
HAL Id: hal-03890057
https://hal.science/hal-03890057v2

Submitted on 3 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CATREEN : Context-Aware Code Timing Estimation
with Stacked Recurrent Networks

Abderaouf Amalou, Elisa Fromont, Isabelle Puaut

To cite this version:
Abderaouf Amalou, Elisa Fromont, Isabelle Puaut. CATREEN : Context-Aware Code Timing Estima-
tion with Stacked Recurrent Networks. ICTAI 2022 - 34th IEEE International Conference on Tools
with Artificial Intelligence, Oct 2022, Virtually, China. pp.1-6, �10.1109/ICTAI56018.2022.00090�.
�hal-03890057v2�

https://hal.science/hal-03890057v2
https://hal.archives-ouvertes.fr

CATREEN : Context-Aware Code Timing Estimation
with Stacked Recurrent Networks

Abderaouf N Amalou
Univ. Rennes, INRIA, CNRS, IRISA

Rennes, France

abderaouf.amalou@irisa.fr

Elisa Fromont
Univ. Rennes, IUF, INRIA, CNRS, IRISA

Rennes, France

elisa.fromont@irisa.fr

Isabelle Puaut
Univ. Rennes, INRIA, CNRS, IRISA

Rennes, France

isabelle.puaut@irisa.fr

Abstract—Automatic prediction of the execution time of
programs for a given architecture is crucial, both for performance
analysis in general and for compiler designers in particular. In
this paper, we present CATREEN, a recurrent neural network
able to predict the steady-state execution time of each basic
block in a program. Contrarily to other models, CATREEN
can take into account the execution context formed by the
previously executed basic blocks which allows accounting for
the processor micro-architecture without explicit modeling of
micro-architectural elements (caches, pipelines, branch predictors,
etc.). The evaluations conducted with synthetic programs and
real ones (programs from Mibench and Polybench) show that
CATREEN can provide accurate prediction for execution time
with 11.4% and 16.5% error on average, respectively and that
we got an improvement of 18% and 27.6% respectively when
comparing our tool estimations to the state-of-the-art LSTM-based
model.

I. INTRODUCTION

The complexity of developing cycle-accurate simulators

and integrating them into compiler infrastructures has led

compiler designers to use much simpler ways to estimate

execution times. Such estimation is useful to decide about

the compiler optimizations to apply, the simplest ones being

architecture-independent cost functions, e.g., simply counting

the number of machine instructions. An alternative, reachable

thanks to the recent advances in Machine Learning (ML),

consists in predicting the execution times of code snippets

to guide optimizations [1]. The benefit of using ML for

timing prediction is threefold: (i) no detail of the processor

microarchitecture is needed, because the behavior is learned

from timing measurements; (ii) porting the ML-based execution

timing predictor to a new microarchitecture does not need any

deep expertise, only a new training step is required; (iii) even

if training an ML model is a time-consuming task, prediction

is in general fast, allowing ML-based timing predictions to be

used in compilers.
Today’s processors feature increasing complexity (e.g., cache

hierarchy, pipelines, branch predictors, instruction scheduling in

out-of-order cores), which, combined with the lack of associated

documentation, makes building a cycle-accurate simulator like

[2] for each new architecture time-consuming and error-prone.

This complexity is mainly due to the integration of several

hardware accelerators, which aim to speed up the execution time

of programs. The cohabitation of these components makes the

timing modeling of a processor difficult to achieve. Moreover,

these components introduce dependencies between successive

instructions, making the timing of a sequence of instructions

dependent on its execution context (history of instructions

executed before the sequence under study).

In this paper, we introduce CATREEN, for Context-Aware

code Timing estimation with stacked REcurrEnt Networks.

CATREEN infers the steady-state execution times of individual

basic blocks (BBs) in programs (at the assembly code level).

As compared to related works on estimating the execution time

of BBs, the novelty of our work is to assess the execution time

of a BB within its execution context. Instead of calculating

the best-case execution time in isolation of a basic block b;
like it was done in ITHEMAL [3], CATREEN calculates the

execution time of b after executing a sequence of other BBs.

Experiments on an embedded architecture (STM32H6 board,

featuring an ARM Cortex M7 processor) demonstrate that

CATREEN produces more accurate predictions than state-of-

the-art context-agnostic ML-based techniques, on both synthetic

programs and real codes.

The remainder of this paper is organized as follows. Sec-

tion II surveys related works that use ML-based techniques

for performance evaluation and optimization. An overview

of CATREEN is given in Section III. The performance of

CATREEN is evaluated in Section IV. Finally, Section V

concludes with a summary of the contributions and directions

for future work.

II. RELATED WORK

The complexity of evaluating and improving the performance

of programs has motivated the use of machine learning tech-

niques. These techniques can be classified into two categories:

those which directly evaluate the execution time of programs

(§ II-A) and those which target other metrics that are related

to performance like speedup or energy consumption, albeit not

directly evaluating execution times (§ II-B).

A. Machine learning for execution time prediction

ITHEMAL [3] leverages a hierarchical multi-scale Recurrent

Neural Network (RNN) and, in particular, Long Short-Term

Memory (LSTM) layers to predict the throughput of basic

blocks. ITHEMAL captures the interactions between instruc-

tions from the same basic block. Each basic block is isolated

571

2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)

2375-0197/22/$31.00 ©2022 European Union
DOI 10.1109/ICTAI56018.2022.00090

20
22

 IE
EE

 3
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 T
oo

ls
w

ith
 A

rt
ifi

ci
al

 In
te

lli
ge

nc
e

(IC
TA

I)
|

97
9-

8-
35

03
-9

74
4-

4/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

TA
I5

60
18

.2
02

2.
00

09
0

Authorized licensed use limited to: INRIA. Downloaded on July 03,2023 at 08:30:25 UTC from IEEE Xplore. Restrictions apply.

from the program and executed repetitively to reach its steady-

state behavior and obtain its throughput (peak performance or

best-case execution time). In contrast to ITHEMAL, CATREEN

relaxes the assumption that a basic block is executed in isolation

and predicts the execution time of a basic block given its actual

context of execution at steady-state.

[4] advocates the use of sparse polynomial regression to

predict the execution time of programs given a set of static

features. CATREEN differs from [4] by the features used during

learning that allow capturing the execution context of basic

blocks. It also differs by the type of method used to predict

the throughput (in our case, a recurrent neural network).

Ritter and Hack [5] present a framework for inferring port

usage of instructions based on an evolutionary algorithm that

solves a linear program to predict the throughput of a basic

block. The solution was designed to infer port mappings for

an out-of-order processor but it is not clear how the approach

could be extended to infer the throughput for a more complex

trace execution, e.g., how data dependencies could be included

in the analysis. In comparison, CATREEN was designed for

in-order processor architecture due to the sequential processing

of instructions, but it has the ability to learn instruction and

data dependencies.

B. Machine learning for performance optimization

ML techniques were proposed in the past to improve the

performance of programs [6]–[8].

The DeepTune [6] tool leverages an RNN LSTM-based

model that can be used as a classifier to choose the best choice

between running a program on the CPU or the GPU, or to

predict the best number of threads among a set of values. In

[7], a neural network (NN) model uses performance counters

to predict the performance (instructions per cycle) of a thread

migration from one core to another in S-NUCA architecture.

Tousi and Lujan [8] study the feasibility of using classic

machine learning techniques to predict performances (latency,

speedup...) on the SPEC Benchmarks, while CATREEN only

uses programs that can run without an operating system (bare-

metal environment to avoid OS noises) which is not the case

of SPEC Benchmarks.

If the methods presented before and their inputs are

(somewhat) similar to ours, our end goal is entirely different.

CATREEN, in contrast to the works mentioned above, focuses

on the prediction of execution time for a given hardware and

compiler settings.

III. EXECUTION TIME PREDICTION USING CATREEN

CATREEN leverages a stacked recurrent neural network

architecture to predict the execution time of a basic block b
(or the basic block under analysis) given its execution context

(sequence of basic blocks executed before b). By considering

the execution history of basic blocks, CATREEN naturally

accounts for the state of the hardware when executing the

basic block (pipeline, cache hierarchy, and branch prediction).

A. Overview of CATREEN

Recurrent Neural Networks (RNN) are particular neural

network architectures that can be trained to predict outputs

from a variable-length sequence of data. These networks

can memorize (parts of) the sequence and the computed

sequential information along time. Long Short-Term Memory

(LSTM) are special kinds of RNN, capable of learning long-

term dependencies [9] in the sequences. LSTM architectures

have mechanisms, called gates, that are trained to choose

whether or not to keep particular sequential information. These

architectures are, for example, extensively used in domains such

as natural language processing [10] [11], where the context of a

word in a sentence is useful to learn its characteristics. Figure 1

represents the overall architecture of CATREEN. CATREEN

estimates the execution time of a basic block within a sequence

of basic blocks in a similar way that an LSTM would process

a paragraph in natural language to predict, for example, the

sentiment (positive or negative) of a given sentence in this

paragraph. The analogy is as follows: an instruction represents a

word. An instruction is composed of an opcode and one or more

operands, which can be treated as letters that constitute this

word. A set of instructions will form a basic block (a sentence),

and a sequence of basic blocks will therefore represent a

paragraph.

The architecture of CATREEN is composed of five layers,

depicted in Figure 1 from top to bottom. The first layer is

a tokenization and embedding layer that pre-processes the

assembly language, extracted from the machine code, and

generates inputs that are understandable by the next layers.

The next three layers are the central layers of CATREEN. They

are LSTM layers (called RNN in the following): one to process

an instruction (Instruction layer in Figure 1), one to process

a basic block (BB layer in Figure 1), and one to process a

sequence of basic blocks (Sequence layer in Figure 1). After

that, and before processing the last BB in the sequence (the

basic block under analysis), a residual connection is created

using this vector and it is directly concatenate with the formed

context (the result of processing all BBs), this helps the model

to converge faster as we aim to estimate the execution time of

the last BB in the sequence. Finally, The formed context and

the BB under analysis vector are sent to a dense layer that is

used to predict the final timing output (timing a basic block

in the context of the previously executed basic blocks). More

details on each layer are given below.

B. Tokenization and embedding

In order for the RNN to properly interpret basic blocks,

an encoding of machine code into a sequence of integers is

needed, where each integer represents an index (token) in a

predefined dictionary. This is performed as follows. We pre-

process the raw data (assembly code) by encoding each basic

element of an instruction (opcode and operand) with a unique

number (token), with a special treatment given to the operands:

all immediate operands are encoded with the same token, the

same treatment is done for all addresses which are encoded

with the same token. Finally, addressing modes using registers

572

Authorized licensed use limited to: INRIA. Downloaded on July 03,2023 at 08:30:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Architecture of CATREEN. The input is a sequence

of basic blocks consisting of a sequence of instructions which

are themselves, sequences of operands/opcodes. CATREEN

regresses a timing estimation for the last basic block in the

input sequence.

are differentiated by assigning a distinct token value per pair

(register number, addressing mode) with the addressing modes

supported by the considered architecture (e.g., for the ARM

targets, direct access, indirect access, and indirect access with

offset).

In order to be suitable inputs for RNN layers, each token is

again encoded into a distinct fixed-size vector of floats within

the interval [-1,1] using word2vec [12].

C. LSTM RNN layers of CATREEN

Since we do not, a priori, know what is the length of the

sequences (i.e., how many basic blocks they contain) nor the

basic blocks’ length (i.e., how many instructions they contain)

nor even the length of the instructions (i.e., how many operands

they contain), we model these data with LSTM, which are

suited to variable-length sequences. Three levels of LSTM are

used for that purpose:

• The Instruction Layer (in green in Figure 1) is the first LSTM

layer in CATREEN. It takes as input a sequence of embedded

code operands/opcodes (i.e., an instruction). We loosely

denote the length of the sequence of operands/opcodes by

O (resp. I and B in the subsequent layers) even though it

differs from one instruction to another. This LSTM layer

processes the entire sequence of embedded tokens from

instruction and produces a single final output representation

for the entire instruction. To avoid direct influence between

instructions, the hidden state is reset to its initial state hØ

at each instruction (resp. at each BB and sequence), this

helps to learn longer sequences where each representation

is sent to the next stage to be better interpreted: the outputs

(instructions) are treated one by one by the next LSTM

layer (BB layer, for Basic Block layer). We loosely denote

the dimension per layer by N even though it may differ in

the three RNN layers. The selected hidden size per layer is

given in Section IV-D.

• The BB layer (in blue in Figure 1) processes the sequence

(of length I) of the treated instructions in a basic block and

produces a new representation for each basic block. Again,

all representations of a basic block are treated one element

after one by the next LSTM layer (Sequence layer).

• Finally, the Sequence layer (in red in Figure 1) processes the

sequence of S basic blocks within a sequence. Similarly to

the other RNN layers, it produces at the end a representation

of the sequence or what we call Context. Then, the value

of Context is concatenated to the value of the BB under
analysis (that we save from the previous layer BBs) and

they are given as inputs to a fully connected linear layer

connected to a single output which produces an estimate of

the execution time of the last basic block of the sequence

given the execution history.

IV. EXPERIMENTAL EVALUATION

Before evaluating CATREEN, we describe the data used

to train and test our tool in Section IV-A, followed by the

experimental setup in Section IV-B. In Section IV-C, we present

the context-agnostic baselines used to assess our method. Then,

we show that a careful selection of hyper-parameters is crucial

for high precision results, for both CATREEN and the baseline

predictors (Section IV-D). We then demonstrate that CATREEN

outperforms the baseline context agnostic techniques, on both

synthetic code (Section IV-E) and real code (MiBench2 and

PolyBench programs, Section IV-F). A more detailed evaluation

of CATREEN, that studies the inference time of CATREEN

and provides further information on hyper-parameter selection

can be found on a longer version of this paper [13]. Code and

data can be found by following the link https://gitlab.inria.fr/

aamalou/CATREEN.git.

A. Training and test data

The supervised training of our stacked LSTM network

requires a large number of labeled data samples. In order

to cover a large number of possible programs, we use synthetic

codes. To test our model, both synthetic and real programs

573

Authorized licensed use limited to: INRIA. Downloaded on July 03,2023 at 08:30:25 UTC from IEEE Xplore. Restrictions apply.

are used. In both cases (training and testing), we use a

hardware-assisted solution to obtain a timed execution trace

from these programs (ground truth timing data used as a label

for supervised learning). The execution trace (instruction-by-

instruction representation of the program execution) is then

pre-processed to constitute suitable inputs for our model.

1) Synthetic data: A code generator was developed to

produce varied C source code programs. The code generator

produces programs that randomly manipulate a selected number

of statements and variables (the user provides parameters

specifying the proportion of each element from a declared

grammar). The code generator produces source code with

loops, if-then-else constructs, and uses all the elementary types

from the C language (integers, floats, etc.). Basic statements

use the most common operations available in C (arithmetic

and logical operations, shift and rotate operations, binary and

unary operators or booleans, etc.). Arrays are also covered

with various access modes: constant (access to a constant

index), sequential, linear (affine loop indices), and random.

The code generation ensures the absence of run-time errors by

construction (out-of-bound array accesses, divide by zero).

2) Real Data: We evaluate our approach on a dataset of real

programs, MiBench 2, a benchmark suite based on MiBench

[14] and ported for IoT devices. Our tests were carried out on

the Automotive and Industrial Control category of MiBench.

We also use PolyBench v4.2 [15] a set of programs that has

the specificity to manipulate nested loops.

3) Ground truth timing generation: Training and validating

CATREEN have to be performed with accurate timing values.

Moreover, the way the timing values are obtained should not

change the timing of the code under execution (well-known

as probe-effect). In CATREEN, we opted for a hardware-

based solution, using the Joint Test Action Group (JTAG)

interface. The J-Trace Pro trace solution from Segger [16]

is used to connect to the JTAG interface of the target

processor, alongside Ozone [17], a cross-platform debugger

and performance analyzer. Ozone generates execution traces

with a format of one line per machine instruction. Each line

contains information about the value of the cycle counter after

executing the instruction, the address of the instruction, its

opcode and operands, and the corresponding assembly code.

4) Data pre-processing: To create the final data (both for

synthetic and real programs), the execution trace generated

by Ozone is processed as follows. First, BBs are extracted

and the execution time of each BB is calculated. In order

to eliminate outliers, the ground truth timing of each BB is

obtained by using multiple executions and keeping the median

value. CATREEN is trained by using a normalized timing value

equal to the median value of the measurements divided by the

number of instructions in the BB. Sequences that are too short

to have enough contextual information (in our experiments,

sequences shorter than 5 BBs) are filtered out.

B. Experimental setup

Experiments were performed on an STM32H7 board. The

board features an ARM Cortex M7 processor, which has a

6-stage in-order pipeline, 16 KB instruction and data caches,

and a branch predictor. We generated 1000 synthetic code

snippets that we executed on the bare-metal target processor

to eliminate any possible interference. After the pre-processing

data phase to get sequences (as explained in Section IV-A4),

10000 different sequences were available for training, 2000
different sequences for validation, and 1000 different sequences

for testing. Each subset of data (training, validation, test)

comes from a separate set of programs to remove the bias

it would otherwise introduce. We performed 1000 execution

time measurements for each basic block, with cache warming

before sampling (cache warming is performed by executing

the program 20 times). All learning models were implemented

in PyTorch [18] and were trained on NVIDIA GeForce RTX

2080 Ti. CATREEN training lasted four days for each setting

(set of values of hyperparameters).

C. Baseline ML-based execution time predictors

The performance of CATREEN is compared with two

context-agnostic execution time predictors. The most simple,

albeit not naive one, is a Multi-Layer Perceptron regressor

(denoted as MLPr in the following). An MLPr is a feed-

forward neural network that does not take into account

sequential information and requires a fixed-size input. Such

a baseline has been successfully used for timing prediction

in [19]. Specifically, the MLPr we have implemented takes

as an input 233 static features of the basic blocks: the

proportions of each type of machine instruction (e.g., MOV,

ADD, LDR); the proportion of the different addressing modes

(e.g., immediate, direct access, register indirect access, register

indirect access with offset). We used a grid search algorithm

to select proper MLPr hyperparameters (number of hidden

layers, optimizer, learning rate, and the loss function). The

result of this search gave us the following ideal (on the

validation dataset) parameters: {hidden layer sizes=(256, 256),

learning rate init=0.001, solver=’adam’, loss function=’mean

squared error’.}. Our second baseline is ITHEMAL [3], that

similarly to CATREEN, uses RNNs for execution time predic-

tion. More precisely, we compare CATREEN with two versions

of ITHEMAL. The first one is a direct re-implementation of

ITHEMAL from the original paper (denoted as ITHEMAL-
untuned in the following), using the hyperparameters suggested

by the authors. The re-implementation consisted in porting

the tokenization/embedding step of ITHEMAL to the ARM

instruction set and using a GPU for training instead of a parallel

CPU. For the second version of ITHEMAL (called ITHEMAL-
tuned hereafter), we have tuned the hyperparameters of the

model to better fit the new data.

D. Hyperparameters tuning

Finding suitable hyperparameters is of utmost importance to

guarantee the training convergence of the learned models on

new data. Therefore, we show in the following how we have

tuned (on validation data) our learning hyperparameters and

how this can drastically improve the performance (in terms

of Mean Absolute Percent Error, MAPE) of both CATREEN

574

Authorized licensed use limited to: INRIA. Downloaded on July 03,2023 at 08:30:25 UTC from IEEE Xplore. Restrictions apply.

and our closest competitor, ITHEMAL. The impact of three

learning hyperparameters were studied:

• The optimization algorithm: Stochastic Gradient Descent

(SGD), used in ITHEMAL [3] and ADAM optimizer widely

used in deep learning.

• The learning rate: three learning rates; two constant values

10−3 and 10−4, and an adaptive (that starts from 10−2 and

decreases at each epoch by a factor of 10 until 10−4).

• The loss function: the MAPE loss -used in ITHEMAL-

and the symmetric Mean Absolute Percentage Error loss

function (sMAPE) which is neutral regarding under or over-

forecasting:

MAPEloss =
1

n
∗

n∑

i=0

|predicti − actuali|
actuali

(1)

sMAPEloss =
2

n
∗

n∑

i=0

|predicti − actuali|
predicti + actuali

(2)

We kept the number of training epochs (20), the token

embedding size 512, and the number of LSTM cells 512 the

same during this study since this was the largest that we could

do with our computation power.

The sensitivity of CATREEN and ITHEMAL to hyperpa-

rameter tuning is shown in Table I. Several observations can

be made from the results. First, we observe that ADAM

drastically reduces the generalization error of the learned

models. Second, regarding the learning rate, the best results

are obtained in all cases with a learning rate of 10−4 except

when sMAPE+SGD is used, where 10−3 gives the best results

(12% and 20%) both from CATREEN and ITHEMAL. The

adaptive version (adapt) gives the worst results in most of the

tests (except for ITHEMAL, when MAPE+SGD is used, in

this case, it is the constant value 10−3 that gives the worst

error percentage). Finally, we observe that sMAPE generally

gives better results whatever the other parameters. MAPE

is asymmetric by definition and puts a heavier penalty on

overestimation errors than on underestimation errors. As a

result, MAPE will favor models that are under-forecast. Overall,

the results reported in Table I show that the hyperparameter

selection has a huge impact on the model performance. They

further show that the hyperparameter selection, as done in the

original version of ITHEMAL, is sub-optimal for our data. In

the next sections, we use CATREEN and ITHEMAL with their

best-found hyperparameters.

E. Prediction performance on synthetic data

We compare the performance of MLPr, ITHEMAL-untuned
[3], ITHEMAL-tuned and CATREEN on the 1000 test se-

quences. The results are reported in Table II and they are

given as a MAPE, where the mean is computed over the 1000
test samples and the MAPE is expressed as a percentage. We

also provide a Spearman score (rank correlation) and Pearson

score (linear correlation) test for each method. The best results

in the table are highlighted in bold. We observe that CATREEN

gives the best results, with a MAPE of 11.4% an improvement

of 18% compared to ITHEMAL tuned (which was trained on

the same data set for a fair comparison). This means that the

model has benefited from the execution history of a given

basic block to predict its timing, as further detailed below.

In comparison, the other techniques that are context-agnostic

provide more modest results; the simplest technique (MLPr)

gives the worst results, which shows that handcrafted features

(even though we introduced a large features number, here 233)

are less discriminant than the learned ones.

F. Timing prediction on benchmarks

We evaluate our approach on real programs, the Automotive

program set from MiBench 2 and PolyBench. The execution

time is estimated for the entire program. For PolyBench

programs, we choose to use small dataset option because of

the flash memory size limitation for programs when running

them on bare-metal (we also had to drop some programs

that do not fit on the flash memory). The same experimental

process as for the synthetic dataset (see Section IV-A) was

used to (i) generate the sequences of basic blocks serving as

inputs for the timing predictions, (ii) obtain the ground truth

timing values. Table III reports the Absolute Percentage Error

(APE = 100 ∗ |prediction−actual|
actual) for the different programs,

for CATREEN, ITHEMAL-tuned and MLPr. The results of

ITHEMAL-untuned were not good enough to deserve their

reporting in the table. The best APE values are highlighted in

bold. The results show that CATREEN outperforms ITHEMAL-

tuned and MLPr, with a lower APE on all benchmarks (16.5%

on average), except for the mvt program. In general, we can

observe that ITHEMAL-tuned tends to have good results in

PolyBench programs which can be explained by the nested

loops that constitute them. These loops make the execution time

of the BBs steady (in best case), which can hide the context

effect on these BBs. The use of a completely context-agnostic

technique like MLPr gives, as expected, the worst predictions.

The average prediction error of CATREEN on the tested

benchmarks is comparable (although slightly higher) to that

obtained on the synthetic codes. This shows that our synthetic

dataset is globally representative of real code. The slightly

higher error may come from two factors: (i) Not sufficiently

representative code generation regarding array accesses. This

can be addressed by improving our dataset, for instance, by

synthesizing training data from real code; (ii) Too compact

tokenization of memory accesses (CATREEN does not consider

different memory addresses as distinct tokens, in order to avoid

an explosion of tokens number).

V. CONCLUSION

We have presented CATREEN, an ML-based program timing

predictor. CATREEN leverages recurrent neural networks to

predict the steady-state execution time of basic blocks in

a program while taking into account the execution context
formed by the previously executed basic blocks. Experimental

results have shown that CATREEN’s timing predictions are

18% (27.6%) better than those estimated by state-of-the-art

context-agnostic ML-based tools on synthetic (respectively real

575

Authorized licensed use limited to: INRIA. Downloaded on July 03,2023 at 08:30:25 UTC from IEEE Xplore. Restrictions apply.

TABLE I: MAPE performance of CATREEN and ITHEMAL, for different learning hyperparameters (loss function, optimizer,

learning rate)

Loss function MAPE sMAPE

Optimizer SGD ADAM SGD ADAM

Learning Rate 10−3 10−4 adapt 10−3 10−4 adapt 10−3 10−4 adapt 10−3 10−4 adapt

CATREEN 18% 18% 19% 11% 13% 17% 12% 16% 17% 11% 10% 13%
ITHEMAL 39% 24% 38% 18% 17% 21% 20% 27% 28% 25% 25% 25%

TABLE II: MAPE of timing predictions for 1000 basic blocks

by four different ML-based methods.

ML technique MAPE Spearman Pearson
MLPr 28.8% 0.974 0.966
ITHEMAL-untuned 27.4% 0.973 0.968
ITHEMAL-tuned 13.9% 0.972 0.975
CATREEN 11.4% 0.983 0.977

TABLE III: Execution time APE on MiBench (automotive)

and PolyBench for CATREEN, ITHEMAL-tuned and MLPr

Model CATREEN ITHEMAL-tuned MLPr
basicmath 2.1% 13.4% 67.1%
bitcount 9.3% 29.3% 68.3%
qsort 19.0% 37.5% 68.6%
susan:corner+edges 18.9% 35.3% 107.1%
susan:smoothing 2.1% 26.1% 67.1%
covariance 15.8% 18.4% 81.7%
gemm 19.8% 21.1% 30.2 %
gemver 20.9% 22.5% 79.9 %
gesummv 15.0% 15.3% 28.8 %
symm 17.8% 18.4% 35.0 %
syrk 18.3% 18.6% 30.0%
trmm 22.6% 24.8% 26.1%
2mm 17.2% 21.3% 25.3 %
3mm 17.7% 21.3% 27.2 %
atax 23.2% 24.8% 25.5%
bicg 18.7% 20.2% 28.1 %
dotigen 21.5% 25.5% 26.2 %
mvt 25.7% 25.3% 42.1%
cholesky 20.6% 22.4% 24.2 %
gramschmidt 16.9% 20.1% 21.8%
lu 18.7% 22.1% 106.5%
ludcmp 11.0% 16.9% 144.0%
trisolv 9.1% 11.9% 17.2%
floyd warshall 11.5% 21.6% 268.7%
Avg. 16.5% 22.8% 62.2%

programs). [20] has observed that LSTM models can use a max-

imum of 200 context tokens which prevent them from learning

longer-term information (i.e., they can remember sequences of

hundreds but not thousands). An area for improvement, is to

use Transformers [21] which have demonstrated a great ability

to address text sequence learning. Using attention mechanisms,

they can increase the quality of the contextual information

drawn from the sequence under analysis and its size. We thus

plan to consider Transformers for timing estimation.

ACKNOWLEDGMENTS

The authors are very grateful to Pierre Michaud and Hugo

Reymond for their comments on earlier drafts of the paper.

REFERENCES

[1] Z. Wang and M. O’Boyle, “Machine learning in compiler optimization,”
Proceedings of the IEEE, vol. 106, 2018.

[2] A. Ltd, “Cycle Models.” [Online]. Available: https://www.arm.com/
products/development-tools/simulation/cycle-models

[3] C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin, “Ithemal: Accurate,
portable and fast basic block throughput estimation using deep neural
networks,” in Int. Conference on machine learning. PMLR, 2019.

[4] L. Huang, J. Jia, B. Yu, B.-G. Chun, P. Maniatis, and M. Naik, “Predicting
execution time of computer programs using sparse polynomial regression,”
Advances in neural information processing systems, vol. 23, 2010.

[5] F. Ritter and S. Hack, “Pmevo: portable inference of port mappings for
out-of-order processors by evolutionary optimization,” in Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2020, pp. 608–622.

[6] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, “End-to-end deep
learning of optimization heuristics,” in 26th Int. Conference on Parallel
Architectures and Compilation Techniques. IEEE, 2017.

[7] M. Rapp, A. Pathania, T. Mitra, and J. Henkel, “Neural network-based
performance prediction for task migration on s-nuca many-cores,” IEEE
Transactions on Computers, vol. 70, no. 10, pp. 1691–1704, 2020.

[8] A. Tousi and M. Luján, “Comparative analysis of machine learning
models for performance prediction of the spec benchmarks,” IEEE Access,
vol. 10, pp. 11 994–12 011, 2022.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[10] J. Wang, L.-C. Yu, K. R. Lai, and X. Zhang, “Investigating dynamic
routing in tree-structured LSTM for sentiment analysis,” in Int. Confer-
ence on Empirical Methods in Natural Language Processing and Int.
Joint Conference on NLP, 2019.

[11] Y. Samih, S. Maharjan, M. Attia, L. Kallmeyer, and T. Solorio,
“Multilingual code-switching identification via lstm recurrent neural
networks,” in Proceedings of the Second Workshop on Computational
Approaches to Code Switching, 2016.

[12] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
Advances in neural information processing systems, vol. 26, 2013.

[13] A. N. Amalou, É. Fromont, and I. Puaut, “CATREEN: Context-Aware
Code Timing Estimation with Stacked Recurrent Networks,” Sep. 2022,
preprint. [Online]. Available: https://hal.inria.fr/hal-03776508

[14] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in 4th IEEE international workshop on workload
characterization, 2001.

[15] L.-N. Pouchet, “The polyhedral benchmark suite,” On-line: http://www.
cse. ohiostate. edu/pouchet/software/polybench, 2012.

[16] Segger, “J-Trace PRO – The Leading Trace Solution.” [Online].
Available: https://www.segger.com/products/debug-probes/j-trace/

[17] S. M. GmbH, “Ozone User Guide & Reference Manual,” p. 348.
[Online]. Available: https://www.segger.com/

[18] PyTorch, “PyTorch.” [Online]. Available: https://www.pytorch.org
[19] A. N. Amalou, I. Puaut, and G. Muller, “WE-HML: hybrid WCET

estimation using machine learning for architectures with caches,” in 27th
IEEE Int. Conference on Embedded and Real-Time Computing Systems
and Applications, RTCSA, 2021.

[20] U. Khandelwal, H. He, P. Qi, and D. Jurafsky, “Sharp nearby, fuzzy
far away: How neural language models use context,” arXiv preprint
arXiv:1805.04623, 2018.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
neural information processing systems, 2017.

576

Authorized licensed use limited to: INRIA. Downloaded on July 03,2023 at 08:30:25 UTC from IEEE Xplore. Restrictions apply.

