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Abstract

Collaborative robots (cobots) have the potential to augment productiv-
ity and the quality of life of human operators in the context of Industry
4.0 by providing them with physical assistance. For this reason, it is
necessary to define the relationship between humans and cobots and to
study how the two agents adapt to each other. However, to the best of
our knowledge, literature is still missing insight into how humans per-
ceive and react to changes in the cobot behavior. Specifically, a study
of how humans adapt to changing roles and control strategies of col-
laborating robot is missing. To fill this gap, we propose a human study
in which 16 participants executed a collaborative human-robot sawing
task where the cobot altered between three different control strate-
gies. We examined human adaptation when cobot suddenly changed the
control strategy from one to another, resulting in six experimental con-
ditions. The experiments were performed on a setup involving Kuka
LBR iiwa robotic arm. The results suggest that transition influences
movement performance in the early stages and at steady state, subjects
prefer to abandon modes that require more effort and they adapt faster
to energy demanding modes. Finally, for the specific task we studied,
usually, subjects prefer collaborative mode with respect to fixed role ones.

1



Springer Nature 2021 LATEX template

2 The effects of role transitions and adaptation in human-cobot collaboration

Keywords: collaborative robots, adaptation, human-robot physical
interaction

1 Introduction

Industry 4.0 is a new manufacturing design involving novel production tech-
nologies in order to improve worker’s conditions and to increase productivity
and quality [1]. Among these technologies, robotics solutions have the potential
to increase productivity and the working conditions of human operators [2].
Machine productivity and human flexibility have notably been combined in a
concept called human–robot collaboration (HRC) [3]. Robots built with this
intent are called collaborative robots or, more commonly, cobots. Moreover,
cobots implementations aim to improve safety and performance while at the
same time facilitating more interesting responsibilities for human workers and
increasing productivity growth [4] by sharing knowledge between robots and
human and by learning from others [5].

In many HRC scenarios, humans’ cognitive abilities are used to supervise
the cobots’ physical capabilities [6] or to teach the robot how to perform a
specific task by demonstration [7]. When physical human-robot interaction
(pHRI) is present, it is often treated as a strict asymmetric relationship leaving
low decision power to the robot [8] and much attention is devoted to the safety
during the interaction [9]. Thanks to improved sensing and control abilities,
cobots gained major awareness in more recent HRC implementations [10]. This
allows them not only to share the same workspace with human operators but
also to provide physical assistance to reduce efforts and more generally to
improve ergonomics in shared tasks [11]. For instance, control algorithms have
been designed to reduce human overloading joint torques coordinating the two
partners in joint tasks [12] which required to redefine the relationship between
the human and the cobot and particularly the role of each with respect to the
collaborative task.

In the advanced paradigm of collaboration, typical of Shared Autonomy
(SA) [10], the collaborative robot is capable of adapting its level of autonomy
based on its own understanding of human behaviour and of the environment.
Several aspects of collaboration have been investigated: the communication
channel between human and cobot [13], the experience of the operator in the
task to be performed [14] and individual behavior characteristics [15]. Never-
theless, a fundamental question for this kind of collaboration is how the two
agents adapt to each other across the tasks. In fact, if the robot were able to
predict how a subject would adapt to a given policy, it could vary its policy
with the intent of accelerating adaptation (in case the equilibrium condition
was good) or conversely guide it to another equilibrium condition.

Human-machine adaptation is a widely studied field even beyond pHRI [16],
implementing adaptive control schemes which conform to an unknown gain of
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the human [17]. Adaptation could be integrated by changing the cobot policy
when thresholds of safety have been reached. For instance, Peternel et al.[18]
proposed a method for human-robot collaboration where the robot behavior
is adapted online to the human motor fatigue. In other situations, adaptation
can be used to solve problems that in which neither the human nor the robot
is able to solve the problem on their own[19].

Many of these works presented control algorithms that adapt and change
the cobot policy during collaboration with the human. However, to the best
of our knowledge, we lack knowledge of how humans perceive and react to
changes in cobot behavior. Specifically, little is known on how humans adapt
to changing roles and control strategies of collaborating robot during pHRI.
We think this knowledge is important because it allows the robot to predict
how a subject would perform in the short period (before adaptation) and in
the long period (when the adaptation is reached). Knowing this the robot’s
policy can change to modify situations harmful to the subject

To fill this gap, we propose a human study in which 16 participants
executed a collaborative human-robot sawing task where the cobot altered
between three different control strategies(human-leader, human-follower, and
reciprocal). In human-leader mode, the human guides the execution of the col-
laborative task, while the cobot follows. Viceversa, in human-follower mode,
the cobot leads the execution, while the cobot follows. Finally, in reciprocal
mode, the human and cobot behaviors are reciprocal in terms of phase of
operation. We examined human adaptation when cobot suddenly changed the
control strategy from one strategy to the other, resulting in six experimental
conditions. The experiments were performed on the Kuka LBR iiwa robotic
arm.

The aim of our study is to try to answer some of the questions not addressed
in the literature. Our goal is to assess how switching is perceived, with both
objective and subjective metrics. We also ask how collaboration performance is
affected in the short and long term. Finally, we think it is interesting to assess
how long subjects need to adjust to a strategy. We addressed the following
questions:

(Q1) How the switching between modes is perceived by the human? Is the
task performance influenced in the first iterations of the task after the
switching?
(Q2) Does a past transition influence the collaboration even after a steady
state is reached?
(Q3) Do humans prefer some transitions with respect to others?

We also observed the data collected before the mode switching happened and
we used it to compare the three different modes. We addressed the following
questions:

(Q4) Do humans adapt faster to some modes with respect to others?
(Q5) For the specific task studied in this work, is there a preferred mode
of interaction among L, F, R



Springer Nature 2021 LATEX template

4 The effects of role transitions and adaptation in human-cobot collaboration

We tried to answer all these questions from both a point of view of objective
measures and from a point of view of human perception (subjective scales).

2 Related Works

2.1 Roles in pHRI: Cooperation and Collaboration

The concept of pHRI combines human skills, such as versatility, with the
physical advantages of the robot[3]. Two kinds of interactions are interest-
ing pHRI: cooperation and collaboration [20]. In cooperation, the roles of the
two agents (human and robot) are fixed while, in collaboration, they adapt
during the task execution. Human-leader/robot-follower role allocation is typ-
ically the preferred strategy in many cooperation scenario [21]: in this case,
the cobot handles secondary tasks, such as rejecting disturbances [22], or sus-
taining forces and positions in different axes from the ones controlled by the
human [23]. The role of the cobot determines the impedance behaviour at the
interaction point. During the leader behavior, the cobot controller can mini-
mize the errors for the actual trajectory and the desired one (high-impedance),
whereas during follower behavior it minimizes the forces applied at the contact
point with the human operator (low-impedance). By varying the stiffness-
damping parameters, the behavior of the cobot can be modified between these
two extremes [24].

Even though cobot fixed roles meet great success in several applications
such as robotic surgery [25] and telemanipulation, there are instances in which
collaboration, and thus, adaptive or variable roles could be preferred [8].
Within this context, Agravante et al.[26] interpolate between a humanoid
robot’s behavior from a total leader to a total follower. To facilitate effective
collaboration in pHRI and switch roles, the robot should be able to detect
human intent online. Khoramshahi and Billard [27] propose a method to auto-
matically detect when a human co-worker is physically trying to guide a robot
that is executing an autonomous task. After the intent detection, the robot
switches into follower mode and only goes back to leader mode when the human
stops correcting the robot.

One method widely used in the literature to modify the robot’s impedance
profile (and thus the role) is the so-called tele-impedance, namely the trans-
ferring of human impedance to the robot [28]. Peternel et al.[29] presented
two robot role allocations ( reciprocal and mirrored) based on the concept of
tele-impedance. During Reciprocal tele-impedance, the robot and the human
operator execute two behaviors that are reciprocal in terms of phase of oper-
ation (e.g. sawing task). On the other side, during mirrored tele-impedance,
both agents produce the same behavior in a certain phase of the task (e.g.
valve turning). The same authors [18] proposed a control implementation of the
two roles for human-robot collaboration where the robot behavior is adapted
online using electromyography (EMG) signals. The main advantage of using
this type of sensor is that you can directly estimate the forces exerted by the
human and separate them from those exerted by the surroundings [30].
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While these works has demonstrated extensively how the use of variable
impedance profiles can improve collaboration, little is known of how the human
operator adapts to changes in robot roles.

2.2 Adaptation of roles in pHRI

A classical HRC strategy is to design cobot policies that adapts to humans
(one-way adaptation). In [31], robot is able to adjust its own role according to
the human’s intention to lead or follow. Cherubini et al.[32] alternate the leader
and follower roles of a robot in a pHRI application for industrial assembly
tasks according to visual and haptic cues by the human co-worker. Peternel et
al.[18] used tele-impedance to set the robot strategy and switch between roles
when a given amount of fatigue is reached by the human. Other work proposes
an adaptive control schemes in which the robot adapts its policy according to
estimated forces [17].

In more recent work, it was hypothesized that better collaborative
approaches can be designed by also considering how humans change their
policy by interacting with the robot [16]. Nikolaidis et al.[33] introduced a
formalization for mutual adaptation between a robot and a human in a collab-
orative task. In a similar way, the study in [19] present a reinforcement learning
algorithm able to solve human-robot task in which neither the human nor the
robot is able to solve the problem on their own. Ikemoto et al.[34] showed the
importance of a bilateral learning process that takes place in both partners.
Other works consider the evolution of the human trust in robot [35] and the
robot’s persuasive ability [36] to maximize long-term team performance.

To design the robot action which maximizes the expected reward, it is
necessary to model the human behaviour [37] or, alternatively, the human-
robot team behaviour [38]. Nikolaidis et al.[33] integrated the human ability
to adapt to robot actions, defined as adaptability, to predict human actions
in a human-robot collaboration scenario. Saunderson et al. [36] proposed to
use Adaptive Persuasive Systems to acquire user information, update user
models and adapt their persuasive approaches to the human operator. Chen
et al. [39] use social projection theory to learn human models from human
demonstrations. In addition, it should be considered that different individuals
may have different behaviors. For this reason, Nemlekar et al. [40] divided into
cluster subjects accordingly to their preferences.

All the aforementioned work rely on some human behaviour model that is
used to determine the robot’s policy of adaptation. However, these models lack
information about how the human adapts to changes in the robot’s behaviour.
To create more accurate human models, we believe human studies in pHRI
that compare different robot policies and observe how the human adapts to
these given policies are critical [41]. In particular, the impact of changes in
robot control policies during the collaboration were not yet examined. For this
reason, in this work, we examine how humans adapt when the robot suddenly
changes the collaborative control strategy.
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3 Methods

The aim of this study is to investigate how humans react and adapt to changes
in cobot control modes during a collaborative task. Such changes are often
necessary in collaborative robotics applications when different functionalities
are required for the task execution.

To investigate how humans adapt to changing policy, we conducted an
experiment in which human participants performed a collaborative sawing task
with a cobot under different conditions. Three control strategies were defined
for the cobot end-effector impedance: human-leader (L), human-follower (F)
and reciprocal (R). In human-leader mode, the human guides the execution of
the collaborative task, while the cobot follows. Viceversa, in human-follower
mode, the cobot leads the execution, while the cobot follows. Finally, in recip-
rocal mode, the human and cobot behaviors are reciprocal in terms of phase
of operation.

16 healthy adults took part in the experiment (4 females and 12 males,
aged 24–30). Participants were naive to the purpose of the study, and none
reported any chronic motor disease or health condition that could influence
the results. Participants signed an informed consent form prior to starting the
experiment. The study was approved by TU-Delft’s ethical committee and was
conducted in accordance with the Declaration of Helsinki.

Each of the participants received instructions on the task to be performed,
a description of the three modes, as presented in Sec. 3.1, and was informed
about the presence of switch from one mode to another during each trial.
However, they were not told what the two modes would be and when the
switching would happen. They had to figure out which mode the cobot was
executing, and how to adapt to the new one.

3.1 Experimental setup and Protocol

We selected a collaborative human-robot sawing task that requires both com-
plex physical interactions and good coordination between the agents (Fig. 1).
The task consists of alternating phases where the human pushes the saw (while
the cobot pulls) and phases where the human pulls the saw(vice versa, the
cobot pushes). The movement must be performed along the entire length of
the saw (45 cm). Performing one trial takes 2 s on average. A metronome is
used to help the human to keep a constant frequency in the task execution.
Constant frequency helps us to standardize the experiment among subjects, to
make data comparable also in the case when human is leader and so no hint
on the frequency comes from the cobot. Participants face the cobot and hold
the saw with their dominant hand, while the other side of the saw is attached
to the cobot end-effector. Fig. 1 shows the setup.

The cobot is controlled using three different control conditions (F, L, R)
which are specifically adapted to the sawing task. In ”Human-follower” (F),
the human stabilizes the saw vertically, while the cobot does all the movement
of the saw back and forth in the horizontal direction. In ”Human-Leader”
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(L), the human moves the saw back and forth, while the cobot only stabilizes
the saw at its own side. In ”Reciprocal mode” (R), the robot replicates the
standard way humans do the two-person sawing: both agents are only pulling
the saw, and not pushing. The pulling is exchanged in the following manner.
When humans pull the saw to their side, the cobot starts pulling it back to
its side, and vice-versa. The reason not to pull is to not interrupt each other’s
activity (for example, in a two-person saw without the arc, the saw would
bend, and the task would be interrupted). To express all the situations in
which no previous mode has been executed (so the cobot is fixed), we used the
terminology Nothing condition (N).

Each subject executed 6 trials; in each trial, two of the three cobot modes
are executed. The first mode is executed for around ∼ 2m, then the transition
happens and the cobot switches to the second mode for other ∼ 2m. Between
each trial, the human rests and there is an allocated time to answer the ques-
tionnaire (∼ 2m) and time to recover (∼ 3m). The total amount of time fot
the entire experiment is ∼ 1h. The acoustic sound of the metronome tells the
human when the trial starts. The metronome frequency does not change for
the full time of the task (even during the transition). The partecipant does
not know which mode is executing nor when the transition happens. The six
experimental conditions are presented in Tab. 1 and their order is presented
randomly. One preliminary trial (in human-leader mode) of 1min is performed
before each experiment to make the subject familiarize with the setup and the
sawing task.

Experimental Condition Cobot Controls Modes Conditions Cobot Control
1 F → L 1b N → F
2 F → R
3 L → R 2b N → L
4 L → F
5 R → F 3b N → R
6 R → L

Table 1 Study design and experimented conditions: each subject performs the six
experimental conditions, in which the cobot changes the mode from one to another. Three
modes were tested: human follower (F ), human leader (L), and reciprocal (R). To express
all the situations in which no previous mode has been executed (so the cobot is fixed), we
used the terminology Nothing condition (N). The experimental conditions are tested in
random order.

3.2 Cobot Controls

The experiment was performed with a KUKA iiwa robot. The robot was con-
trolled with a mixed force-impedance scheme. Impedance control allows to
move the saw and to easily implement different compliance behaviors. Force
control allows the robot to maintain contact with the work-piece. Let the robot
equation of motion be:

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ − J⊤F int (1)
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Fig. 1 The experimental setup: the cobot is semi-rigidly attached to the saw, likewise the
subject grabs the saw from the other end. EMG sensors are attached to the subject to
measure muscle contraction during movement.

with M ∈ Rn×n the inertia matrix, C ∈ Rn×n the matrix of Coriolis and
centrifugal effects, g(q) ∈ Rn the vector of gravity forces, J ∈ R6×n the
end-effector Jacobian, τ ∈ Rn the joint torque vector, and F ext ∈ R6 the
interaction wrench at the end-effector. A hybrid force/impedance controller
was implemented following [18]. The force behavior was defined as

F int = F for + F imp (2)

where the term F for is related to the force task (i.e., in sawing is keeping
contact with the wood) controlled by a PI controller

F for = KF
PeF +KF

I

∫
eF dt, (3)

eF = SF (F a − F d) (4)

where KF
P ,K

F
P are the gain of the PI controller, while Fa, Fd are respectively

the actual and the desired force on the end-effector. The desired mechanical
impedance at the end-effector is defined as:

F imp = K(xee − xd) +D(ẋee − ẋd) (5)

where K ∈ R6×6 and D ∈ R6×6 are the desired stiffness and damping matrices
in Cartesian space, and xee and xd are respectively the actual and desired end-
effector poses. The three different robot behaviors described in section 3.1 were
implemented by changing the values and profiles of the K and D matrices, as
explained in the next section. Only the translational stiffness and damping were
modified across conditions, whereas the rotational part remained identical.
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3.3 Robot role allocation

The two experiment conditions L and F, were implemented using fixed values
for K and D throughout the entire task execution. The coefficient of K on
the direction of the sawing was set to a zero value when the human leads the
movement. When the human follows, the coefficient is set to high value. The
coefficients of D were computed from K and the Cartesian mass matrix using
factorization design [42].

The ”Reciprocal mode” R was defined and implemented based on the
work by Peternel et al. [29]. The robot’s Cartesian stiffness is adjusted on-line
throughout the task depending on the human shoulder stiffness trend ch(t).
The human stiffness profile is estimated as in [43] using the scaled mean of the
shoulder muscles:

ch = a

(
A1 +A2

2

)
∈ [0, 1] (6)

where a ∈ R defines the amplitude and shape of ch, and is determined
experimentally.

For the reciprocal stiffness behavior (R), K is:

K(t) = Kconst + S
((

1− ch(t)
)
(Kmax −Kmin) +Kmin

)
(7)

where S is a selection matrix that defines the axes where the stiffness is mod-
ulated, Kmin and Kmax contain the maximum and minimum desired stiffness
for those axes, and Kconst contains a constant stiffness for the axes that are
not modulated. In this experiment, the translational stiffness in the direction
of the sawing was modulated, while the other components were constant. In
this condition, the robot behaves as a leader if the human is compliant, whereas
it effectively cedes the autonomy of the task to the human when the human
co-contracts.

The robot reference trajectory has been designed in Cartesian space
between two points based on the required saw movement in the experimen-
tal setup. When the robot reaches the end-point it comeback. The orientation
of the saw is kept constant throughout the movement. The duration of the
reference trajectory was tuned experimentally and set to 2 seconds, which cor-
responded to a comfortable pace for users and was comparable to the previous
studies on human-robot collaborative sawing [29].

3.4 Performance metrics

To evaluate the performance of the task execution and of the collaboration, we
observed the following objective metrics. These performance metrics were
calculated at each iteration of the task, where as iteration is considered one
round trip of the saw.
M1 Length of the movementmakes it possible to verify that the movement

is performed along the entire length of the blade.
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M2 Acceleration gives an estimation of the smoothness of the movement and
it is calculated with double derivation from the movement. We considered
the mean of the absolute value of the acceleration.

M3 Co-Contraction index provides an estimation of the human effort. The
value is calculated as the mean value of all the ICC over one trial.

M4 Force applied to the robot is also a measure of human effort. It is cal-
culated using the robot torque sensors (Fext = J−T τext). We considered
the mean value of the absolute value of the force only in the direction
of the sawing (namely y axis) because we do not notice big forces in the
other directions.

M5 The Error on the reference position gives us an idea of how much the
subjects differ in motion from the trajectory proposed by the robot. It is
important to note that in the human leader mode (L) the subject has no
clue what the trajectory indicated by the robot is. This justifies the use
of the metronome as a tool to equalize the comparison between different
modes.

M6 Fourier: To compare the smoothness of each movement, we compute the
sum of the frequencies minus the principal frequency using the Fourier
transform of the movement [44].

Moreover, to evaluate the human adaptation to a given mode after the
transition happens we calculate the number of transitions necessary to reach
a steady state for the human. In the next section (Sec.3.5) will be presented
how we consider that steady state is reached.

We also evaluate how the subjects perceived each experimental condition.
This subjective metric is composed of a set of questions. After each trial,
the subjects are asked to answer to three questions related to the transition
between modes:
1. Did you recognize the 2 modes? This question was added to stimulate the

subject to explore the experimental condition they are testing and thus
engage more in the collaboration.

2. The transition between the two modes was challenging.
3. I felt that the performance in collaboration improved after mode transi-

tioning.
After each experiment, they are additionally asked to fill in a questionnaire
related to individual mode, with the following questions, with answers on a
X-items Likert scale.
1. The mode was engaging
2. The mode was demanding
3. The mode required high cognitive effort
4. The mode required high physical effort
5. The mode was boring

Moreover, we included the Van der Laan questionnaire [45], which evaluates
perceived usefulness and satisfaction for an experimental condition.
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3.5 Statistical analysis

For each experimental condition, we analyzed two critical times: just after the
mode-switching and when the steady state is reached. We decided to study the
first trials after the transitions, because during pilot experiments we observed
that these are the more critical moments for the collaboration.

To identify when participants reached steady state performance, we use
linear regression. Regressions were calculated for each of the six experimen-
tal conditions (F→L,F→R,L→R,L→F,R→L,R→F ) and the ”nothing-to-
something” conditions (N→L,N→R,N→F ), in a iterative way for the last n
trials, where n goes from N(number of trials) to zero. We repeated this pro-
cedure until the slopes were not significantly different from zero (i.e. the 95%
intervals did include zero). Since different performance metrics have different
convergence times to steady state, we decided to take the last one to converge.

The data (both for the first trials and for steady-state conditions) were
checked for normality with a Shapiro-Wilk test and then analyzed with a
one-way repeated-measures analysis of variance (ANOVA) with condition as
a within-subject factor and participant as a random factor. Pairwise multiple
comparison post-hoc tests with Bonferroni corrections were conducted when a
significant effect of condition was detected by the ANOVA.

Questionnaire scores and number of contacts were analyzed with non-
parametric Friedman tests, given the nature of the data. Post-hoc tests were
conducted when a significant effect of condition was detected. A significance
level of 5% was adopted for all statistical tests. Analyses were performed with
python software.

4 Results

This section is composed of three main parts. First, we look into transi-
tions between modes. Second, we examine modes on their own. Finally, we
check the results of subjective evaluation of both transitions and modes using
questionnaires.

4.1 Transitions Evaluation

Transitions between modes are evaluated in terms of progress and in terms of
reaching a steady state.

4.1.1 Progression

We noticed that the progress of the performance metrics varies accordingly
to the current mode and the one experienced in the past. We could observe
that the average number of iterations necessary for the partecipants to adapt
(and so reach steady state) varies across the experimental conditions (R→L :
7, F→L : 10, L→R : 13, F→R : 10, L→F : 14, R→F : 17).

Fig. 2 we display the distribution of the metrics on the first iterations of
the task after the mode switching. The ANOVA revealed a significant effect
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for the length of the movement (p = 0.02), co-contraction index (p = 0.04)
force (p < 0.001), error on the reference position (p < 0.001) and smoothness
of the movement (p < 0.001). For these cases, we executed Post-hoc test. For
the length of the movement, we observed differences between F→L and L→F
(p = 0.02) and values close to differences between F→L and L→F (p = 0.06)
and F→L and R→F (p = 0.058). For co-contraction index between R→L and
all the last three conditions (p < 0.001 for all the conditions) and a similar
thing for F→L and all the last three conditions (p = 0.03, p = 0.004, p = 0.01
respectively). Concerning the force, we found significant differences between
R→L and all the last four conditions (p = 0.02, p = 0.02, p = 0.001, p < 0.001
respectively) and a similar thing for F→L and all the last four conditions
(p = 0.012, p = 0.021, p = 0.003, p < 0.001 respectively). Moreover there are
significant differences between R→F and the two conditions ending with R
(p = 0.01, p = 0.04 respectively). Error on reference position reported differ-
ences between the conditions having L after the transition and all the others
(p < 0.001); moreover, the experimental condition F→R presents statistical
differences with the experimental modes ending with F (p < 0.001, p = 0.006).
The smoothness of the movement suggest statistical differences between R→L
and R→F (p = 0.02), F→L and all the others (p = 0.015 for the first condition
and p < 0.001 for the last three conditions) and L→R and R→F (p = 0.01).

In summary, we observe that the transition heavily influences the collabo-
ration.

4.1.2 Steady state

Fig. 3 displays the distribution of the metrics on the steady state iterations of
the task and after the mode switching. The ANOVA revealed a significant effect
for acceleration (p = 0.02), co-contraction index (p = 0.008), force (p < 0.001),
error on the reference position (p < 0.001) and smoothness of the movement
(p = 0.004). For these cases, we executed Post-hoc test. For the acceleration,
we observed differences between R→L and F→R (p = 0.02), R→L and L→F
(p = 0.001). For the co-contraction index, between R→L and the last four
conditions (p = 0.018, p = 0.006, p = 0.004, p = 0.001 respectively), for F→L
there is significant differences only to the last three conditions (p = 0.01, p =
0.001, p = 0.04 respectively). Concerning the force, we measured significant
differences between conditions ending with L and the other conditions. Error
on reference position reported similar behavior; moreover, we found statistical
differences between F→R and the experimental modes ending with F (p = 0.01
for both of them). About the smoothness of the movement, we found statistical
differences only between the first two conditions and the last four.

In summary, we can observe that certain transitions influence collaboration
even at steady state.
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Fig. 2 Comparison of the experimental conditions at the first 5 iterations after the switch-
ing: (M1) Length of the movement; (M2) Acceleration; (M3) Co-Contraction index of the
subject and measured using EMG sensors; (M4) Force applied to the cobot; (M5) Error on
the reference position; (M6) Fourier. The six experimental conditions are the combinations
of the three control modes: Human Leader(HL), Human Follower(HF ) and Reciprocal(R).

4.2 Modes Evaluation

Fig. 4 displays the distribution of the metrics described in Sec.3.4 for the three
control modes after reaching steady state. The ANOVA revealed a significant
effect co-contraction index (p < 0.001), force (p < 0.001), error on the reference
position (p < 0.001), and smoothness (p < 0.001). For these cases, we executed
Post-hoc test. For the co-contraction index, we notice significant differences
between L and R (p = 0.001) and between L and F (p < 0.001). For the force,
there are significant differences between L and R (p < 0.001) and between
L and R (p < 0.001). Concerning the error on the reference position, there
are significant differences between L and R (p < 0.001), between L and F
(p < 0.001) and between R and F (p = 0.001). Also the Fourier showed
differences between L and R (p < 0.001) and between L and F (p = 0.002).
At steady state, we notice more statistical differences between L and R than
between F and R. This may suggest that partecipants, at steady state, have
a tendency to follow the movement of the cobot and supervise the movement.
The only statistical difference between R and F is for the error on the reference
position.

Regarding the number of iterations necessary for subjects to adapt, we
observed that L mode generally converges faster to steady state (it takes
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Fig. 3 Comparison of the experimental conditions at Steady State: to identify steady state
linear regressions were calculated for each of the six experimental conditions iteratively for
the last 60, 59, 58 trials and so forth until the slopes were not significantly different from
zero (i.e. the 95% intervals did include zero).

around 12 iterations to converge) while R takes 20 iterations and F is generally
slower (around 25 iterations).

Table 2 Linear regressions between the trial number and these dependent measures to
identify when participants reached steady state performance. Regressions were calculated
for each of the six experimental conditions and the modes, iteratively for the last 60, 59, 58
trials and so forth until the slopes were not significantly different from zero (i.e. the 95%
intervals did include zero, the first appearance of p > 0.05).

R→HL HF→HL HL→R HF→R HL→HF R→HF HL R HF

7 10 13 10 14 17 12 20 25

4.3 Questionnaire

Fig. 6 displays the distribution of the scores for the questionnaire about
the transitions. The Friedman tests revealed a significant effect of the condi-
tion factor for question Q1 (Transition between the modes was challenging)
(χ2(3) = 26.6, p < 0.001) and for Q2 (Collaboration improved after the transi-
tion) (χ2(3) = 25.7, p < 0.001). For Q1, post-hoc tests indicated a significant
difference between F→L and L→R (p = 0.045), L→R and F→R (p = 0.003),
L→R and R→F (p = 0.005), F→R and L→F (p = 0.03) and a close differ-
ence between L→F and R→F (p = 0.052), while the other comparisons did
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Fig. 4 Comparison of the control modes at steady state: to compare the control modes
fairly and without them being affected by the transitions, we compared the scores before
the transitions occurred.

not reach significance. For Q2, post-hoc tests indicated a significant difference
between R→L and L→R (p = 0.01), F→L and L→R (p = 0.001), F→L
and L→F (p = 0.01), L→R and R→F (p = 0.045), and close to be differ-
ent between R→L and L→F (p = 0.07), while the other comparisons did not
reach significance.

Fig. 7 displays the distribution of the scores for the questionnaire about the
three modes. The Friedman tests revealed a significant effect of the condition
factor for question Q1 (The mode was engaging) (χ2(3) = 8.4, p = 0.01),
for Q2 (The mode was demanding) (χ2(3) = 28.6, p < 0.001), for Q3 (The
mode required high cognitive effort) (χ2(3) = 13.6, p = 0.001), for Q4 (The
mode required high physical effort) (χ2(3) = 29.1, p < 0.001) and for Q5
(The mode was boring) (χ2(3) = 12.16, p = 0.002). For Q1, post-hoc tests
indicated a significant difference between R and F (p = 0.02). For Q2, post-
hoc tests indicated a significant difference between L and R (p = 0.003) and
L and F (p = 0.001). For Q3, post-hoc tests indicated a significant difference
between R and F (p = 0.04) and L and F (p = 0.02). For Q4, post-hoc tests
indicated a significant difference between L and the other two conditions(p =
0.004, p = 0.001 respectively). For Q5, post-hoc tests indicated a significant
difference between R and L (p = 0.007). All the other comparisons did not
reach significance.
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Fig. 5 Results of the Van der Laan questionnaire. This scale assesses system acceptance
on two dimensions: a Usefulness scale and a Satisfying scale.

Fig. 6 Subjective questions about the transition.

Fig. 7 Subjective questions about the three modes: Human Leader (L), Human Follower
(F ) and Reciprocal (R).

5 Discussion

This section discussed the main results in terms of transitions between modes
and modes individually, both in terms of objective metrics and questionnaires.
Finally, we discuss some of the possible limitations of the existing study.

5.1 Transitions

Fig. 2 reports on the performances we chose to evaluate (length of the move-
ment, acceleration, co-contraction index, force, error, and smoothness) at the
first iterations after the switching between one mode to another. We observe
statistical differences in movement length only between the second (F→L)
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and fifth experimental condition (L→F ). Although there are no statistical
differences, we observe a lower median for both the first (R→L) and fourth
transitions (F→R). Similar considerations apply to the error on the reference
position (statistical differences for R→L, F→L and F→R). These results sug-
gest that for these three experimental modes, the quality of motion is affected
by the transition losing the ability to follow the reference. We think this is
because the participants are accustomed to greater robot autonomy, and when
this fails, they do not take over quickly enough to take the leadership.

We also observed an interesting effect regarding co-contraction and applied
force. The co-contraction index of the third experimental condition (L→R)
is similar to that of the first two conditions (R→L and F→L), despite not
showing statistical differences from the last three (as the first two do). The
applied force, on the other hand, shows how both the third and fourth condi-
tions (L→R and F→R respectively) show differences from the last two, and
the fourth has a higher median. These results suggest that the operator applies
a different force profile dependent on what the transition was. This type of
behavior may be due to a stiffening of the operator (and thus an increase
in ICC without a consequent increase in the force applied on the cobot) in
the transition phase. We think this may be due to either a desire to main-
tain stability in the movement or an attempt to better understand the type of
interaction being performed with the cobot.

Fig. 6 showed how the subjects perceived the transitions. Subjective ques-
tionnaires showed that the subjects found challenging to pass to F modes
(Fig. 6a) and, on the contrary, they showed that the simplest transition is
L→R. Collaboration perception is improved in the cases where previously the
human is leader (Fig. 6b) while it remains more or less constant in the switch-
ing from human leader to reciprocal, conversely, it is worsened when the human
is leader after the transition. Similar behavior has been observed previously
in movement length. This indicator reinforces our hypothesis that subjects
have difficulty taking over abruptly when the cobot’s cooperation fails. Similar
undesirable behavior can also be imagined in the case of two human subjects
in which one of the two participants stops making a contribution to the col-
laboration. Undoubtedly, such conduct would be misinterpreted by the second
participant. Indeed, it is well known that, in general, people tend to appreci-
ate more those who evolve their behavior from negative to positive while they
appreciate less those who change from a perceived positive behavior to a neg-
ative one. In the literature, this effect is called the ”gain-loss effect” [46], and
it has been shown that it can also be applied to interaction with robots [47].

So, to answer (Q1:How the switching between modes is perceived by the
human? Is the performance influenced in the first iterations of the task after
the switching? ), we can state that indeed the transition influences movement
performance in the early stages and that the quality of the movement depends
on how it was previously performed. As for (Q3: Do humans prefer some
transitions with respect to others? ), however, we can say that subjects prefer
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to abandon the human leader mode and prefer to either follow the robot or to
collaborate (reciprocal).

Fig. 3 reports on the performance metrics after the steady state is reached.
We expected that at steady state, the impact of switching had now been
nullified, and instead, some results suggest that operator performance is still
affected. Indeed, although we observed no statistical differences in movement
length, there is a lower median for both the fourth transitions. Similar con-
siderations apply to the error on the reference position (statistical differences
for the first two and the fourth). Interestingly, the movement length for the
human leader cases is about the same as for the other cases while, the error
is very different. Our intuition is that this might be due to the fact that the
human imposes a different trajectory than the cobot but still functional for task
execution. These results refer to (Q2: Does a past transition influence the col-
laboration after the steady state is reached? ), suggesting that the performance
of the collaboration is also influenced after the steady state is reached.

5.2 Modes

Fig. 4 reports on the performance metrics for the three control modes observed
separately after the steady state is reached. We can observe that there were
no statistical differences in movement length, so movement performance was
therefore not affected by mode choice. On the other hand, if we look at the dis-
tance to the reference trajectory, we notice statistically significant differences
that allow us to say that in the three cases the human-robot pair performed
three different trajectories. Looking at the other graphs (ICC, force, and
smoothness), we observe statistical differences only between L and the other
two modes. These results suggest that the R mode does not significantly affect
the operator’s effort and smoothness of the motion while allowing the operator
to impose his own trajectory, as observed in the error from the reference. This
happens because of the way R was constructed, in fact, whenever the subject
decides to change the trajectory from that imposed by the cobot the subject
increases its stiffness inducing the cobot to become compliant.

In Fig. 7 we make the following observations: the subjects perceive the R
and the F modes as engaging, the F is not demanding while the L is highly
demanding also from a cognitive point of view and from a physical point of
view, the R mode is arranged in the middle of these two extremes, subjects
perceive the Rmode as less boring with respect to the other modes. In a similar
way, Fig. 5 displays the three modes on the Van der Laan scale assigning both
a score of satisfaction and of use-fullness. We observe that the mean value of
the R and of the F mode are very close to each other, and at the same time,
they are distant from the mean of the L modes. In accordance with this scale,
there is small benefit in the R with respect to using F mode. Thus, answering
question Q5 (For this specific task, does human prefer one mode with respect
to another? ), we could state that subjects much prefer to collaborate with
a cobot in R and L modes than a cobot in F mode. At the same time, we
note a slight preference toward the R mode. Talking with participants, we
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got the idea that subjects preferred approaches in which the cobot was active
because they were less strenuous. At the same time, we think R mode was
better perceived by subjects because they felt they had more control over the
task. Moreover, we think R is more convenient because it is less boring, more
engaging (with respect to F mode), and require less effort (with respect to
L mode). For this reason, we think it is better suited for tasks in which it
is important to be engaging (for instance, when human and robot executes
dangerous movements).

The statistical analyses performed (Sec. 3.5), show how the general human
subject finds equilibrium in its behavior (and thus scores settle) faster in
the human leader case. In contrast, human follower is, in general, slower to
converge to an equilibrium solution. The reciprocal mode condition generally
requires intermediate times. Thus, answering question Q4 (Does human adapt
faster to some modes with respect to others? ), we could state that human sub-
jects adapt to the cobot’s control modes at different times and that the greater
the participant’s autonomy, the shorter the time. This result is probably due
to the fact that subjects search harder for solutions that limit the amount
of fatigue in performing the movement. Furthermore, it has been shown that
humans, in general, has a greater ability to adapt to tasks than the robot [48],
we think that in the L case, the subject has full decision-making power and
thus is not somehow slowed down by the cobot’s reduced capabilities as is the
case in the R and F cases.

5.3 Limitations

Our results should be considered carefully. First, the study was conducted with
participants from the university environment, and while few participants were
familiar with robots, the results cannot be generalized to a generic popula-
tion, especially with industry workers that may have different attitudes when
interacting with a cobot [49]. Second, the planar sawing task was simple and
common. In this sense, we do not know if our results can be generalized to other
tasks involving large and heavy loads with movements on the three dimen-
sions, a situation that is often found in manufacturing where robots physically
assist workers (e.g., manipulating car parts, such as wheels [50]). In any case,
the results we obtained allow us to demonstrate how important the type of
training the operator must undergo is and how important it is to manage the
robot controller transitions in a consonant manner.

6 Conclusion

In this paper, we studied how humans adapt in a collaborative sawing task
when cobot suddenly changes the control strategy. The results suggest that in
this kind of task, not only the type the current role of the cobot, but also the
past ones influence the behavior of the human operator. In our specific task,
the results seem to indicate that: transition influences movement performance
in the early stages (Q1) and at steady state (Q2), subjects prefer to abandon
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the human leader mode and prefer to adopt modes in which there is either
R or F modes(Q3), they adapts faster to L mode(Q4), subjects prefer R
mode(Q5). In future works, we would like to use the collected data to build a
model of how a human adapts to a robot. We think that such a model can be
used to optimize the robot’s impedance profile, especially when transitioning
from one profile to another.

Conflicts of Interest: The authors declare no conflict of interest.
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