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In this paper, we consider a special case of Bi-Objective Op-
timization (BOO), called Bi-Objective Minimization (BOM),
where two objective functions to be minimized take only
positive values. As well as for BOO, most methods pro-
posed in the literature for solving BOM focus on computing
the Pareto-optimal solutions that represent different trade-
offs between two objectives. However, it may be difficult
for a central decision-maker to determine the preferred so-
lutions due to a huge number of solutions in the Pareto set.
We propose a novel criterion for selecting the preferred
Pareto-optimal solutions by introducing the concept of ρ-
Nash Fairness (ρ-NF ) solutions inspired from the definition
of proportional fairness. The ρ-NF solutions are the Pareto-
optimal solutions achieving some proportional Nash equi-
librium between the two objectives. The positive parame-
ter ρ is introduced to reflect the relative importance of the
first objective to the second one. For this work, we will dis-
cuss some existential and algorithmic questions about the
ρ-NF solutions by first showing their existence for BOM.
Furthermore, the set of ρ-NF solutions can be a strict sub-
set of the Pareto set. As there are possibly many ρ-NF so-
lutions, we focus on extreme ρ-NF solutions achieving the
smallest values for one of the objectives. Then, we propose
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twoNewton-based iterative algorithms for finding extreme
ρ-NF solutions. Finally, we present computational results
on some instances of the Bi-Objective Travelling Salesman
Problem and the Bi-Objective Shortest Path Problem.
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optimal, Weighted Sum Method, Proportional Fairness,
Bi-Objective Travelling Salesman Problem, Bi-Objective Shortest
Path Problem

1 | INTRODUCTION

In this paper, we consider a special case of Bi-Objective Optimization (BOO), called Bi-Objective Minimization (BOM),
where two objective functions to be minimized take only positive values. Many applications in telecommunications,
logistics, economics, etc. can be formulated as BOM.We can list here several examples like the Bi-Objective Spanning
Tree Problem [10] which aims at finding a spanning tree minimizing simultaneously the total cost and the diameter
of the tree and the Bi-Objective Shortest Path Problem [33] where each arc is associated with a cost and a travel
time and one desires to compute a shortest path minimizing the total cost and the total travel time between a given
source to a given destination. In a recent conference paper [24], we considered a bi-objective version of the Travelling
Salesman Problem where, in addition of the total cost, the difference of the maximum edge cost and the minimum
edge cost in the tour is also to be minimized. This problem is a BOM which puts together the objective of the classic
TSP and the one of the Balanced TSP introduced in [20]. In this paper, we present a generalized and extended version
of [24] to BOM.

Obviously, popular methods for solving BOO can also be applied for solving BOM. Based on the concept of
the Pareto-optimal solutions that are non-dominated with respect to each other, such methods usually construct a
representation of the Pareto set that represents different trade-offs between the objectives [22]. They can be mainly
divided into two classes, i.e. methodswith a posterior articulation of preferences andmethodswith a priori articulation
of preferences. In the formermethods such as theNormal Boundary Intersection (NBI) [6], theNon-dominated Sorting
Genetic Algorithm-II (NSGA-II) [7], a central decision-maker (CDM) selects manually her own prefered solutions from
the Pareto set. Although these methods can provide all the Pareto-optimal solutions, it may be a difficult task due to
a huge number of solutions in the Pareto set [29].

In practice, methods with a priori articulation of preferences [17], which consider the preferences of the CDM
before running the optimization algorithm and then allow the algorithm to determine the solutions that reflect such
preferences, have been used more extensively due to their computational efficiency. They usually formulate a single-
objective optimization problem whose optimal solutions are the Pareto-optimal solutions to the bi-objective opti-
mization problem. For instance, Weighted Sum Method [5], [36] scalarizes two objectives into a single objective by
multiplying each objective with a weight supplied by the CDM. ϵ-constraints Method [15] keeps only one objective
and use a CDM-specified value as an upper bound for the other objective. By changing this value, we are able to ob-
tain some different optimal solutions. In the lexicographic method [11], the CDM is asked to establish a pre-defined
order amongst the objective functions. Then this method solves a sequence of single-objective optimization problems,
where each objective is optimized at a single point of time. In the goal programming [2], [3], the CDM determines an
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aspiration level of the objective function. All the parameters of objective functions are assigned a goal value to be ac-
complished. Then the objective of goal-programming is to minimize the deviations from the set goals. There are also
many other methods such as Sen’s Multi-Objective Programming [31], Hypervolume/Chebyshev scalarization [13],
achievement scalarizing problems of Wierzbicki [34], etc. However, most above approaches for BOM simply outline
the methods and show that they can provide efficiently the Pareto-optimal solutions. Essentially, how to determine
selection criterion for the preferred solutions and what is the signification of parameters using for the preferences
remain the challenging questions.

In this paper, we propose a novel selection criterion for BOM which can guide efficiently the Weighted Sum
Method to find the preferred Pareto-optimal solutions achieving some proportional Nash equilibrium between the
two objectives in the context of fair competition based on proportional fairness [1], [19], [25]. The latter aims to
provide a compromise between the utilitarian rule - which emphasizes overall system efficiency, and the egalitarian
rule - which emphasizes individual fairness. In the context of BOM, proportional fairness means that the sum of
proportional changes in objectives’ value when switching from a preferred solution to any other feasible solutions
is not negative. For our purpose, we consider a more general version of proportional fairness in order to take into
account the relative importance of one objective to the other according to the point of view of the CDM. More
precisely, we introduce the concept of the generalized Nash Fairness solution, i.e. ρ-NF solution, for BOMwhere ρ > 0

is a factor denoting the relative importance of the first objective comparing to the second one. This allows the CDM
to consider that ρ percent change of the first objective is comparably equivalent to one percent change of the second
one. Hence, when switching from a ρ-NF solution to any other feasible solutions, the sum of the factor ρ of the
proportional change in the first objective and the proportional change in the second objective is not negative. In this
paper, we present existential and algorithmic results for ρ-NF solutions of BOM problems.

The paper is organized as follows. In Section 2, we first show that for BOM, ρ-NF solutions always exist and
moreover, the set of ρ-NF solutions is a subset of the Pareto set. We exhibit an example of BOM for which this inclu-
sion can be strict. In Section 3, we address the question of how to algorithmically find ρ-NF solutions. For this, we
focus on extreme ρ-NF solutions which are the ones with the smallest values for one of two objectives. We propose
Newton-based iterative algorithms assuring the convergence to extreme ρ-NF solutions in a finite number of itera-
tions. In Section 4, we discuss about the effect of ρ on the values of corresponding extreme ρ-NF solutions. Finally,
in Section 5 we present computational results for the Bi-Objective Travelling Salesman Problem (BOTSP) introduced
in [24] and the Bi-Objective Shortest Path Problem (BOSPP) [33].

Note that in two recent conference papers [23] and [24], we introduced the notion of NF solution which is a
special case of ρ-NF solution when ρ = 1 for the Bi-Objective Assignment Problem (BOAP) and the BOTSP. In this
paper, we introduce the concept of ρ-NF solution and generalize the theory to BOM.

2 | GENERALIZED NASH FAIRNESS SOLUTION

2.1 | Characterization of generalized NF solution

BOM can be generally formulated as

min
x ∈X
(P (x ),Q (x ) )

where P ,Q represent two objective functions, X ⊆ Òd is a feasible set of decision vectors in d -dimensional application
domain and P (x ),Q (x ) > 0, [x ∈ X. Note that the feasible set X is defined by some constraints. In this work, we
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assume that X is finite. This hypothesis is verified for most practical examples of BOM, especially for the bi-objective
combinatorial optimization problems.

As a special case of BOO, popular methods for solving BOM provide the Pareto-optimal solutions that represent
different trade-offs between two objectives. However, in practice, it may be difficult for the CDM to determine a clear
selection criterion for accurate a priori articulation of preferences in a representation of the Pareto set. In this section,
we propose a novel criterion for selecting the preferred Pareto-optimal solutions. For this purpose, we introduce the
concept of generalized Nash Fairness solution, i.e. ρ-NF solution, inspired from the definition of proportional fairness
[1], [19], [25] where ρ > 0 reflects the relative importance between two objectives.

Let (P ,Q ) = (P (x ),Q (x ) ) denote the solution corresponding to a feasible decision vector x ∈ X. In the standard
definition of proportional fairness, an alternative assigning the greater values of two objectives is preferred, i.e. we
have two utility functions to be maximized. However, by contrast in BOM, we prefer the alternative assigning the
smaller values for P and Q , i.e. P ,Q are two cost functions to be minimized. Furthermore, if ρ > 0 is a factor denoting
the relative importance of P to Q , ρ percent change of P is now comparably equivalent to one percent change of Q .
Thus, the ρ-NF solution should be such that, when compared to any other feasible solutions, the sum of the factor ρ
of the proportional change of P and the proportional change of Q is not negative. Notice that it is easy for the CDM
to explain the ρ-NF solutions using the signification of proportional fairness.

Let S be the set of all feasible solutions (P ,Q ) . Since X is finite, S is also finite. If (P ∗,Q ∗ ) ∈ S is a ρ-NF solution
for BOM, we have

ρ
P − P ∗

P ∗
+ Q − Q ∗

Q ∗
≥ 0, [(P ,Q ) ∈ S, (1)

which is equivalent to

ρ
P

P ∗
+ Q

Q ∗
≥ ρ + 1, [(P ,Q ) ∈ S,

Hence, the ρ-NF solution for BOM can be defined as follows.

Definition 1 [ρ-NF sol ut i on ] For a given value ρ > 0, (P ∗,Q ∗ ) ∈ S is a ρ-NF solution for BOM if and only if ρ P
P ∗ +

Q
Q∗ ≥

ρ + 1, [(P ,Q ) ∈ S.

The ρ-NF solution is a generalized concept of the NF solution that we have introduced in our conference papers
[23] and [24]. In the following, we will discuss some existential questions about ρ-NF solution.

2.2 | Existence of ρ-NF solution

In case ρ = 1, it is known that there always exists a ρ-NF solution which can be obtained by minimizing the product
of P and Q [23], [24]. Generally, we show the existence of a ρ-NF solution for every BOM.

Theorem 1 For all ρ > 0, there always exists a ρ-NF solution for BOM.

Proof We need to show that there exists a feasible solution (P ∗,Q ∗ ) ∈ S such that

ρ
P

P ∗
+ Q

Q ∗
≥ ρ + 1, [(P ,Q ) ∈ S,
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which is equivalent to

k1
P

P ∗
+ k2

Q

Q ∗
≥ 1, [(P ,Q ) ∈ S,

where k1 =
ρ

ρ+1 and k2 = 1
ρ+1 .

Since X is finite, there always exists a feasible solution (P ∗,Q ∗ ) ∈ S such that

(P ∗,Q ∗ ) = argmin
(P ,Q ) ∈S

P k1Q k2 ,

Let us show that (P ∗,Q ∗ ) is a ρ-NF solution. [(P ,Q ) ∈ S we have P k1Q k2 ≥ P ∗k1Q ∗k2 > 0. Since ρ > 0,
k1, k2 > 0 and k1 + k2 = 1. Using the generalization of Young’s inequality for products [35] (see Appendix 1), we get

k1
P

P ∗
+ k2

Q

Q ∗
≥ ( P

P ∗
)k1 ( Q

Q ∗
)k2 =

P k1Q k2

P ∗k1Q ∗k2
≥ 1,

Hence, (P ∗,Q ∗ ) is a ρ-NF solution. □

Theorem 1 proves the existence of one ρ-NF solution for BOM that minimizes P k1Q k2 , or equivalently minimizes
(k1 log P +k2 logQ ) . However, finding such a solution may be difficult as it requires to minimize a concave function. In
the following, we show that each ρ-NF solution can be found by minimizing an appropriate strict convex combination
of ρP and Q . More precisely, each ρ-NF solution can be obtained by solving the following optimization problem

Pρ (α , β ) = min
(P ,Q ) ∈S

ραP + βQ ,

where (α , β ) ∈ C := { (α , β ) | α , β > 0 and α +β = 1}, i.e. the set of all strict convex combinations defined by α and β ,
are the coefficients to be determined. Notice that in this paper, we assume the existence of the algorithms for solving
the problem Pρ (α , β ) with (α , β ) ∈ C, the problem minimizing P and the problem minimizing Q . For example, when
P and Q are linear functions, ραP + βQ is also linear. In this case, we can suppose that we know how to optimize a
linear function over X. The BOTSP and the BOSPP that we consider in the "computational results" section belong to
this category. In addition, the solution of Pρ (α , β ) will be characterized only by the solution (P ,Q ) and not by the
decision vector of the solution. Thus, two solutions having the same value of (P ,Q ) will be considered as the same.

Theorem 2 (P ∗,Q ∗ ) ∈ S is a ρ-NF solution if and only if (P ∗,Q ∗ ) is an optimal solution of Pρ (α∗, β ∗ ) with α∗ = Q∗
P ∗+Q∗

and β ∗ = P ∗
P ∗+Q∗ .

Proof =⇒ Let (P ∗,Q ∗ ) be a ρ-NF solution. Let α∗ = Q∗
P ∗+Q∗ and β = P ∗

P ∗+Q∗ . Hence, (α
∗, β ∗ ) ∈ C. We will show that

(P ∗,Q ∗ ) is an optimal solution of Pρ (α∗, β ∗ ) .
As (P ∗,Q ∗ ) is a ρ-NF solution, we have

ρ
P

P ∗
+ Q

Q ∗
≥ ρ + 1, [(P ,Q ) ∈ S, (2)

Multiplying (2) by β ∗Q ∗ > 0 gives

ρ
β ∗Q ∗

P ∗
P + β ∗Q ≥ ρβ ∗Q ∗ + β ∗Q ∗, [(P ,Q ) ∈ S, (3)
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From the values of α∗ and β ∗, we have α∗P ∗ = β ∗Q ∗. Thus, we deduce from (3)

ρα∗P + β ∗Q ≥ ρα∗P ∗ + β ∗Q ∗, [(P ,Q ) ∈ S,

Hence, (P ∗,Q ∗ ) is an optimal solution of Pρ (α∗, β ∗ ) .
⇐= Now suppose that (P ∗,Q ∗ ) is an optimal solution of Pρ (α∗, β ∗ ) with α∗ = Q∗

P ∗+Q∗ and β ∗ = P ∗
P ∗+Q∗ , we show

that (P ∗,Q ∗ ) is a ρ-NF solution.
As (P ∗,Q ∗ ) is an optimal solution of Pρ (α∗, β ∗ ) , we have

ρα∗P + β ∗Q ≥ ρα∗P ∗ + β ∗Q ∗, [(P ,Q ) ∈ S,

Replacing α∗ by Q∗
P ∗+Q∗ and β ∗ by P ∗

P ∗+Q∗ , we obtain

ρ
P

P ∗
+ Q

Q ∗
≥ ρ + 1, [(P ,Q ) ∈ S,

That means (P ∗,Q ∗ ) is a ρ-NF solution. □

Theorem 2 states a necessary and sufficient condition for the ρ-NF solutions. We are interested now in the
following question: Given a feasible solution (P ′,Q ′ ) ∈ S, how to assert that (P ′,Q ′ ) is a ρ-NF solution? We give
the answer to this question in the next proposition.

Proposition 3 Given a feasible solution (P ′,Q ′ ) ∈ S. Let α ′ = Q ′
P ′+Q ′ , β

′ = P ′
P ′+Q ′ and (P

∗,Q ∗ ) be an optimal solution of
Pρ (α ′, β ′ ) , then (P ′,Q ′ ) is a ρ-NF solution ⇐⇒ ρα ′P ∗ + β ′Q ∗ − ρα ′P ′ − β ′Q ′ = 0.

Proof =⇒ If ρα ′P ∗ + β ′Q ∗ − ρα ′P ′ − β ′Q ′ = 0 then (P ′,Q ′ ) is also an optimal solution of Pρ (α ′, β ′ ) . Since
(α ′, β ′ ) ∈ C, α ′ = Q ′

P ′+Q ′ and β ′ = P ′
P ′+Q ′ , (P

′,Q ′ ) is a ρ-NF solution due to Theorem 2.
⇐= If (P ′,Q ′ ) is a ρ-NF solution then (P ′,Q ′ ) is also an optimal solution of Pρ (α ′, β ′ ) due to Theorem 2. Thus,

ρα ′P ∗ + β ′Q ∗ = ρα ′P ′ + β ′Q ′ which leads to ρα ′P ∗ + β ′Q ∗ − ρα ′P ′ − β ′Q ′ = 0. □

Note that BOM is a special case of multi-objective optimization where the concept of the Pareto-optimal (non-
dominated, non-inferior) solution is widely applied for describing the set of efficient solutions [22]. For two feasible
solutions (P ′,Q ′ ), (P ′′,Q ′′ ) ∈ S, let us denote (P ′,Q ′ ) ≺ (P ′′,Q ′′ ) , i.e. (P ′′,Q ′′ ) is strictly dominated by (P ′,Q ′ ),
if P ′ ≤ P ′′,Q ′ ≤ Q ′′ and (P ′,Q ′ ) ̸≡ (P ′′,Q ′′ ) , i.e. we do not have P ′ = P ′′ and Q ′ = Q ′′ simultaneously. We recall
the definition of the Pareto-optimal solution for BOM.

Definition 2 [Pareto-optimal solution] (P ′,Q ′ ) ∈ S is a Pareto-optimal solution for BOM if and only if it is not strictly
dominated by any other feasible solutions in S. In other words, there does not exist (P ′′,Q ′′ ) ∈ S such that (P ′′,Q ′′ ) ≺
(P ′,Q ′ ) .

In the following, we will prove that each ρ-NF solution is necessarily a Pareto-optimal solution.

Proposition 4 Each ρ-NF solution is necessarily a Pareto-optimal solution.
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Proof Let (P ∗,Q ∗ ) ∈ S be an optimal solution of Pρ (α∗, β ∗ ) where (α∗, β ∗ ) ∈ C. We first show that (P ∗,Q ∗ ) is a
Pareto-optimal solution.

Suppose that there exists a feasible solution (P ′,Q ′ ) ∈ S satisfying (P ′,Q ′ ) ≺ (P ∗,Q ∗ ) . Since (α∗, β ∗ ) ∈ C,
ρ > 0 and (P ′,Q ′ ) ≺ (P ∗,Q ∗ ) , we have ρα∗P ′ + β ∗Q ′ < ρα∗P ∗ + β ∗Q ∗.

On the other hand, the optimality of (P ∗,Q ∗ ) gives

ρα∗P ∗ + β ∗Q ∗ ≤ ρα∗P ′ + β ∗Q ′,

which leads to a contradiction. Thus, (P ∗,Q ∗ ) is a Pareto-optimal solution.
According to Theorem 2, each ρ-NF solution is necessarily a Pareto-optimal solution. □

The set of all Pareto-optimal solutions for BOM is known as the non-dominated set or Pareto set which is here
denoted by SN ⊆ S. Let Sρ be the set of ρ-NF solutions for BOM. In the following, we show that Sρ is a subset of
SN and this inclusion can be strict.

Theorem 5 For all ρ > 0, Sρ ⊆ SN and this inclusion can be strict.

Proof According to Proposition 4, we have Sρ ⊆ SN .
For showing that the set of ρ-NF solutions can be a strict subset of the Pareto set, i.e. Sρ ⊂ SN , let us consider

an example of the Bi-Objective Travelling Salesman Problem (BOTSP) where we look for a tour minimizing simultane-
ously the total edge cost and the max-min distance which is the difference between the maximum edge cost and the
minimum one [24]. Let G0 be an undirected graph with each edge cost as follows.

1

2

3

4

5

ρ+1

ρ+2

ρ

ρ+1

ρ+2 ρ+2

ρ

Let (P ,Q ) denote the solution for the total cost and the max-min distance corresponding to a solution tour. We
see that there are two different Hamiltonian tours 1 → 2 → 3 → 4 → 5 → 1 and 1 → 4 → 3 → 2 → 5 → 1 in G0

corresponding respectively to two feasible solutions (P ′,Q ′ ) = (5ρ + 6, 2) and (P ′′,Q ′′ ) = (5ρ + 8, 1) . Since P ′ < P ′′

and Q ′ > Q ′′, (P ′,Q ′ ) and (P ′′,Q ′′ ) are non-dominated solutions with respect to each other. Thus, they are two
Pareto-optimal solutions. We have

ρ
P ′′

P ′
+ Q ′′

Q ′
= ρ

5ρ + 8
5ρ + 6 +

1

2
= ρ + 1 + 2ρ

5ρ + 6 −
1

2
= ρ + 1 − ρ + 6

2(5ρ + 6) < ρ + 1,
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Hence, (P ′,Q ′ ) is a Pareto-optimal solution but not a ρ-NF solution.
By contrast, (P ′′,Q ′′ ) is a ρ-NF solution because

ρ
P ′

P ′′
+ Q ′

Q ′′
= ρ

5ρ + 6
5ρ + 8 +

2

1
= ρ + 1 + 1 − 2ρ

5ρ + 8 = ρ + 1 + 3ρ + 8
5ρ + 8 > ρ + 1,

There exist some particular cases where Sρ = SN . For example, if there is only one Pareto-optimal solution in
SN , it is also a ρ-NF solution. □

As shown by Theorem 1, there always exists one ρ-NF solution for BOM that minimizes P k1Q k2 where k1 =
ρ

ρ+1
and k2 = 1

ρ+1 . In the following, we assert that there may be more than one ρ-NF solution for BOM.

Remark 1 There may be more than one ρ-NF solution for BOM.

Proof For proving this conclusion, we consider an example of the Bi-Objective Shortest Path Problem (BOSPP) [33].
We first restate the definition of the BOSPP. LetG = (V ,A) be a directed graph whereV is the set of nodes ( |V | = n )
and A is the set of arcs ( |A | = m ) . Let ci j , t i j > 0 denote respectively the cost and the time associated with each
arc (i , j ) . The BOSPP consists in finding a path H from a source node s to a target node t minimizing both criteria
{

∑
(i ,j ) ∈H

ci j ,
∑
(i ,j ) ∈H

t i j }.

Now let G0 be an directed graph with a source node s and a target node t as follows.

s t

a

b

(3ρ; 3ρ+14 )

(4ρ; 2ρ+13 )

(ρ; 3ρ4 )

(2ρ; 2ρ3 )

Note that each arc of G0 corresponds respectively to a value of cost and a value of time. For example, the cost
associated with arc (s, a ) is 3ρ and the time associated with this arc is 3ρ+1

4 . Let (P ,Q ) denote the solution for the
total cost and the total time corresponding to a path from s to t . We see that there are two different paths s → a → t

and s → b → t inG0 corresponding respectively to two feasible solutions (P ′,Q ′ ) = (4ρ, 3ρ ) and (P ′′,Q ′′ ) = (6ρ, 2ρ ) .
Using the Young’s inequality for products (see Appendix 1), we have

ρ
P ′′

P ′
+ Q ′′

Q ′
= ρ

4ρ

6ρ
+ 3ρ

2ρ
= (ρ + 1) ( ρ

ρ + 1 ×
2

3
+ 1

ρ + 1 × (
3

2
)ρ ) ≥ (ρ + 1) ( 2

3
)

ρ
ρ+1 ( 3

2
)

ρ
ρ+1 = ρ + 1,
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Thus, (P ′,Q ′ ) is a ρ-NF solution. Moreover, we also have

ρ
P ′

P ′′
+ Q ′

Q ′′
= ρ

6ρ

4ρ
+ 2ρ

3ρ
= (ρ + 1) ( ρ

ρ + 1 ×
3

2
+ 1

ρ + 1 × (
2

3
)ρ ) ≥ (ρ + 1) ( 3

2
)

ρ
ρ+1 ( 2

3
)

ρ
ρ+1 = ρ + 1,

Thus, (P ′′,Q ′′ ) is also a ρ-NF solution. Hence, there are two ρ-NF solutions for this example of BOSPP. □

As shown by Remark 1, there are possibly many ρ-NF solutions for BOM. Among these solutions, two solutions
may naturally be preferred by the CDM: the one with the smallest value of P and the other with the smallest value
of Q . Let us refer to these solutions as the extreme ρ-NF solutions. In the next section, we present two iterative
algorithms for finding extreme ρ-NF solutions in a finite number of iterations.

3 | ALGORITHMS FOR FINDING EXTREME ρ -N F SOLUTIONS

Let us denote P -extreme ρ-NF solution and Q -extreme ρ-NF solution are respectively the ρ-NF solution having
the smallest values of P and Q . Notice that they are unique with respect to the values of P and Q since they are
both Pareto-optimal solutions. In the following, we will focus first on the P -extreme ρ-NF solution. All the subse-
quent results applied to the P -extreme ρ-NF solution can be also applied to the Q -extreme ρ-NF solution with slight
changes.

Note that if the P -extreme ρ-NF solution and the Q -extreme ρ-NF solution are identical, we obtain a ρ-NF

solution having simultaneously the smallest value of P and the smallest value of Q . Thus, it is necessarily a unique
ρ-NF solution.

We propose an algorithm to find the P -extreme ρ-NF solution. This iterative algorithm is inspired by the appli-
cation of the Newton-Raphson method to linear fractional programs that was first discussed by Isbell and Marlow
[18] and then generalized to nonlinear fractional programs by Dinkelbach [9]. Starting from (α0, β0 ) = (1, 0) , we de-
termine the initial solution (P0,Q0 ) which is an optimal solution of Pρ (α0, β0 ) , i.e. the problem minimizing P . Notice
that (P0,Q0 ) is not necessarily a Pareto-optimal solution due to (α0, β0 ) = (1, 0) < C. This algorithm can be stated as
follows.

Algorithm 1
Input: An instance of BOM, ρ > 0, the initial solution (P0,Q0 ) and the corresponding decision vector X0.
Output: A decision vector corresponding to the P -extreme ρ-NF solution.
1: i ← 0

2: repeat
3: αi+1 ←

Qi
Pi +Qi

, βi+1 ←
Pi

Pi +Qi

4: solve Pρ (αi+1, βi+1 ) to obtain an optimal solution (Pi+1,Q i+1 ) and the corresponding decision vector Xi+1

5: Ti ← ραi+1Pi+1 + βi+1Q i+1 − ραi+1Pi − βi+1Q i

6: i ← i + 1
7: untilTi = 0

8: return αi , (Pi ,Q i ) and Xi .

Let {αi }i ≥0 (including α0 = 1) be the sequence of {α } constructed by Algorithm 1 andTi := ραi+1Pi+1 +βi+1Q i+1 −
ραi+1Pi − βi+1Q i where (Pi ,Q i ), [i ≥ 0 is the optimal solution of Pρ (αi , βi ) in the execution of Algorithm 1.
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Wewill prove that Algorithm 1 terminates in a finite number of iterations and the obtained solution is exactly the
P -extreme ρ-NF solution. Our proof will use the following lemmas and theorems.

Lemma 6 Let α ′, α ′′ ∈ [0, 1], β ′ = 1 − α ′, β ′′ = 1 − α ′′ and (P ′,Q ′ ) , (P ′′,Q ′′ ) be respectively the optimal solutions of
Pρ (α ′, β ′ ) and Pρ (α ′′, β ′′ ) . If α ′ > α ′′ then P ′ ≤ P ′′ and Q ′ ≥ Q ′′.

Proof Since α ′, α ′′ ∈ [0, 1], we also have β ′, β ′′ ∈ [0, 1].
The optimality of (P ′,Q ′ ) and (P ′′,Q ′′ ) gives

ρα ′P ′ + β ′Q ′ ≤ ρα ′P ′′ + β ′Q ′′, and (4a)

ρα ′′P ′′ + β ′′Q ′′ ≤ ρα ′′P ′ + β ′′Q ′ (4b)

Multiplying (4a) and (4b) by respectively β ′′, β ′ ≥ 0 gives

ρα ′β ′′P ′ + β ′β ′′Q ′ ≤ ρα ′β ′′P ′′ + β ′β ′′Q ′′, and (5a)

ρα ′′β ′P ′′ + β ′β ′′Q ′′ ≤ ρα ′′β ′P ′ + β ′β ′′Q ′ (5b)

By adding (5a) and (5b), we obtain ρ (α ′β ′′ − α ′′β ′ ) (P ′ − P ′′ ) ≤ 0. Since α ′ > α ′′, we have β ′′ > β ′ ≥ 0. Thus,
α ′β ′′ > α ′′β ′ and it follows that P ′ ≤ P ′′.

In addition, the inequality (4b) implies β ′′ (Q ′ − Q ′′ ) ≥ ρα ′′ (P ′′ − P ′ ) ≥ 0. Since β ′′ > 0, we get Q ′ ≥ Q ′′. □

Lemma 7 During the execution of Algorithm1, (αi+1, βi+1 ) ∈ C,Ti ≤ 0 and the sequence {αi } is strictly decreasing, [i ≥ 0.

Proof Since Pi ,Q i > 0, [i ≥ 0, we have αi+1, βi+1 > 0 and αi+1 + βi+1 = 1. Thus, (αi+1, βi+1 ) ∈ C, [i ≥ 0. It follows
that (Pi+1,Q i+1 ) is a Pareto-optimal solution, [i ≥ 0 due to the proof of Proposition 4.

The optimality of (Pi+1,Q i+1 ) gives

ραi+1Pi+1 + βi+1Q i+1 ≤ ραi+1Pi + βi+1Q i , [i ≥ 0,

Thus,Ti := ραi+1Pi+1 + βi+1Q i+1 − ραi+1Pi − βi+1Q i ≤ 0, [i ≥ 0.
We will prove αi − αi+1 > 0 by induction on i . If i = 0, then α0 − α1 = 1 − Q0

P0+Q0
=

P0
P0+Q0

> 0.
Suppose that our hypothesis is true until i = k ≥ 0. Since αk > αk+1, we have Pk+1 ≥ Pk > 0 and Qk ≥ Qk+1 > 0

due to Lemma 6. It leads to Qk Pk+1 ≥ PkQk+1 and Qk Pk+1 = PkQk+1 ⇐⇒ Pk = Pk+1 and Qk = Qk+1, i.e. (Pk ,Qk ) ≡
(Pk+1,Qk+1 ) .

IfTk = 0 then Algorithm 1 returns the value αk . Hence, the sequence {αi } for i = 0, 1, ..., k is strictly decreasing.
IfTk < 0 then we have (Pk ,Qk ) ̸≡ (Pk+1,Qk+1 ) . It implies Qk Pk+1 > PkQk+1. We get

αk+1 =
Qk

Pk + Qk
>

Qk+1
Pk+1 + Qk+1

= αk+2,

Thus, in this case our hypothesis is also true with i = k + 1. Consequently, {αi } is strictly decreasing, [i ≥ 0. □

Lemma 8 Algorithm 1 terminates in a finite number of iterations. More precisely, it terminates in at mostK iterations where
K ∈ Î+ \ {0} represents the number of Pareto-optimal solutions.
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Proof Since αi > αi+1, we have Q i ≥ Q i+1 and Pi ≤ Pi+1, [i ≥ 0 due to Lemma 6.
We first show that ifTi < 0 then Q i > Q i+1, [i ≥ 0.
Let us assume that Q i = Q i+1. The optimality of (Pi+1,Q i+1 ) gives

ραi+1Pi+1 + βi+1Q i+1 ≤ ραi+1Pi + βi+1Q i ,

Using Q i = Q i+1 and ραi+1 > 0, we obtain Pi+1 ≤ Pi . Thus, Pi = Pi+1.
Since Pi = Pi+1 and Q i = Q i+1, it impliesTi = 0 which leads to a contradiction.
Hence, if Ti < 0 then Q i > Q i+1. Consequently, while Tk < 0 for some k ≥ 0, it implies Ti < 0, [0 ≤ i ≤ k and

the execution of Algorithm 1 explores the different Pareto-optimal solutions (Pi+1,Q i+1 ) with the strictly decreasing
values of Q , [0 ≤ i ≤ k .

As a result, we obtain T = 0 after at most K iterations where K ∈ Î+ \ {0} represents the number of Pareto-
optimal solutions. In addition, since S is a finite set, the Pareto set SN is also finite and K < +∞. Thus, Algorithm 1
terminates in a finite number of iterations. □

Theorem 9 The solution given by Algorithm 1 is the P -extreme ρ-NF solution.

Proof Let (Pn ,Qn ) be the solution given by Algorithm 1. SinceTn = 0, (Pn ,Qn ) is a ρ-NF solution due to Proposition
3.

If n = 0 then (P0,Q0 ) is obviously the P -extreme ρ-NF solution as it is an optimal solution of the problem
minimizing P . We consider n ≥ 1 that impliesTn = 0 andTi < 0, [0 ≤ i ≤ n − 1.

We will prove that (Pn ,Qn ) is the ρ-NF solution with the smallest value of P . Suppose that it is not true. Thus,
there exists a ρ-NF solution (P ∗,Q ∗ ) such that P ∗ < Pn . According to Theorem 2, there exists (α∗, β ∗ ) ∈ C such that
(P ∗,Q ∗ ) is an optimal solution of Pρ (α∗, β ∗ ) and α∗P ∗ = β ∗Q ∗. Since P ∗ < Pn , we have α∗ ≥ αn due to Lemma 6.
Since the sequence {α } is strictly decreasing and α∗ < α0 = 1, there exists 0 ≤ i ≤ n − 1 such that α∗ ∈ [αi+1, αi ) .

We first show that α∗ , αi+1 by contradiction. Let assume that α∗ = αi+1. We also have β ∗ = βi+1 that leads to
αi+1P ∗ = βi+1Q ∗. Thus, we get

P ∗

Q ∗
=

βi+1
αi+1

=
Pi
Q i

=⇒ P ∗

Pi
=

Q ∗

Q i
,

If i = 0 then P ∗
P0

= Q∗
Q0

. Since P ∗ ≥ P0, we get Q ∗ ≥ Q0. Thus, ρα1P ∗ + β1Q ∗ ≥ ρα1P0 + β1Q0.
If i ≥ 1 then P ∗ = Pi ,Q

∗ = Q i since they are both Pareto-optimal solutions and P ∗
Pi

= Q∗
Qi

. Thus, ραi+1P ∗+βi+1Q ∗ =
ραi+1Pi + βi+1Q i .

Consequently, we always have ραi+1P ∗ + βi+1Q ∗ ≥ ραi+1Pi + βi+1Q i . Moreover, ραi+1Pi+1 + βi+1Q i+1 = ραi+1P ∗ +
βi+1Q ∗ because both (Pi+1,Q i+1 ) and (P ∗,Q ∗ ) are the optimal solutions of Pρ (αi+1, βi+1 ) . Thus, Ti = ραi+1Pi+1 +
βi+1Q i+1 − ραi+1Pi − βi+1Q i ≥ 0 which leads to a contradiction due to Ti < 0, [0 ≤ i ≤ n − 1. Hence, we have
α∗ , αi+1.

It follows that α∗ ∈ (αi+1, αi ) . Since α∗ < αi , we have P ∗ ≥ Pi and Q ∗ ≤ Q i due to Lemma 6. Thus, we get

α∗ =
Q ∗

P ∗ + Q ∗ ≤
Q i

Pi + Q i
= αi+1,

which leads to a contradiction due to the fact that α∗ > αi+1. Hence, (Pn ,Qn ) is a ρ-NF solution having the
smallest value of P , i.e. the P -extreme ρ-NF solution. □
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For finding the Q -extreme ρ-NF solution, we use the similar algorithm starting from (α0, β0 ) = (0, 1) instead of
(1, 0) and (P0,Q0 ) as an optimal solution of Pρ (α0, β0 ) , i.e. the problem minimizing Q . It can be stated as follows.

Algorithm 2
Input: An instance of BOM, ρ > 0, the initial solution (P0,Q0 ) and the corresponding decision vector X0.
Output: A decision vector corresponding to the Q -extreme ρ-NF solution.
1: i ← 0

2: repeat
3: αi+1 ←

Qi
Pi +Qi

, βi+1 ←
Pi

Pi +Qi

4: solve Pρ (αi+1, βi+1 ) to obtain an optimal solution (Pi+1,Q i+1 ) and the corresponding decision vector Xi+1

5: Ti ← ραi+1Pi+1 + βi+1Q i+1 − ραi+1Pi − βi+1Q i

6: i ← i + 1
7: untilTi = 0

8: return αi , (Pi ,Q i ) and Xi .

We also state some lemmas and theorems to prove that we obtain the Q -extreme ρ-NF solution by using Algo-
rithm 2.

Lemma 10 During the execution of Algorithm 2, (αi+1, βi+1 ) ∈ C, Ti ≤ 0 and the sequence {αi } is strictly increasing,
[i ≥ 0.

Lemma 11 Algorithm 2 terminates in a finite number of iterations. More precisely, it terminates in at most K iterations
where K ∈ Î+ \ {0} represents the number of Pareto-optimal solutions.

Theorem 12 The solution given by Algorithm 2 is the Q -extreme ρ-NF solution.

4 | EFFECT OF ρ ON THE VALUES OF EXTREME ρ -N F SOLUTIONS

In this section, we show the effect of ρ on the values of the corresponding P -extreme ρ-NF solution and Q -extreme
ρ-NF solution. In fact, when ρ becomes larger, the CDM prefers an alternative assigning a smaller value of P and the
value of P in the P -extreme ρ-NF solution becomes closer to the value of P in the optimal solution of the problem
minimizing P . Furthermore, when ρ is large enough, they are identical. Conversely, when ρ becomes smaller, an
alternative assigning a smaller value of Q is preferred and the value of Q in the Q -extreme ρ-NF solution becomes
closer to the value of Q in the optimal solution of the problem minimizing Q . When ρ is small enough, they are
also identical. Hence, this helps the CDM to choose an appropriate parameter ρ corresponding to her own preferred
solutions based on the values of P and Q . In addition, For proving this conclusion, we state the following lemma and
theorems.

Lemma 13 Given ρ′, ρ′′ > 0. Let α ′, α ′′ ∈ [0, 1], β ′ = 1 − α ′, β ′′ = 1 − α ′′ and (P ′,Q ′ ) , (P ′′,Q ′′ ) be respectively the
optimal solutions of Pρ′ (α ′, β ′ ) and Pρ′′ (α ′′, β ′′ ) . If ρ′α ′β ′′ > ρ′′α ′′β ′ then P ′ ≤ P ′′ and Q ′ ≥ Q ′′.

Proof In fact, this Lemma is a generalized version of Lemma 6 where we consider two different values of ρ. Using the
same procedures as Lemma 6, we obtain (ρ′α ′β ′′ − ρ′′α ′′β ′ ) (P ′ − P ′′ ) ≤ 0. Since ρ′α ′β ′′ > ρ′′α ′′β ′, it follows that
P ′ ≤ P ′′.
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In addition, we also have β ′′ (Q ′ − Q ′′ ) ≥ ρ′′α ′′ (P ′′ − P ′ ) ≥ 0. Since ρ′α ′β ′′ > ρ′′α ′′β ′ ≥ 0, we get β ′′ > 0.
Hence, Q ′ ≥ Q ′′. □

Theorem 14 Given ρ′ > ρ′′ > 0 and let (P ′,Q ′ ), (P ′′,Q ′′ ) ∈ S be respectively the P -extreme ρ′-NF solution and the
P -extreme ρ′′-NF solution. Then P ′ ≤ P ′′.

Proof Suppose that Algorithm 1 returns (P ′,Q ′ ) and (P ′′,Q ′′ ) in respectively n ′ and n ′′ iterations where n ′, n ′′ ∈
Î+\{0}. Denote {α ′i }0≤i ≤n′ and {α

′′
i
}0≤i ≤n′′ as two sequences constructed by Algorithm 1. Without loss of generality,

we assume that n ′ ≥ n ′′. We first extend the sequence {α ′′ } such that it has the same number of elements as {α ′ }. In
case n ′′ < n ′, we add the element α ′′

n′′+1 = Q ′′
P ′′+Q ′′ to {α

′′ } and repeat α ′′
n′′+1 such that both the sequence {α

′′ } and the
sequence {α ′ } have n ′ + 1 elements. We also repeat the optimal solution (P ′′,Q ′′ ) corresponding to each α ′′

i
where

i ≥ n ′′ + 1. Let (P ′
i
,Q ′

i
) and (P ′′

i
,Q ′′

i
) be respectively the optimal solutions of Pρ′ (α ′i , β

′
i
) and Pρ′′ (α ′′i , β

′′
i
), [0 ≤ i ≤

n ′ + 1 as constructed above. Then, (P ′
n′ ,Q

′
n′ ) and (P

′′
n′ ,Q

′′
n′ ) are respectively the P -extreme ρ′-NF solution and the

P -extreme ρ′′-NF solution. (In fact, we have P ′′
i

= P ′′,Q ′′
i
= Q ′′, [i ≥ n ′′ + 1 and P ′

n′ = P ′,Q ′
n′ = Q ′ .)

As both (α ′0, β
′
0 ) and (α

′′
0 , β

′′
0 ) are the initial coefficients for using Algorithm 1, we have α ′0 = α ′′0 = 1 and β ′0 = β ′′0 =

0. Note that starting from an arbitrary optimal solution of the problemminimizing P , Algorithm 1 always returns the P -
extreme ρ-NF solution. Thus, we can assume that P ′0 = P ′′0 andQ ′0 = Q ′′0 . We prove ρ′α ′

i
β ′′
i
> ρ′′α ′′

i
β ′
i
, [1 ≤ i ≤ N by

induction on i . For i = 1, since P ′0 = P ′′0 andQ ′0 = Q ′′0 , we have α
′
1 = α ′′1 > 0 and β ′1 = β ′′1 > 0. Hence, ρ′α ′1β

′′
1 > ρ′′α ′′1 β

′
1.

Suppose that our hypothesis is true until i = k ≥ 1, we will show that it is also true with i = k + 1.
The inductive hypothesis gives ρ′α ′

k
β ′′
k
> ρ′′α ′′

k
β ′
k
that implies P ′

k
≤ P ′′

k
and Q ′

k
≥ Q ′′

k
due to Lemma 13. Thus,

we get

α ′k+1 =
Q ′

k

P ′
k
+ Q ′

k

≥
Q ′′

k

P ′′
k
+ Q ′′

k

= α ′′k+1, (6)

Since α ′
k+1 ≥ α ′′

k+1 > 0, we obtain 0 < β ′
k+1 ≤ β ′′

k+1. Consequently, ρ
′α ′

k+1β
′′
k+1 > ρ′′α ′′

k+1β
′
k+1 and our hypothesis

is true with i = k + 1.
Hence, ρ′α ′

n′β
′′
n′ > ρ′′α ′′

n′β
′
n′ and we obtain P ′

n′ ≤ P ′′
n′ due to Lemma 13. That concludes the proof. □

The result for the Q -extreme ρ-NF solution can be proved similarly. We state the following theorem for that.

Theorem 15 Given ρ′ > ρ′′ > 0 and let (P ′,Q ′ ), (P ′′,Q ′′ ) ∈ S be respectively the Q -extreme ρ′-NF solution and the
Q -extreme ρ′′-NF solution. Then Q ′′ ≤ Q ′.

As a consequence of Theorems 14 and 15, when ρ (or 1/ρ) becomes larger, the P -extreme ρ-NF solution becomes
closer to the Q -extreme ρ-NF solution. That is to say, the ρ-NF solution tends to be unique when ρ is further from
1.

5 | COMPUTATIONAL RESULTS

5.1 | Bi-Objective Travelling Salesman Problem (BOTSP)

5.1.1 | Definition and modeling

Let us first restate the BOTSP introduced in [24]. The BOTSP is a variant of the TSP where we find a tour minimizing
simultaneously the total cost and the max-min distance. The latter is the difference between the maximum edge cost
and the minimum one in the tour.
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Note that the problemminimizing only themax-min distance, called the Balanced TSP (BTSP), has been introduced
by Larusic and Punnen [20] for finding Hamiltonian tours in several cases where the equitable distribution of edges
are important, for example, the nozzle guide vane assembly problem [26] and the cyclic workforce scheduling problem
[37].

Given an undirected graph G = (V , E ) where |V | = n , |E | = m , ce ∈ Ò+ \ {0} is a cost associated with every edge
e ∈ E and Π (G ) , ∅ denote the set of all Hamiltonian cycles in G . The BOTSP can be formally formulated as

min
H ∈Π (G )

P =
∑
e∈H

ce (7a)

min
H ∈Π (G )

Q = max
e∈H

ce − min
e′∈H

ce′ (7b)

For solving Pρ (α , β ) , we present a MIP formulation as follows:

min ραP + βQ (8a)

s.t.
∑

e∈δ (v )
xe = 2 [v ∈ V (8b)∑

e∈δ (V ′ )
xe ≥ 2 [∅ ,V ′ ⊆ V (8c)

Q ≥ u − l (8d)

u ≥ cexe [e ∈ E (8e)

l ≤ cexe + (1 − xe )M [e ∈ E (8f)

xe ∈ {0, 1} [e ∈ E (8g)

where xe is the binary variable representing the occurrence of e in the solution tour, δ (v ) is the incident edges set of
vertex v , δ (V ′ ) is the set of edges which have exactly one endpoint inV ′,M is the largest edge cost (i.e. M = max

e∈E
ce ).

Constraints (8b) are respectively the degree constraints which assure that there are exactly two edges incident to
every vertex. Constraints (8c) are the subtour elimination constraints. These constraints represent the classical Held-
Karp (linear programming) relaxation for TSP. Together with Constraints (8g), they assure that the solution is a tour.
In order to calculate the max-min distance Q , we need to determine the maximum and the minimum edge costs u
and l in the solution tour. Constraints (8e) obviously allow to bound u from below by the largest weight edge in the
solution tour. Constraints (8f) allow to bound l from above by the minimum edge cost in the solution tour. Indeed, in
the case where xe = 1, Constraints (8f) guarantee that l is smaller than the costs of all edges in the tour. Otherwise,
when xe equals 0, the largest edge cost M assures the validity of Constraints (8f). As ραP + βQ is minimized, u and l

will respectively take the values of the maximum and the minimum edge costs.

5.1.2 | Computational results on the instances of BOTSP

In this section, we present computational results on some instances of the above BOTSP. Let us denote NFTSP as
the problem of finding extreme ρ-NF solutions for the BOTSP. We conduct several experiments aiming at solving the
NFTSP with Algorithms 1 and 2 on rather small size instances from the TSPLIB [30]. We also solve the TSP and the
BTSP on the same instances. Note that both the TSP and the Balanced TSP can be solved as special cases of Pρ (α , β )
with (α , β ) = (1, 0) and (0, 1) , respectively. The obtained solutions for three problems will be then compared and
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commented.

For solving three problems TSP, BTSP and NFTSP, we design a simple branch-and-cut algorithm devoted to mini-
mize a linear objective function over theMIP formulation. Note that Constraints (8e) and (8f) are excluded for the TSP.
We use CPLEX 12.10 to implement our branch-and-cut algorithm. Constraints (8c) are set as lazy cuts which are gen-
erated only when being violated by some integer solution. For the BTSP and the NFTSP, we also have some specific
branching rules for variable l inspired from some threshold algorithms [20], [21]. For the NFTSP, this branch-and-cut
algorithm is used in each iteration of Algorithms 1 and 2 to solve the subproblem Pρ (α , β ) . All the experiments are
conducted on a PC Intel Core i5-9500 3.00GHz with 6 cores and 6 threads.

TABLE 1 Optimal solutions for TSP and BTSP
Instance TSP BTSP

P Q Time P Q Time
burma14 3323 472 0.06 4986 134 0.03
ulysses16 6859 1452 0.14 13988 868 0.05
gr17 2085 311 0.04 4310 119 0.07
gr21 2707 328 0.01 8645 115 0.10
ulysses22 7013 1490 10.17 19001 868 0.09
gr24 1272 83 0.01 3926 33 0.18
fri26 937 118 0.02 2460 21 0.24
bays29 2020 140 0.04 6810 38 0.62
bayg29 1610 86 0.03 4210 29 0.59

TABLE 2 P -extreme ρ-NF solutions for BOTSP
Instance ρ = 1 ρ = log2 n ρ = 1/log2 n

P Q Time Iters P Q Time Iters P Q Time Iters
burma14 4986 134 0.17 4 3558 294 0.11 3 4986 134 0.36 3
ulysses16 7047 1399 0.80 3 6859 1452 0.37 2 13670 868 0.72 3
gr17 2227 234 1.43 3 2090 262 0.20 3 4029 119 1.01 4
gr21 2989 278 0.63 3 2709 326 0.05 3 5945 120 0.76 3
ulysses22 7070 1471 67.31 3 7013 1490 26.79 2 18613 868 3.64 4
gr24 1282 81 0.73 3 1272 83 0.10 2 3847 33 11.85 4
fri26 980 82 1.29 3 953 91 0.26 3 2447 21 14.74 4
bays29 3449 59 50.52 5 2020 140 0.24 2 5384 40 75.78 4
bayg29 1817 63 5.40 3 1610 86 0.26 2 4210 29 37.26 4

We assume that the CDM considers three different values of ρ, respectively 1, log2 n and 1/log2 n where n is
the number of nodes in graph G . Notice that the selection for the values of ρ depends on the CDM’s own strategy
and it does not affect the Pareto set. In case ρ = 1, the two objectives P and Q are equivalently important. In case
ρ = log2 n (or ρ = 1/log2 n), the CDM gives priority to the value of P (or the value of Q ) by the relative importance
log2 n . We show the optimal solutions for the TSP and the BTSP in Table 1. Table 2 and Table 3 present respectively
the P -extreme ρ-NF solutions and the Q -extreme ρ-NF solutions for NFTSP in several instances from the TSPLIB
with a range of nodes from 14 to 29. We provide the number of iterations for the NFTSP in the columns ”Iters”.

We can see by the values of P and Q in these tables that the P -extreme ρ-NF and Q -extreme ρ-NF solutions
for the BOTSP normally strike a better trade-off between two objectives: the total cost and the max-min distance
comparing with those in the optimal solutions for the TSP and the BTSP. More precisely, when ρ = 1, the P -extreme
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TABLE 3 Q -extreme ρ-NF solutions for BOTSP
Instance ρ = 1 ρ = log2 n ρ = 1/log2 n

P Q Time Iters P Q Time Iters P Q Time Iters
burma14 4986 134 0.06 2 4901 142 0.19 3 4986 134 0.33 2
ulysses16 13670 868 0.95 2 6859 1452 0.83 4 13670 868 0.06 2
gr17 3346 139 0.30 3 2090 262 0.61 4 4029 119 0.73 3
gr21 5945 120 0.46 3 2709 326 1.20 4 5945 120 0.42 3
ulysses22 7070 1471 74.37 4 7013 1490 51.37 4 18613 868 0.10 3
gr24 3847 33 2.42 2 1272 83 0.44 4 3847 33 0.04 2
fri26 2447 21 0.25 2 953 91 8.37 5 2447 21 0.10 3
bays29 4558 44 10.05 3 2093 116 29.92 5 6714 38 0.93 3
bayg29 3246 35 20.84 4 1610 86 3.20 5 4210 29 0.36 2

ρ-NF solutions (respectively the Q -extreme ρ-NF solutions) offer a better alternative than the optimal solutions of
the TSP (respectively the BTSP) with a significant drop on the values of Q (respectively P ) and a slight growth on the
values of P (respectively Q ). Table 2 and Table 3 also indicate that Algorithms 1 and 2 seem to converge quickly after
only maximum 5 iterations. In general, they terminate in a polynomial number of iterations. For proving this, we state
the following lemma. Note that the result for Algorithm 2 can be proved similarly.

Lemma 16 For the BOTSP, Algorithm 1 returns the P -extreme ρ-NF solution in a polynomial number of iterations.

Proof We first show that the number of Pareto-optimal solutions for the BOTSP is at most C 2
C 2
n
= 1

8 n (n
2 − 1) (n + 2)

where n is the number of nodes. Let cmax
i

and cmin
i

be the maximum and the minimum edge cost in the tour corre-
sponding to the Pareto-optimal solution (Pi ,Q i ) then Q i = cmax

i
− cmin

i
. For two distinct Pareto-optimal solutions

(Pi ,Q i ), (Pj ,Q j ) , we haveQ i , Q j which is equivalent to cmax
i
−cmin

i
, cmax

j
−cmin

j
. Thus, (cmax

i
, cmin

i
) ̸≡ (cmax

j
, cmin

j
) .

Consequently, each Pareto-optimal solution obtained by an iteration of Algorithm 1 has distinct pair of edges corre-
sponding to the maximum edge cost and the minimum one.

Note that for the graph G with n nodes, we have at most C 2
n edges and then the distinct pairs of edges is at most

C 2
C 2
n
. Hence, the number of Pareto-optimal solutions for the BOTSP is at most C 2

C 2
n
= 1

8 n (n
2 − 1) (n + 2) which implies

that Algorithm 1 terminates in a polynomial number of iterations due to the proof of Lemma 8. □

When ρ = log2 n , the values of P in the obtained P -extreme ρ-NF are closer to those in the optimal solutions for
the TSP comparing to ρ = 1 and ρ = 1/log2. Moreover, we need less (or more) iterations for finding the P -extreme
ρ-NF solutions when ρ becomes larger (or smaller). Similarly, when ρ = 1/log2 n , the values of Q in the obtained
Q -extreme ρ-NF are closer to those in the optimal solutions for the BTSP comparing to ρ = log2 n and ρ = 1. We also
need less (or more) iterations for finding the Q -extreme ρ-NF solutions when ρ becomes smaller (or larger).

In addition, when ρ = log2 n and ρ = 1/log2 n , the P -extreme ρ-NF solutions and the Q -extreme ρ-NF solutions
are identical in most of instances. Thus, for such instances we only have a unique ρ-NF solution. In general, when
ρ (or 1/ρ) becomes larger, the P -extreme ρ-NF solution is closer to the Q -extreme ρ-NF solution. That is to say,
ρ-NF solution tends to be unique when ρ becomes further from 1. Note that the CPU time for solving the NFTSP
in some instances is large comparing with the CPU time spent for solving the TSP and the BTSP. A deeper analysis
on the iterations of Algorithms 1 and 2 tells us that the smaller is the value of α , the more time is needed for solving
Pρ (α , β ) .



Minh Hieu Nguyen et al. 17

5.2 | Bi-Objective Shortest Path Problem (BOSPP)

5.2.1 | Definition and modeling

We first restate the BOSPP that we have utilized in Section 2.2. The BOSPP is a variant of the shortest path problem
which is cited as the most common problem in combinatorial optimization [4] due to its numerous applications as the
minimum cost path problem, the quickest path problem, the most reliable path problem and various routing problems.
As one of simplest problems in multicriterion linear integer programming, the BOSPP refers to find the shortest path
between two nodes satisfying two objectives, such as "cheap and quickest", "cheap and more reliable", "cheap and
energy efficient", and so on. More precisely, we describe the BOSPP as follows.

Let G = (V ,A) be a directed graph whereV is the set of nodes ( |V | = n ) and A is the set of arcs ( |A | = m ) . Let
ci j , t i j > 0 denote respectively the cost and the time associated with each arc (i , j ) . The BOSPP consists in finding a
path H from a source node s to a target node t minimizing both criteria {

∑
(i ,j ) ∈H

ci j ,
∑
(i ,j ) ∈H

t i j }. Notice that although

there exist efficient exact algorithms for solving the single-objective shortest path problem, the multi-objective case
(including the bi-objective case) is known to be NP-complete by transformation from a 0-1 knapsack problem [12],
[16].

Let P and Q be the objective functions for the total cost and the total time corresponding to the s-t path. As
shown in Algorithm 1, for finding the extreme ρ-NF solutions for the BOSPP, we need to solve Pρ (α , β ) as a sequence
of convex combinations of ρP andQ , i.e. including (α , β ) = (1, 0), (0, 1) . For each value of (α , β ) , we have ραP +βQ =∑
(i ,j ) ∈A

(ραci j + β t i j )xi j . Thus, we construct a graph G ′ with the same sets of nodes and arcs of G , i.e. G ′ = (V ,A) , and

ραci j + β t i j is a unique value of cost associated with each arc (i , j ) of G ′. Hence, solving Pρ (α , β ) is now equivalent
to solve the single-objective shortest path problem in G ′.

5.2.2 | Computational results on the instances of BOSPP

Let us denote NFSPP as the problem of finding extreme ρ-NF solutions for the BOSPP. We investigate the perfor-
mance of the presented algorithms for the NFSPP on random NETMAKER networks [32]. NETMAKER networks
generator was first proposed in [32] to test a label-correcting algorithm for the BOSPP. It was also used in [27], [28]
to evaluate the performance of algorithms for the BOSPP. To generate a NETMAKER network, a random Hamilto-
nian cycle is first constructed to assure that the network is strongly connected. Let {1, . . . , n } be the node set of the
network. For each node i , a random number of i ’s outgoing arcs, which belongs to the interval {amin, . . . , amax}, is
uniformly generated. Moreover, node i is only allowed to reach nodes j with j ∈ {i − ⌊ Inode2 ⌋, i + ⌊ Inode2 ⌋ } where
Inode is the node interval. The cost and time associated with an arc are chosen randomly in two intervals {1, . . . , 33}
and {67, . . . , 100} such that two values belong to different intervals. Table 4 describes the generated NETMAKER
networks. Notice that for all the instances, the source node is 1 and the target node is n . To solve the single-objective
shortest path problem, we use the Dijkstra’s algorithm [8] implemented in Networkx package version 2.5.1 [14]. All
the experiments are conducted on a PC Intel Core i5-9500 3.00GHz with 6 cores and 6 threads.

We assume that the CDM considers three different values of ρ, respectively 1, 1/2 and 2. The optimal solutions for
the problemminimizing P and the problemminimizingQ are shown in Table 5. Table 6 and Table 7 present respectively
the P -extreme ρ-NF solutions and the Q -extreme ρ-NF solutions. We provide the number of iterations for solving
the NFSPP in the columns ”Iters”.

Similar to the above results for theBOTSP,when ρ = 1, the P -extreme ρ-NF solutions (respectively theQ -extreme
ρ-NF solutions) offer a better alternative than the optimal solutions of the problem minimizing P (respectively the
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TABLE 4 Random NETMAKER networks
Name Nodes Inode Outgoing arcs Arcs

amin amax

N1.1 1000 20 5 15 8319
N1.2 1000 20 1 20 8290
N1.3 1000 50 5 15 9465
N5.1 5000 20 5 15 41438
N5.2 5000 20 1 20 41787
N10.1 10000 20 5 15 82785
N10.2 10000 20 1 20 83222
N20.1 20000 20 5 15 165702
N20.2 20000 20 1 20 166086

TABLE 5 Optimal solutions of the problems minimizing P and Q

Instance Min P Min Q
P Q Time P Q Time

N1.1 1521 14482 0.03 13815 1541 0.03
N1.2 1562 14443 0.03 14057 1516 0.03
N1.3 489 5539 0.03 6067 531 0.03
N5.1 7906 71535 0.17 70702 7902 0.18
N5.2 8385 70901 0.17 72431 7899 0.18
N10.1 16158 145440 0.44 139676 15728 0.42
N10.2 15904 139863 0.43 141761 16330 0.44
N20.1 31482 286335 1.56 287844 31645 1.66
N20.2 32559 285324 1.56 285408 33389 1.72

problem minimizing Q ) with a significant drop on the values of Q (respectively P ) and a slight growth on the values
of P (respectively Q ). Generally, the numbers of iterations for Algorithms 1 and 2 are much more than those for the
BOTSP. In fact, it may be difficult to determine a good upper bound on the number of iterations for Algorithms 1 and 2
since the values of P and Q in the BOSPP are totally independent (unlike the BOTSP). However, the quick CPU times
spent even for some instances with 20000 nodes show the efficiency of our algorithms combining with the Dijkstra’s
algorithm for solving the NFSPP.

When ρ = 2, the values of P in the obtained P -extreme ρ-NF are closer to those in the optimal solutions for the
problem minimizing P comparing to ρ = 1 and ρ = 1/2. In most cases, we need less (or more) iterations for finding
the P -extreme ρ-NF solutions when ρ becomes larger (or smaller). Similarly, when ρ = 1/2, the values of Q in the
obtained Q -extreme ρ-NF are closer to those in the optimal solutions for the problem minimizing Q comparing to
ρ = 2 and ρ = 1. We also need less (or more) iterations for finding the Q -extreme ρ-NF solutions when ρ becomes
smaller (or larger).

When ρ = 2 and ρ = 1/2, the P -extreme ρ-NF solutions and the Q -extreme ρ-NF solutions are identical in most
of instances. Thus, there is only a unique ρ-NF solution for such instances. Generally, when ρ (or 1/ρ) becomes larger,
the P -extreme ρ-NF solution is closer to the Q -extreme ρ-NF solution. In other words, ρ-NF solution tends to be
unique when ρ becomes further from 1.
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TABLE 6 P -extreme ρ-NF solutions for BOSPP
Instance ρ = 1 ρ = 1/2 ρ = 2

P Q Time iter P Q Time Iters P Q Time Iters
N1.1 1629 12339 0.12 4 13089 1564 0.40 13 1556 13097 0.10 3
N1.2 1652 12199 0.12 4 2190 10069 0.17 6 1594 12952 0.12 4
N1.3 496 5166 0.11 3 650 4335 0.17 5 496 5166 0.10 3
N5.1 8655 59520 1.10 6 63466 8083 2.27 13 8141 64727 0.90 5
N5.2 9383 58079 1.06 6 65438 8049 1.92 11 8519 65782 0.71 4
N10.1 17625 117018 2.08 5 126963 16072 5.29 13 16681 126573 2.99 7
N10.2 17127 118037 1.66 4 127784 16777 5.55 14 16237 127635 2.13 5
N20.1 34321 234978 7.15 5 253918 32603 17.62 13 32413 253953 7.68 5
N20.2 35186 239017 9.17 6 255794 34265 18.20 13 33307 258202 6.68 4

TABLE 7 Q -extreme ρ-NF solutions for BOSPP
Instance ρ = 1 ρ = 1/2 ρ = 2

P Q Time Iters P Q Time Iters P Q Time Iters
N1.1 11778 1688 0.12 4 13089 1564 0.09 3 1556 13097 0.45 15
N1.2 12506 1609 0.13 4 13438 1525 0.10 3 9786 2366 0.21 7
N1.3 4987 565 0.10 3 5093 558 0.10 3 4713 598 0.10 3
N5.1 59944 8407 0.71 4 63466 8083 0.90 5 8151 64568 2.59 15
N5.2 59608 8661 1.05 6 65438 8049 0.71 4 8519 65782 2.25 13
N10.1 118773 16855 1.99 5 126963 16072 1.67 4 16681 126573 5.13 13
N10.2 118563 17777 2.48 6 127784 16777 2.07 5 16237 127635 5.07 13
N20.1 235196 34504 7.20 5 253918 32603 7.41 5 32413 253953 17.71 13
N20.2 235068 36483 13.48 9 255794 34265 7.67 5 33313 258109 16.86 12

6 | CONCLUSION

In this paper, we have utilized proportional Nash equilibrium adapted in context of Bi-Objective Minimization (BOM) to
propose a novel criterion for selecting the preferred solutions in the Pareto set. For this purpose, we have generalized
the concept of Nash Fairness (NF ) solution introduced in our conference papers, called ρ-NF solution, by adding a
parameter ρ > 0 which reflects the relative importance of one objective to the other one. We have first proven the
existence of ρ-NF solutions for BOM. Especially, the set of ρ-NF solutions can be a strict subset of the Pareto set.
Second, we have designed two algorithms to find extreme ρ-NF solutions for BOM. Based on the Weighted Sum
Method, these algorithms only require minimizing a sequence of linear combinations of the objectives. In addition,
computational results conducted on some instances of the BOTSP and the BOSPP have shown the efficiency of our
algorithms as they seem to converge quickly and the obtained extreme ρ-NF solutions have better trade-off between
two objectives.

Our future works are determining an efficient upper bound on the number of iterations in our algorithms and
showing that the set of ρ-NF solutions is significantly smaller than the Pareto set in general. We also want to gener-
alize the concept of ρ-NF solution for Bi-Objective Optimization (BOO) whose objectives can be either maximized
or minimized. More precisely, we aim at visualizing the ρ-NF frontier, i.e. the set of ρ-NF solutions, for BOO.
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APPENDIX

| Appendix 1: Young’s inequality for products

We restate the proof of Young’s inequality for products as follows.
Theorem 15 Suppose a, b > 0, α , β ≥ 0 and α + β = 1 then αa + βb ≥ aαbβ .

Proof Since the logarithm function is concave, using Jensen’s inequality we have

l og (αa + βb ) ≥ αl og (a ) + β l og (b ) = l og (aαbβ ),

Thus, αa + βb ≥ aαbβ . Furthermore, the equality holds if and only if a = b or (α , β ) ∈ { (0, 1), (1, 0) }. □


