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Abstract

In this paper, we give estimates of the quadratic transportation cost in the
conditional central limit theorem for a large class of dependent sequences. Appli-
cations to irreducible Markov chains, dynamical systems generated by intermittent

maps and 7-mixing sequences are given.

MSC2020 subject classifications: 60F05; 60F25; 60E15; 37E05.

Keywords: Quadratic transportation cost, conditional central limit theorem, Wasser-
stein distance, Minimal distance, strong mixing, stationary sequences, weak depen-
dence, rates of convergence.

Running head: Quadratic transportation cost in the conditional CLT

1 Introduction

Let (X;)iez be a strictly stationary sequence of real-valued random variables (r.v.) with
mean zero and finite variance. Set S,, = X; + Xy +---+ X,,. By P,-1/25 we denote the
law of n~'/2S,, and by G2 the normal distribution N(0,c?). In this paper, we assume
furthermore that the series 0 = Y, ., Cov(Xy, Xj) is convergent (under this assumption
lim,, n~'VarS,, = 0?) and we shall give quantitative estimates of the approximation of
P,-1/25, by G,2 in terms of the quadratic cost, which is the square of the L*-minimal

distance. With this aim, we first recall the definition of the ILP-minimal metrics.
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Let L(u,v) be the set of probability laws on R? with marginals ¢ and v. For p > 1,
let

. 1/p
W) =it {( [ 12 =Pz )" s P Ll ).
W, is usually called the L”-minimal distance, and sometimes the Wasserstein distance
of order p. It is well known that for probability laws p and v on R with respective
distributions functions (d.f.) F' and G,

1/p

Wy(,v) = ( / E ) G (w)ldu) (1.1)

where FF~! and G~! denote respectively the generalized inverse functions of F and G.
We refer to Chapter 6 in Villani [25] for the properties of this metric.

For (X;);cz a sequence of independent and identically distributed (iid) centered real
valued random variables in IL*, with variance o2, inequality (1.7) in Rio [21] states that

there exists a universal constant ¢ such that for any positive integer n
nW;(PSn/\/ﬁ7 Go2) < co?|| X5 (1.2)

In addition, it is also shown in the same paper that this upper bound is optimal. More
precisely, for any x > 1, let M(4, ) be the class of the probability measures p on the
real line such that [adu(z) = 0, [2*dp(z) = 1 and [2*du(z) = k. In case where
(Xi)iez is a sequence of iid random variables with common law p in M(4, k), Theorem
5.1 in [21] asserts that

sup liminanQQ(PSn/ﬁ,Gl) > r/12. (1.3)
PEM(4,5) MR
We refer to Bobkov [2] for another proof of (1.2) based on relative entropy and
Talagrand’s entropy-transport inequality. Actually, the following more general result
holds: for any p > 1, there exists a universal constant ¢, such that for any positive
integer n,
np/2W5(PSn/\/ﬁ7 Gy2) < cy0P|| X Zig .

(see Rio [21] for p € [1,2] and Bobkov [3] for p > 2). Extensions to random vectors in
R? are given in Bonis [5]. We also mention the extensions of the upper bound (1.2) to
the m-dependent case and to U-statistics obtained by Fang [12].

In this paper, one of our motivations is to relax the independence assumption and to

find sufficient conditions in case of dependent sequences ensuring that
WZ(PSn/\/ﬁu GUQ) = O(n_l/Q) : (14)

In the dependent setting, a well known class is the class of irreducible aperiodic and

positively recurrent Markov chains (,) with an atom denoted by A (see the definition
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page 286 in [4]). Let 7 be the unique invariant distribution of the Markov chain. From
now on, (&,) will be the Markov chain starting from 7. Let us then consider the strictly
stationary sequence (Xj) defined by X = f(&) with f a bounded function such that
7n(f) = 0. In view of the regeneration scheme and the upper bound (1.2), one can
conjecture that (1.4) holds for S, = Y__, Xj provided that E4(7}) < co where 74 is
the first return time in A and E4 stands for the expectation under P, for z € A. Next,

from [4, Lemma 3] and [22, page 165], it is known that E4(74) < oo is equivalent to

Zn%zn < 00, (1.5)

n>0

where o, = iSUPufHoog IE(f(€n)I€0) — E(f (&)1
In this paper we shall prove that (1.4) holds true for any stationary sequence (X )xez

of bounded real-valued random variables satisfying (1.5) for the sequence (a,)n>o of
strong mixing coefficients in the sense of Rosenblatt (see for instance [17, Section 5.1.1.]
for a definition of these coefficients in the general case), which includes the case of Markov
chains described above. This will be a consequence of a more general result also valid for
a class of weakly dependent sequences, which may fail to be strongly mixing. In order
to give more precise statements of our results, let us now introduce the dependence

coefficients that we will use in this paper.

Definition 1.1. Let (X;);cz be a stationary sequence of bounded real-valued random
variables and Fy = 0(X;,1 <0). Let 'y, = {(a;)1<i<p € NP : @y > 1 and Y 7 a; <q},
for p and ¢ positive integers. For k > 0, set

E ( ﬁ Xp
=1

O0x pa(k) = sup
kp>ky_1>...>kg>ky >k
(a1, ap)€lp,q

1

p
7)) -E(T]x)
i=1
As a consequence of our Theorem 2.1, we will obtain that if

> k0xa4(k) < oo, (1.6)

k>1

then (1.4) holds, which immediately implies that (1.4) holds for additive bounded func-
tionals of a Markov chain satisfying (1.5). In fact we shall give a conditional version
of (1.4) and show that when (Xj)rez is a stationary sequence of centered and bounded

real-valued random variables satisfying (1.6) then

E(W22<Psn/\/ﬁ|]:07 GU2)) = O(?’Lil) . (17)

Note that in case of bounded functions of a Markov chain (&) satisfying E4(7%) < oo,
with invariant distribution 7, the Schwarz inequality together with (1.7) imply that

E.(Wa(Ps, ) ig Go2)) = O(n™?)
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for any positive measure p such that dy = fdr with [ f2dr < co. Above E, stands for

the expectation of the chain under the initial law .

It is noteworthy to indicate that (1.7) implies (1.4). Indeed the following fact is valid.

Fact 1.1. Let X and Y be two random variables defined on (2, A,P) and F be a sub
o-algebra of A. Then W3(Px, Py) < E(Wf(PXV, PY|]:)).

To see this, let U be a random variable with uniform distribution over [0, 1], inde-

pendent of F, and let F'x;r and Fy r denote respectively the conditional distribution

functions of X and Y given F. Set X* = F)E'}(U) and Y* = F;‘}(U). Then X* has the
law Px, Y* has the law Py and, by (1.1), W3 (Px 7, Pyjr) = E(|X* — Y*|?|F). Taking

the expectation, it implies the above fact, since W3 is the minimal quadratic cost.

To prove Theorem 2.1, we shall apply Lindeberg’s method, which was used by
Billingsley [1] and Ibragimov [13] in the case of martingales with stationary differences
to prove the central limit theorem (we also consider this particular case in our Theorem
2.2). Note that this method was adapted to a large class of dependent sequences (non
necessarily martingale differences) to evaluate the L'-minimal distance between Pg, Im
and G,2, by Pene [19] in the bounded multidimensional case, and next by Dedecker
and Rio [10] in the unbounded case (under conditions involving some coefficients similar
to Ox.43, or weak mixing coefficients such as those described in Definition 3.1 below).
Recently, estimates of the L'-minimal distance between Pg /ym and Gg2 when the un-
derlying process is a function of iid random variables are given in Theorem 3.1 in [14].
Their conditions are expressed in terms of some coupling coefficients.

Our paper is organized as follows. Section 2 is devoted to the statements of upper
bounds concerning the quadratic transportation cost in the conditional central limit the-
orem and their applications to pointwise estimates for the distribution function of the
normalized sums and its generalized inverse. Applications to a-dependent sequences,
T-mixing sequences and symmetric random walk in the circle are given in Section 3. The
proofs are postponed to Section 4. Links between \anl/an (u)—@ ! (u)| and W5(Ps, /5, G1)
are given in Section 5, where o, = \/VarS,,, ®! is the inverse of the distribution func-
tion of the standard normal distribution and Fjg 1/% is the generalized inverse of the

distribution function of S, /.

In the rest of the paper, we shall use the following notation: for two sequences
(an)n>1 and (b,)n>1 of positive reals, a, < b, means there exists a positive constant
C not depending on n such that a, < Cb,, for any n > 1. Moreover, for a real-valued
random variable X in L', the notation X© means X — E(X).



2 Quadratic cost in the conditional CLT

The main result of this paper is Theorem 2.1 below.

Theorem 2.1. Assume that || Xolloe < M and that Y7, 0x22(k) < co. Then o* =
E(X3) + 235, E(XoXy) converges and

E(WE(Ps, iy, Goo)) <0214 Dk A Vi) (k) ) (a)

k>1

If furthermore ) -, kOx44(k) < 0o, then

E(WE(Ps, pyiry: Go)) < n (1437 k(k Avm)xaa(K) ) (b)

k>1
Comment 2.1. Item (a) provides a rate in the CLT for the Wy-metric as soon as
Y st Ox22(k) < oo. In addition, if ), o, kfx22(k) < oo, then the rate in the W,-
metric is of order n—1/4, Furthermore, by_ Item (b), if >,<, k0x44(k) < oo, then the
rate in the CLT for the Wa-metric is o(n~1/4). For example, if Ox.4.4(k) = O(k~%) with
a €]1,3[ and a # 2, Theorem 2.1 implies that Wa(Ps,/ m, Gy2) < n~@"D/4. Moreover
WPy, )i, Go2) < n % as soon as Yo k20x 44(k) < co.

Comment 2.2. Assume o > 0. Set o, = y/VarS,. If ¢ > 0, then ¢, > 0 for any
positive n. Set ko = E(Wf(PSn/O\/m;O, PSH/J”‘}'O))Z
(“" 1)2<(“3 1)2 ( 2)—1( % 1“2Z(m )Cov(Xo, Xy
Ky = - —= - = (no —= - n)Cov .
2 o\v/n ~ \no? no? 02 2h

k>1

Now, from the definition of the coefficients 0x 1 (k),

> (kA n)|Cov(Xo, Xp)| < || Xolloo Y (K An)0x11(k). (2.1)
k>1 k>1
Therefore, if in addition || Xollee < M, Ky < 17" M||oo D 4q(k A n)0x11(k), which is
always of a smaller order than the upper bounds (a) and (b). Hence Theorem 2.1 also
holds for E(WZ(Ps, /o, 7. G1)).

We now give applications of Theorem 2.1 to pointwise estimates. We start by Berry-
Esseen type estimates. Arguing for instance as in [8, Remark 2.4], Theorem 2.1 together

with Comment 2.2 imply the following upper bound.

Corollary 2.1. Assume that ¢ >0, || Xolloe < M and Y7, -, k*0x44(k) < oo. Then

A, = sup |P(S, /0, < z) — B(z)] < n~Y3,

z€R



We now give applications of our main result to estimates of the quantiles and the
superquantiles of S, /o, in the nondegenerate case. Define the 1-risk Q)1 x of X, as in
Pinelis [20], by

Q1.x(u) = %/Ou FiH(1 —t)dt. (2.2)

Then Q1 x(u) is the value of the superquantile of X at point (1 — u). The corollary
below, which is a consequence of Theorem 2.1 and Proposition 5.1 provides estimates of
the accuracy in the central limit theorem for F Ll/an and @1, /s,- Its proof is given in

Section 5.

Corollary 2.2. Assume that || Xolleo < M, 37, K*0x44(k) < 00 and 0® > 0. Let Y be
a standard normal. Then there exists some constant C' > 0 such that, for anyn > 1 and

any u in (0,1),
5, ) = @7 ()] < C s (1 — )2, (a1 1))~ logu(1 )| ) (a)

and

|Q1.5, /0, (1) — Quy (u)| < C(nu)~"?V1 —u. (0)

Comment 2.3. From Corollary 2.2(a), for any sequence (&,), of reals in (0,1/2) such

that lim,, ¢,, = 0 and lim,, ne,, = oo,

lim  sup |Fg, (u) =@} (u)| =0,

n—00 u€len,l—en)

which can not be deduced from a Berry-Esseen type bound with the rate n=/2. Indeed,

if A, is defined as in Corollary 2.1, one can only get that
|F5. o, () = @7 (u)] < @7 (min(L,u + A,)) — €7 (u)
for u > 1/2, which is of interest only if u < 1 — A,,.

If furthermore the sequence (X;);ez is a sequence of martingale differences, then the
conditions on the dependence coefficients can be weakened as follows (the proof being

less intricate is left to the reader).

Theorem 2.2. Assume that (X;)cz is a sequence of martingale differences such that
| Xolloo < M and E(XZ) = 0. Then

E(WE(Ps, pyaizy: Goo)) < n 2 (143 Ox1(k) ) (a)
If furthermore ) ;- Ox 34(k) < 0o, then

E(W3(Ps,ymiz Go2)) < n™ (1 +> (kA \/5)9)(,3,4(7?)) - (b)

k>1



Comment 2.4. Item (a) provides a rate in the CLT as soon as fx2(k) = o(1). If
Ox12(k) = O(k™) with a in (0,1), (a) ensures that Wa(Ps, /s, Go2) < n~%* 1If
> i1 Ox.12(k) < 0o, then the rate is of order n=/4. Ttem (b) provides faster rates under
the condition > is1 0x.34(k) < oo. Indeed the rate of convergence under this condition
is o(n~Y/4). If HX,;A(k’) = O(k™?) with a in (1,2), (b) ensures that W(Ps, //m, Gs2) <
n=*/*. Moreover Wy(Ps, ; /m, Go2) < n™1/? as soon as Y, kfx3a(k) < co.

3 Examples

3.1 oa-mixing sequences

Let (€2, A, P) be a probability space and let & and V be two o-algebras of A. The strong

mixing coefficient o (U, V) between these o-algebras is defined as follows:
al,V)=sup{| PUNV)-=PU)P(V)|:U U,V €V}.

Next, for a stationary sequence (Y;);ez of random variables with values in a Polish space

S, define its strong mixing (or a-mixing) coefficients of order 4 as follows: Let

060014(71) - sup a(}‘070<}/;17}627y;3’}/i4)) .
14>13>19>11 >N
where Fy = o(Y;,7 < 0). As, page 146 in [17], these coefficients can be rewritten in the
following form: Let B; be the class of measurable functions from S* to R and bounded

by one. Then

1
aoo,4(n) = — sup sup H]E<f(}/i17)/buyi37}/;4>|]:0) - E(f(n17)/izuifi37)/;4))H1 .

4 fEB7 i4>i3>i2>11>n

Hence, an application of Item (b) of Theorem 2.1 provides the following result.

Corollary 3.1. Let (Yy)rez be a stationary sequence of random variables with values
in a Polish space and such that Y -, k*asa(k) < oo. Let f be a bounded mea-
surable numerical function and Xy :_f(Yk) — E(f(Ys)). Set S, = > ,_, Xp. Then
WQ(Psn/ﬁ, Gp2) < n=1/2,

As mentioned in the introduction, this results applies to the class of irreducible
aperiodic and positively recurrent Markov (&,) with an atom denoted by A, under the
condition E(74) < oco. Here 74 is the first return time in A and E4 stands for the

expectation under P, for x € A.



3.2 «a-dependent sequences and T-mixing sequences

We start by recalling the definition of the a-dependence coefficients as considered in [6].

Definition 3.1. For any random variable Y = (Y7, -+ ,Y};) with values in R¥ and any

o-algebra F, let

E<ﬁ(“%s%>‘°)\f>(0)

af(F,Y)=  sup
(z1,...,zx ) ERF j=1 L
For the sequence Y = (Y;);ez, let
ary(0) =1and o y(n) = max  sup «a(Fo, (Yi,...,Y;)) forn >0, (3.1)

I<ISk p<ig<..<jy
where Fy = o(Y;,i < 0).

Item (b) of Theorem 2.1 together with equality (A.4) in [10] (with E(:|Fp) instead of
E) provide the following result.

Corollary 3.2. Let f be a bounded variation (BV) function and X, = f(Yi) —E(f(Yx))
where (Yy)rez s a stationary sequence of real-valued random variables. Let S, = ZZ:1 X.
If Yoy KPauy (k) < oo, then Wa(Ps, /) m, Go2) < n~1l/2,

From this result, we can derive rates in the CLT for the partial sums associated with
BV observables of the LSV map. More precisely, for v €]0, 1[, let T, defined from [0, 1]
to [0, 1] by

z(l142727) ifx€0,1/2]

Tile) = 27 — 1 if 2 € [1/2,1].

This is the so-called LSV [16] map with parameter . Recall, that there exists a unique
T,-invariant measure v, on [0, 1], which is absolutely continuous with respect to the
Lebesgue measure with positive density denoted by h,. From Corollary 3.2 above and

[6, Prop. 1.17], we derive that Wa(Ps, /s, Go2) < n~/2 for any v < 1/4, where f is a
bounded variation function and S, = >"¢_, (f(TF) — v, (f)).

We now apply Theorem 2.1 to functions of 7-dependent sequences. Before stating

the result, some definitions are needed.

Definition 3.2. Let n €]0, 1], £ be a positive integer and let A,,(R?) be the set of functions
f from R’ to R such that for x = (zy,...,7) and y = (y1, ..., %),

¢
1
|f(x) = f(y)| < ZZ |z —yil".
i=1
Define the dependence coefficients (7, sy (k))r>1 of the sequence (Y;);ez by
E(f (Yo Vi) 1) = E(/ (Vi Vi) || -

Tpey(k) = max  sup

: sup
1S7<bij> >0 >k

feA,(RY)




Examples of 7,-dependent sequences are given in [9].

Let (Yi)rez be a stationary sequence of real-valued random variables and f be a
bounded and n-Holder function, with n €]0,1]. Define X = f(Yx) — E(f(Y%)). Then,
for any positive integers p, ¢ and k, 0x , ,(k) < C7,, v (k) where C' is a positive constant
depending only on p, ¢ and || f||s. Hence the following result holds.

Corollary 3.3. Let f be a bounded and n-Hélder function with n €]0,1] and X} =
f(Yi) —E(f(Yy)) where (Yi)kez is a stationary sequence of real-valued random variables.
Let Sy =30y X If Doy K2mpax (k) < 0o, then Wy(Ps, /m, Go2) < n=1/2,

From this result, we can derive rates in the CLT for the partial sums associated
with Holder functions of the LSV map above. Starting from Corollary 3.3 and tak-
ing into account [7, Prop. 5.3 and Inequality (4.2)], we derive that if v < 1/4, then
Wa(Ps, ) m» Go2) < 0712 where S, = >0 (f(TF) — v,y(f)) and f is an n-Hélder ob-
servable with n €]0, 1].

We now define another class of functions which are well adapted to 7-dependence.

Definition 3.3. Let ¢ be any concave function from R* to R*, with ¢(0) = 0. Let L.
be the set of functions g from R to R such that

lg(x) — g(y)| < Kc(|Jz —yl|), for some positive K.

Let g € L. and X = g(Yx) — E(g(Yx)) where (Yi)rez be a stationary sequence
of bounded real-valued random variables. Then, for any positive integers ¢ and k,

Tex (k) < Ke(mevy(k)). As a consequence of Corollary 3.3, the following result holds:

Corollary 3.4. Let g € L. and Xy, = g(Yy) — E(g9(Yr)) where (Yy)rez is a stationary
sequence of bounded real-valued random variables such that 11 4v(k)) = O(p*) for some
pin]0,1[. Let S, => " X;. If

then WQ(PSn/\/ﬁ, GUQ) < n’l/Q.

Corollary 3.4 applies in particular to X = g(T*) — v(g) where T is a map from [0, 1]
to [0,1] that can be modelled by a Young tower with exponential tails of the return
times and v is the usual invariant measure (see Section 4 in [7] adapted to the case of

exponential tails of the return times).



3.3 Symmetric random walk on the circle

Let K be the Markov kernel defined by K f(x) = (f(x+a)+ f(x —a))/2 on the torus
R/Z, with a irrational in [0, 1]. The Lebesgue-Haar measure m is the unique probability
which is invariant by K. Let (&;);ez be the stationary Markov chain with transition

kernel K and invariant distribution m. For f € L?(m), let

Xy = f(&) —m(f). (3-2)

This example has been considered by Derriennic and Lin [11] who showed that the central

limit theorem holds with the normalization y/n as soon as
|/ (k)P
keZ*

where f(k) are the Fourier coefficients of f and d(ka,Z) = min,ez |ka — i|. The aim in
this section is to give additional conditions on f and on the properties of the irrational
number a ensuring rates of convergence in the CLT. Let us then introduce the following
definition: «a is said to be badly approximable in the weak sense by rationals if for any

positive €,
the inequality d(ka,Z) < |k|~'~¢ has only finitely many solutions for k € Z*. (3.4)

From Roth’s theorem the algebraic numbers are badly approximable in the weak sense
(cf. Schmidt [24]). Note also that the set of badly approximable numbers in [0, 1] has
Lebesgue measure 1.

An application of Theorem 2.1 together with Lemma 5.2 in [10] and their inequality
(5.18) give the following corollary.

Corollary 3.5. Let X be defined by (3.2). Suppose that the irrational number a satisfies
(3.4). Assume that for some positive ¢,

sup [k|%¢| f (k)] < oo
k0

Then Wa(Ps, )/, Go2) < n7V/2.

4 Proofs

4.1 Proof of Theorem 2.1

Assume first that o2 = 0. In this case G,2 = d and

E(W3(Ps, /7y 00)) =n 'E(Sy) — o0 = —2n~" Z(k A n)Cov(Xg, X),

k>1

10



which, combined with (2.1), shows that the upper bounds (a) and (b) hold.

We turn now to the case 02 > 0. Let 6 be a random variable with uniform distribution
over [0,1] independent of (Xj)kez. Define Gy = o((X;)i<s,0) and Goo = 0((Xi)icz,0).
Define also the conditional expectation operator Ey by Eq(:) = E(:|Gp).

In what follows (Yy)r>1 will be a sequence of iid random variables independent of G..
In case of Item (a), their common law will be the normal law N(0, %) whereas in case
of Item (b), we will have to prescribe also their third moment as it is described below.

Let 33 be a fixed real number. Let Z be a r.v. with distribution N(0,02/2). There
exists a random variable B independent of 7, taking only 2 values and such that ¥ =
Z + B satisfies

E(Y)=0,E(Y?) =0 and E(Y?) = 5. (4.1)

We refer to Lemma 5.1 in [10] for more details. For the proof of Item (b),

By = B(X3) + 33 {E(XEX) + EXox2}+6 3 30 E(XoX,X),  (42)
i>1 u>1 v>ut1

which is the limit of n™'E(S2), as n — oo, under the conditions of Item (b) of Theorem
2.1.

Let (Zk)k>1 be a sequence of independent r.v.’s distributed as Z and let (By)g>1 be
a sequence of independent r.v.’s distributed as B and independent of (Zj)g>1. Suppose
furthermore that the sequence (Z, B)r>1 is independent of G.,. For any k > 1, set
Ye = Zk + Bk.

Next, in case of both items, we define T,, = Y; + Y5+ --- + Y,,. Note that

W2(PSTL/\/E|J-—O7 G0'2> S WQ(PSn/\/ﬁ\]-—O) PTn/\/ﬁ) + WQ(PTH/\/ﬁ7 GO'Q) .

According to Theorem 4.1 in [21], since Y € L*, Wa(Pr, ) ym, Go2) < n~ /2 Since
Ps. ) mr = Ps,/ymig,, the theorem will follow if one can prove that the upper bounds
(a) and (b) still hold with Pg, / /g, replacing Ps, / iz, With this aim, we shall apply
Lemma 5.1 in [18]. We start by introducing some notations. Let Ay be the class of real
functions f which are continuously differentiable and such that |f'(z) — f'(y)| < |z — y|
for any (z,y) € RxR. Let also Ay(F) be the set of measurable functions f: Rx £ — R
wrt the o-fields £L(R x E) and B(R), such that f(-,w) € Ay and f(0,w) = f'(0,w) =0
for any w € E. Next, let W = ((X)iez-,0) and E = RZ" x [0,1]. According to [18,
Lemma 5.1], and denoting by N a N/(0, 0?)-distributed random variable, independent of
all the above sequences (so independent of (X, Y;)x), the upper bound (a) will follow if

one can prove that

sup E(f(S, + N, W) — f(T, + N,W)) < \/5(1 + 3 (kA \/ﬁ)ex,g,g<k)) . (4.3)

feA2(E) k>1
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whereas the upper bound (b) will follow if

sup E(f(Sn+ N, W) = f(T,+ N,W)) <1+ Y k(kAvn)ixaa(k).  (44)
feha(E) k>1

In what follows to soothe the notations we omit the subscripts for the coefficients 6(k).

Proof of Item (a). We shall apply the Lindeberg method. Let us first introduce some

notations.
Notation 4.1. Set f, (z) = Eo(f(x + N + T, — Ty, W)).

Notice that
fuilz) = / F(@ — W) aursn (£)dE
R

where 2 is the density of a N'(0,#?). Hence, according to Lemma 6.1 in [8],
17D oo := b <€ (n — k4 1)92 (4.5)

Since the sequence (N, (Y;);>1) is independent of the sequence ((X;);ez, W),
E(f(Sn+ N, W) — f(T,, + N,W)) = ZE(fn—k(Sk—l + Xi) = ok (k-1 + Vi) . (4.6)
k=1

By the Taylor formula at order 3 and using (4.5), we get

0.2

E(fub(Sit +Y5) = fuslSi1) = Sh(Sn)| S Cln—k+ )72 (47)

Similarly

|E(fn—k<5k:) - fn—k(Sk—l) - f;_k(Sk_l)Xk - %f;{_k(Sk_l)X,f)‘ S C(TL - k’+ 1)_1/2 . (48)

Now we control the second order term. Let

Ti(k, 1) = fo_x(Sk-i) = fai(Se-i-1) - (4.9)
Clearly
[VE]-1
Pk (Se) X7 = > Tk, ) X7 + [ (Se_pym) X -
=1

Since | (k, )| < bs|Xk—i|, by stationarity we get that for any i < k — 1,
| Cov(Ty(k, 1), XP)| < bs|| Xo(Eo(X7) —E(X)) |1 < (n—k+1)7%0(i).
Since || f/ 1]l < b2 a.s., we also get by stationarity that
| COV(frlsz(Skf[\/E])ﬂXlg)‘ < b2HE0(X[2\/E]) - E(Xﬁ/g})ﬂl < O([VE)).
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Starting from (4.8), it follows that
1

[E(fur(St) = for(Sk-1) = fr_p(Sk-1)Xx) — §E(fﬁ_k(5k—1))E(Xzf)|
VE]
<O(VE) +(n—k+1)72(1+ > 0(). (4.10)

Starting from (4.6) and taking into account (4.7) and (4.10) we derive that

‘E(f(sn‘i'YaW) _f(Tn+KW))|

[vn]
< vir(1+ Y 00) +| Z{ (S Xi) ~ E(F4(S10)) S E(GX,) |
" (4.11)
To give now an estimate of E(f) _, (Sk—1)Xk), we write
k-1
fri(Sk—1) = £, (0) + Z(ﬁm(slcfi) — foi(Sk-i-1)) -

Hence

E(fri(Sk-1)Xx) = ZCOV S (S >_f’r/z—k(Sk—i—1)’X/€) +E(fox(0)Xy) . (412)

Now f/ ,(0) is a Gp-measurable random variable. Since f € Ag(F) then f'(0,w) = 0
and f’(-,w) is 1-Lipschitz. Therefore

0] < / F W) = F10, W) s st (—u)du < ov/m —F 5T as.

It follows that

Z IE(f._,(0)X8)| < Z Vi =k + 1||Eo(Xp) |1 < v > 0(k). (4.13)
k=1 k=1 k=1
We give now an estimate of S5~} Cov (f)_x(Sk—i) = fr_4(Sk=i-1), Xi). Using the sta-
tionarity and noting that |f/ , (Sk—;) — f _;(Sk—i—1)| < b2|Xk—i|, we have
| Cov(fx(Sk=i) = frx(Sk=im1), Xi)| < b2 M| Eo(X5) 1 < 6(7) .

Hence

Z Z | Cov(fp—r(Sk—i) = frr(Sk—i-1), X)|

k=1 ;—

Z(m\/_fe S ARVDLI (4.14)

=1 i>1
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From now on, we assume that i < [v/k]. We first write
I 1 (Sk—i) = fr 1 (Sk—ic1) = fi_u(Sk—iz1) X—i + Ry s
where Ry ; is Fj_;-measurable and |Ry ;| < b3 X?_,/2. Hence, by stationarity,
| Cov( Ry, X3)| < b3l| X3Eo(X0)[1/2 < (n — k + 1)7120(:) .
implying that

iZ!COV szan|<<\/_Ze (4.15)

k=1 i=1
In order to estimate the term E(f” , (Sk—i—1)Xk—iXx), we introduce the decomposition

below:

—

11—

S (Sk—ic1) = Y (o e (Skeice) = fr ik (Sk—ize1)) + [ (Sk—2i)

1

~
Il

where by convention we set S, = 0 if p < 0. For any ¢ € {1,---,i — 1}, by using the
notation (4.9) and the stationarity, we get that

| Cov(Tr(k, £+ 1) Xp—i, Xi)| < bs|| X_ XoEo(Xy) |1 < (n— k+1)"Y20(:).

Hence
n [\/E] i—1 [\/ﬂ
Cov(Ty(k, £ + i) Xp—i, Xp)| < v/n Y _i6(i) . (4.16)
k=1 i=1 (=1 i=1

As a second step, we bound up | Cov(f/_, (Sk—2i), Xx—iXg)|. Clearly,

k—i—1

Fle(Seezi) = > Tilk, £+ 0) + f1,(0).
l=i

Now for any ¢ € {i,--- ,(k —i— 1)}, by stationarity,
| Cov(Ts(ky € +14), Xpomi Xi)| < bsl| X (E_o( X0 Xs) — E(Xo X)) |1 < (n— Kk + 1)7120(¢).

Hence

E

n | k—i—1

| Cov (T (k, €+ 1), Xy ZXk)y<<\/_Z (0 A/n)O(0). (4.17)

k=1 i=1 (=i /=1

Next, note that

| Cov(fy—k(0), Xp—iXi)| < bymin(0(k —4),0(i)) < 0([k/2]),

14



implying that

n  [VE n [Vk]
SN T ICov(fL L (0), X X)) < DS 0(k/2) < \/’Ze (4.18)
k=1 =1 k=1 1=1

Taking into account the inequalities (4.13)-(4.18), and using that }_,., 0(k) < oo, we
get

(VK]

> [EC (S Xe) = DB (Sk2) B X0 | < va(1+ DA vime) .
k=1 i=1 >1
(4.19)
We handle now the quantity
Ay o= ZE i (Skm2i) B(Xp—i Xi) — ZE k(Sem1))E(Xpi Xy
We first note that by stationarity,
> B (S ))EXe i Xp) <be D E(XE(X)) < Y 6().
i>[Vk]+1 i>[Vk]+1 i>[Vk]+1
Hence
Z Z Sk (S—1) ) E(Xp—i X)) | < Z(Z AVR)*0(i) < \/HZ(@ A V/n)o(i)
k=1 i>1Vk]+1 i>1 i>1
(4.20)
On another hand, we write
2i—1
B(f)_(Sk-1) = Fi_x(Se-20))E(Xi—iXi) = > E(Ti(k, O)E(XoEo(X;)).
=1
Therefore
[VE]
Z (L (Skt) — Fli( s JE(Xei Xl < (0 — k+1)772 3 i6(3)
i=1
implying that
n [vn]
ZZ E(f 4 (Skm1) = £l (Shi) JE(Xp—i Xp) | < v/ Y i6(i) . (4.21)
k=1 i=1 i=1
Hence (4.20) and (4.21) entail that
D A < VR (A VR0 (4.22)

k=1 i>1
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The estimates (4.19) and (4.22) yield to

> B (S X0 =Y B (S0 E(XoX,)

< \/ﬁ(1+2(£wﬁ)e(£)) . (4.23)

0>1
Taking into account the estimates (4.11) and (4.23), Item (a) follows.

Proof of Item (b). Recall that in this case the iid random variables (Yj)r>1 have their
first three moments defined by (4.1) and (4.2)

Notation 4.2. For any integer k > 0, let X, = X, — Eo(Xy) and S, = Sp — Eo(Sk),

with the convention Sy = 0.

Note that, since we assume that 3., j6(j) < oo,
IEo(Su)llz <2 > [E(Bo(Xi)Eo(X,))] < 2M Y j6(j) < 1.
i=1 j=i J=1
Therefore, using that f'(0, W) = 0 and that |f'(x, W) — f'(y, W)| < |z — y|, we infer

that to prove (4.4), it is enough to show that for any f € As(FE) and any positive n,

sup E(f(Sn+ N, W)= f(T,, + NN,W)) <1+ k(kAvn)o(k). (4.24)

fer(E) k>1

This will be done by using again the Lindeberg method. Let us introduce some additional

notations.

Notation 4.3. For any positive integer k, let A, = Frei(Spe1 + X5) — fn,k(gk,l +Y%)
where f,,_, is defined in Notation 4.1.

All along the proof, the following lemma will be used (the proof is postponed to the
Appendix and is based on the fact that the common distribution of the random variables

(Yi)k>1 is smooth).
Lemma 4.1. Let f € Ay(E).

1. For any i > 2, there exists a positive constant k, depending on o and i and such
that || £ |lee < k1(n — k + 1)2=0/2,

2. Assume that Y, kx34(k) < oo. Then, for any i > 2, there exists a constant
ko > 0 depending on 0 and i such that, for any integer £ > 0,

|]E(f£?k(§e—1))’ < ko(n—k + 1)(1_1)/2 Fho(n — k4 g)(z_z')/;

Remark 4.1. If (X)gez is a stationary sequence of martingale differences, Item 2. is
valid under the condition ), ., x23(k) < co.

16



Since the sequence (N, (Y;);>1) is independent of ((X;)ien, W),
E(f(Sn+NW) = f(T+ NW)) =3 E(Anp) . (4.25)

Next the functions f,,_; are C°. Consequently, from the Taylor integral formula at order
5

nk—z fn ' (Se-1) (X = Y) + R, (4.26)
with
1 - 1 ) 1 1 ®) &
R, = ﬁXE)/o (1-— s)4f (Sk 1+ st)ds — ﬂYkE)/O (1-— s)4fn_k(5k,1 + sYy)ds.

Taking into account the fact that || Xi|.c < M and Item 1 of Lemma 4.1, we derive that
| Rl < (M° + BV P2 < (0= k4 1) 7272,

Therefore,
> Rl < 1. (4.27)

ke[l,n]

Let 84 = 0% = E(Y?) and 3, = E(Y}}). Since the sequence (Y;);>; is independent of the

sequence (X;)i>1,

4
E(Bni — Rup) = B(fa(G ) Kt 3 110 (Gen) (K- 1))
=2 "

4
N - 1 N N
B(fr-s(Shoa) Kot 3 g A4(Skcn) (XKL= 50) + B

L@
_An,k

= E(A(l)
n,k + 2

1
chan LAy eme u

Using Item 1 of Lemma 4.1, we first notice that

S Bukl < Y IEo(Xp) |l < 1. (4.29)

ke[1,n] ke[l,n]

Next we develop the first four terms in the right-hand side of the decomposition (4.28)
with the help of the Lindeberg method. From now on, to soothe the notation, we shall
omit most of the time the index n in all the AS’)k and the related quantities, and then
rather write A,(f). Let us start with the term A,(f). Using Item 2 of Lemma 4.1, note first

that

S IECG-DEE + )| « (g +3) <1 (430)
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Next, we write
F9 (S (X~ E(XD) = £ <o><xk E(X}))
+2 W (Sei) = FY (S ) (X —B(X).

By Item 1 of Lemma 4.1 we get

n

Z\cov @ (0), X} |<<Z n—k+1)70k) <> 0(k), (4.31)

— k=1
and

n k—1
‘Cov z) - f,gél_)k(gk—i—l)v Xﬁ)’
k=1 i=1

n

k
<MY (n—k+1)72> " 0() <<Ze . (4.32)
=1

k=1
Taking into account (4.30), (4.31), (4.32) and the fact that »_, ., 0(k) < oo, it follows
that

i IE(AY)] < 1. (4.33)

Now, concerning the first term in the right-hand side of (4.28), letting ¢, = [k/2], we

write

E(AY) = E(f . (Sk—g-1)X) +ZE {fr_i(Skmi) = fooi(Skim1) 1K)

=1
1 1
= E(A) + 5EAL) + (B + B (4.34)

where, for j = 2,3,4,

Ly,

Al(gl,j) = ny(lj_)k(sk i— 1)Xk711Xka

i=1

and
B) = E(fl_1(Sk—te—1)Xs) + Z / $PE(F, (Shoiir + 8 X5 i) X, X ) ds.

We start by noticing that, by Item 1 of Lemma 4.1, for any m > 2 and any s in [0, 1],

n
SO I (Shior + X)) (X5 X5 — X5 X
k=1 =1
n Ly

< M™ Y (= k1)WY (|[Eo(Xe) |11 + [[Bo(Xei)ll) < Y kO(k) . (4.35)

k=1 i=1 E>1

18



On another hand, since f’_, (0) is Fo-measurable, E(f’_, (0)X}) = 0. Therefore

E(fr—(Sk—te—1)X0)| = [E({fn(Sr—ti—1) = Fr(0)} X))

< / \E(f/{fk(tgkfzkfl)gkfékflffk)\dt <AM | fP ook — €1)0(0x) .
0

Since Hf,(f_)k”oo < land ) ., kO(k) < oo,

> Bk (Skeg-)Xi)| < 1. (4.36)

ke(l,n]

Next, Item 1 of Lemma 4.1 implies that

(P, (Shiin + X ) Xi i X0)| < MY L oeb(6) < (0 — K+ 1)7/20(3) .

Hence I .
SN IE(F(Shmict + s X)X Xi) | <D 0() < 1. (4.37)
k=1 i=1 i—1
The upper bounds (4.35), (4.36) and (4.37) imply that
Y BN« 1. (4.38)
ke(l,n)

Next, taking into account Item 2 of Lemma 4.1 and the fact that [E(X?_, X;)| < M36(i),

we derive that
E{f2 Sk YE(XE X0 < (0 — K+ 1) 4+ (n— ) 7)) .

Therefore
ZZ|E{f (Skeimt) FE(X X0 <Y 0(1) < 1. (4.39)
k=1 i=1 i>1

So, overall, starting from (4.34) and taking into account (4.35), (4.38) and (4.39) we get

1 1 1 1 1
E(AL) = E(ALD) + SE(AL) + gE(ALD) + 4 + Akg +B), (4.40)
where BS,)C is such that
BN <1, (4.41)

ke(l,n)

and the following notations have been used: for j = 2,3, 4,

Zk Zk
5= G5 X0 0, AL = D B (Siein ) JE(XT ). (4.42)
i=1 i=1
Introduce now the following additional notations.
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Notation 4.4. Let v; = E(XoX;) and 1% = E(X2X;). Define 5y, = 232% 5, 8% =
22»4 w1 viand B3 = 3Zz 1 %2)

Next note that, since E(Xy_; Xx) = i,
1 5 7
§E{f7lz—k(5k—1)}ﬁz7ek Z%ZE{ i Sk —i) = fa- k:(Sk 1)} =

Cy 7 A ~ ~
Yo D B{AD (S ) Xi g} + Z % Z E{ (e ) XP ) + 7l (4.43)
=1 j=1 i=1 j=1

wh
ere - ” ;
1 § E > + X)X
rﬁ“’)ﬂ = 5/0 (-7 i=1 k =1 E{féf)k(sk_j_l tX—j) g_j}dt'

By Item 1 of Lemma 4.1, it follows that

Ly,
o) < M —k+ 1)) ().
=1
Since ;- 10(i) < oo, this implies that
> ol < 1. (4.44)

ke(l,n]

Next, taking into account Item 1 of Lemma 4.1, we get

< (n—k+1)720(k — 5)0(i).

S S R By ) Eo(Xe ) b

i=1 j=1

Hence, since £y = [k/2] and )., i0(i) < oo,

ZZZ‘E{fn e (Skmj-1)Bo(Xi—j) }i

k=1 i=1 j=1

<<Z@ [k/2]) Z (i) < 1. (4.45)

With similar arguments, we have

SO ST B G (KD — X2 )b

k=1 i=1 j=1

<1, (4.46)

In addition, by taking into account Item 2 of Lemma 4.1, we get

E{ 7 (i) B | < M2 (0 = k4172 1 (n = 5)7)00).
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Hence,

>0 ’E{fézgk(gk—j—l)E(Xlg—j)}'71'
k=1 i=1

=1 j=1

<<Z (n—k+1)7%% 4 229 <<Zz€ )<< 1. (4.47)

k=1

So overall, starting from (4.43) and taking into account the upper bounds (4.44)-(4.47),

we derive that
C 7
SBA S (Sk-1)} P — AL =39 B (S ) Xy }

i=1  j=1

Ly )
i G

35 D B G )(E )O} + R, (448)

= =1

where RSLQ is such that

SR < 1. (4.49)
ke(l,n]

Now, let r = 1E{f7§3)k(5k 1)} 8310, — A,(Cl:),) Then, recalling the notation %(2) =
E(X2X,),

L
) 37 2752)E{f753—)k‘(5 Al(cl; - Z% ZE{fy(ﬁ)k )= o k(Sk —j- 1>}
i=1

Ly %

1
— Z%(Q) Z (E{f(4 S’k i 1 Xk ]} + / t)E{f,(Ls,)k(gk—j—l + th_j)Xz_j}dt>

=1 j=1

1 1
=151+ 4(2) . (4.50)

Taking into account Item 1 of Lemma 4.1 and the fact that |%‘(2)| < M?0(i) and
| Xk jllo0 < 2M, it follows that

: zf;wu)
|<<ZZ n—k+13/2 (n—k+1)3/2"

i=1 j=1

Therefore, since ;- 10(i) < oo

Y Irha@l < 1. (4.51)

ke(l,n]

On another hand, by Item 1 of Lemma 4.1,
VB (Skes 1) Eo(Xiy) } < (n =k +1) "0k = /)0(3)
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Hence, since ) .., i0(i) < oo,

iZilﬁ?)E{fn £ (Skej—1)Eo(Xi—) }| <<Z€ [k/2]) Z (i) < 1.  (4.52)

k=1 i=1 j=1

Starting from (4.26) and taking into account (4.27), (4.28), (4.29), (4.33), (4.40),
(4.41), (4.48)-(4.52) and the fact that 8y = 0% = E(X?) + fay, + B we get

E(Ans) = BALD) + SE((Gi) (D)) = SE( (G Y + SE(AL)
Ly, i b i .
=3 Y E{ S Xi} = 35 B S0 (32,) )
i=1 =1 i=1 j=1
L, ’7(2) i W 1 - \
N Z 27 Z (E{fn—k(sk—j—l)X’f—j} + EE(fn—k(Sk—1)<Xk — (B3 — 53,1,ek)))
i=1 j=1

n,k

1
+ EE(ASD +1 (4.53)

where FSL satisfies

drhl<t. (4.54)

ke(1l,n]
Note first that

Zu@ 4 (Sk) f’“|<<2|ﬁ2"k\<<229 )< > if(i) < 1. (4.55)

k=1 i>0,+1 i>1

To handle the first two terms in the right hand side of (4.53), define

my = [Vn — k|, my,; = min(my, k —i — 1) and Dklz)2 =E{f/_,( (Sp—io) (X i X (0)}
(4.56)

Then, for any integer 7 in [0, 4], with the convention that S, = 0 for any u < 0, we write

i—i—mk’i

DYy = B{ (£ aSimiomest) + D (FplBimy) = FiSimgon) ) (XieiXi) .

j=i+1
Let then, for £ = 3,4,5 and ¢ in [0, 1],
i—i—mk’i

ALSE) = 7 £ (Shmjor + X ) X2 (X X0)©). (4.57)

j=i+1
By the Taylor integral formula,

_ 1.
Da =E{ £ (Semiomeu) (X X) @ + AL (0) + 55030 |

1

by [0 E(AE (1.58)
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But, since || f7 .|l < 1,

ZZ\E{ o (Shicm1) Xlek<>}|<<ZZ (ma) + 0(k — i) A O(i)

k=1 i=0 k=1 i=0
n V7]
< > (mid(m) Ze )+ RO([E/2D)) < 14 K26(0k) +n > 6(k)
k=1 1=my, k=1 k>[v/n]
Hence
ZZU@{ e (Srmicme ) (X X)) O < 14+ Tk (kA VR)O(E). (4.59)
k=1 =0 k>1

On another hand, by using Item 1 of Lemma 4.1,

n Ly, ’L-‘r?TLk 1

ZZ]E{A&Z OH<> Y Y nj__ljfleg/z«z:ge (lj/2)) < 1.  (4.60)

k=1 =0 k=1 i=0 j=i+1
For ¢ = 3,4, set
7j+mk’i
0= S A (S ) XA (X X)) O, (4.61)
j=i+1

Applying Item 1 of Lemma 4.1 and using that my,;, < vn —k + 1, we get

n Ly, 'H‘mk,i

S E(ALL0) - ALY < 303 3 IRt B ) (60,

k=1 i=0 k=1 i=0 j=i+1

n ly 1+mk i

<> > Z n—k+ )132A6 <<Zk9 k/3]) < 1. (4.62)

k=1 =0 j=1+1 k=1

Similarly, since || f\Y) ]l < (n — k +1)7", we derive

n
YOS E{ALS(0) - ALY < 1 (4.63)

k=1 i=0
Starting from (4.53) and taking into account (4.54), (4.55), (4.58), (4.59), (4.60), (4.62)
and (4.63) , we then derive that

12

1 1 1
E(Ane) = 5 D_(1+ o) B{ AL + 5ALD ]+ 5E(AL)

SR - st )
_Z%TZ (E{f” k (Sk- —j-1) X J} + E<f (Sk (X3 - (53—53,1,ek)))
+ éE(A,(:i) +1%, (4.64)
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where I’SL satisfies > 7, |F7(123€\ K1+ s k(b A/n)0(k). Introduce now the following
notations.

Notation 4.5. Let B30, = 3 515" E(XoX?2), 854 m, = 6 305, ST E(Xp X, X))
Next, let B?(f’“’m’“) = B3 — B3.1.6, — {E(XE) + Bs2.m, + 354, m, }» Where we recall that my,
and my,; have been defined in (4.56).

Since

B = 3N TE(XZX) +3 Y E(XoX?

>0 i>Mmpg o
Ly,
+6) > B(XoX; X)) +6) > E(XoX;X
=1 j>my; >0 j>1

by Item 1 of Lemma 4.1,

+3 (n—k+ 1)1/2(ZA Z 0(j) A 6(i) +ZZ€(j)/\0(i)>.

By simple algebra, and since } ., i0(i) < oo, we then derive that

anfknoowé“ "1+ (i AVR)OG) . (4.65)

1>1

Next we shall first center the random variables X;_;(X;_;X},)©) appearing in the quan-
tity Agzgg Using that E{Xk,j(Xk,iXk)(O)} = ]E{Xk,ij,iXk}, an application of Item
2 of Lemma 4.1 gives

Ly M
Jlk - ‘6E{fn k Sk’ 1 }B3kak Z Z E{fn k Slc —7—1 }E{Xk; —j Xk ZXk‘)( )}‘
=1 j=1i+1
by M
<Y B (Simr) — A2 (Simjm) HOG — i) A 0(i)) . (4.66)
=1 j=i+1

Let us handle the quantity ]E{fé?’_)k(gk,l) - fé?’_)k(gk,j,l)}. By Taylor integral formula,
J o i
E{fn k — £ (Shjon)} = ZE{fé_)k(SkJA)kae}
=1
1 J - ~ ~
+ / (1-1)> E{ FO(Soy + X ) X2}t .
0 =1
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By using Item 1 of Lemma 4.1 and noticing that 0(; — i) A 0(:) < 0([j/2]), we get

n Ly i+my )i

ZZ Z Z‘E{f7§5)k Sk o— 1+th ) Xk £} (4))

k=1 i=1 j=i+1 (=1

Oy, M
<<Z (n—k+1) 3/22 Z 70([7/2])
<> (n-k+ 1>—3/2{ Z P200) +mi Y j@(j)} < S i AVt (467)
k=1 j=1

i>lv/n) i>1
Next, by Item 1 of Lemma 4.1 again,

n Ly 'H‘mk: i

3N Z\E{f“) (Ske-1)Eo(X—e) } (O — i) A 6(3))]

k=1 i=1 j=i+1 (=1

by M

<<i(n—k+ ZZZM 00(5/2))

=1 j=i+1 /=1

[n/2] AR
<<Zn—k‘+1 ZZ]Q [7/2])
k=1 =1 j=1+1

[k/2] i+my [k/2]4+my

£ mek) Y Y Do k- 0u2). o)

k=[n/2]+1 i=1 j=i+1

With the computations as given in (4.67) and the fact that

n

k/2] i+my [k/2]4+my

Z (n—k+1)" ZZ Z 0([5/2])

k=[n/2]+1 i=1 j=i+1
n [k/2] i+my
< Y (=k+DTEROR/AD DD 0([i/2) < > kO(k) > 0(i), (4.69)
k=[n/2]+1 i=1 j=i+1 k>1 i>1

we derive, overall, that

Zk Z+mk i

<y, D Z\E{f,i“k Seee) Xe_eH|O(Li/2) + 1) (4.70)

n,k
i=1 j=i+1 ¢=1

where FS’L satisfies 14+ ,_, |F7(13L| <K D is1 1(iA/1)0(i). Next, for my, ¢ defined in (4.56),
write

E{ fé@k(gk—e—1)Xk—z}
[+mkyg

= E{f 0 (Sktmp1) Xt} + Y E{( 2 (Stmu) = £ (Skmumt) Xt }
u=/0+1

25



implying, by using Item 1 of Lemma 4.1, that

B0 (Strt) Xt |
L+my o
< (n—k+1)7O0m) + 0k —0) + (n—k+1)72 3" fu—10).
u=~+1

Hence

n )45 i+my )i

ZZ Z Z’E{fglk Ske-1)Xn—e }|0([7/2])

k=1 i=1 j=i+1 (=1

n Ek 7f+mk i

<D Y =k el 2 {00m) + Ze(k—é)}

k=1 i=1 j=i+1 =
n  l ttmg, Vvn
Y YN =k 1)7T50(5/2) ) 6(w) .
k=1 i=1 j=i+1 u=1

With the computations as given in (4.67)-(4.69) together with the fact that

n [vn]
> (n =k + 1) mb(my,) Zk PO(VE) < Y 0(k)
k=1 k=1

it follows that

n ly i+ ;

> ZIE{fn e (Semem) Xame }|0([7/2]) < 14> (i A v/m)o( (4.71)

k=1 i=1 j=i+1 (=1 i>1

Therefore (4.70) together with (4.71) imply

by Mg

Z’6E{f’(‘3k Sk ! }@Mkmk Z Z E{fn k Sk —j—1 }E{Xk i (Xpmi X) (0)}‘

=1 j=1+1

K1+ i(iAvn)O(i). (4.72)

i>1
With similar arguments, we infer that

mg,0

Z‘3E{fn k Sk 1 }/BSka ZE{f;;’k S‘k i }E{Xk i Xk (0)})

<1+ i(i Avn)o(i).  (4.73)

i>1

Now, for any integer i € [0, n], let

i+my ;
ALY = 3 (S (X (X X)) O
j=it1
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Starting from (4.64) and taking into account (4.65), (4.72) and (4.73), we then obtain

Ly

E(ns) = 5 (14 Lo B{ALE} + JEALD) + £E(AY(5h) (X - BOXD))

O 3 7 i
- Z Vi ZE{fy(i)k(gk—j—l)Xk—j} - Z % Z]E{fr(i)k(gk—j—l)(Xlg—j)(O)}

’Yz Y
_Z ZE{fr(z4kSk —j= 1) Xk J}+ Zl+1{w€0} E{Ak12}+ EA ) Fgl;m
=0
(4.74)

where 1Y np Satisfies D¢ |F(3)\ K1+ 051 A Vn)O(i),

In what follows we continue the estimation of each term in the right-hand side of
(4.74) and show that the sum over k from 1 to n of their absolute values is bounded by
a constant times {1+ >_,o,4(i A y/n)f(:)}. Let us start by dealing with the quantities
A,(if’z’o). With this aim, note first that for my,; defined in (4.56),

IE{ £ (Shmjmmn 1) (X (X X)) O < [ £ oo (B ) A O — 3) A 6(3))
< £ oo (B(my) A O( — i) A OG) + 0k — 5) A O — 1) AO(D)) .

Hence, by Item 1 of Lemma 4.1 and the fact that m;, < +vn —k +1,

n )45 'H‘mk,i

S S B S ) (X (X))}

k=1 i=0 j=i+1

<<kznl\/ni”++(mk9 mi) + > 6(0) + (6( [k/3]>

>my

<<Z\/_9 +ZZ€ +Zk9 ) <1+ > (i Avn)oi). (4.75)

k=1 i>[Vk) 121

On another hand, by the Taylor integral formula,

E{ (£ (Shejor) = £ (S 1)) (X (X X)) @)@}

- Z E{ (ff(bg—)k(g’“—j—u) - fr(zg—)k(gk—j—u—l)) (Xp—j (Xpmi X)) O
=1

Mk, j

= ZE{fr(i)k(gk—j—u—l)Xk—j—U(Xk—j(Xk—iX’f)(0))(0)}

u=1
mkj

+Z/ ]E{f Sk —j—u— 1+th —j— U)Xk i u(Xk j(Xk sz (0)}dt
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According to Item 1 of Lemma 4.1,

n L ttmg;mg;
SN N B S jumt + X ) XE (X (X X)) O}
k=1 i=0 j=i+1 u=1

Ly m my

< an,@knoozzz J) A 6())

=0 j=1 u=1
< Z(n —k+ 1)_3/2{ Zuzé’(u) +m;, Z 9(2)}
k=1 u=1 i>mp+1
[Vl
<Y wP(u) + > b)) < 1+ (i Av/n)o(i). (4.76)
u=1 i>1 i>1
Next, let Zjui = Xpou(Xnoi (Xp—iXe) @) and Z(O — Znjui — B(Zijui). Since

E(Zk )| < (0w~ 5) +0(k = 7)) A 9(]’ — 1) ANO(1),
by Item 2 of Lemma 4.1,

n  fp ttmpg;jtmg;

IS IEL Y, (Semut) YE(Zi )|

k=1 i=0 j=i+1 u=j+1

n ék Z+mk 7 ]+mk N

<<ZZZ Z O(u—j)+0(k—75) A0 —i) AO(i))

k=1 i=0 j=i+1 u=j+1 (n—u) A (n—Fk+1)3?
<3 (k1) 407 ) (i Z 0(i) + Zqﬂe k(3]
k::l 1= =my
<1+ Z u(u A v/n)(u). )
u>1

On another hand, for my,,, defined in (4.56),

EL S )20 3] < IS (00me) 7 0w = ) 700G =) 1 0()

+ (0(k = u) AO(u— 5) AOG — i) /\9(@'))}.
Hence, using Item 1 of Lemma 4.1 and the fact that m? <n —k + 1,

n by itmp jtmyg

SN S B A Sk 1) 20

k=1 i=0 j=i+1 u=j+1

<<Zn_—;+1(mke (ma) + Y 06) + kO([k/4)))

1>my

<<Z(\/'e T30 00+ kOR)) < 1+ ulu A V)O(u) . (4.78)

i>[Vk]| u>1
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Next

E{ (£ (Shmut) = F 2 (Skcumme 1)) Z) i}

U+mk,u

= Z E{ (fr(:i)k(’gk—v) - f7(l4,)k<§k—v—1))zlg?g),u,z}
v=u+1

U+mk u

= Z / E{ fT(L5)k Sk; v— 1+th v)Xk UZI(eOJ)uz}dt'

v=u+1
Therefore, by Item 1 of Lemma 4.1,

Ly, i+mg ; JHmg \J

ZZ Z Z |E{ e k Sk u— 1 f,iél_)k(gk—u—mk,u—l))Zlg?y?,u,i}|

k=1 i=0 j=t+1 u=j+1

n Ay M jtmg; utmg

<P D00 > > (8o —u) Ab(u— ) NG — i) AB(0))

k=1 i=0 j=i+1 u=j+1 v=u+l

n 1 mp
< G L O+ Y e A
=1 =1

i>mp+1
nq [VE] n

<> e STENO+Y DT 06) <Y uluAvn)o(u). (4.79)

k=1 /=1 k=1 12[\/%] u>1

Taking into account (4.75), (4.76), (4.77), (4.78) and (4.79), it follows that
n fg

STS RO <1+ ulu A vi)o(u). (4.80)

k=1 i=0 u>1

With similar (but even simpler) arguments, we infer that the sum over k£ from 1 to n
of the second and third terms in the right-hand side of (4.74) are also bounded by a
constant times {1+ -, u(uA+/n)0(u)}. More precisely,

Z {|E(A, | + ‘E( o k(Sk D(XE —EX)) |} <1+ Zu(u/\ Vn)O(u). (4.81)

u>1

We deal now with the fourth term of the right hand side of (4.74). With this aim,
recalling the definition (4.56) of my ;, note that

Lm0 X H < Il ) < 17Dy e (1) + 00k = 7))
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Hence, by Item 1 of Lemma 4.1 and recalling the notation v; = E(XyX;), we get

n L %
Z Z Z‘%E{ffjk(gk—j—mk,j—l)xk—j } ‘

k=1 i=1 j=1
<<Z(n—k:+ WZZ@ 0(my) + 0(k — 7))
=1 j5=1
<<Zk RO(VE) D i) + > 0(k/2) > if(i) < 1. (4.82)
i>1 k=1 i>1
Next, by the Taylor integral formula,
~ ~ j+mk’j ~ ~
E{(f,(f_)k(Sk—j—l)—frsg_)k(sk—j—mk,j—l))Xk—j} = Z E{(fflg_)k(sk—u)—f,(f)_)k(sk—u—ﬁ)Xk_j}
u=j5+1
Jt+myg j
=) (E{fn 1 (S 1) X X J}+/ (A=) E{f (Shouo1+tXp ) X2 X J}dt>.
u=j5+1

But, by Item 1 of Lemma 4.1,

i Jtmi

k=1 i=1 j=1 u=j+1
<<Zn—k+1 TN 0(u) ) i) < 1. (4.83)

u>1 i>1

On another hand, by Item 1 of Lemma 4.1 again,

"YiE{fff_)k(gk—u—l)(Xk—u — Xk—u)Xk—jH = ’YiE{f,(:l_)k(gk—u—l)E0<Xk:—u>Xk—j}|
<m—k+1D 0k —u)AO(u—3)00) < (n—k+ 10k —5)/2)03).

Hence,

n i Jtmg;

Yo > B ) (Keu = X)X}

k=1 i=1 j=1 u=j+1
<<Ze [k/4)) Z 0(i) < 1. (4.84)
i=1

Moreover, by Item 2 of Lemma 4.1,

% ]+mk i

ZZZ > B (G ) YR X))

k=1 i=1 j=1 u=j+1

n i Jtmi — N0(i
£y > flu nfjlgllg/2<<ze ([/2) i) < oo (4585)
k=1 i=1 j=1 u=j+1 i>1
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Hence, taking into account (4.82), (4.83), (4.84) and (4.85), we derive that

SO RS0 Xe )]

k=1 i=1 j=1

% .7+mk Ni

<<1+ZZZ S E Y (St (X X)) O} (4.86)

k=1 i=1 j=1 u=j+1
Next, recalling the definition (4.56) of my,,, by Item 1 of Lemma 4.1, note that

7 J+mk N

ZZZ Z ‘VZ]E{fn k Sk U= o —1 Xk: uXk j (0)}|

k=1 i=1 j=1 u=j+1

7 ]+mk i

<<Zn:ZZ > 1A oo {00miu) A O(u — 5)}0(0)

k=1 i=1 j=1 u=j+1

EOICLE SICES 9 90 3) DR LS IR

k=1 i=1 j=1 u=j+1
< <Zi0(i)> <1. (4.87)
i=1
On another hand,

‘E{ (fy—)k(gk—U—ﬁ - f,fl_)k(Sk_u_mk,u_l)) (Xk_uXk_j)(O) } ‘

UFMp 4

< 3 B{ (A Eim) — 1 Ehe) (KXo )}
v=u+1
u+mku

= Z / “E{fn k Sk o1+t X v)Xk 1]()(k wX ko J }‘dt
v=u+1

Hence,

EL (£ (Shu1) = £ (Same 1)) (X u X )@}

u+my

< £ e D7 (00 —w) A 0w — 5))0(0) . (4.88)

v=u-+1
Taking into account (4.87) and (4.88) together with Item 1 of Lemma 4.1, it follows that

7 j+mk Nl

ZZZ Z ‘%]E{fn k Slc u— 1 Xk uXk J)()H

k=1 i=1 j=1 u=j+1

<1+Y (n—k+1)72) " 00(v) ) if(i) < 1. (4.89)
k=1 v=1 =1
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Starting from (4.86) and taking into account the upper bound (4.89), we get that the
sum over k from 1 to n of the fourth term in the right-hand side of (4.74) is uniformly

bounded as a function of n. More precisely,

Z Ek: Z |%]E{f7§:i)k(gk—j—1>Xk—j}| < 1. (4.90)

k=1 i=1 j=1

Similar computations (even simpler since we deal with the fourth derivative rather than
the third one) give the following upper bound concerning the quantities involved in the
fifth and sixth terms in the right-hand side of (4.74):

n Al %
Y2 <‘%]E{fr(i)k(gk—j—l)(Xlz—j)([))}‘ + hf)]E{fgk(Sk—j_l)Xk—j}|> < 1. (4.91)

k=1 i=1 j=1

We deal now with the last terms in the decomposition (4.74) and show that

ZZ [E(ALD)] < 1 and Z EAD)] <1, (4.92)

k=1 =0 =

where we recall that A,g;g and A,(ii have been respectively defined in (4.61) and (4.42).
With this aim, note first that, by Item 2 of Lemma 4.1,

n Ly i+mk,i

SN B Sk ) E(XF (X X)) Y|
k=1 i=0 j=i+1

n Zk Z+mk i

<Y > (n—k+1)Pr(n—5)7") (00 — ) A6G) )

k=1 =0 j=1i+1

<Y ((n—k+1)*2 4 nY) (mk S 66) + Zu@(u)) <> ub(u).  (4.93)

i>my u=1 u>1
Next, let Wi, ; = (X2 (X i X)) © We start by noticing that

SN IB{(Y L (Shm ey 1) Wi

k=1 i=0 j=i+1

n Ly i+mk,i

<Y NS A e (B(mug) A O — i) AO(E) ) -

k=1 i=0 j=i+1
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But, 6(my, ;) = 0(my) V 0(k — 7). Hence, using Item 1 of Lemma 4.1,

)45 Z+mk i

ZZ Z ‘E{ n— k Sk —J—my,;—1 W’“JH

k=1 i=0 j=i+1

< (= k+ )7 (mE0ma) + mi > 06) + my kO([k/3)))

k=1 i>my
<<Z€mk +Zn—k¢+1 A INAC +zn:k:9(k)<<2u9(u). (4.94)
i>my k=1 u>1

Next, by Item 1 of Lemma 4.1, we derive

n 0 itmgg;

YoX D> B Sk = £ Sk -1)) Wi |

k=1 i=0 j=i+1

n Ly itmy Jtmi;

<ZZZ Z / ‘E{ nkSk’U1+thu)Xk uWkadt

k=1 i=0 j=i+1 u=j+1

n b i+my .7+mk:]

<3SN S 1l (00w~ ) A 0G i) A 0G) )

k=1 1=0 j=i+1 u=j+1
n mi
<Y (n—k+1)7? ( > wtf(u) +mp Y 9(@')) <) ubf(u). (4.95)
k=1 u=1 i>my u>1

Putting together (4.93), (4.94) and (4.95), the first part of (4.92) follows. Similar (but
simpler) arguments lead to the second part of (4.92). Finally, starting from (4.74) and
taking into account the upper bounds (4.80), (4.81), (4.90), (4.91) and (4.92), it follows
that >p_; [E(Anx)| < 14 3,51 k(k A v/n)8(k), which combined with (4.25) implies
(4.24) and then proves Item (b) of the theorem.

4.2 Proof of Lemma 4.1

Item 1 comes from the smoothing lemma 6.1 in [8]. To prove Item 2, we write

B, (5e-0) = B (See))] < 1D ool IEo(Se-i)]

Hence, since || Eo(S;—1)|l1 < Z£:1 Ox11 < 1, using Item 1, we derive that for any positive
integer /,
[B(£,20(5e1)) = B2 (Se) < (0= b+ 17007,

Next, let (G;);>1 be a sequence of iid centered Gaussian random variables with variance
o? and independent of (X, B;, Z;);>1 (recall that the random variables (B;) and (Z;)
have been defined at the beginning of Section 4.1). Let Ny = Zle G;. Write that

E(f7,(Se-1) = E(f,(Se1)) — E(f (Nem1)) + E(F2, (Ney)) -
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Next, let ¢, = o+/(n—k)/2+ 1 and let ¢;2 be the density of the law N(0, 7). Denote
also by Hy,, => 1

i=k+1
of Ny,_;. Note that

B; and note that, by definition, Hy,,, is independent of S,_; and

E(f (Ner)) = E(F 5 08 Ny + Hi)) = B 560,y (He))
Using Item 1, it follows that
E(fD (N _fap)2/2
[E(fnr(Ne-1))| < (n =k +£) :

On another hand

E(f{24(Se-1)) = EU2u(Nemr)) = E(f * 0 (Semr + Hin)) = B(f # 033 (et + Hi)
= /}RE{JN(SK—1 + Hyp —u) = f/(Ney + Hip — U)}@ié_l)(u)du-

Since f € Ay(E), g := f"is in A;(E) meaning that g : R x £ — R is measurable wrt
the o-fields L(R x E) and B(R), g(-,w) is 1-Lipschitz and ¢(0,w) = 0 for any w € E.
Therefore, since it is assumed that ), ., kfx 34(k) < 0o, one can use Item a) of Theorem
3.1 in [10] (see also Theorem 1.1 in [1§]) which entails that

sup ‘E f(Se—1 +v)) —E(f'(Ne—y + v))‘ <1.

veER

Note that Item a) of Theorem 3.1 in [10] is stated for g a Lipschitz function but following
its proof one can show that it holds also if g belongs to A;(E). On another hand,
gpg Y(w) = 770V (u/ty). Therefore

IE(£7,(Se-1)) = E(f2 (Ne-)) | < 7l V| < 170

Putting together all the above upper bounds gives Item 2 of Lemma 4.1.

5 Annex: convergence of quantiles in the CLT

In this section, we give an inequality involving the difference between the quantile of a
normalized random variable and the quantile of a standard normal, and the Wasserstein
distance of order p between the corresponding laws. The main result of this section is

Proposition 5.1 below which is a key result to prove Corollary 2.2.

Proposition 5.1. Let Z be a centered real-valued random variable satisfying E(Z?) < 2.
Let Fy denote the distribution function of Z and ® denote the distribution function of a
standard normal Y. For any p > 1, let

K, = /1 |F7H(t) — o7 '(t)| dt.
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Then, for any u in (0,1/2],

) ()

Proof. Throughout the proof, Hy = 1 — ® and Qy is the inverse function of Hy. With

these notations,

‘Fgl(l —u) — ® (1 —u)| < max((

Quy(u / Qy(t) "E(YTy>qy ) = eXp(Tg_;iu)/Q). (5.1)

We also set H; =1 — Fz and we denote by Q7 the generalized inverse function of H.

From (5.1), Proposition 5.1 is equivalent to
Qz(u) = Qv (w)] < max(((p+ Dev2m B ORI (4 ek, /u) ) (52)

for u < 1/2. We start by proving (5.2) in the case Qz(u) > Qy (u).

Proof of (5.2) in the case Qz(u) > Qy(u). Let 6 = Qz(u) — Qy(u) and let 1 be the
unique real in (0, u) such that Qy(u —n) = Qy(u) + 6 = Qz(u). From the convexity of
Qy on (0,1/2],

Qy(u—1tn) < Qy(u) +td for any ¢ € [0, 1]. (5.3)

Moreover Qz(u — tn) > Qz(u) > Qy(u) + d for t in [0, 1], whence, using the change of

variables s = u — tn,

K, > / " 1Qu(s) — Qv(s)Pds > 1 / (6 —Stydt = no?/(p+1).  (5.4)

In view of the above inequality, we have to bound 7 from below. In order to get a lower

bound on 7, we will bound up —@Q? . From the definition of Qy,
—Qy(s) = —1/H}(Qy (5)) = V2r exp(Q3(5)/2) < V2r exp((Qy (u) +6)*/2)

for any s in [u — 7, ul,

We now separate two cases. If § < \/W%(u) —
~Qy(s) < V2mexp((Qy (u) +6)°/2) < V2mexp(1+ QF (1) /2)
for any s in [u — n,u]. Then
Qy (u—n) = Qy(u) < nev/2m exp(Q3 (u)/2). (5.5)
In that case, putting the above lower bound on 7 in (5.4), we obtain that

S < (p+ DeV2m B WK (5.6)
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If 6 > /24 Q% (u ,let 8o = /24 Q% (u ) and let 79 be the real in

(0,u) such that Qy(u - 770) = Qy( ) + . Then n 2 Mo and ((50,770) still satisfies (5.5),
from which

1z 2 (ev2m) 7 (/24 Q3 () - Qv(w)) exp(—QF (u)/2). (5.7)
Putting this lower bound in (5.4), we obtain that

V2 exp(QF (u )/2)

P < (p+1e(K,/u) O

(5.8)

Now, setting u = Hy (z),

V2 exp(Q} >/2> _ up VTR (2) _
01/2 24 Q% (u) — @>0 V2+a2—x N

by an inequality on the Mills ratio of Komatu [15]. The two above inequalities imply
that

5 < (p+ Ve (K, /u), (5.9)

if § > \/2+Q%(u) — Qy(u). Combining (5.6) and (5.9), we get (5.2) in the case
Qz(u) > Qy(u). It remains to prove (5.2) in the case Qz(u) < Qy (u).

Proof of (5.2) in the case Qz(u) < Qy(u). Let then § = Qy(u) — Qz(u). From the
assumptions E(Z) = 0, E(Z?) < 2 and the Tchebichef-Cantelli inequality, for any = < 0,
Hz(x) > 2?/(2 + 2%). This which implies that

—+v/2u/(1 —u) for any u € (0,1). (5.10)

In particular, for u < 1/2, Qz(u) > —v2 > —/2 + Q% (u). Let then S be the positive
real such that Qy(u + 8) = Qz(u). From (5.10), —Q% (s) < v2mexp(1l + Q% (u)/2) for
any s in [u,u + (]. It follows that

Qy (u+s) > Qy(u) = svV2mexp(l + Q7 (u)/2)
for any s in [0, #]. For s = (3, the above inequality yields
5> (ev/am) ™ exp(~ Q3 (u)/2)5 =
With the above definition of 7, for any ¢ in [0, 1],
Qy(u+tn) > Qy(u) —td > Qy(u) — 6 > Qz(u +tn).

Hence
Qy (u+1tn) — Qz(u+tn) > (1 —t)6
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for any ¢ in [0, 1]. Tt follows that

1 1 5P
K, 277/ Qv (u+1tn) — Qz(u+tn)|Pdt > n/ (1 —t)pordt = ——.
0 0 p+1

The above inequality together with the definition of 7 then imply (5.6), which completes
the proof of (5.2).

Proof of Corollary 2.2. Recall that from Item (b) of Theorem 2.1 (see also Comment
2.2), under the assumptions of Corollary 2.2, Wy(Ps, /s, ,G1) = O(n~%/?). Hence, Item
(a) comes from an application of Proposition 5.1 by taking into account the fact that, if

Y is a standard normal r.v., there exists a positive constant 7 such that

- Q1 (uv)
1mn —_—
u€(0,1/2] 4 /In(1/u)

Indeed, Q1,y (u) ~u—0 v/2In(1/u) and Q1 y(1/2) > 0.
Item (b) follows again from Item (b) of Theorem 2.1 together with Inequality (2.7)
in [23].

> .
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