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Jérôme Dedecker∗, Florence Merlevède†and Emmanuel Rio ‡
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Abstract

In this paper, we give estimates of the quadratic transportation cost in the

conditional central limit theorem for a large class of dependent sequences. Appli-

cations to irreducible Markov chains, dynamical systems generated by intermittent

maps and τ -mixing sequences are given.
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1 Introduction

Let (Xi)i∈Z be a strictly stationary sequence of real-valued random variables (r.v.) with

mean zero and finite variance. Set Sn = X1 +X2 + · · ·+Xn. By Pn−1/2Sn we denote the

law of n−1/2Sn and by Gσ2 the normal distribution N(0, σ2). In this paper, we assume

furthermore that the series σ2 =
∑

k∈Z Cov(X0, Xk) is convergent (under this assumption

limn n
−1VarSn = σ2) and we shall give quantitative estimates of the approximation of

Pn−1/2Sn by Gσ2 in terms of the quadratic cost, which is the square of the L2-minimal

distance. With this aim, we first recall the definition of the Lp-minimal metrics.
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Let L(µ, ν) be the set of probability laws on R2 with marginals µ and ν. For p ≥ 1,

let

Wp(µ, ν) = inf
{(∫

|x− y|pP (dx, dy)
)1/p

: P ∈ L(µ, ν)
}
.

Wp is usually called the Lp-minimal distance, and sometimes the Wasserstein distance

of order p. It is well known that for probability laws µ and ν on R with respective

distributions functions (d.f.) F and G,

Wp(µ, ν) =
(∫ 1

0

|F−1(u)−G−1(u)|pdu
)1/p

, (1.1)

where F−1 and G−1 denote respectively the generalized inverse functions of F and G.

We refer to Chapter 6 in Villani [25] for the properties of this metric.

For (Xi)i∈Z a sequence of independent and identically distributed (iid) centered real

valued random variables in L4, with variance σ2, inequality (1.7) in Rio [21] states that

there exists a universal constant c such that for any positive integer n

nW 2
2 (PSn/

√
n, Gσ2

)
≤ c σ−2‖X1‖4

4 . (1.2)

In addition, it is also shown in the same paper that this upper bound is optimal. More

precisely, for any κ ≥ 1, let M(4, κ) be the class of the probability measures µ on the

real line such that
∫
xdµ(x) = 0,

∫
x2dµ(x) = 1 and

∫
x4dµ(x) = κ. In case where

(Xi)i∈Z is a sequence of iid random variables with common law µ in M(4, κ), Theorem

5.1 in [21] asserts that

sup
µ∈M(4,κ)

lim inf
n→∞

nW 2
2 (PSn/

√
n, G1

)
≥ κ/12 . (1.3)

We refer to Bobkov [2] for another proof of (1.2) based on relative entropy and

Talagrand’s entropy-transport inequality. Actually, the following more general result

holds: for any p ≥ 1, there exists a universal constant cp such that for any positive

integer n,

np/2W p
p (PSn/

√
n, Gσ2

)
≤ cp σ

−p‖X1‖p+2
p+2 .

(see Rio [21] for p ∈ [1, 2] and Bobkov [3] for p > 2). Extensions to random vectors in

Rd are given in Bonis [5]. We also mention the extensions of the upper bound (1.2) to

the m-dependent case and to U -statistics obtained by Fang [12].

In this paper, one of our motivations is to relax the independence assumption and to

find sufficient conditions in case of dependent sequences ensuring that

W2(PSn/
√
n, Gσ2

)
= O(n−1/2) . (1.4)

In the dependent setting, a well known class is the class of irreducible aperiodic and

positively recurrent Markov chains (ξn) with an atom denoted by A (see the definition
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page 286 in [4]). Let π be the unique invariant distribution of the Markov chain. From

now on, (ξn) will be the Markov chain starting from π. Let us then consider the strictly

stationary sequence (Xk) defined by Xk = f(ξk) with f a bounded function such that

π(f) = 0. In view of the regeneration scheme and the upper bound (1.2), one can

conjecture that (1.4) holds for Sn =
∑n

k=1Xk provided that EA(τ 4
A) < ∞ where τA is

the first return time in A and EA stands for the expectation under Px for x ∈ A. Next,

from [4, Lemma 3] and [22, page 165], it is known that EA(τ 4
A) <∞ is equivalent to∑

n>0

n2αn <∞ , (1.5)

where αn = 1
4

sup‖f‖∞≤1 ‖E(f(ξn)|ξ0)− E(f(ξn))‖1.

In this paper we shall prove that (1.4) holds true for any stationary sequence (Xk)k∈Z

of bounded real-valued random variables satisfying (1.5) for the sequence (αn)n≥0 of

strong mixing coefficients in the sense of Rosenblatt (see for instance [17, Section 5.1.1.]

for a definition of these coefficients in the general case), which includes the case of Markov

chains described above. This will be a consequence of a more general result also valid for

a class of weakly dependent sequences, which may fail to be strongly mixing. In order

to give more precise statements of our results, let us now introduce the dependence

coefficients that we will use in this paper.

Definition 1.1. Let (Xi)i∈Z be a stationary sequence of bounded real-valued random

variables and F0 = σ(Xi, i ≤ 0). Let Γp,q = {(ai)1≤i≤p ∈ Np : a1 ≥ 1 and
∑p

i=1 ai ≤ q},
for p and q positive integers. For k ≥ 0, set

θX,p,q(k) = sup
kp>kp−1>...>k2>k1≥k

(a1,...,ap)∈Γp,q

∥∥∥E( p∏
i=1

Xai
ki
|F0

)
− E

( p∏
i=1

Xai
ki

)∥∥∥
1
.

As a consequence of our Theorem 2.1, we will obtain that if∑
k≥1

k2θX,4,4(k) <∞ , (1.6)

then (1.4) holds, which immediately implies that (1.4) holds for additive bounded func-

tionals of a Markov chain satisfying (1.5). In fact we shall give a conditional version

of (1.4) and show that when (Xk)k∈Z is a stationary sequence of centered and bounded

real-valued random variables satisfying (1.6) then

E
(
W 2

2 (PSn/
√
n|F0

, Gσ2)
)

= O(n−1) . (1.7)

Note that in case of bounded functions of a Markov chain (ξk)k satisfying EA(τ 4) <∞,

with invariant distribution π, the Schwarz inequality together with (1.7) imply that

Eµ
(
W2(PSn/

√
n|ξ0 , Gσ2)

)
= O(n−1/2)
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for any positive measure µ such that dµ = fdπ with
∫
f 2dπ <∞. Above Eµ stands for

the expectation of the chain under the initial law µ.

It is noteworthy to indicate that (1.7) implies (1.4). Indeed the following fact is valid.

Fact 1.1. Let X and Y be two random variables defined on (Ω,A,P) and F be a sub

σ-algebra of A. Then W 2
2 (PX , PY ) ≤ E

(
W 2

2 (PX|F , PY |F)
)
.

To see this, let U be a random variable with uniform distribution over [0, 1], inde-

pendent of F , and let FX|F and FY |F denote respectively the conditional distribution

functions of X and Y given F . Set X∗ = F−1
X|F(U) and Y ∗ = F−1

Y |F(U). Then X∗ has the

law PX , Y ∗ has the law PY and, by (1.1), W 2
2 (PX|F , PY |F) = E

(
|X∗ − Y ∗|2|F

)
. Taking

the expectation, it implies the above fact, since W 2
2 is the minimal quadratic cost.

To prove Theorem 2.1, we shall apply Lindeberg’s method, which was used by

Billingsley [1] and Ibragimov [13] in the case of martingales with stationary differences

to prove the central limit theorem (we also consider this particular case in our Theorem

2.2). Note that this method was adapted to a large class of dependent sequences (non

necessarily martingale differences) to evaluate the L1-minimal distance between PSn/
√
n

and Gσ2 , by Pène [19] in the bounded multidimensional case, and next by Dedecker

and Rio [10] in the unbounded case (under conditions involving some coefficients similar

to θX,4,3, or weak mixing coefficients such as those described in Definition 3.1 below).

Recently, estimates of the L1-minimal distance between PSn/
√
n and Gσ2 when the un-

derlying process is a function of iid random variables are given in Theorem 3.1 in [14].

Their conditions are expressed in terms of some coupling coefficients.

Our paper is organized as follows. Section 2 is devoted to the statements of upper

bounds concerning the quadratic transportation cost in the conditional central limit the-

orem and their applications to pointwise estimates for the distribution function of the

normalized sums and its generalized inverse. Applications to α-dependent sequences,

τ -mixing sequences and symmetric random walk in the circle are given in Section 3. The

proofs are postponed to Section 4. Links between |F−1
Sn/σn

(u)−Φ−1(u)| andW2(PSn/σn , G1)

are given in Section 5, where σn =
√

VarSn, Φ−1 is the inverse of the distribution func-

tion of the standard normal distribution and F−1
Sn/σn

is the generalized inverse of the

distribution function of Sn/σn.

In the rest of the paper, we shall use the following notation: for two sequences

(an)n≥1 and (bn)n≥1 of positive reals, an � bn means there exists a positive constant

C not depending on n such that an ≤ Cbn for any n ≥ 1. Moreover, for a real-valued

random variable X in L1, the notation X(0) means X − E(X).

4



2 Quadratic cost in the conditional CLT

The main result of this paper is Theorem 2.1 below.

Theorem 2.1. Assume that ‖X0‖∞ ≤ M and that
∑

k≥1 θX,2,2(k) < ∞. Then σ2 =

E(X2
0 ) + 2

∑
k≥1 E(X0Xk) converges and

E
(
W 2

2 (PSn/
√
n|F0

, Gσ2)
)
� n−1/2

(
1 +

∑
k≥1

(k ∧
√
n)θX,2,2(k)

)
. (a)

If furthermore
∑

k≥1 kθX,4,4(k) <∞, then

E
(
W 2

2 (PSn/
√
n|F0

, Gσ2)
)
� n−1

(
1 +

∑
k≥1

k(k ∧
√
n)θX,4,4(k)

)
. (b)

Comment 2.1. Item (a) provides a rate in the CLT for the W2-metric as soon as∑
k≥1 θX,2,2(k) < ∞. In addition, if

∑
k≥1 kθX,2,2(k) < ∞, then the rate in the W2-

metric is of order n−1/4. Furthermore, by Item (b), if
∑

k≥1 kθX,4,4(k) < ∞, then the

rate in the CLT for the W2-metric is o(n−1/4). For example, if θX,4,4(k) = O(k−a) with

a ∈]1, 3[ and a 6= 2, Theorem 2.1 implies that W2(PSn/
√
n, Gσ2) � n−(a−1)/4. Moreover

W2(PSn/
√
n, Gσ2)� n−1/2 as soon as

∑
k≥1 k

2θX,4,4(k) <∞.

Comment 2.2. Assume σ > 0. Set σn =
√

VarSn. If σ > 0, then σn > 0 for any

positive n. Set κ2 = E
(
W 2

2 (PSn/σ
√
n|F0

, PSn/σn|F0)
)
:

κ2 =
( σn
σ
√
n
− 1
)2

≤
( σ2

n

nσ2
− 1
)2

= (nσ2)−1
∣∣∣ σ2

n

nσ2
− 1
∣∣∣ ∣∣∣2∑

k≥1

(k ∧ n)Cov(X0, Xk)
∣∣∣.

Now, from the definition of the coefficients θX,1,1(k),∑
k≥1

(k ∧ n)|Cov(X0, Xk)| ≤ ‖X0‖∞
∑
k≥1

(k ∧ n)θX,1,1(k). (2.1)

Therefore, if in addition ‖X0‖∞ ≤ M , κ2 � n−1M‖∞
∑

k≥1(k ∧ n)θX,1,1(k), which is

always of a smaller order than the upper bounds (a) and (b). Hence Theorem 2.1 also

holds for E
(
W 2

2 (PSn/σn|F0 , G1)
)
.

We now give applications of Theorem 2.1 to pointwise estimates. We start by Berry-

Esseen type estimates. Arguing for instance as in [8, Remark 2.4], Theorem 2.1 together

with Comment 2.2 imply the following upper bound.

Corollary 2.1. Assume that σ > 0, ‖X0‖∞ ≤M and
∑

k≥1 k
2θX,4,4(k) <∞. Then

∆n = sup
x∈R

∣∣P(Sn/σn ≤ x)− Φ(x)
∣∣� n−1/3 .
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We now give applications of our main result to estimates of the quantiles and the

superquantiles of Sn/σn in the nondegenerate case. Define the 1-risk Q1,X of X, as in

Pinelis [20], by

Q1,X(u) =
1

u

∫ u

0

F−1
X (1− t)dt. (2.2)

Then Q1,X(u) is the value of the superquantile of X at point (1 − u). The corollary

below, which is a consequence of Theorem 2.1 and Proposition 5.1 provides estimates of

the accuracy in the central limit theorem for F−1
Sn/σn

and Q1,Sn/σn . Its proof is given in

Section 5.

Corollary 2.2. Assume that ‖X0‖∞ ≤M ,
∑

k≥1 k
2θX,4,4(k) <∞ and σ2 > 0. Let Y be

a standard normal. Then there exists some constant C > 0 such that, for any n ≥ 1 and

any u in (0, 1),

|F−1
Sn/σn

(u)−Φ−1(u)| ≤ C max
(
(nu(1− u))−1/2, (nu(1− u))−1/3| log(u(1− u))|−1/6

)
(a)

and

|Q1,Sn/σn(u)−Q1,Y (u)| ≤ C(nu)−1/2
√

1− u. (b)

Comment 2.3. From Corollary 2.2(a), for any sequence (εn)n of reals in (0, 1/2) such

that limn εn = 0 and limn nεn =∞,

lim
n→∞

sup
u∈[εn,1−εn]

|F−1
Sn/σn

(u)− Φ−1(u)| = 0,

which can not be deduced from a Berry-Esseen type bound with the rate n−1/2. Indeed,

if ∆n is defined as in Corollary 2.1, one can only get that

|F−1
Sn/σn

(u)− Φ−1(u)| ≤ Φ−1(min(1, u+ ∆n))− Φ−1(u)

for u ≥ 1/2, which is of interest only if u < 1−∆n.

If furthermore the sequence (Xi)i∈Z is a sequence of martingale differences, then the

conditions on the dependence coefficients can be weakened as follows (the proof being

less intricate is left to the reader).

Theorem 2.2. Assume that (Xi)i∈Z is a sequence of martingale differences such that

‖X0‖∞ ≤M and E(X2
0 ) = σ2. Then

E
(
W 2

2 (PSn/
√
n|F0

, Gσ2)
)
� n−1/2

(
1 +

[
√
n]∑

k=1

θX,1,2(k)
)
. (a)

If furthermore
∑

k≥1 θX,3,4(k) <∞, then

E
(
W 2

2 (PSn/
√
n|F0

, Gσ2)
)
� n−1

(
1 +

∑
k≥1

(k ∧
√
n)θX,3,4(k)

)
. (b)
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Comment 2.4. Item (a) provides a rate in the CLT as soon as θX,1,2(k) = o(1). If

θX,1,2(k) = O(k−a) with a in (0, 1), (a) ensures that W2(PSn/
√
n, Gσ2) � n−a/4. If∑

k≥1 θX,1,2(k) <∞, then the rate is of order n−1/4. Item (b) provides faster rates under

the condition
∑

k≥1 θX,3,4(k) < ∞. Indeed the rate of convergence under this condition

is o(n−1/4). If θX,3,4(k) = O(k−a) with a in (1, 2), (b) ensures that W2(PSn/
√
n, Gσ2) �

n−a/4. Moreover W2(PSn/
√
n, Gσ2)� n−1/2 as soon as

∑
k≥1 kθX,3,4(k) <∞.

3 Examples

3.1 α-mixing sequences

Let (Ω,A,P) be a probability space and let U and V be two σ-algebras of A. The strong

mixing coefficient α(U ,V) between these σ-algebras is defined as follows:

α(U ,V) = sup{| P(U ∩ V )− P(U)P(V )| : U ∈ U , V ∈ V} .

Next, for a stationary sequence (Yi)i∈Z of random variables with values in a Polish space

S, define its strong mixing (or α-mixing) coefficients of order 4 as follows: Let

α∞,4(n) = sup
i4>i3>i2>i1≥n

α(F0, σ(Yi1 , Yi2 , Yi3 , Yi4)) .

where F0 = σ(Yi, i ≤ 0). As, page 146 in [17], these coefficients can be rewritten in the

following form: Let B1 be the class of measurable functions from S4 to R and bounded

by one. Then

α∞,4(n) =
1

4
sup
f∈B1

sup
i4>i3>i2>i1≥n

∥∥E(f(Yi1 , Yi2 , Yi3 , Yi4)|F0)− E(f(Yi1 , Yi2 , Yi3 , Yi4))
∥∥

1
.

Hence, an application of Item (b) of Theorem 2.1 provides the following result.

Corollary 3.1. Let (Yk)k∈Z be a stationary sequence of random variables with values

in a Polish space and such that
∑

k≥1 k
2α∞,4(k) < ∞. Let f be a bounded mea-

surable numerical function and Xk = f(Yk) − E(f(Yk)). Set Sn =
∑n

k=1 Xk. Then

W2(PSn/
√
n, Gσ2)� n−1/2.

As mentioned in the introduction, this results applies to the class of irreducible

aperiodic and positively recurrent Markov (ξn) with an atom denoted by A, under the

condition EA(τ 4
A) < ∞. Here τA is the first return time in A and EA stands for the

expectation under Px for x ∈ A.
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3.2 α-dependent sequences and τ-mixing sequences

We start by recalling the definition of the α-dependence coefficients as considered in [6].

Definition 3.1. For any random variable Y = (Y1, · · · , Yk) with values in Rk and any

σ-algebra F , let

α(F , Y ) = sup
(x1,...,xk)∈Rk

∥∥∥∥∥E(
k∏
j=1

(1IYj≤xj)
(0)
∣∣∣F)(0)

∥∥∥∥∥
1

.

For the sequence Y = (Yi)i∈Z, let

αk,Y(0) = 1 and αk,Y(n) = max
1≤l≤k

sup
n≤i1≤...≤il

α(F0, (Yi1 , . . . , Yil)) for n > 0 , (3.1)

where F0 = σ(Yi, i ≤ 0).

Item (b) of Theorem 2.1 together with equality (A.4) in [10] (with E(·|F0) instead of

E) provide the following result.

Corollary 3.2. Let f be a bounded variation (BV) function and Xk = f(Yk)−E(f(Yk))

where (Yk)k∈Z is a stationary sequence of real-valued random variables. Let Sn =
∑n

k=1Xk.

If
∑

k≥1 k
2α4,Y(k) <∞, then W2(PSn/

√
n, Gσ2)� n−1/2.

From this result, we can derive rates in the CLT for the partial sums associated with

BV observables of the LSV map. More precisely, for γ ∈]0, 1[, let Tγ defined from [0, 1]

to [0, 1] by

Tγ(x) =

x(1 + 2γxγ) if x ∈ [0, 1/2[

2x− 1 if x ∈ [1/2, 1] .

This is the so-called LSV [16] map with parameter γ. Recall, that there exists a unique

Tγ-invariant measure νγ on [0, 1], which is absolutely continuous with respect to the

Lebesgue measure with positive density denoted by hγ. From Corollary 3.2 above and

[6, Prop. 1.17], we derive that W2(PSn/
√
n, Gσ2) � n−1/2 for any γ < 1/4, where f is a

bounded variation function and Sn =
∑n

k=1(f(T kγ )− νγ(f)).

We now apply Theorem 2.1 to functions of τ -dependent sequences. Before stating

the result, some definitions are needed.

Definition 3.2. Let η ∈]0, 1], ` be a positive integer and let Λη(R`) be the set of functions

f from R` to R such that for x = (x1, . . . , x`) and y = (y1, . . . , y`),

|f(x)− f(y)| ≤ 1

`

∑̀
i=1

|xi − yi|η .

Define the dependence coefficients (τη,`,Y(k))k≥1 of the sequence (Yi)i∈Z by

τη,`,Y(k) = max
1≤j≤`

sup
ij>...>i1≥k

∥∥∥ sup
f∈Λη(Rj)

∣∣∣E(f(Yi1 , . . . , Yij)|F0)− E(f(Yi1 , . . . , Yij))
∣∣∣∥∥∥

1
.
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Examples of τη-dependent sequences are given in [9].

Let (Yk)k∈Z be a stationary sequence of real-valued random variables and f be a

bounded and η-Hölder function, with η ∈]0, 1]. Define Xk = f(Yk) − E(f(Yk)). Then,

for any positive integers p, q and k, θX,p,q(k) ≤ Cτη,p,Y(k) where C is a positive constant

depending only on p, q and ‖f‖∞. Hence the following result holds.

Corollary 3.3. Let f be a bounded and η-Hölder function with η ∈]0, 1] and Xk =

f(Yk)−E(f(Yk)) where (Yk)k∈Z is a stationary sequence of real-valued random variables.

Let Sn =
∑n

k=1Xk. If
∑

k≥1 k
2τη,4,Y(k) <∞, then W2(PSn/

√
n, Gσ2)� n−1/2.

From this result, we can derive rates in the CLT for the partial sums associated

with Hölder functions of the LSV map above. Starting from Corollary 3.3 and tak-

ing into account [7, Prop. 5.3 and Inequality (4.2)], we derive that if γ < 1/4, then

W2(PSn/
√
n, Gσ2) � n−1/2, where Sn =

∑n
k=1(f(T kγ ) − νγ(f)) and f is an η-Hölder ob-

servable with η ∈]0, 1].

We now define another class of functions which are well adapted to τ -dependence.

Definition 3.3. Let c be any concave function from R+ to R+, with c(0) = 0. Let Lc
be the set of functions g from R to R such that

|g(x)− g(y)| ≤ Kc(|x− y|), for some positive K.

Let g ∈ Lc and Xk = g(Yk) − E(g(Yk)) where (Yk)k∈Z be a stationary sequence

of bounded real-valued random variables. Then, for any positive integers ` and k,

τ1,`,X(k) ≤ Kc(τ1,`,Y(k)). As a consequence of Corollary 3.3, the following result holds:

Corollary 3.4. Let g ∈ Lc and Xk = g(Yk) − E(g(Yk)) where (Yk)k∈Z is a stationary

sequence of bounded real-valued random variables such that τ1,4,Y(k)) = O(ρk) for some

ρ in ]0, 1[. Let Sn =
∑n

i=1Xi. If∫ 1

0

(log t)2

t
c(t)dt <∞ ,

then W2(PSn/
√
n, Gσ2)� n−1/2.

Corollary 3.4 applies in particular to Xk = g(T k)− ν(g) where T is a map from [0, 1]

to [0, 1] that can be modelled by a Young tower with exponential tails of the return

times and ν is the usual invariant measure (see Section 4 in [7] adapted to the case of

exponential tails of the return times).
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3.3 Symmetric random walk on the circle

Let K be the Markov kernel defined by Kf(x) = (f(x+a)+f(x−a))/2 on the torus

R/Z, with a irrational in [0, 1]. The Lebesgue-Haar measure m is the unique probability

which is invariant by K. Let (ξi)i∈Z be the stationary Markov chain with transition

kernel K and invariant distribution m. For f ∈ L2(m), let

Xk = f(ξk)−m(f) . (3.2)

This example has been considered by Derriennic and Lin [11] who showed that the central

limit theorem holds with the normalization
√
n as soon as∑

k∈Z∗

|f̂(k)|2

d(ka,Z)2
<∞ , (3.3)

where f̂(k) are the Fourier coefficients of f and d(ka,Z) = mini∈Z |ka − i|. The aim in

this section is to give additional conditions on f and on the properties of the irrational

number a ensuring rates of convergence in the CLT. Let us then introduce the following

definition: a is said to be badly approximable in the weak sense by rationals if for any

positive ε,

the inequality d(ka,Z) < |k|−1−ε has only finitely many solutions for k ∈ Z∗. (3.4)

From Roth’s theorem the algebraic numbers are badly approximable in the weak sense

(cf. Schmidt [24]). Note also that the set of badly approximable numbers in [0, 1] has

Lebesgue measure 1.

An application of Theorem 2.1 together with Lemma 5.2 in [10] and their inequality

(5.18) give the following corollary.

Corollary 3.5. Let Xk be defined by (3.2). Suppose that the irrational number a satisfies

(3.4). Assume that for some positive ε,

sup
k 6=0
|k|6+ε|f̂(k)| <∞ .

Then W2(PSn/
√
n, Gσ2)� n−1/2.

4 Proofs

4.1 Proof of Theorem 2.1

Assume first that σ2 = 0. In this case Gσ2 = δ0 and

E
(
W 2

2 (PSn/
√
n|F0

, δ0)
)

= n−1E(S2
n)− σ2 = −2n−1

∑
k≥1

(k ∧ n)Cov(X0, Xk),
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which, combined with (2.1), shows that the upper bounds (a) and (b) hold.

We turn now to the case σ2 > 0. Let δ be a random variable with uniform distribution

over [0, 1] independent of (Xk)k∈Z. Define G` = σ((Xi)i≤`, δ) and G∞ = σ((Xi)i∈Z, δ).

Define also the conditional expectation operator E0 by E0(·) = E(·|G0).

In what follows (Yk)k≥1 will be a sequence of iid random variables independent of G∞.

In case of Item (a), their common law will be the normal law N (0, σ2) whereas in case

of Item (b), we will have to prescribe also their third moment as it is described below.

Let β3 be a fixed real number. Let Z be a r.v. with distribution N (0, σ2/2). There

exists a random variable B independent of Z, taking only 2 values and such that Y =

Z +B satisfies

E(Y ) = 0 , E(Y 2) = σ2 and E(Y 3) = β3 . (4.1)

We refer to Lemma 5.1 in [10] for more details. For the proof of Item (b),

β3 = E(X3
0 ) + 3

∑
i≥1

{E(X2
0Xi) + E(X0X

2
i )}+ 6

∑
u≥1

∑
v≥u+1

E(X0XuXv) , (4.2)

which is the limit of n−1E(S3
n), as n→∞, under the conditions of Item (b) of Theorem

2.1.

Let (Zk)k≥1 be a sequence of independent r.v.’s distributed as Z and let (Bk)k≥1 be

a sequence of independent r.v.’s distributed as B and independent of (Zk)k≥1. Suppose

furthermore that the sequence (Zk, Bk)k≥1 is independent of G∞. For any k ≥ 1, set

Yk = Zk +Bk.

Next, in case of both items, we define Tn = Y1 + Y2 + · · ·+ Yn. Note that

W2(PSn/
√
n|F0

, Gσ2) ≤ W2(PSn/
√
n|F0

, PTn/
√
n) +W2(PTn/

√
n, Gσ2) .

According to Theorem 4.1 in [21], since Y ∈ L4, W2(PTn/
√
n, Gσ2) � n−1/2. Since

PSn/
√
n|F0

= PSn/
√
n|G0

, the theorem will follow if one can prove that the upper bounds

(a) and (b) still hold with PSn/
√
n|G0

replacing PSn/
√
n|F0

. With this aim, we shall apply

Lemma 5.1 in [18]. We start by introducing some notations. Let Λ2 be the class of real

functions f which are continuously differentiable and such that |f ′(x)− f ′(y)| ≤ |x− y|
for any (x, y) ∈ R×R. Let also Λ2(E) be the set of measurable functions f : R×E → R
wrt the σ-fields L(R× E) and B(R), such that f(·, w) ∈ Λ2 and f(0, w) = f ′(0, w) = 0

for any w ∈ E. Next, let W = ((Xi)i∈Z− , δ) and E = RZ− × [0, 1]. According to [18,

Lemma 5.1], and denoting by N a N (0, σ2)-distributed random variable, independent of

all the above sequences (so independent of (Xk, Yk)k), the upper bound (a) will follow if

one can prove that

sup
f∈Λ2(E)

E
(
f(Sn +N,W )− f(Tn +N,W )

)
�
√
n
(

1 +
∑
k≥1

(k ∧
√
n)θX,2,2(k)

)
, (4.3)
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whereas the upper bound (b) will follow if

sup
f∈Λ2(E)

E
(
f(Sn +N,W )− f(Tn +N,W )

)
� 1 +

∑
k≥1

k(k ∧
√
n)θX,4,4(k) . (4.4)

In what follows to soothe the notations we omit the subscripts for the coefficients θ(k).

Proof of Item (a). We shall apply the Lindeberg method. Let us first introduce some

notations.

Notation 4.1. Set fn−k(x) = E0(f(x+N + Tn − Tk,W )).

Notice that

fn−k(x) =

∫
R
f(x− t,W )ϕσ2(n−k+1)(t)dt ,

where ϕt2 is the density of a N (0, t2). Hence, according to Lemma 6.1 in [8],

‖f (i)
n−k‖∞ := bi � (n− k + 1)(2−i)/2 . (4.5)

Since the sequence (N, (Yi)i≥1) is independent of the sequence ((Xi)i∈Z,W ),

E(f(Sn +N,W )− f(Tn +N,W )) =
n∑
k=1

E(fn−k(Sk−1 +Xk)− fn−k(Sk−1 + Yk)) . (4.6)

By the Taylor formula at order 3 and using (4.5), we get∣∣∣E(fn−k(Sk−1 + Yk)− fn−k(Sk−1)− σ2

2
f ′′n−k(Sk−1)

)∣∣∣ ≤ C(n− k + 1)−1/2 . (4.7)

Similarly∣∣E(fn−k(Sk)−fn−k(Sk−1)−f ′n−k(Sk−1)Xk−
1

2
f ′′n−k(Sk−1)X2

k)
∣∣ ≤ C(n−k+1)−1/2 . (4.8)

Now we control the second order term. Let

Γk(k, i) = f ′′n−k(Sk−i)− f ′′n−k(Sk−i−1) . (4.9)

Clearly

f ′′n−k(Sk−1)X2
k =

[
√
k]−1∑
i=1

Γk(k, i)X
2
k + f ′′n−k(Sk−[

√
k])X

2
k .

Since |Γk(k, i)| ≤ b3|Xk−i|, by stationarity we get that for any i ≤ k − 1,∣∣Cov(Γk(k, i), X
2
k)
∣∣ ≤ b3‖X0

(
E0(X2

i )− E(X2
i )
)
‖1 � (n− k + 1)−1/2θ(i) .

Since ‖f ′′n−k‖∞ ≤ b2 a.s., we also get by stationarity that∣∣Cov(f ′′n−k(Sk−[
√
k]), X

2
k)
∣∣ ≤ b2‖E0(X2

[
√
k]

)− E(X2
[
√
k]

)‖1 � θ([
√
k]) .
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Starting from (4.8), it follows that∣∣E(fn−k(Sk)− fn−k(Sk−1)− f ′n−k(Sk−1)Xk)−
1

2
E(f ′′n−k(Sk−1))E(X2

k)
∣∣

� θ([
√
k]) + (n− k + 1)−1/2

(
1 +

[
√
k]∑

i=1

θ(i)
)
. (4.10)

Starting from (4.6) and taking into account (4.7) and (4.10) we derive that∣∣E(f(Sn + Y,W )− f(Tn + Y,W ))
∣∣

�
√
n
(

1 +

[
√
n]∑

i=1

θ(i)
)

+
∣∣∣ n∑
k=1

{
E(f ′n−k(Sk−1)Xk)− E(f ′′n−k(Sk−1))

∑
j≥1

E(X0Xj)
}∣∣∣ .
(4.11)

To give now an estimate of E(f ′n−k(Sk−1)Xk), we write

f ′n−k(Sk−1) = f ′n−k(0) +
k−1∑
i=1

(f ′n−k(Sk−i)− f ′n−k(Sk−i−1)) .

Hence

E(f ′n−k(Sk−1)Xk) =
k−1∑
i=1

Cov
(
f ′n−k(Sk−i)− f ′n−k(Sk−i−1), Xk

)
+ E(f ′n−k(0)Xk) . (4.12)

Now f ′n−k(0) is a G0-measurable random variable. Since f ∈ Λ2(E) then f ′(0, w) = 0

and f ′(·, w) is 1-Lipschitz. Therefore

|f ′n−k(0)| ≤
∫
R
|f ′(u,W )− f ′(0,W )|ϕσ2(n−k+1)(−u)du ≤ σ

√
n− k + 1 a.s.

It follows that
n∑
k=1

∣∣E(f ′n−k(0)Xk)
∣∣� n∑

k=1

√
n− k + 1‖E0(Xk)‖1 �

√
n

n∑
k=1

θ(k) . (4.13)

We give now an estimate of
∑k−1

i=1 Cov
(
f ′n−k(Sk−i) − f ′n−k(Sk−i−1), Xk

)
. Using the sta-

tionarity and noting that |f ′n−k(Sk−i)− f ′n−k(Sk−i−1)| ≤ b2|Xk−i|, we have

|Cov(f ′n−k(Sk−i)− f ′n−k(Sk−i−1), Xk)| ≤ b2M‖E0(Xi)‖1 � θ(i) .

Hence

n∑
k=1

k∑
i=[
√
k]

|Cov(f ′n−k(Sk−i)− f ′n−k(Sk−i−1), Xk)|

�
n∑
i=1

(i ∧
√
n)2θ(i)�

√
n
∑
i≥1

(i ∧
√
n)θ(i) . (4.14)
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From now on, we assume that i < [
√
k]. We first write

f ′n−k(Sk−i)− f ′n−k(Sk−i−1) = f ′′n−k(Sk−i−1)Xk−i +Rk,i ,

where Rk,i is Fk−i-measurable and |Rk,i| ≤ b3X
2
k−i/2. Hence, by stationarity,

|Cov(Rk,i, Xk)| ≤ b3‖X2
0E0(Xi)‖1/2� (n− k + 1)−1/2θ(i) .

implying that
n∑
k=1

[
√
k]∑

i=1

|Cov(Rk,i, Xk)| �
√
n

[
√
n]∑

i=1

θ(i) . (4.15)

In order to estimate the term E(f ′′n−k(Sk−i−1)Xk−iXk), we introduce the decomposition

below:

f ′′n−k(Sk−i−1) =
i−1∑
`=1

(f ′′n−k(Sk−i−`)− f ′′n−k(Sk−i−`−1)) + f ′′n−k(Sk−2i) ,

where by convention we set Sp = 0 if p ≤ 0. For any ` ∈ {1, · · · , i − 1}, by using the

notation (4.9) and the stationarity, we get that

|Cov(Γk(k, `+ i)Xk−i, Xk)| ≤ b3‖X−`X0E0(Xi)‖1 � (n− k + 1)−1/2θ(i) .

Hence
n∑
k=1

[
√
k]∑

i=1

i−1∑
`=1

Cov(Γk(k, `+ i)Xk−i, Xk)| �
√
n

[
√
n]∑

i=1

iθ(i) . (4.16)

As a second step, we bound up |Cov(f ′′n−k(Sk−2i), Xk−iXk)|. Clearly,

f ′′n−k(Sk−2i) =
k−i−1∑
`=i

Γk(k, `+ i) + f ′′n−k(0) .

Now for any ` ∈ {i, · · · , (k − i− 1)}, by stationarity,

|Cov(Γk(k, `+ i), Xk−iXk)| ≤ b3‖X−`
(
E−`(X0Xi)− E(X0Xi)

)
‖1 � (n− k + 1)−1/2θ(`) .

Hence

n∑
k=1

[
√
k]∑

i=1

k−i−1∑
`=i

|Cov(Γk(k, `+ i), Xk−iXk)| �
√
n

n∑
`=1

(` ∧
√
n)θ(`) . (4.17)

Next, note that

|Cov(f ′′n−k(0), Xk−iXk)| � b2 min(θ(k − i), θ(i))� θ([k/2]) ,
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implying that

n∑
k=1

[
√
k]∑

i=1

|Cov(f ′′n−k(0), Xk−iXk)| �
n∑
k=1

[
√
k]∑

i=1

θ([k/2])�
√
n

n∑
k=1

θ(k) . (4.18)

Taking into account the inequalities (4.13)-(4.18), and using that
∑

k≥1 θ(k) < ∞, we

get

n∑
k=1

∣∣∣E(f ′n−k(Sk−1)Xk)−
[
√
k]∑

i=1

E(f ′′n−k(Sk−2i))E(Xk−iXk)
∣∣∣� √n(1 +

∑
`≥1

(` ∧
√
n)θ(`)

)
.

(4.19)

We handle now the quantity

Ak :=

[
√
k]∑

i=1

E(f ′′n−k(Sk−2i))E(Xk−iXk)−
∞∑
i=1

E(f ′′n−k(Sk−1))E(Xk−iXk) .

We first note that by stationarity,∑
i≥[
√
k]+1

|E(f ′′n−k(Sk−1))E(Xk−iXk)| ≤ b2

∑
i≥[
√
k]+1

|E(X0E0(Xi))| �
∑

i≥[
√
k]+1

θ(i) .

Hence

n∑
k=1

∑
i≥[
√
k]+1

|E(f ′′n−k(Sk−1))E(Xk−iXk)| �
∑
i≥1

(i ∧
√
n)2θ(i)�

√
n
∑
i≥1

(i ∧
√
n)θ(i) .

(4.20)

On another hand, we write

E(f ′′n−k(Sk−1)− f ′′n−k(Sk−2i))E(Xk−iXk) =
2i−1∑
`=1

E(Γk(k, `)E(X0E0(Xi)) .

Therefore

[
√
k]∑

i=1

|E(f ′′n−k(Sk−1)− f ′′n−k(Sk−2i))E(Xk−iXk)| ≤ (n− k + 1)−1/2

[
√
k]∑

i=1

iθ(i) ,

implying that

n∑
k=1

[
√
k]∑

i=1

|E(f ′′n−k(Sk−1)− f ′′n−k(Sk−2i))E(Xk−iXk)| �
√
n

[
√
n]∑

i=1

iθ(i) . (4.21)

Hence (4.20) and (4.21) entail that

n∑
k=1

|Ak| �
√
n
∑
i≥1

(i ∧
√
n)θ(i) . (4.22)
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The estimates (4.19) and (4.22) yield to

n∑
k=1

∣∣∣E(f ′n−k(Sk−1)Xk)−
∞∑
i=1

E(f ′′n−k(Sk−1))E(X0Xi)
∣∣∣� √n(1+

∑
`≥1

(`∧
√
n)θ(`)

)
. (4.23)

Taking into account the estimates (4.11) and (4.23), Item (a) follows.

Proof of Item (b). Recall that in this case the iid random variables (Yk)k≥1 have their

first three moments defined by (4.1) and (4.2)

Notation 4.2. For any integer k ≥ 0, let X̃k = Xk − E0(Xk) and S̃k = Sk − E0(Sk),

with the convention S0 = 0.

Note that, since we assume that
∑

j≥1 jθ(j) <∞,

‖E0(Sn)‖2
2 ≤ 2

n∑
i=1

n∑
j=i

∣∣E(E0(Xi)E0(Xj))
∣∣ ≤ 2M

n∑
j=1

jθ(j)� 1 .

Therefore, using that f ′(0,W ) = 0 and that |f ′(x,W ) − f ′(y,W )| ≤ |x − y|, we infer

that to prove (4.4), it is enough to show that for any f ∈ Λ2(E) and any positive n,

sup
f∈Λ2(E)

E
(
f(S̃n +N,W )− f(Tn +NN,W )

)
� 1 +

∑
k≥1

k(k ∧
√
n)θ(k) . (4.24)

This will be done by using again the Lindeberg method. Let us introduce some additional

notations.

Notation 4.3. For any positive integer k, let ∆n,k = fn−k(S̃k−1 + X̃k)− fn−k(S̃k−1 +Yk)

where fn−k is defined in Notation 4.1.

All along the proof, the following lemma will be used (the proof is postponed to the

Appendix and is based on the fact that the common distribution of the random variables

(Yk)k≥1 is smooth).

Lemma 4.1. Let f ∈ Λ2(E).

1. For any i ≥ 2, there exists a positive constant κ1 depending on σ2 and i and such

that ‖f (i)
n−k‖∞ ≤ κ1(n− k + 1)(2−i)/2.

2. Assume that
∑

k≥1 kθX,3,4(k) < ∞. Then, for any i ≥ 2, there exists a constant

κ2 > 0 depending on σ2 and i such that, for any integer ` > 0,∣∣E(f
(i)
n−k(S̃`−1))

∣∣ ≤ κ2(n− k + 1)(1−i)/2 + κ2(n− k + `)(2−i)/2 .

Remark 4.1. If (Xk)k∈Z is a stationary sequence of martingale differences, Item 2. is

valid under the condition
∑

k≥1 θX,2,3(k) <∞.
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Since the sequence (N, (Yi)i≥1) is independent of ((Xi)i∈N,W ),

E(f(S̃n +N,W )− f(Tn +N,W )) =
n∑
k=1

E(∆n,k) . (4.25)

Next the functions fn−k are C∞. Consequently, from the Taylor integral formula at order

5,

∆n,k =
4∑
j=1

1

j!
f

(j)
n−k(S̃k−1)(X̃j

k − Y
j
k ) +Rn,k , (4.26)

with

Rn,k =
1

24
X̃5
k

∫ 1

0

(1− s)4f
(5)
n−k(S̃k−1 + sX̃k)ds−

1

24
Y 5
k

∫ 1

0

(1− s)4f
(5)
n−k(S̃k−1 + sYk)ds .

Taking into account the fact that ‖Xk‖∞ ≤M and Item 1 of Lemma 4.1, we derive that

‖Rn,k‖1 � (M5 + E(|Y1|5))‖f (5)
n−k‖∞ � (n− k + 1)−3/2 .

Therefore, ∑
k∈[1,n]

‖Rn,k‖1 � 1 . (4.27)

Let β4 = σ2 = E(Y 2
k ) and β4 = E(Y 4

k ). Since the sequence (Yi)i≥1 is independent of the

sequence (Xi)i≥1,

E(∆n,k −Rn,k) = E
(
f ′n−k(S̃k−1)X̃k +

4∑
`=2

1

`!
f

(`)
n−k(S̃k−1)(X̃`

k − β`)
)

= E
(
f ′n−k(S̃k−1)X̃k +

4∑
`=2

1

`!
f

(`)
n−k(S̃k−1)(X`

k − β`)
)

+ B̃n,k

:= E
(

∆
(1)
n,k +

1

2
∆

(2)
n,k +

1

6
∆

(3)
n,k +

1

24
∆

(4)
n,k

)
+ B̃n,k . (4.28)

Using Item 1 of Lemma 4.1, we first notice that∑
k∈[1,n]

|B̃n,k| �
∑
k∈[1,n]

‖E0(Xk)‖1 � 1. (4.29)

Next we develop the first four terms in the right-hand side of the decomposition (4.28)

with the help of the Lindeberg method. From now on, to soothe the notation, we shall

omit most of the time the index n in all the ∆
(i)
n,k and the related quantities, and then

rather write ∆
(i)
k . Let us start with the term ∆

(4)
k . Using Item 2 of Lemma 4.1, note first

that

n∑
k=1

∣∣E(f
(4)
n−k(S̃k−1))(E(X4

k) + β4)
∣∣� n∑

k=1

( 1

(n− k + 1)3/2
+

1

n

)
� 1 . (4.30)
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Next, we write

f
(4)
n−k(S̃k−1)(X4

k − E(X4
k)) = f

(4)
n−k(0)(X4

k − E(X4
k))

+
k−1∑
i=1

(
f

(4)
n−k(S̃k−i)− f

(4)
n−k(S̃k−i−1)

)
(X4

k − E(X4
k)) .

By Item 1 of Lemma 4.1 we get

n∑
k=1

∣∣Cov(f
(4)
n−k(0), X4

k)
∣∣� n∑

k=1

(n− k + 1)−1θ(k)�
n∑
k=1

θ(k) , (4.31)

and

n∑
k=1

k−1∑
i=1

∣∣Cov
(
f

(4)
n−k(S̃k−i)− f

(4)
n−k(S̃k−i−1), X4

k

)∣∣
�M5

n∑
k=1

(n− k + 1)−3/2

k∑
i=1

θ(i)�
n∑
i=1

θ(i) . (4.32)

Taking into account (4.30), (4.31), (4.32) and the fact that
∑

k≥1 θ(k) < ∞, it follows

that
n∑
k=1

∣∣E(∆
(4)
n,k)
∣∣� 1 . (4.33)

Now, concerning the first term in the right-hand side of (4.28), letting `k = [k/2], we

write

E(∆
(1)
k ) = E(f ′n−k(S̃k−`k−1)X̃k) +

`k∑
i=1

E
(
{f ′n−k(S̃k−i)− f ′n−k(S̃k−i−1)}X̃k

)
= E(∆̃

(1)
k,2) +

1

2
E(∆̃

(1)
k,3) +

1

6
E(∆̃

(1)
k,4) + B̃

(1)
n,k , (4.34)

where, for j = 2, 3, 4,

∆̃
(1)
k,j =

`k∑
i=1

f
(j)
n−k(S̃k−i−1)X̃j−1

k−i X̃k ,

and

B̃
(1)
n,k = E(f ′n−k(Sk−`k−1)X̃k) +

1

6

`k∑
i=1

∫ 1

0

(1− s)3E
(
f

(5)
n−k(S̃k−i−1 + sX̃k−i)X̃

4
k−iX̃k

)
ds.

We start by noticing that, by Item 1 of Lemma 4.1, for any m ≥ 2 and any s in [0, 1],

n∑
k=1

`k∑
i=1

‖f (m)
n−k(S̃k−i−1 + sX̃k−i)(X̃

m−1
k−i X̃k −Xm−1

k−i Xk)‖1

�Mm−1

n∑
k=1

(n− k + 1)(2−m)/2

`k∑
i=1

(
‖E0(Xk)‖1 + ‖E0(Xk−i)‖1

)
�
∑
k≥1

kθ(k) . (4.35)
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On another hand, since f ′n−k(0) is F0-measurable, E(f ′n−k(0)X̃k) = 0. Therefore

|E(f ′n−k(S̃k−`k−1)X̃k)| = |E
(
{f ′n−k(S̃k−`k−1)− f ′n−k(0)}X̃k

)
|

≤
∫ 1

0

|E
(
f ′′n−k(tS̃k−`k−1)S̃k−`k−1X̃k

)
|dt ≤ 4M‖f (2)

n−k‖∞(k − `k)θ(`k) .

Since ‖f (2)
n−k‖∞ � 1 and

∑
k≥1 kθ(k) <∞,∑
k∈[1,n]

|E(f ′n−k(S̃k−`k−1)X̃k)| � 1 . (4.36)

Next, Item 1 of Lemma 4.1 implies that

|E
(
f

(5)
n−k(S̃k−i−1 + sX̃k−i)X

4
k−iXk

)
| ≤M4‖f (5)

n−k‖∞θ(i)� (n− k + 1)−3/2θ(i) .

Hence
n∑
k=1

`k∑
i=1

|E
(
f

(5)
n−k(Sk−i−1 + sXk−i)X

4
k−iXk

)
| �

n∑
i=1

θ(i)� 1 . (4.37)

The upper bounds (4.35), (4.36) and (4.37) imply that∑
k∈[1,n]

|B̃(1)
n,k| � 1 . (4.38)

Next, taking into account Item 2 of Lemma 4.1 and the fact that |E(X3
k−iXk)| ≤M3θ(i),

we derive that

|E{f (4)
n−k(S̃k−i−1)}E(X3

k−iXk)| � ((n− k + 1)−3/2 + (n− i)−1)θ(i) .

Therefore
n∑
k=1

`k∑
i=1

|E{f (4)
n−k(S̃k−i−1)}E(X3

k−iXk)| �
∑
i≥1

θ(i)� 1 . (4.39)

So, overall, starting from (4.34) and taking into account (4.35), (4.38) and (4.39) we get

E(∆
(1)
k ) = E(∆

(1)
k,2) +

1

2
E(∆

(1)
k,3) +

1

6
E(∆

(1)
k,4) + A

(1)
k,2 +

1

2
A

(1)
k,3 +B

(1)
n,k , (4.40)

where B
(1)
n,k is such that ∑

k∈[1,n]

|B(1)
n,k| � 1 , (4.41)

and the following notations have been used: for j = 2, 3, 4,

∆
(1)
k,j =

`k∑
i=1

{f (j)
n−k(S̃k−i−1)}(Xj−1

k−iXk)
(0), A

(1)
k,j =

`k∑
i=1

E{f (j)
n−k(S̃k−i−1)}E(Xj−1

k−iXk). (4.42)

Introduce now the following additional notations.
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Notation 4.4. Let γi = E(X0Xi) and γ
(2)
i = E(X2

0Xi). Define β2,`k = 2
∑`k

i=1 γi, β
(`k)
2 =

2
∑

i≥`k+1 γi and β3,1,`k = 3
∑`k

i=1 γ
(2)
i .

Next note that, since E(Xk−iXk) = γi,

1

2
E{f ′′n−k(S̃k−1)}β2,`k − A

(1)
k,2 =

`k∑
i=1

γi

i∑
j=1

E{f ′′n−k(S̃k−j)− f ′′n−k(S̃k−j−1)} =

`k∑
i=1

γi

i∑
j=1

E
{
f

(3)
n−k(S̃k−j−1)X̃k−j

}
+

`k∑
i=1

γi
2

i∑
j=1

E
{
f

(4)
n−k(S̃k−j−1)X̃2

k−j
}

+ r
(1)
n,k,2 , (4.43)

where

r
(1)
n,k,2 :=

1

2

∫ 1

0

(1− t)2

`k∑
i=1

γi

i∑
j=1

E
{
f

(5)
n−k(Sk−j−1 + tX̃k−j)X̃

3
k−j

}
dt .

By Item 1 of Lemma 4.1, it follows that

|r(1)
n,k,2| �M4(n− k + 1)−3/2

`k∑
i=1

iθ(i) .

Since
∑

i≥1 iθ(i) <∞, this implies that∑
k∈[1,n]

|r(1)
n,k,2| � 1 . (4.44)

Next, taking into account Item 1 of Lemma 4.1, we get

`k∑
i=1

i∑
j=1

∣∣∣E{f (3)
n−k(S̃k−j−1)E0(Xk−j)

}
γi

∣∣∣� (n− k + 1)−1/2θ(k − j)θ(i) .

Hence, since `k = [k/2] and
∑

i≥1 iθ(i) <∞,

n∑
k=1

`k∑
i=1

i∑
j=1

∣∣∣E{f (3)
n−k(S̃k−j−1)E0(Xk−j)

}
γi

∣∣∣� n∑
k=1

θ([k/2])

`k∑
i=1

iθ(i)� 1 . (4.45)

With similar arguments, we have

n∑
k=1

`k∑
i=1

i∑
j=1

∣∣∣E{f (4)
n−k(S̃k−j−1)(X̃2

k−j −X2
k−j)

}
γi

∣∣∣� 1 . (4.46)

In addition, by taking into account Item 2 of Lemma 4.1, we get∣∣∣E{f (4)
n−k(S̃k−j−1)E(X2

k−j)
}
γi

∣∣∣�M3((n− k + 1)−3/2 + (n− j)−1)θ(i) .
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Hence,

n∑
k=1

`k∑
i=1

i∑
j=1

∣∣∣E{f (4)
n−k(S̃k−j−1)E(X2

k−j)
}
γi

∣∣∣
�

n∑
k=1

((n− k + 1)−3/2 + (n− `k)−1)

`k∑
i=1

i θ(i)�
n∑
i=1

iθ(i)� 1 . (4.47)

So overall, starting from (4.43) and taking into account the upper bounds (4.44)-(4.47),

we derive that

1

2
E{f ′′n−k(S̃k−1)}β2,`k − A

(1)
k,2 =

`k∑
i=1

γi

i∑
j=1

E
{
f

(3)
n−k(S̃k−j−1)Xk−j

}
+

`k∑
i=1

γi
2

i∑
j=1

E
{
f

(4)
n−k(S̃k−j−1)(X2

k−j)
(0)
}

+R
(1)
n,k,2 , (4.48)

where R
(1)
n,k,2 is such that ∑

k∈[1,n]

|R(1)
n,k,2| � 1 . (4.49)

Now, let r
(1)
n,k,3 = 1

3
E{f (3)

n−k(S̃k−1)}β3,1,`k − A
(1)
k,3. Then, recalling the notation γ

(2)
i =

E(X2
0Xi),

r
(1)
n,k,3 =

`k∑
i=1

γ
(2)
i E{f (3)

n−k(S̃k−1)} − A(1)
k,3 =

`k∑
i=1

γ
(2)
i

i∑
j=1

E
{
f

(3)
n−k(S̃k−j)− f

(3)
n−k(S̃k−j−1)

}
=

`k∑
i=1

γ
(2)
i

i∑
j=1

(
E
{
f

(4)
n−k(S̃k−j−1)X̃k−j

}
+

∫ 1

0

(1− t)E
{
f

(5)
n−k(S̃k−j−1 + tX̃k−j)X̃

2
k−j
}
dt
)

:= r
(1)
n,k,3(1) + r

(1)
n,k,3(2) . (4.50)

Taking into account Item 1 of Lemma 4.1 and the fact that |γ(2)
i | ≤ M2θ(i) and

‖X̃k−j‖∞ ≤ 2M , it follows that

|r(1)
n,k,3(2)| �

`k∑
i=1

i∑
j=1

θ(i)

(n− k + 1)3/2
�

∑`k
i=1 i θ(i)

(n− k + 1)3/2
.

Therefore, since
∑

i≥1 iθ(i) <∞, ∑
k∈[1,n]

|r(1)
n,k,3(2)| � 1 . (4.51)

On another hand, by Item 1 of Lemma 4.1,∣∣γ(2)
i E

{
f

(4)
n−k(S̃k−j−1)E0(Xk−j)

}∣∣� (n− k + 1)−1θ(k − j)θ(i) .
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Hence, since
∑

i≥1 iθ(i) <∞,

n∑
k=1

`k∑
i=1

i∑
j=1

∣∣γ(2)
i E

{
f

(4)
n−k(S̃k−j−1)E0(Xk−j)

}∣∣� n∑
k=1

θ([k/2])
n∑
i=1

iθ(i)� 1 . (4.52)

Starting from (4.26) and taking into account (4.27), (4.28), (4.29), (4.33), (4.40),

(4.41), (4.48)-(4.52) and the fact that β2 = σ2 = E(X2
0 ) + β2,`k + β

(`k)
2 , we get

E(∆n,k) = E(∆
(1)
k,2) +

1

2
E
(
f ′′n−k(S̃k−1)(X2

k)(0)
)
− 1

2
E
(
f ′′n−k(S̃k−1)

)
β

(`k)
2 +

1

2
E(∆

(1)
k,3)

−
`k∑
i=1

γi

i∑
j=1

E
{
f

(3)
n−k(S̃k−j−1)Xk−j

}
−

`k∑
i=1

γi
2

i∑
j=1

E
{
f

(4)
n−k(S̃k−j−1)(X2

k−j)
(0)
}

−
`k∑
i=1

γ
(2)
i

2

i∑
j=1

(
E
{
f

(4)
n−k(S̃k−j−1)Xk−j

}
+

1

6
E
(
f

(3)
n−k(S̃k−1)(X3

k − (β3 − β3,1,`k))
)

+
1

6
E(∆

(1)
k,4) + Γ

(1)
n,k , (4.53)

where Γ
(1)
n,k satisfies ∑

k∈[1,n]

|Γ(1)
n,k| � 1 . (4.54)

Note first that
n∑
k=1

|E
(
f ′′n−k(S̃k−1)

)
β

(`k)
2 | �

n∑
k=1

|β(`k)
2 | �

n∑
k=1

∑
i≥`k+1

θ(i)�
∑
i≥1

iθ(i)� 1 . (4.55)

To handle the first two terms in the right hand side of (4.53), define

mk = [
√
n− k], mk,i = min(mk, k − i− 1) and D

(1)
k,i,2 = E

{
f ′′n−k(S̃k−i−1)(Xk−iXk)

(0)
}
.

(4.56)

Then, for any integer i in [0, `k], with the convention that S̃u = 0 for any u ≤ 0, we write

D
(1)
k,i,2 = E

{(
f ′′n−k(S̃k−i−mk,i−1) +

i+mk,i∑
j=i+1

(f ′′n−k(S̃k−j)− f ′′n−k(S̃k−j−1)
)

(Xk−iXk)
(0)
}
.

Let then, for ` = 3, 4, 5 and t in [0, 1],

∆̃
(1,`)
k,i,2(t) =

i+mk,i∑
j=i+1

f
(`)
n−k(S̃k−j−1 + tX̃k−j)X̃

`−2
k−j(Xk−iXk)

(0). (4.57)

By the Taylor integral formula,

D
(1)
k,i,2 =E

{
f ′′n−k(S̃k−i−mk,i−1)(Xk−iXk)

(0) + ∆̃
(1,3)
k,i,2 (0) +

1

2
∆̃

(1,4)
k,i,2 (0)

}
+

1

2

∫ 1

0

(1− t)2E
{

∆̃
(1,5)
k,i,2 (t)

}
dt. (4.58)
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But, since ‖f ′′n−k‖∞ � 1,

n∑
k=1

`k∑
i=0

∣∣E{f ′′n−k(S̃k−i−mk,i−1)(Xk−iXk)
(0)
}∣∣� n∑

k=1

`k∑
i=0

(
θ(mk) + θ(k − i)

)
∧ θ(i)

�
n∑
k=1

(
mkθ(mk) +

`k∑
i=mk

θ(i) + kθ([k/2])
)
� 1 +

[
√
n]∑

k=1

k2θ(k) + n
∑
k≥[
√
n]

θ(k) .

Hence
n∑
k=1

`k∑
i=0

∣∣E{f ′′n−k(S̃k−i−mk,i−1)(Xk−iXk)
(0)
}∣∣� 1 +

∑
k≥1

k(k ∧
√
n)θ(k) . (4.59)

On another hand, by using Item 1 of Lemma 4.1,

n∑
k=1

`k∑
i=0

∣∣E{∆̃
(1,5)
k,i,2 (t)

}∣∣� n∑
k=1

`k∑
i=0

i+mk,i∑
j=i+1

θ(j − i) ∧ θ(i)
(n− k + 1)3/2

�
n∑
j=1

jθ([j/2])� 1 . (4.60)

For ` = 3, 4, set

∆
(1,`)
k,i,2 :=

i+mk,i∑
j=i+1

f
(`)
n−k(S̃k−j−1)X`−2

k−j(Xk−iXk)
(0). (4.61)

Applying Item 1 of Lemma 4.1 and using that mk,i ≤
√
n− k + 1, we get

n∑
k=1

`k∑
i=0

∣∣E{∆̃
(1,3)
k,i,2 (0)−∆

(1,3)
k,i,2

}∣∣ ≤ n∑
k=1

`k∑
i=0

i+mk,i∑
j=i+1

‖E0(Xk−j)f
(3)
n−k(S̃k−j−1)(Xk−iXk)

(0)‖1

�
n∑
k=1

`k∑
i=0

i+mk,i∑
j=i+1

θ(k − j) ∧ θ(j − i) ∧ θ(i)
(n− k + 1)1/2

�
n∑
k=1

kθ([k/3])� 1 . (4.62)

Similarly, since ‖f (4)
n−k‖∞ � (n− k + 1)−1, we derive

n∑
k=1

`k∑
i=0

∣∣E{∆̃
(1,4)
k,i,2 (0)−∆

(1,4)
k,i,2

}∣∣� 1 . (4.63)

Starting from (4.53) and taking into account (4.54), (4.55), (4.58), (4.59), (4.60), (4.62)

and (4.63) , we then derive that

E(∆n,k) =
1

2

`k∑
i=0

(1 + 1{i 6=0})E
{

∆
(1,3)
k,i,2 +

1

2
∆

(1,4)
k,i,2

}
+

1

2
E(∆

(1)
k,3)

−
`k∑
i=1

γi

i∑
j=1

E
{
f

(3)
n−k(S̃k−j−1)Xk−j

}
−

`k∑
i=1

γi
2

i∑
j=1

E
{
f

(4)
n−k(S̃k−j−1)(X2

k−j)
(0)
}

−
`k∑
i=1

γ
(2)
i

2

i∑
j=1

(
E
{
f

(4)
n−k(S̃k−j−1)Xk−j

}
+

1

6
E
(
f

(3)
n−k(S̃k−1)(X3

k − (β3 − β3,1,`k))
)

+
1

6
E(∆

(1)
k,4) + Γ

(2)
n,k , (4.64)
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where Γ
(2)
n,k satisfies

∑n
k=1 |Γ

(2)
n,k| � 1 +

∑
k≥1 k(k ∧

√
n)θ(k). Introduce now the following

notations.

Notation 4.5. Let β3,2,mk = 3
∑mk,0

i=1 E(X0X
2
i ), β∗3,`k,mk = 6

∑`k
i=1

∑i+mk,i
j=i+1 E(X0Xj−iXj).

Next, let β̃
(`k,mk)
3 = β3 − β3,1,`k −

{
E(X3

0 ) + β3,2,mk + β∗3,`k,mk
}

, where we recall that mk

and mk,i have been defined in (4.56).

Since

β̃
(`k,mk)
3 = 3

∑
i>`k

E(X2
0Xi) + 3

∑
i>mk,0

E(X0X
2
i )

+ 6

`k∑
i=1

∑
j>mk,i

E(X0XjXj+i) + 6
∑
i>`k

∑
j≥1

E(X0XjXj+i),

by Item 1 of Lemma 4.1,

n∑
k=1

‖f (3)
n−k‖∞

∣∣β̃(`k,mk)
3

∣∣� n∑
k=1

(n− k + 1)−1/2
∑

i≥`k∧mk

θ(i)

+
n∑
k=1

(n− k + 1)−1/2
( `k∑
i=1

∑
j≥mk,i+1

θ(j) ∧ θ(i) +
∑
i≥`k

∑
j≥1

θ(j) ∧ θ(i)
)
.

By simple algebra, and since
∑

i≥1 iθ(i) <∞, we then derive that

n∑
k=1

‖f (3)
n−k‖∞|β̃

(`k,mk)
3 | � 1 +

∑
i≥1

i(i ∧
√
n)θ(i) . (4.65)

Next we shall first center the random variables Xk−j(Xk−iXk)
(0) appearing in the quan-

tity ∆
(1,3)
k,i,2 . Using that E

{
Xk−j(Xk−iXk)

(0)
}

= E
{
Xk−jXk−iXk

}
, an application of Item

2 of Lemma 4.1 gives

J1,k :=
∣∣∣1
6
E
{
f

(3)
n−k(S̃k−1)

}
β∗3,`k,mk −

`k∑
i=1

i+mk,i∑
j=i+1

E
{
f

(3)
n−k(S̃k−j−1)

}
E
{
Xk−j(Xk−iXk)

(0)
}∣∣∣

�
`k∑
i=1

i+mk,i∑
j=i+1

∣∣E{f (3)
n−k(S̃k−1)− f (3)

n−k(S̃k−j−1)
}∣∣(θ(j − i) ∧ θ(i)) . (4.66)

Let us handle the quantity E
{
f

(3)
n−k(S̃k−1)− f (3)

n−k(S̃k−j−1)
}

. By Taylor integral formula,

E
{
f

(3)
n−k(S̃k−1)− f (3)

n−k(S̃k−j−1)
}

=

j∑
`=1

E
{
f

(4)
n−k(S̃k−`−1)X̃k−`

}
+

∫ 1

0

(1− t)
j∑
`=1

E
{
f

(5)
n−k(S̃k−`−1 + tX̃k−`)X̃

2
k−`
}
dt .
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By using Item 1 of Lemma 4.1 and noticing that θ(j − i) ∧ θ(i) ≤ θ([j/2]), we get

n∑
k=1

`k∑
i=1

i+mk,i∑
j=i+1

j∑
`=1

∣∣E{f (5)
n−k(S̃k−`−1 + tX̃k−`)X̃

2
k−`
}

(θ(j − i) ∧ θ(i))
∣∣

�
n∑
k=1

(n− k + 1)−3/2

`k∑
i=1

i+mk,i∑
j=i+1

jθ([j/2])

�
n∑
k=1

(n− k + 1)−3/2
{ 2[
√
n]∑

j=1

j2θ(j) +mk

∑
j≥[
√
n]

jθ(j)
}
�
∑
i≥1

i(i ∧
√
n)θ(i) . (4.67)

Next, by Item 1 of Lemma 4.1 again,

n∑
k=1

`k∑
i=1

i+mk,i∑
j=i+1

j∑
`=1

∣∣E{f (4)
n−k(S̃k−`−1)E0(Xk−`)

}
(θ(j − i) ∧ θ(i))

∣∣
�

n∑
k=1

(n− k + 1)−1

`k∑
i=1

i+mk,i∑
j=i+1

j∑
`=1

θ(k − `)θ([j/2])

�
[n/2]∑
k=1

(n− k + 1)−1

`k∑
i=1

i+mk,i∑
j=i+1

jθ([j/2])

+
n∑

k=[n/2]+1

(n− k + 1)−1

[k/2]∑
i=1

i+mk∑
j=i+1

[k/2]+mk∑
`=1

θ(k − `)θ([j/2]) . (4.68)

With the computations as given in (4.67) and the fact that

n∑
k=[n/2]+1

(n− k + 1)−1

[k/2]∑
i=1

i+mk∑
j=i+1

[k/2]+mk∑
`=1

θ(k − `)θ([j/2])

�
n∑

k=[n/2]+1

(n− k + 1)−1kθ([k/4])

[k/2]∑
i=1

i+mk∑
j=i+1

θ([j/2])�
∑
k≥1

kθ(k)
∑
i≥1

θ(i) , (4.69)

we derive, overall, that

J1,k ≤
`k∑
i=1

i+mk,i∑
j=i+1

j∑
`=1

∣∣E{f (4)
n−k(S̃k−`−1)Xk−`

}∣∣θ([j/2]) + Γ
(3)
n,k , (4.70)

where Γ
(3)
n,k satisfies 1+

∑n
k=1 |Γ

(3)
n,k| �

∑
i≥1 i(i∧

√
n)θ(i). Next, for mk,` defined in (4.56),

write

E
{
f

(4)
n−k(S̃k−`−1)Xk−`

}
= E

{
f

(4)
n−k(S̃k−`−mk,`−1)Xk−`

}
+

`+mk,`∑
u=`+1

E
{

(f
(4)
n−k(S̃k−u)− f

(4)
n−k(S̃k−u−1)Xk−`

}
,
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implying, by using Item 1 of Lemma 4.1, that∣∣E{f (4)
n−k(S̃k−`−1)Xk−`

}∣∣
� (n− k + 1)−1(θ(mk) + θ(k − `)) + (n− k + 1)−3/2

`+mk,`∑
u=`+1

θ(u− `) .

Hence

n∑
k=1

`k∑
i=1

i+mk,i∑
j=i+1

j∑
`=1

∣∣E{f (4)
n−k(S̃k−`−1)Xk−`

}∣∣θ([j/2])

�
n∑
k=1

`k∑
i=1

i+mk,i∑
j=i+1

(n− k + 1)−1θ([j/2])
{
jθ(mk) +

j∑
`=1

θ(k − `)
}

+
n∑
k=1

`k∑
i=1

i+mk,i∑
j=i+1

(n− k + 1)−3/2jθ([j/2])

√
n∑

u=1

θ(u) .

With the computations as given in (4.67)-(4.69) together with the fact that

n∑
k=1

(n− k + 1)−1mkθ(mk) =
n∑
k=1

k−1/2θ([
√
k])�

[
√
n]∑

k=1

θ(k) ,

it follows that

n∑
k=1

`k∑
i=1

i+mk,i∑
j=i+1

j∑
`=1

∣∣E{f (4)
n−k(S̃k−`−1)Xk−`

}∣∣θ([j/2])� 1 +
∑
i≥1

i(i ∧
√
n)θ(i) . (4.71)

Therefore (4.70) together with (4.71) imply

n∑
k=1

∣∣∣1
6
E
{
f

(3)
n−k(S̃k−1)

}
β∗3,`k,mk −

`k∑
i=1

i+mk,i∑
j=i+1

E
{
f

(3)
n−k(S̃k−j−1)

}
E
{
Xk−j(Xk−iXk)

(0)
}∣∣∣

� 1 +
∑
i≥1

i(i ∧
√
n)θ(i) . (4.72)

With similar arguments, we infer that

n∑
k=1

∣∣∣1
3
E
{
f

(3)
n−k(S̃k−1)

}
β3,2,mk −

mk,0∑
j=1

E
{
f

(3)
n−k(S̃k−j−1)

}
E
{
Xk−j(X

2
k)(0)

}∣∣∣
� 1 +

∑
i≥1

i(i ∧
√
n)θ(i) . (4.73)

Now, for any integer i ∈ [0, n], let

∆
(1,3,0)
k,i,2 :=

i+mk,i∑
j=i+1

{
f

(3)
n−k(S̃k−j−1)(Xk−j(Xk−iXk)

(0))(0)
}
.
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Starting from (4.64) and taking into account (4.65), (4.72) and (4.73), we then obtain

E(∆n,k) =
1

2

`k∑
i=0

(1 + 1{i 6=0})E
{

∆
(1,3,0)
k,i,2

}
+

1

2
E(∆

(1)
k,3) +

1

6
E
(
f

(3)
n−k(S̃k−1)(X3

k − E(X3
0 ))
)

−
`k∑
i=1

γi

i∑
j=1

E
{
f

(3)
n−k(S̃k−j−1)Xk−j

}
−

`k∑
i=1

γi
2

i∑
j=1

E
{
f

(4)
n−k(S̃k−j−1)(X2

k−j)
(0)
}

−
`k∑
i=1

γ
(2)
i

2

i∑
j=1

E
{
f

(4)
n−k(S̃k−j−1)Xk−j

}
+

1

4

`k∑
i=0

(1 + 1{i 6=0})E
{

∆
(1,4)
k,i,2

}
+

1

6
E(∆

(1)
k,4) + Γ

(4)
n,k ,

(4.74)

where Γ
(4)
n,k satisfies

∑n
k=1 |Γ

(3)
n,k| � 1 +

∑
i≥1 i(i ∧

√
n)θ(i).

In what follows we continue the estimation of each term in the right-hand side of

(4.74) and show that the sum over k from 1 to n of their absolute values is bounded by

a constant times {1 +
∑

i≥1 i(i ∧
√
n)θ(i)}. Let us start by dealing with the quantities

∆
(1,3,0)
k,i,2 . With this aim, note first that for mk,j defined in (4.56),∣∣E{f (3)

n−k(S̃k−j−mk,j−1)(Xk−j(Xk−iXk)
(0))(0)

}∣∣� ‖f (3)
n−k‖∞

(
θ(mk,j) ∧ θ(j − i) ∧ θ(i)

)
� ‖f (3)

n−k‖∞
(
θ(mk) ∧ θ(j − i) ∧ θ(i) + θ(k − j) ∧ θ(j − i) ∧ θ(i)

)
.

Hence, by Item 1 of Lemma 4.1 and the fact that mk ≤
√
n− k + 1,

n∑
k=1

`k∑
i=0

i+mk,i∑
j=i+1

∣∣E{f (3)
n−k(S̃k−j−mk,j−1)(Xk−j(Xk−iXk)

(0))(0)
}∣∣

�
n∑
k=1

mk√
n− k + 1

(
mkθ(mk) +

∑
i≥mk

θ(i) + `kθ([k/3]
)

�
n∑
k=1

√
kθ([
√
k]) +

n∑
k=1

∑
i≥[
√
k]

θ(i) +
n∑
k=1

kθ(k)� 1 +
∑
i≥1

i(i ∧
√
n)θ(i) . (4.75)

On another hand, by the Taylor integral formula,

E
{(
f

(3)
n−k(S̃k−j−1)− f (3)

n−k(S̃k−j−mk,j−1)
)
(Xk−j(Xk−iXk)

(0))(0)
}

=

mk,j∑
u=1

E
{(
f

(3)
n−k(S̃k−j−u)− f

(3)
n−k(S̃k−j−u−1)

)
(Xk−j(Xk−iXk)

(0))(0)
}

=

mk,j∑
u=1

E
{
f

(4)
n−k(S̃k−j−u−1)X̃k−j−u(Xk−j(Xk−iXk)

(0))(0)
}

+

mk,j∑
u=1

∫ 1

0

(1− t)E
{
f

(5)
n−k(S̃k−j−u−1 + tX̃k−j−u)X̃

2
k−j−u(Xk−j(Xk−iXk)

(0))(0)
}
dt .
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According to Item 1 of Lemma 4.1,

n∑
k=1

`k∑
i=0

i+mk,i∑
j=i+1

mk,j∑
u=1

|E
{
f

(5)
n−k(S̃k−j−u−1 + tX̃k−j−u)X̃

2
k−j−u(Xk−j(Xk−iXk)

(0))(0)
}
|

�
n∑
k=1

‖f (5)
n−k‖∞

`k∑
i=0

mk∑
j=1

mk∑
u=1

(
θ(u) ∧ θ(j) ∧ θ(i)

)
�

n∑
k=1

(n− k + 1)−3/2
{ [
√
n]∑

u=1

u2θ(u) +m2
k

∑
i≥mk+1

θ(i)
}

�
[
√
n]∑

u=1

u2θ(u) +
∑
i≥1

iθ(i)� 1 +
∑
i≥1

i(i ∧
√
n)θ(i) . (4.76)

Next, let Zk,j,u,i := X̃k−u(Xk−j(Xk−iXk)
(0))(0) and Z

(0)
k,j,u,i := Zk,j,u,i − E(Zk,j,u,i). Since

|E(Zk,j,u,i)| �
(
θ(u− j) + θ(k − j)

)
∧ θ(j − i) ∧ θ(i) ,

by Item 2 of Lemma 4.1,

n∑
k=1

`k∑
i=0

i+mk,i∑
j=i+1

j+mk,j∑
u=j+1

∣∣E{f (4)
n−k(S̃k−u−1)

}
E(Zk,j,u,i)

∣∣
�

n∑
k=1

`k∑
i=0

i+mk,i∑
j=i+1

j+mk,j∑
u=j+1

((
θ(u− j) + θ(k − j)

)
∧ θ(j − i) ∧ θ(i)

)
(n− u) ∧ (n− k + 1)3/2

�
n∑
k=1

(
(n− k + 1)−3/2 + n−1

)(
m2
k

`k∑
i=mk

θ(i) +

mk∑
u=1

u2θ(u) +m2
kkθ([k/3]

)
� 1 +

∑
u≥1

u(u ∧
√
n)θ(u) . (4.77)

On another hand, for mk,u defined in (4.56),∣∣E{f (4)
n−k(S̃k−u−mk,u−1)Z

(0)
k,j,u,i

}∣∣� ‖f (4)
n−k‖∞

{(
θ(mk) ∧ θ(u− j) ∧ θ(j − i) ∧ θ(i)

)
+
(
θ(k − u) ∧ θ(u− j) ∧ θ(j − i) ∧ θ(i)

)}
.

Hence, using Item 1 of Lemma 4.1 and the fact that m2
k ≤ n− k + 1,

n∑
k=1

`k∑
i=0

i+mk,i∑
j=i+1

j+mk,j∑
u=j+1

∣∣E{f (4)
n−k(S̃k−u−mk,u−1)Z

(0)
k,j,u,i

}∣∣
�
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k=1

m2
k

n− k + 1

(
mkθ(mk) +

∑
i≥mk

θ(i) + kθ([k/4])
)

�
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(√
kθ([
√
k]) +

∑
i≥[
√
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θ(i) + kθ(k)
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� 1 +
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u(u ∧
√
n)θ(u) . (4.78)
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Next

E
{(
f

(4)
n−k(S̃k−u−1)− f (4)

n−k(S̃k−u−mk,u−1)
)
Z

(0)
k,j,u,i

}
=

u+mk,u∑
v=u+1

E
{(
f

(4)
n−k(S̃k−v)− f

(4)
n−k(S̃k−v−1)

)
Z

(0)
k,j,u,i

}
=

u+mk,u∑
v=u+1

∫ 1

0

E
{(
f

(5)
n−k(S̃k−v−1 + tX̃k−v)X̃k−vZ

(0)
k,j,u,i

}
dt .

Therefore, by Item 1 of Lemma 4.1,

n∑
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`k∑
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i+mk,i∑
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j+mk,j∑
u=j+1

∣∣E{(f (4)
n−k(S̃k−u−1)− f (4)
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)
Z
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k,j,u,i

}∣∣
�
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`k∑
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i+mk,i∑
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j+mk,j∑
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u+mk,u∑
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‖f (5)
n−k‖∞

(
θ(v − u) ∧ θ(u− j) ∧ θ(j − i) ∧ θ(i)

)
�

n∑
k=1

1

(n− k + 1)3/2

mk∑
`=1

`3θ(`) +
n∑
k=1

m3
k

(n− k + 1)3/2

∑
i≥mk+1

θ(i)

�
n∑
k=1

1

k3/2

[
√
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`=1

`3θ(`) +
n∑
k=1

∑
i≥[
√
k]

θ(i)�
∑
u≥1

u(u ∧
√
n)θ(u) . (4.79)

Taking into account (4.75), (4.76), (4.77), (4.78) and (4.79), it follows that

n∑
k=1

`k∑
i=0

∣∣E(∆
(1,3,0)
k,i,2 )

∣∣� 1 +
∑
u≥1

u(u ∧
√
n)θ(u) . (4.80)

With similar (but even simpler) arguments, we infer that the sum over k from 1 to n

of the second and third terms in the right-hand side of (4.74) are also bounded by a

constant times {1 +
∑

u≥1 u(u ∧
√
n)θ(u)}. More precisely,

n∑
k=1

{∣∣E(∆
(1)
n,k,3)

∣∣+
∣∣E(f (3)

n−k(S̃k−1)(X3
k − E(X3

0 ))
)∣∣}� 1 +

∑
u≥1

u(u ∧
√
n)θ(u) . (4.81)

We deal now with the fourth term of the right hand side of (4.74). With this aim,

recalling the definition (4.56) of mk,j, note that∣∣E{f (3)
n−k(S̃k−j−mk,j−1)Xk−j

}∣∣� ‖f (3)
n−k‖∞θ(mk,j)� ‖f (3)

n−k‖∞
(
θ(mk) + θ(k − j)

)
.
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Hence, by Item 1 of Lemma 4.1 and recalling the notation γi = E(X0Xi), we get

n∑
k=1

`k∑
i=1

i∑
j=1

∣∣γiE{f (3)
n−k(S̃k−j−mk,j−1)Xk−j

}∣∣
�

n∑
k=1

(n− k + 1)−1/2

`k∑
i=1
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θ(i)(θ(mk) + θ(k − j))

�
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k−1/2θ([
√
k])
∑
i≥1

iθ(i) +
n∑
k=1

θ([k/2])
∑
i≥1

iθ(i)� 1 . (4.82)

Next, by the Taylor integral formula,

E
{(
f

(3)
n−k(S̃k−j−1)−f (3)

n−k(S̃k−j−mk,j−1)
)
Xk−j

}
=

j+mk,j∑
u=j+1

E
{(
f

(3)
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(3)
n−k(S̃k−u−1)

)
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}
=

j+mk,j∑
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(
E
{
f

(4)
n−k(S̃k−u−1)X̃k−uXk−j

}
+

∫ 1

0

(1−t)E
{
f

(5)
n−k(S̃k−u−1+tX̃k−u)X̃

2
k−uXk−j

}
dt
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.

But, by Item 1 of Lemma 4.1,

n∑
k=1

`k∑
i=1

i∑
j=1

j+mk,i∑
u=j+1

∣∣γiE{f (5)
n−k(S̃k−u−1 + tX̃k−u)X̃

2
k−uXk−j

}∣∣
�
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(n− k + 1)−3/2
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θ(u)
∑
i≥1

iθ(i)� 1 . (4.83)

On another hand, by Item 1 of Lemma 4.1 again,∣∣γiE{f (4)
n−k(S̃k−u−1)(X̃k−u −Xk−u)Xk−j

}∣∣ =
∣∣γiE{f (4)

n−k(S̃k−u−1)E0(Xk−u)Xk−j
}∣∣

� (n− k + 1)−1(θ(k − u) ∧ θ(u− j))θ(i)� (n− k + 1)−1θ([(k − j)/2])θ(i) .

Hence,
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�
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iθ(i)� 1 . (4.84)

Moreover, by Item 2 of Lemma 4.1,
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k=1

`k∑
i=1
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j+mk,i∑
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∣∣γiE{f (4)
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}
E(Xk−uXk−j)
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�

n∑
k=1

`k∑
i=1

i∑
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Hence, taking into account (4.82), (4.83), (4.84) and (4.85), we derive that

n∑
k=1

`k∑
i=1

i∑
j=1

∣∣γiE{f (3)
n−k(S̃k−j−1)Xk−j

}∣∣
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∣∣γiE{f (4)
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(0)
}∣∣ . (4.86)

Next, recalling the definition (4.56) of mk,u, by Item 1 of Lemma 4.1, note that
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i∑
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j+mk,j∑
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∣∣γiE{f (4)
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iθ(i) +
n∑
k=1

`k∑
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{
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�
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iθ(i)
)2

� 1 . (4.87)

On another hand,∣∣E{(f (4)
n−k(S̃k−u−1)− f (4)

n−k(S̃k−u−mk,u−1)
)
(Xk−uXk−j)

(0)
}∣∣

≤
u+mk,u∑
v=u+1

∣∣E{(f (4)
n−k(S̃k−v)− f

(4)
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0
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Hence, ∣∣γiE{(f (4)
n−k(S̃k−u−1)− f (4)

n−k(S̃k−u−mk,u−1)
)
(Xk−uXk−j)

(0)
}∣∣

� ‖f (5)
n−k‖∞

u+mk∑
v=u+1

(
θ(v − u) ∧ θ(u− j))θ(i) . (4.88)

Taking into account (4.87) and (4.88) together with Item 1 of Lemma 4.1, it follows that

n∑
k=1

`k∑
i=1

i∑
j=1

j+mk,j∑
u=j+1

∣∣γiE{f (4)
n−k(S̃k−u−1)(Xk−uXk−j)

(0)
}∣∣

� 1 +
n∑
k=1

(n− k + 1)−3/2

mk∑
v=1

vθ(v)
n∑
i=1

iθ(i)� 1 . (4.89)
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Starting from (4.86) and taking into account the upper bound (4.89), we get that the

sum over k from 1 to n of the fourth term in the right-hand side of (4.74) is uniformly

bounded as a function of n. More precisely,

n∑
k=1

`k∑
i=1

i∑
j=1

∣∣γiE{f (3)
n−k(S̃k−j−1)Xk−j

}∣∣� 1 . (4.90)

Similar computations (even simpler since we deal with the fourth derivative rather than

the third one) give the following upper bound concerning the quantities involved in the

fifth and sixth terms in the right-hand side of (4.74):

n∑
k=1

`k∑
i=1

i∑
j=1

(∣∣γiE{f (4)
n−k(S̃k−j−1)(X2

k−j)
(0)
}∣∣+

∣∣γ(2)
i E

{
f

(4)
n−k(S̃k−j−1)Xk−j

}∣∣)� 1 . (4.91)

We deal now with the last terms in the decomposition (4.74) and show that

n∑
k=1

`k∑
i=0

∣∣E(∆
(1,4)
k,i,2 )

∣∣� 1 and
n∑
k=1

∣∣E(∆
(1)
k,4)
∣∣� 1 , (4.92)

where we recall that ∆
(1,4)
k,i,2 and ∆

(1)
k,4 have been respectively defined in (4.61) and (4.42).

With this aim, note first that, by Item 2 of Lemma 4.1,

n∑
k=1

`k∑
i=0

i+mk,i∑
j=i+1

∣∣E{f (4)
n−k(S̃k−j−1)E

(
X2
k−j(Xk−iXk)

(0)
)}∣∣

�
n∑
k=1

`k∑
i=0

i+mk,i∑
j=i+1

(
(n− k + 1)−3/2 + (n− j)−1

)(
θ(j − i) ∧ θ(i)

)
�

n∑
k=1

(
(n− k + 1)−3/2 + n−1

)(
mk

∑
i≥mk

θ(i) +

mk∑
u=1

uθ(u)
)
�
∑
u≥1

uθ(u) . (4.93)

Next, let Wk,i,j =
(
X2
k−j(Xk−iXk)

(0)
)(0)

. We start by noticing that

n∑
k=1

`k∑
i=0

i+mk,i∑
j=i+1

∣∣E{(f (4)
n−k(S̃k−j−mk,j−1)Wk,i,j

}∣∣
�

n∑
k=1

`k∑
i=0

i+mk,i∑
j=i+1

‖f (4)
n−k‖∞

(
θ(mk,j) ∧ θ(j − i) ∧ θ(i)

)
.
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But, θ(mk,j) = θ(mk) ∨ θ(k − j). Hence, using Item 1 of Lemma 4.1,

n∑
k=1

`k∑
i=0

i+mk,i∑
j=i+1

∣∣E{(f (4)
n−k(S̃k−j−mk,j−1)Wk,i,j

}∣∣
�

n∑
k=1

(n− k + 1)−1
(
m2
kθ(mk) +mk

∑
i≥mk

θ(i) +mk kθ([k/3])
)

�
n∑
k=1

θ(mk) +
n∑
k=1

(n− k + 1)−1/2
∑
i≥mk

θ(i) +
n∑
k=1

kθ(k)�
∑
u≥1

uθ(u) . (4.94)

Next, by Item 1 of Lemma 4.1, we derive

n∑
k=1

`k∑
i=0

i+mk,i∑
j=i+1

∣∣E{(f (4)
n−k(S̃k−j−1)− f (4)

n−k(S̃k−j−mk,j−1)
)
Wk,i,j

}∣∣
≤

n∑
k=1

`k∑
i=0

i+mk∑
j=i+1

j+mk,j∑
u=j+1

∫ 1

0

∣∣E{(f (5)
n−k(S̃k−u−1 + tX̃k−u)

)
X̃k−uWk,i,j

}∣∣dt
�

n∑
k=1

`k∑
i=0

i+mk∑
j=i+1

j+mk,j∑
u=j+1

‖f (5)
n−k‖∞

(
θ(u− j) ∧ θ(j − i) ∧ θ(i)

)
�

n∑
k=1

(n− k + 1)−3/2
( mk∑
u=1

u2θ(u) +m2
k

∑
i≥mk

θ(i)
)
�
∑
u≥1

uθ(u) . (4.95)

Putting together (4.93), (4.94) and (4.95), the first part of (4.92) follows. Similar (but

simpler) arguments lead to the second part of (4.92). Finally, starting from (4.74) and

taking into account the upper bounds (4.80), (4.81), (4.90), (4.91) and (4.92), it follows

that
∑n

k=1

∣∣E(∆n,k)
∣∣ � 1 +

∑
k≥1 k(k ∧

√
n)θ(k), which combined with (4.25) implies

(4.24) and then proves Item (b) of the theorem.

4.2 Proof of Lemma 4.1

Item 1 comes from the smoothing lemma 6.1 in [8]. To prove Item 2, we write∣∣E(f
(i)
n−k(S̃`−1))− E(f

(i)
n−k(S`−1))

∣∣ ≤ ‖f (i+1)
n−k ‖∞‖E0(S`−1)‖1 .

Hence, since ‖E0(S`−1)‖1 ≤
∑`

k=1 θX,1,1 � 1, using Item 1, we derive that for any positive

integer `, ∣∣E(f
(i)
n−k(S̃`−1))− E(f

(i)
n−k(S`−1))

∣∣� (n− k + 1)−(i−1)/2 .

Next, let (Gi)i≥1 be a sequence of iid centered Gaussian random variables with variance

σ2 and independent of (Xi, Bi, Zi)i≥1 (recall that the random variables (Bi) and (Zi)

have been defined at the beginning of Section 4.1). Let Nk =
∑k

i=1Gi. Write that

E(f
(i)
n−k(S`−1)) = E(f

(i)
n−k(S`−1))− E(f

(i)
n−k(N`−1)) + E(f

(i)
n−k(N`−1)) .
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Next, let tk = σ
√

(n− k)/2 + 1 and let ϕt2k be the density of the law N (0, t2k). Denote

also by Hk,n =
∑n

i=k+1Bi and note that, by definition, Hk,n is independent of S`−1 and

of N`−1. Note that

E(f
(i)
n−k(N`−1)) = E(f ∗ ϕ(i)

t2k
(N`−1 +Hk,n)) = E(f ∗ ϕ(i)

t2k+σ2(`−1)
(Hk,n)) .

Using Item 1, it follows that

|E(f
(i)
n−k(N`−1))| � (n− k + `)−(i−2)/2 .

On another hand

E(f
(i)
n−k(S`−1))− E(f

(i)
n−k(N`−1)) = E(f ∗ ϕ(i)

t2k
(S`−1 +Hk,n))− E(f ∗ ϕ(i)

t2k
(N`−1 +Hk,n))

=

∫
R
E
{
f ′(S`−1 +Hk,n − u)− f ′(N`−1 +Hk,n − u)

}
ϕ

(i−1)

t2k
(u)du .

Since f ∈ Λ2(E), g := f ′ is in Λ1(E) meaning that g : R × E → R is measurable wrt

the σ-fields L(R × E) and B(R), g(·, w) is 1-Lipschitz and g(0, w) = 0 for any w ∈ E.

Therefore, since it is assumed that
∑

k≥1 kθX,3,4(k) <∞, one can use Item a) of Theorem

3.1 in [10] (see also Theorem 1.1 in [19]) which entails that

sup
v∈R

∣∣E(f ′(S`−1 + v))− E(f ′(N`−1 + v))
∣∣� 1 .

Note that Item a) of Theorem 3.1 in [10] is stated for g a Lipschitz function but following

its proof one can show that it holds also if g belongs to Λ1(E). On another hand,

ϕ
(i−1)

t2k
(u) = t−ik ϕ

(i−1)
1 (u/tk). Therefore∣∣E(f

(i)
n−k(S`−1))− E(f

(i)
n−k(N`−1))

∣∣� t1−ik ‖ϕ
(i−1)
1 ‖1 � t1−ik .

Putting together all the above upper bounds gives Item 2 of Lemma 4.1.

5 Annex: convergence of quantiles in the CLT

In this section, we give an inequality involving the difference between the quantile of a

normalized random variable and the quantile of a standard normal, and the Wasserstein

distance of order p between the corresponding laws. The main result of this section is

Proposition 5.1 below which is a key result to prove Corollary 2.2.

Proposition 5.1. Let Z be a centered real-valued random variable satisfying E(Z2) ≤ 2.

Let FZ denote the distribution function of Z and Φ denote the distribution function of a

standard normal Y . For any p ≥ 1, let

Kp =

∫ 1

0

∣∣F−1
Z (t)− Φ−1(t)

∣∣pdt.
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Then, for any u in (0, 1/2],

∣∣F−1
Z (1− u)− Φ−1(1− u)

∣∣ ≤ max
(((p+ 1)eKp

uQ1,Y (u)

)1/(p+1)

,
((p+ 1)eKp

u

)1/p)
.

Proof. Throughout the proof, HY = 1−Φ and QY is the inverse function of HY . With

these notations,

Q1,Y (u) = u−1

∫ u

0

QY (t)dt = u−1E
(
Y IY≥QY (u)

)
=

exp(−Q2
Y (u)/2)√

2π u
. (5.1)

We also set HZ = 1− FZ and we denote by QZ the generalized inverse function of HZ .

From (5.1), Proposition 5.1 is equivalent to

|QZ(u)−QY (u)| ≤ max
((

(p+ 1)e
√

2π eQ
2
Y (u)/2Kp

)1/(p+1)
,
(
(p+ 1)eKp/u

)1/p
)

(5.2)

for u ≤ 1/2. We start by proving (5.2) in the case QZ(u) > QY (u).

Proof of (5.2) in the case QZ(u) > QY (u). Let δ = QZ(u) − QY (u) and let η be the

unique real in (0, u) such that QY (u− η) = QY (u) + δ = QZ(u). From the convexity of

QY on (0, 1/2],

QY (u− tη) ≤ QY (u) + tδ for any t ∈ [0, 1]. (5.3)

Moreover QZ(u − tη) ≥ QZ(u) ≥ QY (u) + δ for t in [0, 1], whence, using the change of

variables s = u− tη,

Kp ≥
∫ u

u−η
|QZ(s)−QY (s)|pds ≥ η

∫ 1

0

(δ − δt)pdt = ηδp/(p+ 1). (5.4)

In view of the above inequality, we have to bound η from below. In order to get a lower

bound on η, we will bound up −Q′Y . From the definition of QY ,

−Q′Y (s) = −1/H ′Y (QY (s)) =
√

2π exp(Q2
Y (s)/2) ≤

√
2π exp((QY (u) + δ)2/2)

for any s in [u− η, u],

We now separate two cases. If δ ≤
√

2 +Q2
Y (u)−QY (u),

−Q′Y (s) ≤
√

2π exp((QY (u) + δ)2/2) ≤
√

2π exp(1 +Q2
Y (u)/2)

for any s in [u− η, u]. Then

QY (u− η)−QY (u) ≤ ηe
√

2π exp(Q2
Y (u)/2). (5.5)

In that case, putting the above lower bound on η in (5.4), we obtain that

δp+1 ≤ (p+ 1)e
√

2π eQ
2
Y (u)/2Kp. (5.6)

35



If δ >
√

2 +Q2
Y (u)−QY (u), let δ0 =

√
2 +Q2

Y (u)−QY (u) and let η0 be the real in

(0, u) such that QY (u − η0) = QY (u) + δ0. Then η ≥ η0 and (δ0, η0) still satisfies (5.5),

from which

η ≥ η0 ≥ (e
√

2π)−1
(√

2 +Q2
Y (u)−QY (u)

)
exp(−Q2

Y (u)/2). (5.7)

Putting this lower bound in (5.4), we obtain that

δp ≤ (p+ 1)e (Kp/u)

√
2π exp(Q2

Y (u)/2)u√
2 +Q2

Y (u)−QY (u)
. (5.8)

Now, setting u = HY (x),

sup
u∈(0,1/2]

√
2π exp(Q2

Y (u)/2)u√
2 +Q2

Y (u)−QY (u)
= sup

x≥0

√
2π exp(x2/2)HY (x)√

2 + x2 − x
≤ 1

by an inequality on the Mills ratio of Komatu [15]. The two above inequalities imply

that

δp ≤ (p+ 1)e (Kp/u), (5.9)

if δ ≥
√

2 +Q2
Y (u) − QY (u). Combining (5.6) and (5.9), we get (5.2) in the case

QZ(u) > QY (u). It remains to prove (5.2) in the case QZ(u) < QY (u).

Proof of (5.2) in the case QZ(u) < QY (u). Let then δ = QY (u) − QZ(u). From the

assumptions E(Z) = 0, E(Z2) ≤ 2 and the Tchebichef-Cantelli inequality, for any x ≤ 0,

HZ(x) ≥ x2/(2 + x2). This which implies that

QZ(u) ≥ −
√

2u/(1− u) for any u ∈ (0, 1). (5.10)

In particular, for u ≤ 1/2, QZ(u) ≥ −
√

2 ≥ −
√

2 +Q2
Y (u). Let then β be the positive

real such that QY (u + β) = QZ(u). From (5.10), −Q′Y (s) ≤
√

2π exp(1 + Q2
Y (u)/2) for

any s in [u, u+ β]. It follows that

QY (u+ s) ≥ QY (u)− s
√

2π exp(1 +Q2
Y (u)/2)

for any s in [0, β]. For s = β, the above inequality yields

β ≥ (e
√

2π)−1 exp(−Q2
Y (u)/2)δ := η.

With the above definition of η, for any t in [0, 1],

QY (u+ tη) ≥ QY (u)− tδ ≥ QY (u)− δ ≥ QZ(u+ tη).

Hence

QY (u+ tη)−QZ(u+ tη) ≥ (1− t)δ
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for any t in [0, 1]. It follows that

Kp ≥ η

∫ 1

0

|QY (u+ tη)−QZ(u+ tη)|pdt ≥ η

∫ 1

0

(1− t)pδpdt =
ηδp

p+ 1
.

The above inequality together with the definition of η then imply (5.6), which completes

the proof of (5.2).

Proof of Corollary 2.2. Recall that from Item (b) of Theorem 2.1 (see also Comment

2.2), under the assumptions of Corollary 2.2, W2(PSn/σn , G1) = O(n−1/2). Hence, Item

(a) comes from an application of Proposition 5.1 by taking into account the fact that, if

Y is a standard normal r.v., there exists a positive constant η such that

inf
u∈(0,1/2]

Q1,Y (u)√
ln(1/u)

≥ η .

Indeed, Q1,Y (u) ∼u→0

√
2 ln(1/u) and Q1,Y (1/2) > 0.

Item (b) follows again from Item (b) of Theorem 2.1 together with Inequality (2.7)

in [23].
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[17] Merlevède, F., Peligrad, M. and Utev, S. Functional Gaussian Approximation for Depen-

dent Structures. (2019). Oxford Studies in Probability 6 Oxford University Press.
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