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Abstract: Background: High hydrostatic pressure (HHP) processing is a non-thermal method pro-
posed as an alternative to Holder pasteurization (HoP) for the sterilization of human breast milk
(BM). HHP preserves numerous milk bioactive factors that are degraded by HoP, but no data are
available for milk apelin and glucagon-like peptide 1 (GLP-1), two hormones implicated in the
control of glucose metabolism directly and via the gut–brain axis. This study aims to determine
the effects of HoP and HHP processing on apelin and GLP-1 concentrations in BM and to test the
effect of oral treatments with HoP- and HHP-BM on intestinal contractions and glucose metabolism
in adult mice. Methods: Mice were treated by daily oral gavages with HoP- or HHP-BM during
one week before intestinal contractions, and glucose tolerance was assessed. mRNA expression of
enteric neuronal enzymes known to control intestinal contraction was measured. Results: HoP-BM
displayed a reduced concentration of apelin and GLP-1, whereas HHP processing preserved these
hormones close to their initial levels in raw milk. Chronic HHP-BM administration to mice increased
ileal mRNA nNos expression level leading to a decrease in gut contraction associated with improved
glucose tolerance. Conclusion: In comparison to HoP, HPP processing of BM preserves both apelin
and GLP-1 and improves glucose tolerance by acting on gut contractions. This study reinforces
previous findings demonstrating that HHP processing provides BM with a higher biological value
than BM treated by HoP.

Keywords: human milk; high hydrostatic pressure; holder pasteurization; GLP-1; apelin; glucose
metabolism

1. Introduction

Human breast milk (BM) donated to human milk banks (HMBs) is the sole diet for
preterm infants when maternal BM is not available. Pasteurization of donated BM is an
essential step to inactivate pathogens to ensure microbial safety for preterm babies as, due
to immature gut, these infants are at high risk of developing diseases such as necrotizing
enterocolitis and sepsis [1]. The most common method used in HMBs worldwide to treat
BM is the Holder pasteurization (HoP) which consists of heating BM to 62.5 ◦C for 30 min [2].
However, owing to this heating, HoP degrades in part numerous milk heat-sensitive
bioactive factors, including hormones [2]. High hydrostatic pressure (HHP) processing is a
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non-thermal method recently proposed as an alternative to HoP for BM sterilization [3].
Several studies have shown that HHP preserves numerous sensitive bioactive factors that
are degraded by HoP [3] but, few data are available for milk hormones, and no in vivo
studies have been performed so far.

More than twenty peptide hormones have been characterized in BM [4,5]. It was
demonstrated that numerous of these hormones are implicated in gut maturation as well
as in energy homeostasis for the newborn [4,5]. Among them, apelin and glucagon-like
peptide-1 (GLP-1) were proposed to control glucose metabolism by modulating insulin re-
lease and sensitivity directly but also by targeting the gut–brain axis, which controls glucose
homeostasis [5,6]. For example, we demonstrated in mice that oral apelin administration
controls intestinal smooth muscle cells contractions and communicate through the enteric
nervous system (ENS) with the hypothalamus to control glycemia [6]. Such compounds
such as apelin that act on the ENS to control glucose utilization via the brain is named
enterosynes [7]. GLP-1 is also an important regulator of glycemia. GLP-1 is a gut hormone
acting on the pancreas and known as an incretin [8]. GLP-1 also has extrapancreatic sites
of action, such as in the portal vein [9] and in the brain [10,11], especially for the control
of glucose homeostasis in response to enteric glucose sensing. Although it remains to
demonstrate that these two hormones exert in the newborn the same metabolic roles as
in adults, we postulate that changes in BM apelin and GLP-1 levels may lead to altered
glucose homeostasis in newborns.

Here, we investigate the effect of HoP- and HHP-treatments of BM on the concentration
of apelin and GLP-1 and test in vivo the effect of chronic (7 days) oral administration of
HoP- and HHP-BM on intestinal contractions and glucose metabolism in adult mice.

2. Materials and Methods
2.1. Milk Collection and HoP and HHP Processing

Frozen BM samples from 11 donors were provided by the regional HMB (Lactarium
Régional de Lille, Jeanne de Flandre Children’s Hospital, CHU Lille). Donors provided
written, informed consent for the use of their milk for this research purpose. After thaw-
ing of milk samples, 8 different batches of BM were created under sterile conditions by
mixing various volumes (from 10 to 30 mL) of all BM samples, primarily in order to ho-
mogenize BM composition between batches. Three aliquots of BM were prepared for
each batch: one fraction was stored at −80 ◦C without any other treatment (raw milk
sample (RM)); one fraction was subjected to HoP according to the standard pasteurization
protocol (62.5 ◦C for 30 min) in our regional HMB; the last fraction was subjected to HHP
processing as previously described [12]. Briefly, the set of HHP parameters was as follows:
pressure = 350 MPa, temperature = 38 ◦C, VA (application rate) = 1 MPa.s−1, number of
cycles = 4 cycles, duration of each cycle = 5 min and a latency time with normal pressure
between each cycle of 5 min. Samples were stored at −80 ◦C until analysis.

2.2. Quantification of Apelin and GLP-1 in Milk Samples

Apelin and GLP-1 were quantified using commercial ELISA kits (GLP-1 elisa: HUFI00805,
ELISA Genie, Dublin, Ireland; apelin-12 elisa: EKE-057-23, Phoenix Pharmaceuticals, Stras-
bourg, France) in raw milk (RM), HoP- and HHP-BM samples using whole milk.

2.3. Mice

Nine-week-old male C57BL/6J mice (Charles River Laboratory, l’Arbresle, France)
were housed in controlled environment (room temperature of 23 ◦C ± 2 ◦C, 12 h’ daylight
cycle). Food and water were proposed ad libitum. Oral gavage of HoP- or HHP-BM (100 µL)
was performed daily during 7 days before experiments.
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2.4. Oral Glucose Tolerance Test (OGTT)

After a 10 h of fasting, an OGTT (3 g of glucose/kg of body weight) was performed in
mice at day 7. Glycaemia was recorded from −30 to 120 min, and insulin and glucagon
levels were measured and analyzed at −30, and +15 min as previously described [13].

2.5. Measurement of Isotonic Intestinal Contractions

Mice were euthanized under fed conditions. Duodenum, jejunum, ileum and colon,
were washed and incubated with an oxygenated Krebs-Ringer solution, pH 7.4, for 20 min
at 37 ◦C. Intestinal fragments were attached to an isotonic transducer (MLT7006 Isotonic
Transducer, Hugo Basile, Comerio, Italy). The lever is adjusted to have a load of 1 g (10 mN).
Each intestinal fragment was immersed in an organ bath containing an oxygenated Krebs-
Ringer solution maintained at 37 ◦C. After a recovery period of 15 min, 100 µL of Krebs-
Ringer (vehicle) solution or BM (HoP- or HHP-BM) was put directly in the organ bath and
data were collected for 15 min. After attaching the intestinal segments, basal contractions
were recorded for 15 min. For acute treatments, 100 µL of Krebs-Ringer (vehicle) solution
or BM (HoP- or HHP-BM) were added to the medium, and contractions were recorded
for 15 min. Contraction amplitudes and frequencies are presented as percentages relative
to the basal response (before the injection of vehicle or milk) [13]. For chronic treatment,
mice were euthanized after 7 days of milk gavage, and basal contractions were recorded for
15 min. Contraction amplitudes are presented as amplitude mean (mN), and contraction
frequencies are presented as numbers of contractions per minute [13]. All recordings were
performed using Labchart 8.0 software (AD Instruments, Colorado Springs, CO, USA).

2.6. Gene Expression

Homogenization of tissues, total RNA extraction, reverse transcription and real-time
PCR were performed as previously described in detail [13]. The sequences of primers
used in this study are presented in Table 1. Quantification of gene expression was per-
formed using the comparative Ct (threshold cycle) method, and data were normalized to
HPRT expression.

Table 1. Primers sequences.

Gene of Interest Forward Sequence Reverse Sequence

Hprt GTTCTTTGCTGACCTGCTGGAT CCCCGTTGACTGATCATTACAG
nNos ACGTCAAGTACGCCACCAACA GCGAGTTCCACACTCGGAAGT
Chat TGATCTTTGCTCGGCAGCACT TTGGCCCAGTCAGTGGGAATG

2.7. Statistics

Results are presented as mean ± SEM. GraphPad Prism 7.0. software (San Diego, CA,
USA) was used to analyse the data. Outliers were detected via a Grubb’s test. A D’Agostino-
Pearson test was used to evaluate the normality of variables. Statistical differences were
then tested by paired t-test, one-way ANOVA, or two-way ANOVA test according to
sample normality assessment results. Variations were considered as significant when
p value was <0.05.

3. Results
3.1. Apelin and GLP-1 Levels in RM-, HoP- and HHP-BM

Compared to raw milk (RM) and HHP-BM, HoP treatment reduced apelin (−41%
compared to RM, Figure 1A) and GLP-1 levels (−83% compared to RM, Figure 1B). On the
opposite, no significant variation was observed for apelin (Figure 1A) and GLP-1 (Figure 1B)
levels between RM- and HHP-BM.
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BM presented an improvement of glucose tolerance (Figure 3B–D) without modification 

of plasma insulin and glucagon levels (Figure 3E,F). 

Figure 1. Concentrations of apelin (A) and GLP-1 (B) in raw human milk (RM) and after Holder
pasteurization (HoP) and high hydrostatic pressure (HHP) processing of BM. Data are presented
as mean ± SEM. Asterisks correspond to level of statistical significance: * p < 0.05; *** p < 0.001;
**** p < 0.0001.

3.2. Impact of HoP- and HHP-BM on Intestinal Contractions and Glucose Metabolism in Mice

The addition of HHP-BM directly in the survival medium significantly decreased the
amplitude of duodenum contraction compared to HoP-BM without modification of the
frequency of contractions (Figure 2A). This effect was specific to the duodenum as we did
not observe any significant variation in the jejunum, ileum and colon contractions between
the two experimental conditions (Figure 2B–D).
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Figure 2. HHP-BM decreases duodenal contraction amplitude. Ex vivo measurement of duodenum
(A), jejunum (B), ileum (C) and colon (D) mechanical contraction amplitude and frequency in response
to HoP- or HHP-BM added in the medium (100 µL, n = 7–8). Results are expressed as a percentage of
the basal contractions amplitude or frequency. * p < 0.05 compared to HoP-BM.

Then, we performed experiments in response to a seven day-chronic oral gavage of
mice with HHP- or HoP-BM. No significant variation was observed between mice treated
with HHP- and HoP-BM concerning fasted glycemia (Figure 3A). Mice treated with HHP-
BM presented an improvement of glucose tolerance (Figure 3B–D) without modification of
plasma insulin and glucagon levels (Figure 3E,F).
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Figure 3. A chronic oral HHP-BM treatment improves glucose tolerance in adult mice. Oral Glucose
Tolerance Test (OGTT) in fasted mice after an oral administration of HoP- or HHP-BM (100 µL/day
during one week; n = 9 per group). (A) Fasted glycemia, (B) Glycemia during OGTT and the
area under the curve (AUC) (C) and HOMA index (D), plasma insulin (E) and glucagon levels (F).
* p < 0.05 compared to mice treated with HoP-BM.

Regarding the impact of chronic (7 days) oral gavage of mice with HHP- or HoP-BM
on intestinal contractions, no significant variation was observed concerning the contraction
of the duodenum (Figure 4A), the jejunum (Figure 4B) and the colon (Figure 4D). On the
opposite, our results showed that HHP-BM treated mice presented a significant decrease
in the amplitude of contractions in the ileum without any modification of the frequency
compared to mice treated with HoP-BM (Figure 4C). The HHP-BM or HoP-BM treatments
of mice had no impact on the mRNA expression of nNos or Chat enzymes in the duodenum
(Figure 4E), but HHP-BM treatment increased the mRNA expression of nNos, but not Chat
enzyme in the ileum compared to HoP-BM treated mice (Figure 4F).
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Figure 4. Chronic oral HHP milk treatment decreases ileal contraction amplitude. Ex vivo measure-
ment of duodenum (A), jejunum (B), ileum (C) and colon (D) mechanical contraction amplitude and
frequency in response to chronic oral treatment with HoP- or HHP-BM (100 µL/day during one
week; n = 8–10 per group). Expression of nNos and Chat mRNAs in the duodenum (n = 9) (E) and in
the ileum (F). * p < 0.05 compared to HoP-BM treated mice.

The impact of BM treatments on glucose tolerance and gut motility was not associated
with variations of body weight in the different experimental groups (Before: HoP group
= 27.93 ± 0.12 g, HHP group = 27.85 ± 0.10 g; After: HoP group = 28.42 ± 0.16 g, HHP
group = 28.21 ± 0.10 g).

4. Discussion

Milk hormones are non-nutritive bioactive compounds that exert beneficial short- and
long-term health effects as well as possible long-term metabolic programming in newborns,
as suggested by animal studies [4]. Here, we first compared the effect of HoP, the reference
method for BM sterilization in HMBs, to the new alternative method of HHP processing on
the preservation of milk apelin and GLP-1. We discovered that HHP processing protects
milk apelin and GLP-1 from degradation compared to HoP at concentrations similar to that
observed in RM. In accordance, previous studies have shown that HoP of BM reduces others
peptide hormones such as leptin, insulin and adiponectin [14,15]. Our result reinforces
the fact that milk hormones are largely degraded by HoP, leading to sterilized BM with
reduced hormonal benefits for preterm newborns. Thus, through the preservation of both
apelin and GLP-1, HHP-treatment of BM in HMBs could improve glucose homeostasis and
metabolic health in preterm infants who receive it.

In line with this hypothesis, the second objective of our study was to test in vivo the
effect of a chronic gavage with HoP- and HHP-BM on intestinal contractions and glucose
metabolism in adult mice. First, in a preliminary ex vivo study, we discovered that the
addition of HHP-BM in the incubation medium of mouse duodenum significantly reduced
the amplitude of contractions. This first rapid effect probably implies the action of milk
apelin, which is now considered an enterosyne [7]. Indeed, our group has discovered the
“enterosynes concept”, showing that some compounds, including apelin, could decrease
the duodenal contraction intensity to restore the altered gut–brain axis activity in diabetic
mice and then improve glucose tolerance [6]. The effect of apelin was observed in ex vivo
conditions similar to the protocol used here but also in response to a one-week oral gavage
with apelin [6]. However, in this study, we observed that HHP-BM treated mice had a
decreased ileum contraction intensity and an improved glucose tolerance compared to
mice treated with HoP-BM. Thus, it seems that chronic treatment with BM may rather
affect gut contractions in the distal part of the small intestine, whereas the rapid effect of
milk compounds in our ex vivo model mainly acts on the duodenum. Further studies are
therefore needed to confirm this hypothesis between these two different models. Previous
data from our team demonstrated that oral peptide (others than apelin) [16] or lipid [13]
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treatments in mice decrease duodenal contraction leading to the genesis of a nervous
message from the intestine to the hypothalamus. By acting on the ENS, these bioactive
molecules are considered enterosynes since this gut–brain axis message participates in
the improvement of glucose tolerance by facilitating glucose entry in tissue such as in
the adipose tissue, in the liver and/or in muscles [7]. In the ileum, GLP-1 is known to
activate the “ileum brake” to inhibit small intestinal contractions [17,18] by acting on the
ENS. This “ileum contraction to brain axis” could be the first mode of communication
between the intestine and the brain in our experimental in vivo model. The second mode of
communication could be due to the existence of GLP-1 receptors on vagal afferent sensitive
neurons in the gut. Indeed, Borgmann et al. [19] have shown that the chemogenetic
activation of GLP-1 receptor in the intestine reduces glucose levels. Third, GLP-1 receptors
are implicated in the activation of hepatic portal vein glucose sensors leading to a decrease
in glycemia via an afferent nervous message [9]. In turn, the brain can send an efferent
nervous message that favors glucose entry into tissue. At this time, we can speculate that
the increase in GLP-1 in HHP-BM could participate in the modifications of gut–brain axis
activity controlling glycemia. This action could be of major importance since we do not
observe any effect on insulin release in all groups suggesting that the potential action of
GLP-1 is independent of the well-described incretin effect of this hormone. Reinforcing
this hypothesis is the fact that first, intestinal GLP-1 can stimulate the release of NO from
nNOS neurons in the ileum in order to communicate with the brain via afferent nerves [20]
and second, that GLP-1 could be now considered as enterosynes [21].

Several questions remain to be resolved with future experiments. First, could the
effects of HHP-BM observed in our study be due to apelin alone or GLP-1 alone or in
combination with other enterosynes? This point could be raised by assessing the levels of
other molecules (peptides, lipids) present in HHP-BM that could act on enteric neurons
or other cellular targets in the digestive tract or in other organs after intestinal absorption.
Second, which factors are implicated in the increase in nNos mRNA level in the ileum?
GLP-1 is known to increase the activity of nNOS in myenteric neurons leading to NO
release that inhibits the mechanical activity of the intestine [22]. Whether milk GLP-1 or
other milk factors can influence the expression of nNOS in the intestine remains to be
determined. Another mode of action of GLP-1 that could explain the decrease in ileum
contraction in HHP-BM treated mice is the fact that GLP-1 receptors are also expressed
on intestinal smooth muscle cells since the agonist GLP-1 receptor, i.e., exendin-4 has an
inhibitory action on colonic motility in rats [23]. Finally, the experimental model used in
this study is questionable has it has been performed in adult male mice, but it represents a
preliminary study that allowed us to study the effect of BM treatments on several intestinal
segments ex vivo and to evaluate in vivo the intestinal gut–brain axis implication in glucose
homeostasis after an oral glucose tolerance test. Future studies using newborn mice will
allow us to evaluate other digestive effects of these treatments of BM on, for example, the
integrity of the intestinal barrier (i.e., mucus production, permeability, gut immunity), the
maturation of the gut mucosa and the establishment of the gut microbiota.

5. Conclusions

To conclude, we have discovered that HHP protocol preserves both apelin and GLP-1
levels in human milk, demonstrating the potential clinical importance of this original
sterilization method. Based on our observations, we postulate that HHP-treatment of BM
could improve glucose homeostasis and the gut–brain axis activity in preterm newborns.
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