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Crop diseases are often considered as episodic events associated with specific environmental and weather conditions, but 

little is known about disease development when conditions for epidemics are sustained in time, as often occurs in the tropics. 

Colletotrichum gloeosporioides (anthracnose) presence on guava trees was monitored for 45 weeks. Results showed that 

spore prevalence varied but was consistently present over the period and was greater during the dry than during the rainy 

season. Secondly, while the general pattern was that of continuous presence of the disease throughout the study area, local 

patterns on individual trees presented casual peaks that were only partially concomitant, thus suggesting that apparent 

continuous fungal propagule rain observed in the fields results from distinct repetitive local spore pulses, potentially with 

asymmetrical contribution from the surrounding vegetation. Local disease dynamics in wild vegetation adjacent to the 

fields should therefore be more closely investigated in order to clarify its role in crop disease at greater scales such as 

landscape levels. 
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The nature of crop disease is often described as 

recurrent local bursts merging into sustained 

epidemics at regional scales (Stone et al. 

2007). Anticipating disease consequences is 

often lead by monitoring efforts within 

(Newlands 2018) and across agricultural 

regions (Nagarajan et al. 2014) to prevent 

disasters and to try to manage risk and decrease 

impacts on crops. Many plant diseases result 

from specialist plant-pathogens interactions, 

and monitoring requirements are often reliably 

predicted at local emergence of symptoms 

(Rumpf et al. 2010), based on regional history 

of those diseases (Meyer et al. 2021; Velasco 

et al. 2020) and sometimes knowledge of the 

various plant species and varieties within the 

landscape (Papaïx et al. 2011). Some plant 

diseases nevertheless originate from generalist 

pathogens with diverse sources of inocula 

(Doyle et al. 2013), especially fungal diseases 

with explosive spore outbursts when 

favourable conditions occur (Chakraborty et 

al. 2004). Eventually, the collective view of 

plant diseases may be impacted by their casual 

nature, sudden appearance, yet periodic 

recurrence (Mailleret et al. 2012), typically 

exemplified by temperate pathogens which 

initiate seasonal disease epidemics. There 

might be many times though, including under 

tropical settings (Stanley et al. 2011), where 

there is the potential for regularly encountered 

favourable conditions which cause pathogens 

to multiply and spread  rapidly in the 

environment (Rivera-Mariani et al. 2020), so 

that disease risk can then manifest as a 

continuous risk factor for crops. 

Such is the case with the fungus 

Colletotrichum gloeosporioides, a worldwide 

and widespread species complex causing 

anthracnose disease on a very broad spectrum 

of hosts (Cannon et al. 2012; Lu et al. 2004), 

including many fruit crops and vegetables. In 

the Caribbean, this fungus attacks many 

commercial and staple crops, including yam 

(Dioscorea alata) (Sweetmore et al. 1994; 

Green and Simons 1994), and has been the 

focus of many research efforts for disease 

management and control in the past decades 

(McDonald et al. 1998). Unpredictability of 

the disease triggered many farmers into 

withdrawing from yam cultivation or shifting 

toward growing more resistant yam species 

(Penet et al. 2016b), despite the many control 

practices thought to be effective (Penet et al. 
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2016a), and the creation of resistant varieties 

(Petro et al. 2011). The fungus relies both on 

wind and rains for dispersal, though wind 

promotes long-distance migration and rain 

drives local epidemics within fields (Penet et 

al. 2014), and epidemics typically are strongest 

in October/November on yam. Strain diversity 

of C. gloeosporioides is demonstrably quite 

high and most often localised, suggesting local 

origins (Frézal et al. 2018). Several studies 

have documented a high prevalence of C. 

gloeosporioides in hedge vegetation (Dentika 

et al. 2022) and locally common weed species 

(Dentika et al. 2021; Frare et al. 2016; Raid and 

Pennypacker 1987); and weeds infected with 

this fungus are known to be involved in 

anthracnose disease onset on yam in the fields 

(Dentika et al. 2021). 

Thus, the presence of C. gloeosporioides 

on guava (Psidium guajava) trees was 

investigated and fungal infection was 

monitored weekly. Guava was chosen as a 

focal species because it is a fruit tree often 

grown at field margins, either as a 

complementary food product or for farmers 

direct food use. Hedges growing 

spontaneously at field margins might offer 

temporary protection of crops from winds and 

also may trap pathogenic spores. However, 

once certain fungi become established on 

hedge vegetation, they might also contribute to 

disease spread in field margins. 

 

Materials and methods 
 

For 45 weeks from February to mid-December 

2018, three mature guava trees located at field 

margins or near buildings were sampled, each 

being at a distance of 100 - 300 m apart from 

each other, at INRAE-Centre Antilles-Guyane 

(study tree locations: 16°12'13.2"N, 

61°39'46.2"W; 16°12'12.9"N, 61°39'43.4"W 

and 16°12'11.4"N, 61°39'42.5"W). Every 

week, one leaf was removed from the top, 

middle and base of the canopy of each tree, 

with the aim of collecting both older and 

younger leaves. None of the leaves collected 

showed any symptoms of C. gloeosporioides 

infection. 

Sampled guava leaves were immediately 

taken to the laboratory to isolate C. 

gloeosporioides. The leaves were washed 

briefly and successively in diluted bleach 

solution (sodium hypochlorite at 10%), 

distilled water, 70% methanol and water to 

disinfect the surfaces. Small disks of 1 cm were 

then removed from the apical middle and basal 

regions of each leaf, using methanol-

disinfected hole-punchers, under sterile air 

conditions in a laminar flow cabinet (model 

LRF 48). Each leaf disk was then placed in a 

petri dish with agar based S medium to  

promote the growth and detection of the fungus 

C. gloeosporioides  (Dentika et al. 2021). Petri 

dishes were sealed with parafilm tape and left 

to incubate for 4 - 5 days on a shelf and 

subjected to 12 h light and 12h dark (with 

Osram T8 L 36 W/865 Lumilux Daylight G13 

neons, with lumen intensity close to natural 

daylight), at room temperature (22 – 28°C). 

Fungi growing from the leaf disks were then 

mounted on microscope slides and their 

conidia were investigated under light 

microscopy for species identification based on 

spore morphology (Von Arx 1957), to estimate 

the weekly prevalence of C. gloeosporioides 

on sampled trees. Prevalence was calculated 

for each individual tree (three leaves per tree 

and three disks from each leaf) and estimated 

by the proportion of leaf discs from which C. 

gloeosporioides had been isolated out of the 

total leaf disc sample. Weekly sample size was 

thus 27 (nine disks from each of three trees). 

Over the whole monitoring period of 45 weeks, 

there were 405 disks from each tree and 1215 

disks in total.  

 

Results 
 

C. gloeosporioides was detected continuously 

and the degree of leaf infection fluctuated with 

the seasons (Figure 1). The level of detection 

was high early in the year, during the dry 

(Lent) season, and lower in the later months 

during the rainy season. Despite fluctuations, 
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the baseline prevalence was always non-null as 

the fungus was always detected. Patterns of C. 

gloeosporioides prevalence on individual trees 

nevertheless showed a fairly different view of 

the infection dynamics (Figure 2), and a much 

broader variation than was apparent from 

pooled results: one of the trees had higher 

prevalence throughout the whole sampling 

campaign (Figure 2A), another was 

intermediate and demonstrated more 

constancy in weekly prevalence rates (Figure 

2B), and the third had globally lower 

prevalence but wider variation of prevalence 

peaks (Figure 2C). The range of prevalence 

peaks (7 - 9 over the study period) also varied 

from trees to trees and while some were 

coincidental, some others were shifting in time 

when comparing the different trees. The peaks 

were nevertheless not directly correlated to any 

clearcut recorded weather conditions. 

 

Figure 1: Prevalence of C. gloeosporioides over 45 weeks, all trees combined; observed 

prevalence:  solid grey line connecting black dots; black dotted line, average function of prevalence 

curve (estimated as samples with Colletotrichum/total sample ratio); dark grey dash lines, 95% 

confidence interval 

 

Discussion 
 

The monitoring showed a continuous presence 

of C. gloeosporioides among leaves of guava 

during the study period, with more or less regular 

peaks of high prevalence, sometimes 

superimposed or occurring quite closely. These 

peaks are indicative of a pulse in fungal dispersal 

instalment, reflecting sporadic important spore 

clouds in the environment. Contrary to 

expectations of fungus development, prevalence 

peaks were generally higher during the drier study 

period (0-60%, January to June) compared to the 

rainy season (60-100%, August to November). 

However this pattern matched with earlier 

historical reports of increased anthracnose risk 

early during the year (Degras 1986), compared to 

current more impacting epidemics which more 

often occur during October/November (Penet et 

al. 2016a). Recent modes of cropping have 

evolved toward planting later in the year, to better 

fit local market expectations of yam harvest at the 

end of the year, which also allows growing of 

yams at a more favourable period of rain 

occurrence. Another consequence of current 

cropping with late plantation is thus avoiding 

growth during the dry season, which could 

translate as decreased anthracnose risk provided a 

low inoculation of the vegetation nearby fields. 
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Figure 2. Prevalence of C. gloeosporioides over 45 weeks, individual trees (A, B and C); grey 

lines: total observed prevalence; dashed black lines, naive smoothing estimate of prevalence; the 

asterisks indicate potential inoculation peaks. Sampling period expressed as % of campaign (A, B) 

and corresponding equivalence in weeks and month (C). 
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Individual tree monitoring revealed variation 

in both intensity of peaks and baseline 

presence of the fungus demonstrating firstly 

that the local environment may be more or less 

receptive of spore bursts and more or less 

conducive of dispersal, and secondly that shift 

in peaks might indicate varying contributions 

of local vegetation to spore clouds throughout 

the year. As a result, while the overall 

prevalence pattern is sustained, local effects 

might exhibit greater variation ranges. A 

further consequence of local variation is 

differential timing contributions to spore 

clouds. Thus, the overall environmental 

presence of disease is actually hiding periodic 

pulses from diverse origins and iterative 

contributions of landscape vegetation to spore 

clouds. It would be interesting to test whether 

these also correlate to genetic diversity in 

strains affecting crops throughout the growing 

season, as C. gloeosporioides is known to be 

especially diverse in the wild (Lu et al. 2004) 

and even at very local sampling levels in crops 

(Frézal et al. 2018). Overall, prevalence was 

not demonstrating marked canopy effects at 

either time of monitoring campaign, in contrast 

to other studies that detected initial 

contamination from lower canopy (possibly 

due to inoculation from the ground) and faster 

progress of infection at the top of the tree 

(Hamada et al. 2019), but Dentika et al. (2022) 

found that the top of canopy was less 

contaminated on average. 

These results suggest continuous diffusion 

of spores in the environment, as variation in 

prevalence is important both overall and for 

individual trees and reflects variation in 

dispersal. Two alternative processes might 

nevertheless account for high C. 

gloeosporioides presence in the vegetation: 

quiescence, i.e. when fungi seemingly stop 

growth, and local inoculation pool, when 

infections lead to local spore contaminations. 

Quiescence in C. gloeosporioides is indeed a 

major post-harvest issue in tropical fruits e.g. 

avocado (Beno-Moualem and Prusky 2000), 

banana (de Bellaire et al. 2000), mango (Kamle 

and Kumar 2016), though the phenomenon is 

understood as a strategy to dodge antifungal 

compounds in non-mature fruits (Adikaram et 

al. 2015) and infections restart as soon as fruits 

ripen. Infections in vegetative parts of plants 

are nevertheless not known to result in 

quiescence (Adikaram et al. 2015). The effects 

of bursts of local inoculation/infection burst 

may also produce high variation in prevalence 

and may not be easily distinguished from the 

effect of long distance dispersal. Both local and 

external dispersal probably occur, but the 

hallmark of a local inoculation burst is a locally 

prevalence sustained in time. In this study 

individual trees demonstrated peaks that might 

sometimes match with local inoculation bursts. 

Prevalence peaks with dramatic fluctuation 

occurred frequently and can only result from 

long distance dispersal of spores. Further studies 

involving either aerial sampling (estimating 

spore load) or genotyping of strains would 

ascertain respective contributions of local vs. 

long distance dispersal and their impact on 

disease dynamics. 

 

Conclusion 
 

C. gloeosporioides fungi had varying but 

pervasive prevalence on guava throughout the 

year and had prevalence peaks reflecting local 

bursts in spore clouds across vegetation. These 

bursts appear sometimes coincidental, 

sometimes delayed between local trees, 

indicating that a continuous presence of the 

pathogen is subjected to iterative pulses locally. 

Interestingly, while anthracnose is a disease 

more frequently expressed by crops during the 

rainy season, the pathogen occurred earlier in the 

year during the dry season and prevalence was 

highest during this period, suggesting higher 

loads of C. gloeosporioides spores in the 

environment and more heavy natural inoculation 

of the vegetation. The nature of iterative bursts 

should be investigated regarding genetic 

composition and aggressiveness of strains, in 

order to understand its consequences on disease 

onset in crops, especially yams. 
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