32 ± 1.51 (0.38) − 1.31 ± 0.50 (0.01) 0.33 ± 0.45 (0.47) − 0.81 ± 0.79 (0.31)

Lung deposited 
surface area (µm2/
cm3)

− 0.12 ± 0.25 (0.62) 0.02 ± 0.09 (0.87) 0.17 ± 0.54 (0.75) 0.04 ± 0.19 (0.85) − 0.48 ± 0.15 (0.01) 0.54 ± 0.27 (0.06)

PM2.5 (µg/m3) − 0.03 ± 0.20 (0.89) 0.05 ± 0.08 (0.54) − 0.04 ± 0.51 (0.93) − 0.02 ± 0.18 (0.93) 0.36 ± 0.35 (0.31) 0.40 ± 0.28 (0.16)

PM4 (µg/m3) − 0.66 ± 0.48 (0.17) 0.43 ± 0.18 (0.02) − 1.48 ± 1.04 (0.16) − 0.25 ± 0.37 (0.50) 0.36 ± 0.35 (0.31) − 0.16 ± 0.59 (0.78)

PM10 (µg/m3) − 0.06 ± 0.23 (0.81) − 0.01 ± 0.09 (0.99) 0.22 ± 0.50 (0.65) 0.14 ± 0.18 (0.44) 0.01 ± 0.17 (0.94) 0.14 ± 0.29 (0.63)

Table 3 Association* between personal exposures and selected anions 24 h after exposure (lag 1)

* For each pair exposure-anion, the association was evaluated using linear regression models with the (log-transformed) daily evolution of anion (ratio post-shift/pre-
shift) as dependent variable, the personal exposure as independent predictor variable, and BMI as adjustment variable to control for confounding/effect modification. 
Bold values correspond to coefficients statistically significantly different from zero.  Indicee corresponds to post-shift anions levels whereas  indiceb corresponds to 
pre-shift anion levels
* BMI statistically significant
† Strongly influenced by one extreme point

Personal exposure MDAe/MDAb Formatee/Formateb Lactatee/Lactateb Acetatee/Acetateb ΣNOxe/ΣNOxb Nitrit/Nitrate/
Nitrit/Nitratb

Lag 1 Lag 1 Lag 1 Lag 1 Lag 1 Lag 1

Particle number con‑
centration (#/cm3)

0.02 ± 0.19 (0.94) 0.03 ± 0.07 (0.60)* 0.06 ± 0.44 (0.89) 0.22 ± 0.18 (0.21) − 0.04 ± 0.12 (0.76) 0.34 ± 0.27 (0.20)

UFP size (nm) − 0.97 ± 0.74 (0.19) − 0.24 ± 0.24 (0.33) 1.93 ± 1.51 (0.20) − 0.94 ± 0.60 (0.12) 0.68 ± 0.43 (0.13) − 2.43 ± 0.88 (0.01)
Lung deposited sur‑
face area (µm2/cm3)

− 0.08 ± 0.22 (0.74) 0.03 ± 0.08 (0.74)* 0.36 ± 0.52 (0.48) 0.18 ± 0.21 (0.39) 0.02 ± 0.15 (0.88) 0.19 ± 0.32 (0.55)

PM2.5 (µg/m3) 0.46 ± 0.30 (0.13) 0.01 ± 0.08 (0.86)* − 0.45 ± 0.45 (0.33) − 0.43 ± 0.18 (0.02) † − 0.08 ± 0.17 (0.64) − 0.18 ± 0.31 (0.56)

PM4 (µg/m3) − 0.08 ± 0.51 (0.88) 0.17 ± 0.19 (0.37)* 0.29 ± 1.12 (0.79) − 0.21 ± 0.39 (0.60) − 0.88 ± 0.35 (0.02) 0.94 ± 0.64 (0.15)

PM10 (µg/m3) 0.52 ± 0.26 (0.05) 0.11 ± 0.09 (0.20)* − 1.46 ± 0.44 (0.01) − 0.24 ± 0.20 (0.24) − 0.12 ± 0.18 (0.49) 0.39 ± 0.31 (0.21)
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day on the anion concentrations in EBC, indicative of an 
absence of effect due to a cumulative PM exposure dur-
ing the week. This suggests a rather constant physiologi-
cal activity among the different groups or the efficacy of 
adaptive mechanisms regulating anion homeostasis. As 
the occupational exposure was different for the three 
groups, we supposed that the anion variability during 
a work-shift would be associated with PM exposure, a 
likely source of these differences in EBC’s metabolites 
levels. Concentrations of anions in EBC varied depend-
ing on the PM fraction and time after exposure. The PNC 
and LDSA at lag 0 was mainly associated with nitrogen 
oxides variations during the shift. The negative associa-
tion between exposure to PNC and the ΣNOx concentra-
tions (Table 2) corresponds to an inhibitory effect of UFP 
on this variable. This result is coherent with data from 
Rundell et colleagues [37], who also found a decreased 
nitrate concentration in the EBC of healthy young sub-
jects exercising during high PNC exposure (> 200,000 #/
cm3). The observed decrease was attributed either to an 
inhibition of the nitric oxide synthase (NOS), as observed 
in rats exposed to diesel particles [38], or to the forma-
tion of a peroxynitrite derivative by reaction of NO with 
superoxide anion. Our additional result indicating a sta-
tistically significant association between PNC and the 
increased proportion of  NO2

− compared to  NO3
− during 

the work-shift (Table 2) is more in favour of the inhibition 
of NOS. Indeed, in order to maintain the NO homeosta-
sis, the reductive nitrate-nitrite-NO pathway [39] could 
be up-regulated, explaining the decreased ΣNOx and the 
displacement of the ratio  NO2

−/NO3
− in favour of the 

reduced nitrite form. In coherence with this hypothesis, 
exposure to UFP has been shown to decrease the levels of 
nitrate in the blood but not nitrite [40]. Short-term expo-
sure of healthy volunteers to traffic air pollutants has also 
been shown to induce a transient increase of nitrite levels 
in EBC [41]. At lag 1, we observed that the PM mass was 
associated with a decreasing level of acetate, lactate and 
ΣNOx during the shift. These results suggest a build-up 
of these anions during the night, in response to the PM 
exposure of the previous day. Differences in “timing” of 
action between UFP and micrometer PM has already 
been reported [42] and attributed to their different fate 
when deposited in the lungs. In particular, the solubility 
of metallic particles in the lung lining fluid is different 
between fine and coarse fractions, with larger particles 
being less soluble [43]. This could explain the delayed 
response observed for lactate.

Relevance of the different anions as biomarkers of effect
The changes in the EBC’s anion concentrations could be 
the sign of metabolic adaptation in order to face changes 
in the redox homeostasis resulting from the exposure 

to metal-rich particles. This additional cellular strategy 
linking metabolism and antioxidative defense to miti-
gate ROS and oxidative stress has been recognized only 
recently for bacteria [44]. We observed that lactate, ace-
tate as well as nitrite and nitrate were the anions mostly 
affected by exposure to subway PM. The traditional view 
of lactate as a waste produced during anaerobic condi-
tions has to be reconsidered [45]. Indeed, lactate appears 
to be a very important metabolite as it links the glycolysis 
with the aerobic pathways. It is continuously produced 
during aerobic glycolysis or during stressful conditions 
and functions as a major energy source for mitochondrial 
respiration in addition to be an important gluconeoge-
netic precursor and signaling molecule. Lactate produc-
tion increases when the biological demand for energy or 
oxygen exceed their supply [46] and can be considered 
as a marker of acute lung inflammation [47]. Lactate lev-
els in the EBC of security guards increased compared 
to locomotive operators and station agents (Fig.  2). In 
addition, significant correlations were observed between 
lactate and concentrations of metals or sub-micrometer 
particles in EBC (Table 1). Taken together, these results 
are suggestive of an increase in the energy demand to sus-
tain the lung metabolism in security guards. Such energy 
increase could result from the presence of soluble metals 
in EBC, which might trigger perturbations in the redox 
homeostasis. In particular, soluble Cu could be a potent 
source of  H2O2 or of hydroxyl radical when reducing spe-
cies like ascorbic acid are present in the milieu [48, 49]. 
Of note is the higher Cu level measured in EBC of secu-
rity guards (1.05 µg/L,  CI95% = 0.84–1.27 µg/L, Additional 
file 1: Table S2) compared to the two other professional 
groups.

Acetate, a short chain fatty acid (SCFA), is a metabo-
lite often detected in EBC due to its high concentration 
(in the order of tens of micromolar). SCFAs are known 
to regulate inflammation by acting on leukocytes’ func-
tions and endothelial cells [50]. Our results suggest 
higher acetate levels for the station agents compared to 
the two other groups (Fig. 2). This anion is positively cor-
related with MDA but negatively correlated with Cu and 
Cr concentration in EBC (Table 1). It is worth mention-
ing that ROS can contribute to the production of acetate 
through the oxidative decarboxylation of pyruvate [51]. 
In that case, pyruvate plays the role of an antioxidant and 
the resulting acetate metabolite can be used in replace-
ment in the mitochondria, allowing the constant forma-
tion of acetyl-CoA, even under hypoxia or other cellular 
challenges [51]. The positive but rather weak correlation 
between acetate and MDA (Table  1) could be an argu-
ment in favor of this oxidative decarboxylation of pyru-
vate in presence of ROS. An increase of acetate levels 
in EBC was reported for different diseases presenting 
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an important inflammatory component like chronic 
obstructive pulmonary disease [52, 53] or for primary cil-
iary dyskinesia bronchiectasis [54]. This increase of ace-
tate was attributed to an increase of energy requirement 
[53, 54]. Nevertheless, metabolomic studies in in  vitro 
assays gave contrasted results. For example, liver [55] or 
HeLa cells [56] exposed to silica nanoparticles resulted 
in acetate reduction. Huang et  al. [57] also reported a 
decrease of acetate in A546 cells when exposed to  PM2.5.

Nitrite  (NO2
−) and nitrate  (NO3

−) should not be con-
sidered as waste products resulting from the oxidation of 
NO, but rather as a storage pool for NO production, in 
complement to the NO-synthase (NOS) pathway. Indeed, 
during hypoxia, acidosis or metabolic stress, when the 
oxygen-dependent NOS enzyme might be compromised, 
NO can be produced by reduction of  NO2

− through 
involvement of haemoglobin, ascorbate or xanthine oxi-
doreductase among others (nitrate-nitrite-NO reduc-
tive pathway, [39]).  NO2

− appears central in controlling 
vasodilation in hypoxic or in metabolic stress conditions. 
The increased  NO2

−/NO3
− ratio observed for station 

agents suggests that for this professional group, the oxi-
dized form  (NO3

−) is less favored than  NO2
−. In order to 

explain this observation, we speculate that this increased 
ratio corresponds to an attempt of the lungs to compen-
sate the locally hypoxic state induced by oxidative stress. 
Indeed,  PM2.5 inhalation as well as UFP exposure is asso-
ciated with a reduced oxygen saturation [58–60] and can 
induce endothelial dysfunction, particularly by inhibit-
ing the endothelial NO synthase [61]. Such modifications 
might promote development of pulmonary and systemic 
inflammation. Magnani et  al. [35] showed that mice 
exposed to metal-coated silica nanoparticles increase 
their oxygen consumption up to 70%. In that case, vasodi-
lation is necessary to supply a sufficient level of  O2 for tis-
sue or cell function. In order to maintain the physiologic 
NO levels needed for regulating the vascular tone, nitrate 
could be reduced to nitrite, which would be subsequently 
transformed to NO by NOS-independent pathways. This 
could explain the observed association between formate 
and nitrite (Table  1), considering formate as an elec-
tron donor for  NO3

− reduction [62]. Finally, the positive 
correlation between MDA and the ratio  NO2

−/NO3
− 

(Table  1) suggests that  NO2
− is increased compared to 

 NO3
− when oxidative stress is present.

ΣNOx appears a promising marker of nitrosative/oxi-
dative stress [63]. ΣNOx for security guards (4.81  µM, 
 CI95% = 3.8–5.8  µM, Additional file  1: Table  S2) is con-
sistent with the averaged value of 5.6 ± 5.1  µM, col-
lected from other studies [26]. Compared to these 
values, station agents and locomotive operators present 
a lower level of ΣNOx (Additional file 1: Table S2). Saliva 
contains elevated levels of nitrate, possibly inducing 

contamination problems during EBC collection. We had 
to discard all samples from one security guard due to 
clear salivary contamination resulting in outlier values 
 (NO3

− levels as high as 218 µM). In this study, security 
guards were the professional group with the largest expo-
sure to the coarse fraction as mentioned earlier. Such an 
observation is coherent with results reported by Man-
ney et al. [63], indicating that the coarse fraction of PM 
measured at central sites of different European cities was 
the strongest predictor for EBC ΣNOx. Knowing that 
the coarse fraction is often originating from mechanical 
processes (abrasion, brake and tire wear), such a result 
points toward the importance of this subway PM fraction 
in relation to a possible adverse effect on the respiratory 
system.

Exposure to micro or nano-sized ZnO particles [64, 65] 
or welding fumes containing zinc and/or copper [66] has 
been shown to induce an acute phase response through 
the increase of serum amyloid A and C-reactive proteins 
in blood of healthy exposed volunteers. Elevation of these 
two proteins in blood is associated with an increased risk 
of cardiovascular diseases. By analogy to these reports, 
and considering the presence of Cu and Zn in EBC as 
well as the modified pattern of anions (mainly ΣNOx) in 
our subway workers, adverse cardiovascular effects might 
be expected in this population. Whereas we did not sam-
ple blood in our study due to its invasive nature, blood 
should be considered in further research regarding pos-
sible effects of subway PM exposure on cardiovascular 
system.

Strengths and limitations
One of the main strengths of this study is that the indi-
vidual exposure to different PM fractions has been thor-
oughly characterised with a simultaneous collection of 
EBC over the two-week period. This allowed us to look 
precisely to the relationships between exposure and 
metabolite levels. In addition, we used validated meth-
ods for the analysis of these different metabolites [69, 
70]. This is a prerequisite for proposing EBC as a relevant 
matrix for future clinical studies [67]. Finally, an approach 
combining multiple biomarkers in EBC is mandatory, 
as multiple and intricated metabolic pathways are often 
influenced by exposure to different environmental stress-
ors [6]. For example, the metabolomics approach usu-
ally outperforms the discrimination between asthmatic 
and non-asthmatics compared to conventional clinical 
tests using either exhaled NO or standard spirometry 
[68]. The additional interest to focus on a pattern of dif-
ferent metabolites in EBC relates to the fact that it gives 
insight into the actual functional status of the lungs and 
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comparison with basal levels could indicate atypical 
physiological status [6].

Nevertheless, the selected anions in this study were 
related only to nitrosative stress and glycolysis, nar-
rowing the number of considered pathways when com-
pared to more sophisticated metabolomics techniques. 
It is the reason why such comprehensive techniques 
should be involved in complement to the more specific 
and focussed approach we used in this pilot study. The 
issue of a low number of participants included was par-
tially resolved by the longitudinal design of the study 
with a continuous personal exposure measure over the 
work-shift and twice a day measures of the outcomes 
for each participant. Indeed, we expected a decreased 
inter-individual variability, improving by this way the 
possibility to observe modifications of the metabolites 
levels in EBC. However, we acknowledge that all com-
parisons of job groups, even when statistically signifi-
cant, lack robustness. Moreover, a gender effect might 
be present as the station agents group consisted only of 
women, in contrary to both other groups. That is why 
the results pertaining to the comparison of job groups 
have to be considered with caution and will need fur-
ther confirmation. For that purpose, an epidemiologi-
cal study including about 300 volunteers belonging to 
these three professional groups is in progress in the 
same company, with the intended aim to demonstrate 
the usefulness of the different selected anions from 
this pilot study [29]. A final issue is the multiplicity 
of comparisons. We did not provide Bonferroni-type 
adjusted p-values given that such adjustments rely on 
the number of tests made which can be easily manip-
ulated. We prefer to consider our results as explora-
tory and a statistical significant result as a flag for the 
reader of a possible real effect.

Conclusion
In this pilot study, we found that three different pro-
fessional groups exposed to subway particulate levels 
and occupational conditions presented specific pat-
terns of anions in their EBC. Nitrogen oxides (nitrite/
nitrate ratio and ΣNOx) as well as acetate and lac-
tate appeared the most modified metabolites after 
exposure to subway PM. We also observed that these 
changes are modulated by the PM size, with UFP and 
coarse particles inducing different responses. Such 
changes are suggestive of cellular strategies to main-
tain the redox and metabolic balance when under oxi-
dative stress.

The combined measurement of these anions in EBC 
could be helpful to investigate the cardiopulmonary 

effects resulting from exposure to subway PM on 
workers and the general population.

Material and methods
Study design and participants
This longitudinal pilot-study belongs to the broader Res-
piratory disease Occupational Biomonitoring Collabora-
tive Project (ROBoCoP project), which research protocol 
has been described elsewhere [29]. The aims of this pilot 
study were to: 1. understand the suitability of differ-
ent candidate biomarkers for biomonitoring of workers 
exposed to metallic PM; 2. to select the most relevant 
biomarkers for COPD or asthma detection in a larger epi-
demiological study of subway workers. Volunteers were 
recruited based on their workplace attribution to the sub-
way line 7. This line is completely underground with PM 
concentrations corresponding to the worst case scenario. 
Three different professional groups were recruited, each 
composed of three healthy nonsmokers: station agents 
(women only); locomotive operators and security guards 
(both composed of men only). A detailed description of 
their activities is available in [27]. We measured exposure 
parameters and collected biological matrices by job type 
during two consecutive weeks for each group.

Exposure to particulate matter and analysis
Worker’s personal exposure to different PM fractions 
(UFP,  PM2.5,  PM4,  PM10) and total metal concentration 
was determined for all nine volunteers during two con-
secutive weeks (excluding the weekend) [27]. Briefly, 
active personal sampling for PM was achieved using Tef-
lon filters connected to a pump with flow set at 4 or 10 
L/min, depending on the collected fraction. After stand-
ard gravimetric analysis of the filters, they were digested 
in acids and the resulting solution analyzed by inductive 
coupled plasma mass spectrometry (ICP-MS; ICap TQ, 
Thermo Scientific, Switzerland) for 11 elements (Al, As, 
Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn). A direct-reading 
particle counter instrument (DiscMini, Testo, Switzer-
land) was used for personal UFP measurement.

EBC collection and analysis
Pre- and post-shift EBC samples were collected on a daily 
basis using a portable collection device (Turbo-DECCS, 
Medivac, Parma, Italy) set at – 10  °C. Sampling took 
place in a clean room, located either at the subway sta-
tion Porte de la Villette or at Gare de Lyon and following 
the recommendations of the American Thoracic Society 
and the European Respiratory Society Task Force [23]. 
None of participants declared drinking tea or coffee an 
hour before EBC collection. A total volume of 2–3  mL 
of EBC per participant was collected during the 20 min 
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sampling. Immediately after collection, EBC sample was 
aliquoted in the same room. For anion analysis, 100  µl 
of the collected EBC was transferred into conical plastic 
vials (300 µl, Macherey Nagel, Düren, Germany) whereas 
250  µl of EBC was aliquoted in vials (1.5  ml, Macherey 
Nagel, Düren, Germany) for MDA analysis. Aliquots 
were frozen at − 80 °C until analysis.

Anions associated to nitrosative stress  (NO2
− and 

 NO3
− as stable end-product of NO oxidation) or to 

metabolism (lactate, acetate, propionate, butyrate, for-
mate and pyruvate) were analyzed in EBC following a 
validated method [26]. Briefly, 10  µl of the EBC sample 
was injected without any treatment into a Dionex ICS 
5000 + ion chromatograph, equipped with an analytical 
column IonPac AS11-HC250 mm, 4  µm (ThermoFisher 
Scientific, Ecublens, Switzerland) and a conductivity 
detector. The low LOD, comprised between 0.07 and 
0.58 µM (depending on the analyte) allowed the quantifi-
cation of all these anions in all samples.

MDA is a stable end-product of lipid peroxidation and 
is considered as a marker of oxidative stress [33]. This 
molecule was measured in the EBC sample using dinitro-
phenyl hydrazine (DNPH) as derivatisation agent. Briefly, 
the validated method [69] consisted in adding 50  µl of 
a 2  mM DNPH solution to 125  µl of EBC sample, con-
taining MDA-d2 as internal standard. The reaction mix-
ture was heated to 50  °C during 2 h, cooled to ambient 
temperature than directly injected into a LC–MS/MS 
instrument. About 19% of the samples had MDA concen-
trations below the LOD of 70 pg/ml.

Copper (Cu), manganese (Mn), nickel (Ni), chrome 
(Cr) and zinc (Zn) as well as the number concentration 
of sub-micrometer particles in the EBC samples were 
determined by ICP-MS technique (metals) and nano-
particle tracking analysis (NTA) respectively. Details for 
theses analytical methods can be found in [27] and [70], 
respectively. The observed LOD was 0.003 µg/L for Cr, Ni 
and Mn, 0.07 µg/L for Cu and 0.3 µg/L for Zn and Fe. The 
LOD for the NTA was 2.7 ×  107 particles/ml.

Data management and statistical analysis
One of the security guards had a high salivary production 
during the EBC collection, which contaminated some of 
his samples. This resulted in a very high  NO3

− concen-
tration in these EBC samples. We considered this worker 
as an outlier and therefore these samples were excluded 
from the statistical analyses reported in this paper.

Individuals’ anion concentrations, nitrite/nitrate ratio 
as well as the sum of nitrite and nitrate (ΣNOx) were 
first log-transformed. In a second step, these variables 
were analyzed using linear mixed effects models with 
the subject ID as a random effect. For each of these out-
comes, we fitted a model including the job group, the 

day of the week (in order to detect a possible cumula-
tive effect over the week) and the shift (pre- vs. post-
shift). All pairwise interactions were tested between 
these three factors. We further adjusted on the body 
mass index (BMI) in order to account for a possible 
effect of this factor on the metabolism. In a third step, 
pairwise Pearson correlation coefficients were com-
puted for the variable measured in EBC samples (ani-
ons, MDA, metals, sub-micrometer particles). Given 
that these substances were all measured within the 
same EBC samples, these correlations coefficients did 
not take into account any other variable. This enabled, 
on the one hand, to assess the presumed associations 
related to nitrosative/oxidative stress or metabolism, 
and, on the other hand, to highlight potential asso-
ciations between exposure biomarkers (metals, sub-
micrometer particles) and effect biomarkers (MDA, 
anions).

Lastly, the within-day evolution of EBC anion con-
centrations was characterized for each anion as the 
ratio of the post-shift and the pre-shift concentrations. 
These (log-transformed) ratios were then analyzed 
using a linear mixed effect model with the participant 
ID as a random effect variable. Independent variables 
were the external exposure measurements conducted 
in the workplace  (PM10,  PM2.5, airborne metal concen-
tration and PNC) obtained during either the same (lag 
0) or previous (lag 1) EBC collection day. For lag 1, the 
first day of the working week was excluded. Standard 
checks for heteroskedasticity and outliers were per-
formed. These led to the exclusion of the subject men-
tioned at the beginning of the paragraph.
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